100% found this document useful (1 vote)
832 views57 pages

NAOC Floating Jetty Design

This document summarizes the design of a floating jetty for NAOC. It includes calculations for: 1) Loading on the jetty including dead weight and live loads. 2) Buoyancy force and downward force calculations to ensure the floaters provide adequate buoyancy. 3) Stress calculations on the steel pipe floaters using Roark's formula, accounting for tension, bending moment and bending stress.

Uploaded by

Onos Idje
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
100% found this document useful (1 vote)
832 views57 pages

NAOC Floating Jetty Design

This document summarizes the design of a floating jetty for NAOC. It includes calculations for: 1) Loading on the jetty including dead weight and live loads. 2) Buoyancy force and downward force calculations to ensure the floaters provide adequate buoyancy. 3) Stress calculations on the steel pipe floaters using Roark's formula, accounting for tension, bending moment and bending stress.

Uploaded by

Onos Idje
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 57

Contractor: B.

G Technical Limited Title: Design of Floating Jetty Design by: Engr Emmanuel Idje

Project: NAOC PH-Base Floating Checked By: E.O.I


Jetty Fabrication
Client: NAOC Design Code: BS-5950 2000 Sheet No:

𝑫𝑬𝑺𝑰𝑮𝑵 𝑪𝑶𝑵𝑪𝑬𝑷𝑻

The design of the floating Jetty, the concept used for the design is for the floating deck to be fully
unrestrained, to allow free movement of the deck during water level change.

𝑰𝑵𝑷𝑼𝑻 𝑫𝑬𝑻𝑨𝑰𝑳

𝑳𝑶𝑨𝑫𝑰𝑵𝑮

𝑫𝒆𝒂𝒅 𝒘𝒆𝒊𝒈𝒉𝒕 𝒐𝒇 𝒇𝒍𝒐𝒂𝒕𝒊𝒏𝒈 𝑱𝒆𝒕𝒕𝒚

𝐷 = 17301.94𝑘𝑔

𝑳𝒊𝒗𝒆 𝒍𝒐𝒂𝒅 𝒐𝒏 𝒇𝒍𝒐𝒂𝒕𝒊𝒏𝒈 𝑱𝒆𝒕𝒕𝒚

𝐴𝑠𝑠𝑢𝑚𝑒 𝑡ℎ𝑟𝑒𝑒 (3) 𝑝𝑒𝑟𝑠𝑜𝑛 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑜𝑛 𝑑𝑒𝑐𝑘 𝑎𝑡 𝑎 𝑡𝑖𝑚𝑒

𝐻𝑢𝑚𝑎𝑛 𝐿𝑜𝑎𝑑 = 120 × 3 = 360𝑘𝑔

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐿𝑜𝑎𝑑 = 50𝑘𝑔

𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑣𝑒 𝐿𝑜𝑎𝑑 = 360 + 50

𝐿 = 410𝑘𝑔

𝑼𝑳𝑻𝑰𝑴𝑨𝑻𝑬 𝑫𝑬𝑺𝑰𝑮𝑵 𝑳𝑶𝑨𝑫

𝑈𝐷 = 𝐷 + 𝐿

= 17301.94 + 410

= 17711.94𝑘𝑔

𝑴𝑨𝑻𝑬𝑹𝑰𝑨𝑳

𝐹𝑙𝑜𝑎𝑡𝑖𝑛𝑔 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 = 36’’ × 31.75𝑚𝑚 𝑊𝑇

𝑺𝒕𝒆𝒆𝒍 𝑴𝒂𝒙𝒊𝒎𝒖𝒎 𝒀𝒊𝒆𝒍𝒅 𝑺𝒕𝒓𝒆𝒏𝒈𝒕𝒉 (𝑺𝑴𝒀𝑺)

𝐴𝑙𝑙 𝑠𝑡𝑒𝑒𝑙 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑆𝑀𝑌𝑆 = 358𝑁/𝑚𝑚

𝑩𝑼𝑶𝒀𝑨𝑵𝑪𝒀 𝑪𝑨𝑳𝑪𝑼𝑳𝑨𝑻𝑰𝑶𝑵

Using the equation

𝐹 = 𝑉× 𝐷 × 𝑔

𝑊ℎ𝑒𝑟𝑒
Contractor: B.G Technical Limited Title: Design of Floating Jetty Design by: Engr Emmanuel Idje

