0 ratings0% found this document useful (0 votes) 91 views27 pagesMcs 13
ignou assingement for mcs13
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, 
claim it here.
Available Formats
Download as PDF or read online on Scribd
Course Code MCS-013
Course Title Discrete Mathematics
Assignment Number BCA (2)/013/Assignment/2021-22
Maximum Marks 100
Last Date of Submission 31“ October, 2021 (for July Session)
15" April, 2022 (for January Session)
‘There are eight questions in this assignment, which carries 80 marks. Rest 20 marks are for
viva-voce. Answer all the questions. You may use illustrations and diagrams to enhance the
explanations. Please go through the guidelines regarding assignments given in the
Programme Guide for the format of presentation,
‘Question:
(a) What is proposition? Explain different logical connectives used in proposition with the help
of example.
(b) Make truth table for followings.
i) poq v DAP AWG
ii) por v~@ aApyvn
(©) Give geometric representation for followings:
i) Rx{3)
ii) (1,5) x (3,-2)
‘Question2:
(a) Draw a Venn diagram to represent followings:
i) ADBYUQYANBYO,
ii) (ANBY C) KAY BOG
(3 Marks)
(4 Marks)
(3 Marks)
(3 Marks)
(b) Write down suitable mathematical statement that can be represented by the following
symbolic properties.
i) Gn (vy) (¥ 2Q
ii) V @ (Vy) (32P
() Show whether V5 is rational or irrational.
(@)_ Explain circular permutation with the help of an example.
Question 3:
(a) Make logic circuit for the following Boolean expressions:
i) (x'y 2) + (xyz)’
i) (ry) (yz) G2)
14
(2 Marks)
(3 Marks)
(2 Marks)
(6 Marks)iii) (xyz) +O
(b) What is a tautology? If P and Q are statements, show whether the statement
(P > Q) VQ 3 P) is a tautology or not. (4 Marks)
Question 4:
(a) How many different committees of 6 professionals can be formed, if each committee
contains at least 1 Professor, at least 2 Technical Managers and 1 Database Experts from
list of 6 Professors, 5 Technical Managers and 8 Database Experts? (4 Marks)
(b) What are Demorgan’s Law? Explain the use of Demorgen’s law with the help of example.
(4 Marks)
(©) Explain addition theorem in probability (2 Marks)
Question 5:
(a) How many ways are there to distribute 15 district objects into 5 distinct boxes with
(3 Marks)
i) Atleast three empty box.
ii) No empty box.
(b) Find how many 3 digit numbers are even? (3 Marks)
(©) Set ABandC are: A= {1,2, 3.4,5,7,8,9,11,17}, B={1,2,3,4,5,9,11, 12 } and
 
c=l 7,9,10,11,12 13}
Find A ABUC, A UB UC, A UBC and (B~C) (4 Marks)
Question 6:
(a) How many words can be formed using letter of TEACHER using each letter at most once?
(3 Marks)
» If each letter must be used,
it) ome oral tp estes amy be oe.
(b) Find boolean expression for the output of the following logic circuit. (3 Marks)
>
D—
f [+
iss ) oe
(Cc) Prove that I +: n(n+1)(2n+1/6; VnEN (4 Marks)
 
15Question 7:
(a) What is principle of duality? Explain with example. (3 Marks)
(b) What is power set? Write power set of set A={1,2,3,4,7.9,11} (3 Marks)
(c) What is a function? What is domain and range of a function? Explain with example.
(4 Marks)
Question 8:
(a) Find inverse of the following function: (3 Marks)
‘
f@=22 123
x-3
(b) Explain equivalence relation with example. (3 Marks)
(©) Prove that the inverse of one-one onto mapping is unique. (2 Marks)
(4) What is counterexample? Explain with an example. (2 Marks)MCS- Ot% a.
 
Ol
(0)
COWORSE CODE -- MCS- 1S
CouRss TILE = DiSereT? MATHEMATICS
| _ ASSIGNMENT N= RCAC [Old] AssiGNmenT | 221-2
[ Luhot ts proposition? Enplain Ukkenemt dogical Chome cuties]
jused AM PNopositon uty We balp ok enaimple zl
 
Ps
[Hts a declanetive sentena, Wot ic eitren dus on else, _
_ bot not bot. Proposition should be etre unioamalti,
 
chout OO folse.
 
Example ak come paspasitons ant $
 
 
Tuo plus two equals hour
 
Tuoo plus bod €quals ve.
 
