0% found this document useful (0 votes)
67 views16 pages

Fourier Transform

Uploaded by

Priyanshi
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
0% found this document useful (0 votes)
67 views16 pages

Fourier Transform

Uploaded by

Priyanshi
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
You are on page 1/ 16
——-.C-UhUlUC CO ‘The Fourler Transform “he inves formu for Four ansorm is given by o2 relia anon EB THE FOURIER TRANSFORM Fey = ENS5PR= Se STFU Part I-The Infinite Fourier Transform | 1 t0)=F (R= |, Ano ‘The inverse Formula for infinite Fourier sine transform is given by mains (D 2 conetsion Famke! Gora? fy 10 sinsede Se ER = 2 (Sythe By this definition and the definition given above Tead to the same Relationship Between Fourier Transform and Laplace| (Kanpur B. Se. 2003; Meerut B, Sc. 2002) ater ‘We define a function F(s) as follows ‘or F, {F(x)) and is defined as, | = | paletMy . 20 - © sa (top tibe > FOS moto tee Lo=F, (Ft) =|, Pecos sede - ep sees oye rirose] roe = eye” (Rehan Fay=F! von =2 ff son xD © BAMA ces yt ay corner] ore (Meera. Se. 2002; Kanpur B. Se. 2003) 3 : Remark a [em one eo em ane > / Some ators take SER, TE 06 tho cocticients In the two equations fel. Del. (2.0) and (2.1 both} insload 1 and 2/n| respectively EEZEY Det. The infinite Fourier Transform of Fi = a_ Gurwkut Kangri, Haridwar 2001; Kanpur 1997) Solution. Given that _[1. -astse 0-{0 ie =f Rey a Hg diye tems nO eae nian) = 33 (as c0s sa sin 30), C/#F (Kanpur M. Se. 2004; Meerut 91; ‘Agra 81; Roorkee M.E. 67; Purvanchal 95) rua=[ em litre elder rf) de ‘The Fourier Transform 199 =f nna = afl #7 0.p+ sf soe 2einse=tiinse Am, gol r any Pipe 2. (a) Find Fourier transform of Oo ele (Meerut B. Sc. 2000) Solution. run=[ chpyanl, Oe de see em ferme = sin as 2 cos sa)~ in. phil? (b) Find sine and cosine transform of '«-. (Kanpur 1981; Agra B. Se. 2001) Solution, fx)=sten® Fu@i=ko=fy foe e ae ao Fptoimhor=[, e“tsinipn de We know that f Bede 0) a y af eh te) dew Taking + ip=re®, wo get cm nLcaE peep eee ’ WE ante ads _ a1 sun Salat OA ao ie Integral Transtorms Peles tt Ans. aie Pe eas (Agra 1973; Meerut 1973; ee 70; Roorkee 1966) Solution. First Part. To determine F (fs)) For tis ee he above solved Ex.2 ie Sy 2 Sink Second Part. Let FUfix)] =fis). We know that if By tases Fence Fret jo=rym=[ pea ped, (uray ————— - fay=F-! fs)) = af Baye ds > JP fap ano 5 Peas an if [Line weeny a wate, = 282 by Gre par. at Fis) 208 opr +i) dof i ee s 0 it isive 5 beh) J o unsacu st 4, ;[ sinsasins 4 {x , Ixica gle eeeacl ise Bie pas os eb as, e fi sesctee gfe i tee 5 0 if Ixi>a The Fourier Transform 195 ‘Third Part, If x=0, a= 1, then the second part gives, f. SL yan, (Forixi2. (Kanpur M, Se. 2002) Pie reste (apse bs x for Vexel “7 rst ieee eee [ote an feceApcn ee eee A edoded i Leese] + nef (ease a elie * pI 2055 5 55) 2 og ay 2 cog yy 2008 28—c055_/sin2ssins “(CS ooze : ( . } _2sins=2sinscoss_2(1~coss) sins rr ? Soa Problgft. 