Project: NAOC PH-Base Floating Checked By: E.O.I


Jetty Fabrication
Client: NAOC Design Code: BS-5950 2000 Sheet No:

𝐹 = 𝐵𝑢𝑜𝑦𝑎𝑛𝑐𝑦 𝐹𝑜𝑟𝑐𝑒

𝑉 = 𝑆𝑢𝑏𝑚𝑒𝑟𝑔𝑒𝑑 𝑉𝑜𝑙𝑢𝑚𝑒

𝐷 = 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟

𝐷 = 100𝑘𝑔/𝑚3

𝑔 = 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑑𝑢𝑒 𝑡𝑜 𝑔𝑟𝑎𝑣𝑖𝑡𝑦

𝑔 = 9.81𝑚/𝑠

𝑪𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒊𝒐𝒏 𝒐𝒇 𝒔𝒖𝒃𝒎𝒆𝒓𝒈𝒆𝒅 𝑽𝒐𝒍𝒖𝒎𝒆 𝑽𝒔

𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝐹𝑙𝑜𝑎𝑡𝑒𝑟

𝐷 = 914.4𝑚𝑚

𝐴𝑟𝑒𝑎 = 𝜋𝑑

= 𝜋 𝑥 0.9144

= 2.873 𝑚

𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑓𝑙𝑜𝑎𝑡 𝐿 = 8.08𝑚

𝑉𝑜𝑙𝑢𝑚𝑒 = 8.08 × 2.873

= 23.213

𝐴𝑠𝑠𝑢𝑚𝑒 50% 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑖𝑝𝑒 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑠𝑢𝑏𝑚𝑒𝑟𝑔𝑒𝑑

𝑉 = 23.213 2 = 11.61𝑚

𝑈𝑠𝑖𝑛𝑔 𝑡𝑤𝑜 𝑓𝑙𝑜𝑎𝑡𝑖𝑛𝑔 𝑝𝑖𝑝𝑒𝑠

𝑉 = 2 × 11.61

𝑉 = 23.213𝑚

𝑹𝒆𝒄𝒂𝒍𝒍

𝐹 = 𝑉 × 𝐷 × 𝑔

= 23.213 × 1000 × 9.81


Contractor: B.G Technical Limited Title: Design of Floating Jetty Design by: Engr Emmanuel Idje

Project: NAOC PH-Base Floating Checked By: E.O.I


Jetty Fabrication
Client: NAOC Design Code: BS-5950 2000 Sheet No:

𝐹 = 227719.53𝑁

= 227.72𝑂𝐾𝑁

𝑪𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒆 𝒅𝒐𝒘𝒏𝒘𝒂𝒓𝒅 𝒇𝒐𝒓𝒄𝒆 ‘‘𝑮’’

𝑔 = 9.81𝑚/𝑠

𝐹𝑜𝑟𝑐𝑒 𝑜𝑓 𝐺𝑟𝑎𝑣𝑖𝑡𝑦 ‘‘𝐺’’ = (𝑚𝑎𝑠𝑠 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡) (9.81 𝑚/𝑠 )

= 𝑈𝑙𝑡𝑖𝑚𝑎𝑡𝑒 𝑑𝑒𝑠𝑖𝑔𝑛 𝑙𝑜𝑎𝑑 × 9.81

= 17711.94 × 9.81

= 173.75𝐾𝑁

𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏: 𝑓𝑜𝑟 𝑎 𝑏𝑜𝑑𝑦 𝑡𝑜 𝑓𝑙𝑜𝑎𝑡,

𝐹 >𝐺

𝑆𝑖𝑛𝑐𝑒 𝐹 = 227.720 𝐾𝑁

𝐺 = 173.75 𝐾𝑁

𝑻𝒉𝒆𝒓𝒇𝒐𝒓𝒆, 𝑡ℎ𝑒 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑓𝑙𝑜𝑎𝑡𝑒𝑟 𝑖𝑠 𝑎𝑑𝑒𝑞𝑢𝑎𝑡𝑒 𝑠𝑖𝑛𝑐𝑒 𝐹 (227.720) > 𝐺 (173.75)