MY7 0 FPA 770 _ond YO =|
 
togitad Conmeck yes 4
Tse ant wonde, phrases ( Conneckives on Winks used
Jy Combira hoy 0 Mone sentences. ee
 
 
 
Thre 58 foun dybes ak Wngieod connectors.
 
istuncton + “Tha Uclunctons ok -two Propositon Pp and
Q 4s at Compound Statement Pong, danoted by 092 => (ho vq) *UpRo)
& 9 Savy phn CavSayhOP SB Poeara dS
O'n=sz
&
 
 
 
 
 
1717! DISH ||}
2/7 /| alt | 0] 4
DIA} Py4] a4} ej]
A} p]a}ala}n|4i4
pal} P}r]r}?
al PAP?
=
By an eset cela
 
 
Give qeometwe Nepmesemteron foo fellousngs =
 
) RX £35
 
Wi) AS 3 x 8B (3-24
Boy Dow a _venn Bagnam ts Nepne sens follousng* |
) CANBVO VCANRDA
 
 
 
 
 
 
 
 
 
 
 
 
CANguc) UCANRVO
 
 
Gy] CAnguancaven®
LUTEAL
nc BIGLLE
Ge
 
 
 
 
 
| CAN ROS AC AURNO)
| (4@
 
 
 
 
 
 
CANROO (AvgnC)—————} poropentes ts Some elsment of sand 4 and lt
   
   
 
G) ale dou cublable meinemodicad Shatemerde
| Hot cam be wuparesented by tases to llotungy S
Paropentes, sr SI api a
ce (3xdCvyyCV20
oe OU) aaa
    
ee ks a
Ais [ly Moduemad cal ctadomord ak Wa Obve cymh
J cloments ot 2 belong 4 fumeton ©
=e
———_tn VeswCasyp
 
| Modnematcal sftemend of above symboeie.
“pmopentes is alt elements lp Gq onde belong 4s
I uneRon P.
a
 
 
 
COMPSSS take chen JS is aahonad on jonadonal,
 
 
 
 
Ans!) tet Us tory und prove Ha given statement by
 
 
Contino dicen , fon 4s) wo bean assuming.
 
thot V5 ic God onol,
 
 
amd b Sach Jrot US =Q
We means trot Hane enict postive _Integene o
 
b
 
Lakine aand ly hwe no Common baewng fir *
 
 
Tws implies a =S50
 
Sey ‘> Sf at Ove ee
 
 
 
2s
oe
TWA AL by debinedon jn = Se HA Some
 
 
eyeames a 2
tL So; 28@ = 5h
i _|neNenenneumemtee
_ | Tne Bie (AUS SeT
gaa iz
Ber | 25,
——— | Rubra us Rad He 5 Jules bot aand b whch Gontoadiay
|| Raa TOU aeRNTeN assumpdun Hot aamd b have ne Cmmen
Rud = SR also
Bean os se
 
   
 
 
 
| Lach,
|| Thaneforne , Wt Conclude trod OW ascurn pons thot US ts
| ta, Ss ts _tornadionod,
tartan Goaan permahon usin He bw ek om enomple
 
| Gensiden am ancrengement of 4 ebjerts arbi Cid as tn given
| Ro. tur observe nm objects In tu docusce Uuedkion on
| dre _doreumenener. ure 1s no perekenod ong , and
hemes HO penmetations oloed | boda, dab, dabe will
 
I Usvk enauty abke. +
So Coch Me
 
 
 
 
 
SS
 
 
Pernuderen, when dusted ao a datwoate permedaton , is
 
 
epected 4 Hames, similonly if sbleds coe glaced tn
 
Onewleas coanenqemernt, Rath nee annamgemert is suptaed
 
 
m Ayres1 So, 1f ws cmsidin ob} ko hj
| Avings (each dowlor permrutedis
ong ill be
LinWicAnguistable facm tuo Cn: V) obhens oldtosud
[by Ho pooeers af ooteding + 3 obleds Hd
[Same onder, So Hrs nuimloen of dctna doubled
| permutonons stl be min o tn! Tad) Wis
  
  
  
3
e
   
[howe Shourn wok sum 0 af: duller permite
| Ohm duings taken ob edo me jie tne
OS) Moke doge carcwit too tur fpllousing bevlean
|_enporesdons$
On) Caty2') 4 Cay)
icin €n'g) ty2'd yz)
{cri (mye 4 Colytz)CTY 29 | tagzy 4 (r/y!2)
   
 
 