6. Find the Fouer transform of ra Ge) 0. ixl>t (Allahabad 1967) and hence evaluate [fata (Kanpur 1989, 82; Meerut 71; Purvanchal 96) ‘The Fourier Transform 197 Solution, Let F(x) Also let F LF) =F) First Part. To determine Fs) For this see the above solved Ex. 4, Second Part. We kaow that if =f Fo)=F de then Fo)=50 Ate Foye ds Bu Fiy=4Cscosstsing) Using this in (2), i A cescoss sing dds =2n Foy sof Cemmecssn dines ty Equating real parts, we get tore —— $8.) Gos sx. ds=¥ Fla) ie af fees ous 0, Ial> i. 1 Putting x=5 + we get aff Eesosssing 1 ale a ol creme sing 4, =i c (=x cos.x+sins) os lo ? oe i (Bete) fl sig vit g ii i & i alg ale 2A at mre : siz ae Integral Transforms ‘The Fourier Transform veo ‘constants, then ‘Theorem 1. Linear Property. If ¢, and ¢2 are arbi aI ‘aF() 00s (sat) dt = of, (as). F (cy FG) +0 Ga} =, FARO) +62 F (GO) = Proof, F (ey Fla) +e) Gl) ‘Tacorem 4 To prove that : wenn = fey Fa) + ¢9 Gay} dx pp reraree | “The proof is left as as exerise for students { IE a tee | ‘Theorem 5, Shifting property. If fls) is the Fourier transform of Fl), =] tee Ft eg CE) de | ‘hen | = j 7! fs) is the Fourier transform of F(x—a). foae* rar] ae omar Pee Figeara (mene we] ct rmare |, eM cae ee = el pe a, x-a=t =e; FUR) +09 F (G0) Proved. - ‘Change of Scale Property : fem mane | Mand Theorem 2. If) the Fourier wanform of Fs hen (3) ste earn Pree | 6 Modulation Theorem. If Fs) has the Fourier transform Fourier transform of Fa) (Kanpur B. Se. 2002; Meerut B. Se. 2003; eee i Gara Kangr Haridwar 200, | BG) con Oe Dat Sa. meen = 24) ee (Kanpur M. Se. 2003, 2004) e Proof. Recall that cos 0= — > Pir =[, € Fe dempo) oye 2 Sar F (Fla) cos ax) =|__ F(x) cos adr 2 riran=[.e rand=[_ Emp text ie ise tee =f etn aa A jeeceee nites) ; 1h p010) by detinition Proved. Jen ieee es dima Theorem 3. If f(s) is the Fourier cosine transform of F(x), then oot - d ier cesne ransorm of Fl), then show eS Ji cte-oe roar f elU+Ox pa de ‘hat Fourier cotine transform a) eee | e ’ s =!Y-a+fs+a). Ans. Proof. ee = 2 fe fr Gi} -f *(i}os axdx | Problem. State Modulation theorem, (Kanpur M. Se, 2003, 2008) is ‘Theorem 7. Det ye Theorem. The Fourier transform of F’(x), the = Jy Fi cosas ade, Ep derivative of F(x), is ifs), where fs) is the Fourier transform of Fix). | (Kanpur B. Sc. 2004) a ae ee ————————————— ee = Integral Transforms Proof. By defiition F (Ax) -[ MF) dx integrating by parts) [roe [=f re eines Boke (a norm aengateere if). FF") =i fo) if Fa) 9 0 as xt, ‘Theorem 8 (Extension of Theorem 7). To show that + {et ar A), where F (F(a) =19), I the first (a1) derivative of Fs) vanish identically as x0, (Vikram 1996; MeeratB. Se, Hons. 1973, 72) root. Suppose the frst (n~ 1) dervaives of Fx) vanish as x40 Some (integrating by pars) Similarly we can show that a*r| FLE cape | | (oy F Note. If we adopt the definition, d*F\ [7 ar fi ride jer er fF ee me, Proved. then we shall get the eau, FEE iat fe “a Convolution, rf Foe =| rin cic apde, ee-= PWG -wya The Fourier Transform eat Theorem 9, Convolution Theorem. if F ({:)) and F (g(2)) are the Fourier transforms. of functions f(x) and g(x) respectively ‘then Fourier transform of the convolution of fx) and gx) isthe product of the their Fourier transforms, ie. F (i+ ela)) =F Uf) F (xt) (Raj, 1983; Meerut 82; B.H.U. 72) Proof. F (ffx) * #60) = [Wo ain oa (On changing the onder of integration) & oe (ee ChE encom eaecalene 2 [toa ema -[ am fe =F (Uf). F {9G}. Genter tr tas of Be Rilowing dete tees du Fig) +e nat eran Ce a ye LZ} ee ie ofa le (Kanpur 1990; Kashmir 64) [Pf ospt dt =e PO f -b yee tyme ER) = (rr ris cosptett Compe =) et - Integral Transforms ‘The Fourier Transtorm 202 by innate Laplus bash Fler” cospes wah = ° oh eels E Kor [7 cosde Sotution. fy fa) on sxde= a es “ee or gel mae Proved. 