𝑺𝑻𝑹𝑬𝑺𝑺 𝑰𝑵 𝑺𝑻𝑬𝑬𝑳 𝑷𝑰𝑷𝑬 (𝑭𝑳𝑶𝑻𝑬𝑹 𝑷𝑰𝑷𝑬) 𝑨𝑺 𝑷𝑬𝑹 𝑹𝑶𝑨𝑹𝑲’𝑺 𝑭𝑶𝑹𝑴𝑼𝑳𝑨 𝑭𝑶𝑻 𝑺𝑻𝑹𝑬𝑺𝑺 𝑨𝑵𝑫 𝑺𝑻𝑹𝑨𝑰𝑵

𝑅𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑠𝑡𝑒𝑒𝑙 𝑝𝑖𝑝𝑒, 𝑅 = 0.4572𝑚

𝑃𝑖𝑝𝑒 𝑤𝑎𝑙𝑙 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 = 31.75𝑚𝑚

𝑆𝑡𝑒𝑒𝑙 𝑏𝑒𝑛𝑑𝑖𝑛𝑔 𝑎𝑟𝑒𝑎 = 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑝𝑖𝑝𝑒 × 𝑊𝑎𝑙𝑙 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠

𝐴 = 𝐿 × 𝑇 = 8.08 𝑋0.03175

𝐴 = 0.257 𝑚

(𝐿 × 𝑇 )
𝑀𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝐼𝑛𝑒𝑟𝑡𝑖𝑎, 𝐼 = 12

( . )
= 8.08 ×

𝐼 = 2.1 × 10 𝑚

𝐴𝑙𝑝ℎ𝑎 𝛼 = 𝐼 𝐴 × 𝑅
Contractor: B.G Technical Limited Title: Design of Floating Jetty Design by: Engr Emmanuel Idje

Project: NAOC PH-Base Floating Checked By: E.O.I


Jetty Fabrication
Client: NAOC Design Code: BS-5950 2000 Sheet No:

.
= .
𝑋 (0.4572)

𝐾 =1−𝛼

= 1 – 1.7 𝑋 10

𝐾 = 0.99

𝑪𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒆 𝑻𝒆𝒏𝒔𝒊𝒐𝒏 ‘‘𝑷’’

𝐷𝑟𝑦 𝑙𝑜𝑎𝑑 𝑜𝑛 𝑝𝑖𝑝𝑒 𝑊 = 17711.94 𝑥 9.81

𝑈𝑛𝑖𝑡 𝐿𝑜𝑎𝑑 = 173753.83𝑁

173753.83
𝑊 =
𝐿 = 8.08

𝑊 = 21504.19𝑁/𝑚

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑝𝑒 = 2

𝐴𝑠𝑠𝑢𝑚𝑒 𝑎𝑛𝑔𝑙𝑒 𝑜𝑓 𝑙𝑜𝑎𝑑 𝑡𝑜 𝑝𝑖𝑝𝑒 𝑡𝑜 𝑏𝑒 60

𝑊
𝑃 = (𝑁 − 1) 𝑋 ( 2 𝑥 cos 𝜙)

= (2 − 1) 𝑥 (21504.19 2 𝑥 cos 60 )

= 21504.19𝑁/𝑚

𝑃𝑅
𝑀 = 𝜋 𝑋((sin ∅)∅ − 𝐾 (1 + cos 𝜃))

21504.19 𝑥 0.4572
= 𝑥 ((sin 60)60 − 0.99 ( 1 + cos 60))
𝜋

= 3079.06

6𝑀
𝑩𝒆𝒏𝒅𝒊𝒏𝒈 𝒔𝒕𝒓𝒆𝒔𝒔 =
𝑡
6 𝑥 3079.06
=
(31.75)

= 18326601.77𝑁/𝑚𝑚

𝑆𝑡𝑒𝑒𝑙 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑌𝑖𝑒𝑙𝑑 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑆𝑀𝑌𝑆 = 358𝑁/𝑚𝑚


Contractor: B.G Technical Limited Title: Design of Floating Jetty Design by: Engr Emmanuel Idje

Project: NAOC PH-Base Floating Checked By: E.O.I


Jetty Fabrication
Client: NAOC Design Code: BS-5950 2000 Sheet No:

𝑩𝒆𝒏𝒅𝒊𝒏𝒈 𝑺𝒕𝒓𝒆𝒔𝒔
𝑼𝒏𝒊𝒕 𝑪𝒉𝒆𝒄𝒌 =
𝑺𝑴𝒀𝑺
18.33
=
358

= 0.051 < 1

𝑃𝑖𝑝𝑒 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑜𝑘 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝑏𝑒𝑛𝑑𝑖𝑛𝑔 𝑠𝑡𝑟𝑒𝑠𝑠