(8 whet ts tastodogy) Lf Pamd © asw Statements | Sho
| tuba odnen Hs ghedement PS @WOP) 15.0 tasstologyy
|| os) Not
Ans A taugtology ts a foomula which ts aldays Tout.
|e deed ic, His tour for Cvemy aselqnment ak touts
J voluss +o te ctmple valuss, A teutulegg Com
[a wult af deogic
T cp 20) VCO SP) Constnuc te tnudr table kor cea)
T ¥CO>P) amd Show thot hovwnuto ic aloes trod.
he tink as
   
 
 
 
 
 
 
 
 
| Se
a FPSO MSP COS OVE>*)
Es [_ ape, ea ay aw a
| err ae ey ay
ae Pee f ee
; Te eT Z
tentaing only T'S Terekore Ha formal
 
 
| The dost column
Iie o Basstelo gy
|| NO
Bes
ee — de cen
eS er :
_—_—(DY ffox How many dsghentrd tom makes ak, 6 frnufs ssumnols
pom_Awomed, MH each commie emiding ol least 2
_ttohacad Mamagens cand \Aatalbose empents yoo ct
a
OX 6 pmoessons § Jeebnicod Mamagend cud £ Accesso s&
| Empents” ety
 
 
Ans. | Tote mo, ok pookesslonads = & sf
[Rost ws hove 40 a i
i: @ Selec 2 telnicad mnreun sO) dor \
Joud of 6 so ws hove = 6G me den nseten|
1
4 Row _ 2 Aeekwreod Mamagens out o® 5 so ud have = Bika.
z i Now ws have 4 sded-\ Dedohase Enger oud ak Z So
tte have = 8
se 1 Seed O membbena This a pueda iseleaz menses
[wren Hos Snematining WG -ASNS knowns Sou Beee-
tus membeas > 8
i
aL
| = Pax Se vba xe,
= 2¥K\OKB YX 105
=tbBo0
 
_(D) shod O50 Demongo's Sous? Emplasy We use ok Derrduans
lau addin ta hap eh enarmale
 
 
Ans) De Mosgoris law ans o Yoo abs tmans kommen cules
__Lo, Tricrente  Thase sutles osu dus _termplemend ay We
___tanion ok to Sets le He Same as far unter ako,
| Geom pl ements
Rot CA oR = RObA cond nod &
Not _CA cmd RD = roth OO RetAl = f4,5/68
6 AMY! =f 5, 6UAd UCD
 
 
 
 
  
 
 
 
4 Led
Kener , Avg)! = Aline’
 
  
Tur _use of De-mangon's laws *
 
 
 
   
I) Ta tc used to simptity Boolean -enpore slong
Ao bulia quackons Using Only ons sor ok ga
Wand Nok gates
 
   
2 Tse laws as hap iud bn raledng vorsd it
 
 
 
 
 
 
 
 
 
  
     
  
 
 
 
 
 
A ase, RA hoo twenks Nein BME pug
[Mood einer eyort ‘A! 20 Sverd (R oreuns om b
opis s 'S4—PUVURNED = PAYA PRD Peed =Pcan@)-PCR ad)
——— ev
iL
1 0e0uN SIs, qiven by, dus sum ale bndivi
|_Paroberhilities of AL cund By
PepwRy = PCAdHOCR)
 
__Taeonem %, fon cuny tines mectuatly
__tuents ALB, C. Ho proledbi tity Hrac tue
Aon Ran C ottuns ts given by He Sum
[radviduad probabilities al AB and (.
 PeavGocd = PAV PRI4LCED
 
F OS Jey pow mame toarys 59 Hrene to dist bse 1B -
_Wstesd objeds Int 5 district boxes ath
10) At least Hanes empty bot.
LCi) No empty bot
 
Ans __lutv be alt possible Wetovbubone al 15 dis
i _objec ity 5 distinc: boos, Aso let Ms dente Masel
| ob: posaise Petovbhudwy with Hu iM bor being e
 
fo Tum $e acquired number ak Ushi buhon ad
- ot least two empty boners |AzUAz Uy LNs! +
us have = BS shaw $215
dy Hos | (psa (S295 a
Tht Numben eh distosbuchom im Lute dug ob\ew one
at Int os ok He OYMeining ¥ bors,
 
allied a TiLe —Setlonty LAV NALL = €8-29'5 amd Qo dante. ie]
, % 2A OY si ois
| 5 Sr oSaiiS4 SSEY Se SSe.
cs = Se, SE =seq a8 asegs!S — Sqr + Scd'5~0
eS ae —
—_ Gy VB.n a 6 AABN = SP sq6P Sos ed AS
Seas = sets 4 5¢6l ee
mal
tt fe
(b)| and hots mamy S Baits numloens ax event
Ping | “Units digit Com be among 2:47 8.
We Ic AKGRBER
— TA gip #0 ts at unt plate Mo, oh terms pose’
 