2 rae Problem 9/ Solve the integreal equation, By def, FUO)= I fis) cos sx d= aaah. =) me 1-2 for OSAS1 and. =no=2[, Fuoreos sx ds. (3) (Kanpur 2003; Purvanchal 1996) ‘ Solution. By def, Equa ma - 2 m=5. ‘Then a = F The inverse formula relative to Ef etonnaed ts [eel commen zsy] Z Mas | From which, yblem 8. Sheee - ’ ~ are {esrb ap=-net frw=f FO) cos ix Pe ne | (Roorkee ME. 1967; Purvanchal 95) ¥v conncanef ee ce as Solution. We know that esata mat a J a= Dowie. cos Ae dh J, «cos be=a et combat =n a8 ae] eae! il . Peoshrdea ts A (ettatat- 1 (ate 2) cos Ax th 0 + Ser ates Pe faaee mann -ysts, fsa] = Spee, 50-6 3 a eli fo) 608 Pde Q (1-19 ind _ cose] eee Veet, Sie = we get pe fae Fi < Sb: he aa ery Horo by lnuarte Ce: aes _ 160s x tha tris tarts renting fis, , ood 0 (ose 1) =F a 2 Fe! GON) =. =n -2[) FeO) 008 da dh ea | or Fu) = S(t en he eee a mu | Problem 10/ Solve for F(x) the integral equation ee - 1, ostet pete costap [P revanepacele | 151<2 z PE [0 , 122. — PA a | ge telig Syne dg =A |e tarp | ar Trans al are Integral Transforms | ‘The Fourier Transform 4° “ged a | dete Ae Solution. By det, | aff ePcotnte-t1 pene th -@ Fytr)= fp Rosinaxde=f0 0) a ac. Vee tien) a1. gy 1, ostet | 2 § lo | za | ; on rede. 62/4 A ‘The sin inversion formula relative to (1) is C- i (3 a © vt ~ when s=0, then T=}, &* (cosO)dr=)o e* d=. | p= (ire. \ , pee e Fors () ges = | From which "ee)=[, 69 sin cas alad or AE 1 2 5 128k iM, Ans. Bacio areata 1 2 es HPP ig ge? : $2) = 6° 7 is Vie", (Agra 1982; Meer B. Se. 2001) Seed anncelPacne, stn. -~24] sa(ae) Pr | = [nota fo eth et gy Fhe CF be | ‘ +cos x~2e0s ¥ =) eursiagtn x + cos x~2 cos 2x 7 2, ; xtis ory Leet teo [leet wa, wee Say 2 o y= 2 (1+c08- 20082). Ai ~ is | PO ay ; = atl ty antete ll ory Problems Related to Fourier Transform : 2 él Poy 1. Find she Fourier cosine transform of e-” RT ane? Rachie, Ans. (Meerut 1977; Kanpur 96, 94; Agra 82,75) | On date are: Solution. We are to determine F, Samick Geept de Pun i eas ae | Me res, ra gfret’ Z By def, Fe? aie oF agate det (say) Fghe rae + Problem 13. Prove the she Fourier monform of the step function if er to" PY ef ets gi (an a inv (F@)) =) 21 0 Pen ia BE in = fmt ence | ~ [eae fet® Fag ce soe Integral Transforms Solution, F ran=[, -[lave was, -[-rnerws[, f oe oF | ao NE Ba AE us $50, (Kanpur 1998) 4 Se) DF fe) + SF (oY eee ar Be oe, i) F, (24 50°} enicrverienl eee stl eres (ize 3 FP Fae [P4058 Pea Ans, sine transform is s|—2— + —5. P45 Ped 1 ‘cosine transform is 10 L P44 Problem 18. Find F, (Kanpur 1976) Solution. F,~' ( O™ sin sede ae SS—~ 0 and x belongs to (-%.2). (Meerut 1970) Daf coy tmayeen fp cht ta sein iie[4 255 os Taf, fi ‘ 0 » Tae[sortan[ eee f = f em dee a @ ie f [Equating real and imaginary pasts on both sides, we get eee eons j "tence de= ec) t . = Tin) pi afar cerns [for tsncanar= PO (7) | - nt Fae =() | Fer sis «() Ans. ~ ii ae Problem 39 Find the inverse Fourier transform of fp) =<°'?"? where Pte 2. Fd fon an er orem nea Sahoo heed) boi aie nonfses)eose mh Solution. Let F, Uf)} =f.) FG) =% a. Fo) e™ dp 0-2) oreo anes | Pe lieeimes efi b ann ar ie ; -2f, a(t} Pe Pa sin saul, alt x ie ales ie L 4 ° aA]! sin 20-2 sin aac +1 (908s | “alt sei staat a(- is ia | | 1 = (4 cos 20x) = Ste el =aglyor tte) Sip I-00 209 = Am | anlye

You might also like