𝑭𝑳𝑶𝑨𝑻𝑰𝑵𝑮 𝑱𝑬𝑻𝑻𝒀 𝑭𝑶𝑹𝑪𝑬𝑺

𝑇𝑜 𝑎𝑛𝑎𝑙𝑦𝑧𝑒 𝑡ℎ𝑒 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑗𝑒𝑡𝑡𝑦, 𝑡ℎ𝑒 𝑓𝑙𝑜𝑎𝑡𝑖𝑛𝑔 𝑗𝑒𝑡𝑡𝑦 𝑖𝑠 𝑎𝑠𝑠𝑢𝑚𝑒𝑑 𝑡𝑜 ℎ𝑎𝑣𝑒 𝑎

𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑏𝑎𝑠𝑒 𝑤ℎ𝑒𝑛 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑓𝑙𝑜𝑎𝑡𝑒𝑟 𝑎𝑟𝑒 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑.

𝑇ℎ𝑒𝑛, 𝑡ℎ𝑒 𝑓𝑙𝑜𝑎𝑡𝑖𝑛𝑔 𝑗𝑒𝑡𝑡𝑦 𝑖𝑠 𝑒𝑥𝑝𝑜𝑠𝑒𝑑 𝑡𝑜 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 𝑙𝑜𝑎𝑑.

𝑰𝒏𝒑𝒖𝒕

𝑆𝑒𝑒 𝑎𝑡𝑡𝑎𝑐ℎ𝑚𝑒𝑛𝑡 1. (Jetty acceleration forces calculation)

𝑇𝑜 𝑠𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑤𝑖𝑛𝑑 𝑙𝑜𝑎𝑑, 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒 𝑜𝑓 17.301𝑚𝑡 𝑤𝑎𝑠 𝑢𝑠𝑒𝑑 𝑎𝑛𝑑 𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎

𝑙𝑜𝑎𝑑 𝑜𝑓 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 1𝑥1𝑥1.82𝑚 𝑤𝑎𝑠 𝑢𝑠𝑒𝑑.


𝑇ℎ𝑒 𝑙𝑜𝑎𝑑 𝑖𝑠 𝑎𝑠𝑠𝑢𝑚𝑒𝑑 𝑡𝑜 𝑏𝑒 1𝑚 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 𝑜𝑓 𝑏𝑜𝑡ℎ 𝑡ℎ𝑒 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑎𝑛𝑑

𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑒𝑐𝑘

𝐹𝑟𝑜𝑚 𝑡ℎ𝑒 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠ℎ𝑒𝑒𝑡,

𝑴𝒂𝒙𝒊𝒎𝒖𝒎 𝒗𝒆𝒓𝒕𝒊𝒄𝒂𝒍 𝒇𝒐𝒓𝒄𝒆, 𝑭𝒎𝒂𝒙 = 𝟏𝟖. 𝟑𝟒𝑴𝑻

𝑴𝒂𝒙𝒊𝒎𝒖𝒎 𝒗𝒆𝒓𝒕𝒊𝒄𝒂𝒍 𝒇𝒐𝒓𝒄𝒆, 𝑭𝒎𝒊𝒏 = 𝟏𝟏. 𝟔𝟐𝑴𝑻

𝐹 = 18340 𝑥 9.81

= 179915.4𝑁

= 179.92𝐾𝑁

𝐹𝑜𝑟 𝑎 𝑏𝑒𝑎𝑚 𝑜𝑓 𝑠𝑝𝑎𝑚 3.224𝑚

𝐹 = 179.92 3.224 = 55.81𝐾𝑁/𝑚

𝑇ℎ𝑖𝑠 𝑙𝑜𝑎𝑑 𝑖𝑠 𝑢𝑠𝑒𝑑 𝑡𝑜 𝑑𝑒𝑠𝑖𝑔𝑛 𝑡ℎ𝑒 𝑊6 𝑋 25 𝑏𝑒𝑎𝑚 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑓𝑙𝑜𝑎𝑡𝑒𝑟𝑠


Contractor: B.G Technical Limited Title: Design of Floating Jetty Design by: Engr Emmanuel Idje

Project: NAOC PH-Base Floating Checked By: E.O.I


Jetty Fabrication
Client: NAOC Design Code: BS-5950 2000 Sheet No:

179.92𝐾𝑁/𝑀

𝑊6 𝑋 25

From the attached Staad pro analysis report, W 6 x 25 is adequate for the framing of the
floaters.

