Open navigation menu
Close suggestions
Search
Search
en
Change Language
Upload
Sign in
Sign in
Download free for days
0 ratings
0% found this document useful (0 votes)
67 views
16 pages
Fourier Transform
Uploaded by
Priyanshi
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content,
claim it here
.
Available Formats
Download as PDF or read online on Scribd
Download
Save
Save Fourier Transform For Later
Share
0%
0% found this document useful, undefined
0%
, undefined
Print
Embed
Report
0 ratings
0% found this document useful (0 votes)
67 views
16 pages
Fourier Transform
Uploaded by
Priyanshi
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content,
claim it here
.
Available Formats
Download as PDF or read online on Scribd
Go to previous items
Go to next items
Download
Save
Save Fourier Transform For Later
Share
0%
0% found this document useful, undefined
0%
, undefined
Print
Embed
Report
Download
Save Fourier Transform For Later
You are on page 1
/ 16
Search
Fullscreen
——-.C-UhUlUC CO ‘The Fourler Transform “he inves formu for Four ansorm is given by o2 relia anon EB THE FOURIER TRANSFORM Fey = ENS5PR= Se STFU Part I-The Infinite Fourier Transform | 1 t0)=F (R= |, Ano ‘The inverse Formula for infinite Fourier sine transform is given by mains (D 2 conetsion Famke! Gora? fy 10 sinsede Se ER = 2 (Sythe By this definition and the definition given above Tead to the same Relationship Between Fourier Transform and Laplace| (Kanpur B. Se. 2003; Meerut B, Sc. 2002) ater ‘We define a function F(s) as follows ‘or F, {F(x)) and is defined as, | = | paletMy . 20 - © sa (top tibe > FOS moto tee Lo=F, (Ft) =|, Pecos sede - ep sees oye rirose] roe = eye” (Rehan Fay=F! von =2 ff son xD © BAMA ces yt ay corner] ore (Meera. Se. 2002; Kanpur B. Se. 2003) 3 : Remark a [em one eo em ane > / Some ators take SER, TE 06 tho cocticients In the two equations fel. Del. (2.0) and (2.1 both} insload 1 and 2/n| respectively EEZEY Det. The infinite Fourier Transform of Fi =
a_ Gurwkut Kangri, Haridwar 2001; Kanpur 1997) Solution. Given that _[1. -astse 0-{0 ie =f Rey a Hg diye tems nO eae nian) = 33 (as c0s sa sin 30), C/#F (Kanpur M. Se. 2004; Meerut 91; ‘Agra 81; Roorkee M.E. 67; Purvanchal 95) rua=[ em litre elder rf) de ‘The Fourier Transform 199 =f nna = afl #7 0.p+ sf soe 2einse=tiinse Am, gol r any Pipe 2. (a) Find Fourier transform of Oo ele (Meerut B. Sc. 2000) Solution. run=[ chpyanl, Oe de see em ferme = sin as 2 cos sa)~ in. phil? (b) Find sine and cosine transform of '«-. (Kanpur 1981; Agra B. Se. 2001) Solution, fx)=sten® Fu@i=ko=fy foe e ae ao Fptoimhor=[, e“tsinipn de We know that f Bede 0) a y af eh te) dew Taking + ip=re®, wo get cm nLcaE peep eee ’ WE ante ads _ a1 sun Salat OA aoie Integral Transtorms Peles tt Ans. aie Pe eas (Agra 1973; Meerut 1973; ee 70; Roorkee 1966) Solution. First Part. To determine F (fs)) For tis ee he above solved Ex.2 ie Sy 2 Sink Second Part. Let FUfix)] =fis). We know that if By tases Fence Fret jo=rym=[ pea ped, (uray ————— - fay=F-! fs)) = af Baye ds > JP fap ano 5 Peas an if [Line weeny a wate, = 282 by Gre par. at Fis) 208 opr +i) dof i ee s 0 it isive 5 beh) J o unsacu st 4, ;[ sinsasins 4 {x , Ixica gle eeeacl ise Bie pas os eb as, e fi sesctee gfe i tee 5 0 if Ixi>a The Fourier Transform 195 ‘Third Part, If x=0, a= 1, then the second part gives, f. SL yan, (Forixi