 
 
nee
(O|ige\ Ar R emda C oy
Pra
CASE
| Bra An@vC , ALBYC Au
Pace RM O is net chunits gla but al humdoudts ples No ab
terme possible lc OX BAI SW
CIWO fe not How of ald, No, ec tenrns Possible IS QRVX 7
= 224
Forel nolg = Z2AAS2ATZ & BS
8 = QU 315,784 Ms
R= QU AS/ SMNTY amd C= $2,515,119, LON USB
BNC amd ( 6“)
ANRUC = Ct 23/4 1519 Mr AN NAIA
HUQve = #1,2,3 4)5 161, 919) 11% to, 7S
 
AURA = $25, 5,7 IM Ve
| e-c = dw a¥ey Des
 
 
 
 
   
 
 
‘ jsp
Obey Hous Prony voor de Gon beamed erg detcs of
| ‘taseene ase most one) SN
-——= | Teacner _Ushhijs te ete a
UWE ect cantPe usd Ge uses = |
|
=
| © Rapeben of usd © = Panes aR
| NO. ea tapas qpamed R525 ——e
> 7 2530 eG
= kat Cut C4 8)
6
S24 Ted & = Chiller)  Mviding danoug
| ous by = _ tuo 's fouun,
So pre) ts haus trpates trod PHD bs nus
Conditions as¥ Mocremadt cod INnduchon hatd,
Pony te cur HO eveay DEN,
 
 
 
 
 
 
 
 
 
Q7 [fay uwhok is Posnsple op dutty? Brglady usr
Emannp\e .
 
 
 
Pins || Dekrnedion?~ a R= 05/VN, 10,7) bea bwlean
empoussion Mm varnlables 7, para Uy sain
| each AadSng Halo vous in dun ser S ic daind
 
» Ky ag wedi ao
Hu _thments O oma T oly tna Roclean ada
|G exe Rosleam empsusetons,
(ly HE ay omd AQ cor beaviously, dukined Rooleam
empuwssions , Wan TR Ar AiVae omdAy ane cdsd
ERDULSSIONG.
   
     
   
 
  
eleanha mclane ayn
 
3 ts Rovleam enpanselon & A$
Se 00 A ond He | sislanty | berause AAKr Sa
|| Besleom enpswsslena (de le CAIAIGD A CH AWE)
 
| x Ns Braleom enprtasion in m Vanvables WAM = — 9 Mn
| CSou) (use tude ts as REACH ML —— And Orde i
Content ely Awpdby Gots ned to arduo Bean |
Z | Empuesslons Was Beuwon tmneckives emd oli He Gienols
___| rwolved ene distinct us (Mustwote ks fechwqus now.
 
 
_ i Enample 4 ®
Reduc Hus fodlourna Rovleam enpuuselms to adrmplen 4sron
 
 
Foy ACH MAD = CorAMD ACH AND S
Coy REM Mr Ma) = CHAM V EA AAA ASD VCH) AMD
 
 
Soludvon $ G) Hew we com wrt,
CANAL A CHAK = CORAM NTA! CAgs ocak lass),
= Cay AMD) OR  CAbsomphon lars)
SHANA) —_CAssedadtwo lard,
EAN — Clomplementetion lous).
LO (identity leu),
 
[Thus fir He ctmpaiied tom, Hr enpuwasion given tnta!)
| eloove ts 0; WE Amu enpoussion
! _ oa
~~) | Reinoiple af duadsty— The podnaple ob: duottty WS a dyheak-
powasive property of gehoic Studie in usbidy
= || ko ton esa Mtenchomgenble my i ok wssuits lard oy
[ors Boamudedion also bold tn offen,“Houian sed 7 Late uw sei ob ser
eran ee
 
Riles: nas Kee’
Pelinotion+ Te pouwn Set of a Se f_\c-Ww Seals
FeO GUM aeHe oy Al, and IC denoted by PCA)
i cGy abe
=k Modhemedicatia ) RAY = 0% SEAS |
Tnwte wot 62 2cAD ond Ae READ fom cbt sets.
, | fon. emamele pit p =GrG phen PAY =Abi Ay
Toma WA H=€1 2 team PAY =Aby AAG, A014 LUTGY
|| Sirrdlasty AEA SAUTE teen PEAY QO ANS LY
Ae M13 AGE AUB AUUSBS
La hove, APB U5, NB.
 