Comment on Proposed Drawing


Contractor: B.G Technical Limited Title: Design of Floating Jetty Design by: Engr Emmanuel Idje

Project: NAOC PH-Base Floating Checked By: E.O.I


Jetty Fabrication
Client: NAOC Design Code: BS-5950 2000 Sheet No:
Contractor: B.G Technical Limited Title: Design of Floating Jetty Design by: Engr Emmanuel Idje

Project: NAOC PH-Base Floating Checked By: E.O.I


Jetty Fabrication
Client: NAOC Design Code: BS-5950 2000 Sheet No:
Contractor: B.G Technical Limited Title: Design of Floating Jetty Design by: Engr Emmanuel Idje

Project: NAOC PH-Base Floating Checked By: E.O.I


Jetty Fabrication
Client: NAOC Design Code: BS-5950 2000 Sheet No:
CARGO FORCES AND ACCELERATIONS

CARGO FORCES AND ACCELERATIONS

General Particulars Cargo Particulars Shape factors for wind calculations


Shape Cs
Particular Value Units Particular Value Units Spherical 0.40
Acceleration due to Gravity g 9.8100 m/s2 ITEM Name Load Cylindrical Shapes (all sizes) used for crane pedestals, booms, helidecks, etc. 0.50
Density of air ρair 1.23 kg/m3 Weight M 17.30 MT Hull, based on block projected area 1.00
Vessel Particulars Weight Contingencies(factor) f 1 - Deck houses 1.25
Length l 1 m Clusters of deck houses and other structures, based on block projected area 1.20
Particular Value Units Width w 1 m Isolated structural shapes (e.g., cranes, angle channel beams, etc.) 1.30
Vessel Name NAOC Jetty Height h 1.82 m Under deck areas (smooth)
Longitudinal Distance of Cargo COG
Overall Length L 8.08 m from Midship2 Xcg 1 m Under deck surface (exposed beams and girders) 1.40
Transverse Distance of Cargo COG from
1.50
Overall Breadth B 3.99 m Vessel Centerline2 Ycg 1 m Rig derrick, each face, assuming fabricated from angle.
Vertical Distance of Cargo COG from
4
Overall Depth D 0.91 m Vessel Deck2 Zd 0.91 m Table 1: Cargo Shape Coefficients
Draft (Motion Centre)1 T 0.46 m Cargo Shape Coefficient(Front) 3
Csf 1
4
Block Coefficient CB 0.5 - Cargo Shape Coefficient(Side)3 Css 1 Source: ABS Rules for Building and Classing
3
Environment Criteria See Table 1 on the right for Shape Coefficients Mobile Offshore Drilling Units, 2012, C 3-1-2/1.3.2

Particular Value Units


Wind Speed Vwind 20.00 m/s
1
For simplicity, Motion Centre is assumed at the height of Waterline vertically, at Centerline of vessel transversely, and at Midship longitudinally
2
If the actual location of LCF is available, these distances of the Cargo COG should be provided from the LCF
CARGO FORCES AND ACCELERATIONS

Motion Forces Calculation


Cargo Details Maximum Motion Forces in Longitudinal and Transverse Directions
Parameter Nomenclature Value Units Direction Formula Force Units
Cargo Name Load Transverse, FTM FYRS+FYRD+FYHRD 10.88 MT
Design Weight W=Mxf 17.30 MT Longitudinal, FLM FXPS+FXPD+FXHPD 10.88 MT
Distance of CoG from Centre of Rotation*
Longitudinal Distance from Centre of Rotation Xcg 1.00 m
Transverse Distance from Centre of Rotation Ycg 1.00 m Combined Vertical Forces
Vertical Distance from Centre of Rotation Zcg = Zd + D - T 1.37 m Direction Case Heave Direction Formula Force Units
*The Centre of Rotation is assumed located at Midship Longitudinally, Centreline Transversely and Waterline Vertically Roll to Starboard Heave Down FZRS + FZRD + FZHRD 18.34 MT

