MANAT NATIONAL HIGH SCHOOL
Manat, Nabunturan, Compostela Valley
FIRST PERIODICAL EXAMINATION
General Mathematics 11
S.Y. 2017 - 2018
Name: ____________________________________________________ Score: _________
Grade & Section: ___________________________________________ Date: _____
I – MULTIPLE CHOICE: Choose the letter of the best answer. Write your answer on the space provided.
________1. A rule that relates values from a set of values
a. domain b. range c. function d. relation
________2. A relation where each element in the domain is related to only one value in the range by some
rule
a. domain b. range c. function d. relation
________3. It follows certain strict rule
a. domain b. range c. function d. relation
________4. A simple connection of values to other values
a. domain b. range c. function d. relation
________5. All relations are functions
a. always true b. sometimes c. never d. none of the choices
________6. All functions are relations
a. always true b. sometimes c. never d. none of the choices
________7. Relations are functions
a. always true b. sometimes c. never d. none of the choices
________8. He developed the Cartesian coordinate system
a. Aristotle b. Rene Descartes c. Galileo Galilee d. all
________9. The number of quadrants found in a Cartesian plane
a. 1 b. 2 c. 3 d. 4
_______10. The coordinates of the point of origin
a. (0,0) b. ( -0,0) c. (0,-0) d. (-0,-0)
_______11. Which of the following statements is true at all times?
a. f(x) = y b. f(x) = 0 c. f(2) = 2 d. none
_______12. Which of the following is a relation?
a. f = { (1,2), (2,3), (3,5), (4,7) } b. g = { (1,3), (1,4), (2,5), (2,6), (3,7)}
c. h = { (1,3), (2,6), (3,9) } d. all
_______13. Which of the following is a function?
a. f = { (1,2), (2,3), (3,5), (4,7) } b. h = { (1,3), (2,6), (3,9) } c. a & b d. none
_______14. The statement “A graph represents a function if and only if each vertical line test intersects the
graph at most once” refers to
a. vertical line test b. graphing c. coordinate system b. ordered pairs
_______15. To check whether a graph is a function or not, we use
a. vertical line test b. graphing c. coordinate system b. ordered pairs
_______16. The principle of replacing the variable in the function with a value from the functions domain
and computing the result refers to
a. evaluating function b. composite functions c. operations on functions d. all
_______17. Which is true about addition & subtraction on fraction
a. find the LCD of both fractions b. directly solve the numerator and denominator
c. operate only the denominator c. all
_______18. ( h + g )( x ) can be expressed as
a. g(x) + h(x) b. h(x) + g(x) c. a & b d. none
_______19. The product of functions f & g can be denoted as
a. (f · g)(x) = f(x) · g(x) b. (f / g)(x) = f(x)/g(x) c. (f + g)(x) = f(x) + g(x) d. (f - g)(x) = f(x) - g(x)
_______20. The denotation (f º g)(x) = f (g(x)) shows
a. composite functions b. evaluating functions c. operations on functions
d. all
_______21. If the f(x) = x2 + 4, what would be f(2)?
a. 6 b. 8 c. 2 d. 0
x+7
_______22. If f(x) = , then f(4) = ______
2−x
1 1
a. 11/2 b. 5 c. -5 d. 0
2 2
______23. If f(x) = 2x +1 & g(x) = x + 2, then (f ᵒ g)(x) = ________
a. 2(x+2) + 1 b. 2x + 5 c. a & b d. none
x+7 x−2
______24. If h(x) = and t(x) = , then (h ᵒ t)(x) = ________
2−x x+3
x−2
( )+7
x=3 8x
a. b. c. a & b d. none
x−2 x+ 8
2−( )
x +3
Evaluate g(x) = x2 + 2x – 8 , x = 4. For items 25 -28, arrange the letters from the box that will show the
sequence of the process.
______25. ______26. _______27. _______28.
a. g(4) = 16 + 8 – 8, b. g(4) = 16, c. g(4) = 16 + 0, d. 4 2 + 2(4) - 8
If v(x) = x2 + 5x + 4 and p(x) = 2x – 7, solve for ( p – v )(x). For items 29 - 32 , arrange the letters from the
box that will show the sequence of the process.
_______29. _________30. ________31. _________32.
a. (p – v)(x) = -x2 +2x – 5x – 7 – 4, b. (p – v)(x) = 2x – 7 – x 2 – 5x – 4, c. (p – v)(x) = (2x – 7)( x 2 + 5x + 4),
d. (p – v)(x) =-x2 – 3x -11
2 x +1
Let p(x) = and q(x) = x2 – 2x + 2, find (p ᵒ q)(x). For items 33- 36 , arrange the letters from the box
x−1
that will show the sequence of the process.
______33. __________34. ____________35. ____________36.
2 ( x −2 x +2 ) +1
2
2 x 2−4 x+4+ 1 2 x 2−4 x+ 5
a. p(q(x)) = 2 b. p(q(x)) = 2 c. (p ᵒ q)(x) = p(q(x)) d. p(q(x)) =
x −2 x+ 2−1 x −2 x+1 ( x 2−2 x +2 )−1
2 x +1
37. – 40. Let p(x) = and q(x) = x2 – 2x + 2, find (q ᵒ p)(x).
x−1
“All great things start in a humble beginning.” Good luck!