 
 
 
FT Peay Shy, 4rG_ 43% CAB, Avy AK ( LUG,
Ry Mya o TUBB ~ MV -4 VY !
{| (QA BAUYFB MUI 4 SNB LUT AUBAy 7
AU Si 1% ; 83,4, F SH, TUG,4 {F/T MB, &BHB !
CLS (ATA A ITY (LAA INI PRA 4
1 4294 1 44, TSN cron) pA SING p28 i
 
 
 
 
 
  
 
 
 
 
  
 
(OQ) urhod ts a fumeton? uhod: Is domain amd mange
ake 0 huncan | Prploin asta enampte .
Pins Leta on + Sruinetons “in_ modtemodics com be
Componed ao Hs operectons aa Bema) ney( Coda) madhs Re
LAhon You pid Ina Cente amowund ale YAO ey Yous co
sealed dtbeoent tybe eb: ssdas, Srmilosiy RYso}
BONS Cae Mpud_ AY honed numbers ound
new Ramberg as fa wre subt,
aRamah GAA Hang Sony He mdin aspeds af duncdion,
ETN Walag Ae ng) os teen
=p Hkot So to a Fumeion Ta domain ek a function ic He
Sok a posatre Ynpuds ts Ho famaton,
! eee box ac © Lumedion fen) =2% \npudting xo
pect KE NUTS ye domain 1s simply Hu ced ak
Kedunals tumbeas amd jy Sutpud ess collod He cama o
   
   
   
 
otumevon ~ Th Noun @ af eo. Kumasi te ee a
| ses ok all He oubpu, a
| fm = Whose GMsiden He Lumcin trate
Jama framd @ = Used ely rodunad number?
Hens Wun tan sey Micha domainams Bk bdgmae
Two Ke _outgud ag tuk Lunain bersnea {ua wonge
vuine aera |
 
 
{ wy — fare
EUR
fue sh
    
 
 
 
 
 
 
WoSerye Mod Hs vodur eh Ho Lumedken te degen -to 0 ad
fends to © bub it esl! Wve attoin tue vol 0, 3
Ts domosn dnd mange ty Snponentiad tunddem enw ger
os follow s*
> mon — Tua domein el Wo fumetion tet set R
|= Reng ~ Tar expsmemtiad Rumarion cloayS Ow sults bn
_posive wo) velus.— WDB |@ tind inverse af Ho fallousing Twncnon’s
Foo oat 14S
 
) a ae
Pas || yo Pens 342 ee aint nig toh
eee eS
Ee
+ AB ~ ny 4 C24 24) = 0
 
| Popiging 5h ston of IE givenby 5
 
Egy 3s [Ey anos)
J 2%)
> ys lyt-y-8
   
 
 
a’, Inverse ale fea) jo f~'ea)
= qt Vg tay-3
 
 
 
aed
[Explain @ equivalences rslocier usitr enomple
   
 
 
Ars A cutoctton 2 on a sed \c caidto be om equivalenus
) owladton Ht cmd ly if Hae a ne \3
Symmehve and -hransrive, on
 
 
 
 
 
Th eatin wrdlechn tsa Gelabondip on th cet
Gal is _gemenaily crepowsemted by $e Symbol ‘no!
  
 
Er~ lek 45 assume Mot F te auulaton onducdh
wricd numbene defined by APy Ht cund mmly AGS
am Wintegen Prove tod F ic an equivalent uuledien
om &,Synmedode ~ Consider x cmd belongs to Roma 2EQ Thin
Key ie om Nwetegen.”
| Tune, G4 = ~ON-4)) Y~y Ic also On Yteaey, 4
ee Uta
 
 
 
Toansive = Censiden % dnd 4 belongs? RtYy amd GF2.
v2 KG OMA y-2 ow Integens, Aecanding te tus toansithue
Property. GIG (=z) ae en aaon \nke gen.
801 that "Po,
“Thus ,R is om equivalema uleon on Q,
 
 
 
 
 
 
CO] Prove Hud tar Mrvence ob ora-ont Mapping is unique,
 
 
Ping] Tusocem ~ OTR Pinoy ke ona too Gna tern P= is
OO mM—to-ow amd onto tundion,
 
WHERE be qhon by,
Fo =a <1 =y.
Novs susp A ond y oma Selva 49 4 ¢
Qy-t sa
Ug = 91H
Ga at Vy
 
   
  
    
 
Thus P—leny = One
qQ