2. (Kanpur M, Se. 2002) Pie reste (apse bs x for Vexel “7 rst ieee eee [ote an feceApcn ee eee A edoded i Leese] + nef (ease a elie * pI 2055 5 55) 2 og ay 2 cog yy 2008 28—c055_/sin2ssins “(CS ooze : ( . } _2sins=2sinscoss_2(1~coss) sins rr ? Soa Problgft. 6. Find the Fouer transform of ra Ge) 0. ixl>t (Allahabad 1967) and hence evaluate [fata (Kanpur 1989, 82; Meerut 71; Purvanchal 96) ‘The Fourier Transform 197 Solution, Let F(x) Also let F LF) =F) First Part. To determine Fs) For this see the above solved Ex. 4, Second Part. We kaow that if =f Fo)=F de then Fo)=50 Ate Foye ds Bu Fiy=4Cscosstsing) Using this in (2), i A cescoss sing dds =2n Foy sof Cemmecssn dines ty Equating real parts, we get tore —— $8.) Gos sx. ds=¥ Fla) ie af fees ous 0, Ial> i. 1 Putting x=5 + we get aff Eesosssing 1 ale a ol creme sing 4, =i c (=x cos.x+sins) os lo ? oe i (Bete) fl sig vit g ii i & i alg ale 2A at mre : sizae Integral Transforms ‘The Fourier Transform veo ‘constants, then ‘Theorem 1. Linear Property. If ¢, and ¢2 are arbi aI ‘aF() 00s (sat) dt = of, (as). F (cy FG) +0 Ga} =, FARO) +62 F (GO) = Proof, F (ey Fla) +e) Gl) ‘Tacorem 4 To prove that : wenn = fey Fa) + ¢9 Gay} dx pp reraree | “The proof is left as as exerise for students { IE a tee | ‘Theorem 5, Shifting property. If fls) is the Fourier transform of Fl), =] tee Ft eg CE) de | ‘hen | = j 7! fs) is the Fourier transform of F(x—a). foae* rar] ae omar Pee Figeara (mene we] ct rmare |, eM cae ee = el pe a, x-a=t =e; FUR) +09 F (G0) Proved. - ‘Change of Scale Property : fem mane | Mand Theorem 2. If) the Fourier wanform of Fs hen (3) ste earn Pree | 6 Modulation Theorem. If Fs) has the Fourier transform Fourier transform of Fa) (Kanpur B. Se. 2002; Meerut B. Se. 2003; eee i Gara Kangr Haridwar 200, | BG) con Oe Dat Sa. meen = 24) ee (Kanpur M. Se. 2003, 2004) e Proof. Recall that cos 0= — > Pir =[, € Fe dempo) oye 2 Sar F (Fla) cos ax) =|__ F(x) cos adr 2 riran=[.e rand=[_ Emp text ie ise tee =f etn aa A jeeceee nites) ; 1h p010) by detinition Proved. Jen ieee es dima Theorem 3. If f(s) is the Fourier cosine transform of F(x), then oot - d ier cesne ransorm of Fl), then show eS Ji cte-oe roar f elU+Ox pa de ‘hat Fourier cotine transform a) eee | e ’ s =!Y-a+fs+a). Ans. Proof. ee = 2 fe fr Gi} -f *(i}os axdx | Problem. State Modulation theorem, (Kanpur M. Se, 2003, 2008) is ‘Theorem 7. Det ye Theorem. The Fourier transform of F’(x), the = Jy Fi cosas ade, Ep derivative of F(x), is ifs), where fs) is the Fourier transform of Fix). | (Kanpur B. Sc. 2004) a ae ee ————————————— ee= Integral Transforms Proof. By defiition F (Ax) -[ MF) dx integrating by parts) [roe [=f re eines Boke (a norm aengateere