Longitudinal Transverse
Roll to Starboard Heave Up FZRS + FZRD - FZHRD 12.35 MT
Design Conditions (from Nobledenton)1 Roll to Port Heave Down FZRS - FZRD + FZHRD 17.62 MT
Vessel L/B Ratio RLB 2 - Roll to Port Heave Up FZRS - FZRD - FZHRD 11.62 MT
Roll Angle Фroll 30 deg. Pitch to Fwd Heave Down FZPS + FZPD + FZHPD 18.34 MT
Time Period Troll 10 s Pitch to Fwd Heave Up FZPS + FZPD - FZHPD 12.35 MT
Pitch Angle Фpitch 30 deg. Pitch to Aft Heave Down FZPS - FZPD + FZHPD 17.62 MT
Time Period Tpitch 10 s Pitch to Aft Heave Up FZPS - FZPD - FZHPD 11.62 MT
Heave Period Theave 10 s
Heave acceleration aheave 1.96 m/s2
1
Source: Nobledenton Guidelines for Marine Transportation (0030-ND), Rev 5, June 2013, Sec 7.9.1

FORCES
A. STATIC FORCES
A.1 ROLL FORCES
1. Vertical Force = WCosФroll
1. Vertical Roll Force (Static) FZRS WCosФroll
= 14.98 MT

2. Horizontal Roll Force (Static) FYRS WSinФroll


= 8.65 MT
A.2 PITCH FORCES
1. Vertical Force (Static) FZPS WCosФpitch
= 14.98 MT

2. Horizontal Force (Static) FXPS WSinФpitch


= 8.65 MT

B. DYNAMIC FORCES
B.1 ROLL FORCES
1. Vertical Force FZRD W*4*π2*Ycg*Фroll/(Troll2*g)
= 0.36 MT
2. Horizontal Force FYRD W*4*π2*Zcg*Фroll/(Troll2*g)
= 0.50 MT
B.2 PITCH FORCES
1. Vertical Force FZPD W*4*π2*Xcg*Фpitch/(Tpitch2*g)
= 0.36 MT
2. Horizontal Force FXPD W*4*π2*Zcg*Фpitch/(Tpitch2*g)
= 0.50 T
B.3 HEAVE-ROLL FORCES
1. Vertical Force FZHRD W*aheave*Cos(Фroll)/g)
= 3.00 T
2. Horizontal Force FYHRD W*aheave*Sin(Фroll)/g)
= 1.73 T
B.4 HEAVE-PITCH FORCES
1. Vertical Force FZHPD W*aheave*Cos(Фpitch)/g)
= 3.00 T
2. Horizontal Force FXHPD W*aheave*Sin(Фpitch)/g)
= 1.73 T
CARGO FORCES AND ACCELERATIONS

Windload Calculation*
*
Source: ABS Rules for Building and Classing Mobile Offshore Drilling Units, 2012, C 3-1-2/1.3.2-1.3.3

Cargo Length = 1 m
Cargo Width = 1

SIDE Cargo Height FRONT


1.82 m

Vessel Depth
0.914 m

Vessel Length OA = 8.08 m Vessel Width = 3.988

FWX = 1/2*ρ*Vwind2*Σ (AT*CSF*Ch) (Wind Force in Longitudinal direction)


FWY = 1/2*ρ*Vwind2*Σ (AL*CSS*Ch) (Wind Force in Transverse direction)

ρ = Density of Air, Vwind = Wind Speed , AT = Cargo Transverse area exposed to Wind, AL = Cargo Longitudinal area exposed to Wind, Cs = Cargo Shape Coefficient, Ch = Cargo Height Coefficient*
Ch is different for the parts of cargo falling in different height zones as per Table 1 below

Basic Parameters
Particulars Notation Value Units
Cargo Name Load
Cargo Length l 1 m
Cargo Width w 1 m
Height of Cargo Bottom from BL H1 0.9 m
Height of Cargo Top from BL H2 2.7 m
Cargo Shape Coefficient (Front) CSF 1 *Please see Table 1 in Worksheet "Input" for shape coefficient
Cargo Shape Coefficient (Side) CSS 1
AT
Density of Air ρ 0.00123 MT/m3 (Cargo Transverse Area Exposed to Wind)
Wind Speed Vwind 20 m/s
CARGO
Cargo Height Coefficients (Based on Height from Vessel Baseline)
Zone Height from (m) Height to (m) Ch (Height Coefficient) AL
Zone 1 0.5 15.8 1.00 (Cargo Longitudinal Area Exposed to Wind)
Zone 2 15.8 31.0 1.10 FWX
Zone 3 31.0 46.5 1.20 (Wind Force in Longitudinal Direction)
Zone 4 46.5 61.5 1.30
Zone 5 61.5 76.5 1.37 FWY DECK
Zone 6 76.5 92.0 1.43 (Wind Force in Transverse Direction)