if). FF") =i fo) if Fa) 9 0 as xt, ‘Theorem 8 (Extension of Theorem 7). To show that + {et ar A), where F (F(a) =19), I the first (a1) derivative of Fs) vanish identically as x0, (Vikram 1996; MeeratB. Se, Hons. 1973, 72) root. Suppose the frst (n~ 1) dervaives of Fx) vanish as x40 Some (integrating by pars) Similarly we can show that a*r| FLE cape | | (oy F Note. If we adopt the definition, d*F\ [7 ar fi ride jer er fF ee me, Proved. then we shall get the eau, FEE iat fe “a Convolution, rf Foe =| rin cic apde, ee-= PWG -wya The Fourier Transform eat Theorem 9, Convolution Theorem. if F ({:)) and F (g(2)) are the Fourier transforms. of functions f(x) and g(x) respectively ‘then Fourier transform of the convolution of fx) and gx) isthe product of the their Fourier transforms, ie. F (i+ ela)) =F Uf) F (xt) (Raj, 1983; Meerut 82; B.H.U. 72) Proof. F (ffx) * #60) = [Wo ain oa (On changing the onder of integration) & oe (ee ChE encom eaecalene 2 [toa ema -[ am fe =F (Uf). F {9G}. Genter tr tas of Be Rilowing dete tees du Fig) +e nat eran Ce a ye LZ} ee ie ofa le (Kanpur 1990; Kashmir 64)[Pf ospt dt =e PO f -b yee tyme ER) = (rr ris cosptett Compe =) et - Integral Transforms ‘The Fourier Transtorm 202 by innate Laplus bash Fler” cospes wah = ° oh eels E Kor [7 cosde Sotution. fy fa) on sxde= a es “ee or gel mae Proved. 2 rae Problem 9/ Solve the integreal equation, By def, FUO)= I fis) cos sx d= aaah. =) me 1-2 for OSAS1 and. =no=2[, Fuoreos sx ds. (3) (Kanpur 2003; Purvanchal 1996) ‘ Solution. By def, Equa ma - 2 m=5. ‘Then a = F The inverse formula relative to Ef etonnaed ts [eel commen zsy] Z Mas | From which, yblem 8. Sheee - ’ ~ are {esrb ap=-net frw=f FO) cos ix Pe ne | (Roorkee ME. 1967; Purvanchal 95) ¥v conncanef ee ce as Solution. We know that esata mat a J a= Dowie. cos Ae dh J, «cos be=a et combat =n a8 ae] eae! il . Peoshrdea ts A (ettatat- 1 (ate 2) cos Ax th 0 + Ser ates Pe faaee mann -ysts, fsa] = Spee, 50-6 3 a eli fo) 608 Pde Q (1-19 ind _ cose] eee Veet, Sie = we get pe fae Fi < Sb: he aa ery Horo by lnuarte Ce: aes _ 160s x tha tris tarts renting fis, , ood 0 (ose 1) =F a 2 Fe! GON) =. =n -2[) FeO) 008 da dh ea | or Fu) = S(t en he eee a mu | Problem 10/ Solve for F(x) the integral equation ee - 1, ostet pete costap [P revanepacele | 151<2 z PE [0 , 122. — PA a| ge telig Syne dg =A |e tarp | ar Trans al are Integral Transforms | ‘The Fourier Transform 4° “ged a | dete Ae Solution. By det, | aff ePcotnte-t1 pene th -@ Fytr)= fp Rosinaxde=f0 0) a ac. Vee tien) a1. gy 1, ostet | 2 § lo | za | ; on rede. 62/4 A ‘The sin inversion formula relative to (1) is C- i (3 a © vt ~ when s=0, then T=}, &* (cosO)dr=)o e* d=. | p= (ire. \ , pee e Fors () ges = | From which "ee)=[, 69 sin cas alad or AE 1 2 5 128k iM, Ans. Bacio areata 1 2 es HPP ig ge? : $2) = 6° 7 is Vie", (Agra 1982; Meer B. Se. 2001) Seed anncelPacne, stn. -~24] sa(ae) Pr | = [nota fo eth et gy Fhe CF be | ‘ +cos x~2e0s ¥ =) eursiagtn x + cos x~2 cos 2x 7 2, ; xtis ory Leet teo [leet wa, wee Say 2 o y= 2 (1+c08- 20082). Ai ~ is | PO ay ; = atl ty antete ll ory Problems Related to Fourier Transform : 2 él Poy 1. Find she Fourier cosine transform of e-” RT ane? Rachie, Ans. (Meerut 1977; Kanpur 96, 94; Agra 82,75) | On date are: Solution. We are to determine F, Samick Geept de Pun i eas ae | Me res, ra gfret’ Z By def, Fe? aie oF agate det (say) Fghe rae + Problem 13. Prove the she Fourier monform of the step function if er to" PY ef ets gi (an a inv (F@)) =) 21 0 Pen ia BE in = fmt ence | ~ [eae fet® Fag cesoe Integral Transforms Solution, F ran=[, -[lave was, -[-rnerws[, f oe oF | ao NE Ba AE us $50, (Kanpur 1998) 4 Se) DF fe) + SF (oY eee ar Be oe, i) F, (24 50°} enicrverienl eee stl eres (ize 3 FP Fae [P4058 Pea Ans, sine transform is s|—2— + —5. P45 Ped 1 ‘cosine transform is 10 L P44 Problem 18. Find F, (Kanpur 1976) Solution. F,~' ( O™ sin sede ae SS—~
0 and x belongs to (-%.2). (Meerut 1970) Daf coy tmayeen fp cht ta sein iie[4 255 os Taf, fi ‘ 0 » Tae[sortan[ eee f = f em dee a @ ie f [Equating real and imaginary pasts on both sides, we get eee eons j "tence de= ec) t . = Tin) pi afar cerns [for tsncanar= PO (7) | - nt Fae =() | Fer sis «() Ans. ~ ii ae Problem 39 Find the inverse Fourier transform of fp) =<°'?"? where Pte 2. Fd fon an er orem nea Sahoo heed) boi aie nonfses)eose mh Solution. Let F, Uf)} =f.) FG) =% a. Fo) e™ dp 0-2) oreo anes | Pe lieeimes efi b ann ar ie ; -2f, a(t} Pe Pa sin saul, alt x ie ales ie L 4 ° aA]! sin 20-2 sin aac +1 (908s | “alt sei staat a(- is ia | | 1 = (4 cos 20x) = Ste el =aglyor tte) Sip I-00 209 = Am | anlye
You might also like
Fourier Transform Unit 2
PDF
No ratings yet
Fourier Transform Unit 2
40 pages
BS Grewal - Higher Engineering Mathematics (1) - 2
PDF
No ratings yet
BS Grewal - Higher Engineering Mathematics (1) - 2
27 pages
Fourier Series Second Section
PDF
No ratings yet
Fourier Series Second Section
27 pages
Fourier Transform GW
PDF
No ratings yet
Fourier Transform GW
27 pages
Fourier Transforms
PDF
No ratings yet
Fourier Transforms
50 pages
Fourier Transforms PDF
PDF
No ratings yet
Fourier Transforms PDF
30 pages
Mathematics
PDF
No ratings yet
Mathematics
6 pages
Book Fourier Page 1-21
PDF
No ratings yet
Book Fourier Page 1-21
21 pages
Fourier Series and Transform
PDF
No ratings yet
Fourier Series and Transform
85 pages
MCQ-Fourier Transform 12-24-2021 17-09-52
PDF
No ratings yet
MCQ-Fourier Transform 12-24-2021 17-09-52
9 pages
Adobe Scan 24 Nov 2022
PDF
No ratings yet
Adobe Scan 24 Nov 2022
19 pages
Fourier Transform Properties
PDF
No ratings yet
Fourier Transform Properties
14 pages
Fourier Transform Techniques
PDF
No ratings yet
Fourier Transform Techniques
14 pages
BV Ramanna Convolution Finite Fourier Sine and Cosine Transform
PDF
No ratings yet
BV Ramanna Convolution Finite Fourier Sine and Cosine Transform
18 pages
Unit Iv Fourier Transforms Part - A: Solution
PDF
No ratings yet
Unit Iv Fourier Transforms Part - A: Solution
33 pages
Fourier Integral Transform PDF
PDF
No ratings yet
Fourier Integral Transform PDF
55 pages
Eng Maths Unit3 (Part-2)
PDF
No ratings yet
Eng Maths Unit3 (Part-2)
9 pages
1.2 Fourier Transform Book
PDF
No ratings yet
1.2 Fourier Transform Book
7 pages
110757
PDF
No ratings yet
110757
30 pages
Unit4 Notes PDF
PDF
No ratings yet
Unit4 Notes PDF
76 pages
Fourier Transforms and Identities Notes
PDF
No ratings yet
Fourier Transforms and Identities Notes
34 pages
Unit-4 Fourier Transform
PDF
No ratings yet
Unit-4 Fourier Transform
18 pages
Fourier Transform Guide for Physics Students
PDF
No ratings yet
Fourier Transform Guide for Physics Students
25 pages
Fourier Transforms for Engineers
PDF
No ratings yet
Fourier Transforms for Engineers
60 pages
Fourier Transforms
PDF
No ratings yet
Fourier Transforms
30 pages
Unit 2-Fourier Transforms - 3
PDF
No ratings yet
Unit 2-Fourier Transforms - 3
7 pages
4.lecture 6-7 June
PDF
No ratings yet
4.lecture 6-7 June
38 pages
Fourier Analysis 6
PDF
No ratings yet
Fourier Analysis 6
5 pages
Transformada de Fourier
PDF
No ratings yet
Transformada de Fourier
6 pages
FT 3 3
PDF
No ratings yet
FT 3 3
20 pages
Maths FT
PDF
No ratings yet
Maths FT
53 pages
Fourier Cosine and Sine Transform Properties
PDF
No ratings yet
Fourier Cosine and Sine Transform Properties
10 pages
Fourier Transforms-TEX
PDF
No ratings yet
Fourier Transforms-TEX
7 pages
F Transforms
PDF
100% (1)
F Transforms
36 pages
Unit 4
PDF
No ratings yet
Unit 4
29 pages
Laplace and Fourier Transform
PDF
No ratings yet
Laplace and Fourier Transform
51 pages
CO-3 FOURIERCourse Material
PDF
No ratings yet
CO-3 FOURIERCourse Material
12 pages
Fourier Transform Exercise Solutions
PDF
No ratings yet
Fourier Transform Exercise Solutions
21 pages
Fourier Series Questions
PDF
No ratings yet
Fourier Series Questions
5 pages
FT 3
PDF
No ratings yet
FT 3
20 pages
Unit 4
PDF
No ratings yet
Unit 4
47 pages
Fourier Transforms and Properties
PDF
No ratings yet
Fourier Transforms and Properties
15 pages
Mathematics
PDF
No ratings yet
Mathematics
51 pages
2.fourier Integral and Transforms
PDF
No ratings yet
2.fourier Integral and Transforms
19 pages
Chap5 - Fourier Transform - V4
PDF
No ratings yet
Chap5 - Fourier Transform - V4
22 pages
FT 4
PDF
No ratings yet
FT 4
20 pages
1st Slide Elias Sir Math
PDF
No ratings yet
1st Slide Elias Sir Math
12 pages
Fourier Transforms Solved - Two Marks
PDF
100% (3)
Fourier Transforms Solved - Two Marks
9 pages
Fourier Transform Full Notes
PDF
No ratings yet
Fourier Transform Full Notes
25 pages
The Fourier Transforms: N N N X L C
PDF
No ratings yet
The Fourier Transforms: N N N X L C
5 pages
Fourier and Z-Transform
PDF
No ratings yet
Fourier and Z-Transform
55 pages
Unit V Fourier Transform PDF
PDF
No ratings yet
Unit V Fourier Transform PDF
53 pages
Fourier Transforms
PDF
No ratings yet
Fourier Transforms
6 pages
Unit 6 RK Jain
PDF
No ratings yet
Unit 6 RK Jain
19 pages
Fourier
PDF
No ratings yet
Fourier
3 pages
CProsols
PDF
No ratings yet
CProsols
105 pages
Eng Maths Unit3 (Part1)
PDF
No ratings yet
Eng Maths Unit3 (Part1)
20 pages