Cargo Areas in Transverse and Longitudinal Direction Factored for Height Coefficient Ch
Area Height from Height to Ch Area Transverse, AT Area Longitudinal, AL AT*Ch*CSF AL*Ch*CSS
Item (m) (m) (-/-) (m2) (m2) (m2) (m2)
Zone 1 0.5 15.8 1.00 1.8 1.8 1.8 1.8
Zone 2 15.8 31.0 1.10 0.0 0.0 0.0 0.0 Cargo Height Coefficients ( Based on Height from Waterline)
Zone 3 31.0 46.5 1.20 0.0 0.0 0.0 0.0 Zone Height from (m)
Height to (m) Ch (Height Coefficient)
Zone 4 46.5 61.5 1.30 0.0 0.0 0.0 0.0 Zone 1 0.0 15.3 1.00
Zone 5 61.5 76.5 1.37 0.0 0.0 0.0 0.0 Zone 2 15.3 30.5 1.10
Zone 6 76.5 92.0 1.43 0.0 0.0 0.0 0.0 Zone 3 30.5 46.0 1.20
Zone 4 46.0 61.0 1.30
Total Factored Windage Area Σ (AT*Ch*CSF) Σ (AL*Ch*CSS) Zone 5 61.0 76.0 1.37
2 2 Zone 6 76.0 91.5 1.43
1
Table 1: Wind Pressure Height Coefficients
1
Source: ABS Rules for Building and Classing
WINDLOAD Mobile Offshore Drilling Units, 2012, C 3-1-2/1.3.2
Wind Force in Longitudinal direction FWX = 1/2*ρ*Vwind2*Σ (AT*CSF*Ch) 0.05 MT
Wind Force in Transverse direction FWY = 1/2*ρ*Vwind2*Σ (AL*CSS*Ch) 0.05 MT
CARGO FORCES AND ACCELERATIONS

Final Forces and Accelerations

FORCES ACCELERATIONS
Forces - Transverse Direction Final Accelerations(Motion + Wind)
Force Value Units Direction Value Units
Transverse Motion Force, FTM 10.88 MT Longitudinal (Max.) , aLmax 0.631 g
Transverse Wind Load, FTW 0.05 MT Transverse (Max.) ,aTmax 0.631 g
Total Transverse Force, FT 10.92 MT Vertical (Max.),aVmax 1.060 g
Vertical (Min.),aVmin 0.672 g
Forces - Longitudinal Direction
Force Value Units
Longitudinal Motion Force, FLM 10.88 MT
Longitudinal Wind Load, FLW 0.05 MT
Total Longitudinal Force, FL 10.92 MT

Forces - Vertical Direction


Force Value Units
Maximum Vertical Force, FVMAX 18.34 MT
Minimum Vertical Force, FVMAX 11.62 MT
Job No Sheet No Rev
1
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

Job Information
Engineer Checked Approved

Name: I.O.E I.OE


Date: 11-Nov-22

Structure Type SPACE FRAME

Number of Nodes 10 Highest Node 10


Number of Elements 17 Highest Beam 17

Number of Basic Load Cases 2


Number of Combination Load Cases 1

Included in this printout are data for:


All The Whole Structure

Included in this printout are results for load cases:


Type L/C Name

Primary 1 DEAD
Primary 2 LIVE LOAD
Combination 3 COMBINATION LOAD CASE 3

Mod2 (Input data was modified after picture taken)

Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 1 of 44
Job No Sheet No Rev
2
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

Beams
Beam Node A Node B Length Property β
(mm) (degrees)
1 1 2 3.22E+3 1 0
2 3 4 3.22E+3 1 0
3 5 6 3.22E+3 1 0
4 7 8 3.22E+3 1 0
5 9 10 3.22E+3 1 0
6 7 3 2.02E+3 2 0
7 3 1 2.02E+3 2 0
8 1 5 2.02E+3 2 0
9 5 9 2.02E+3 2 0
10 8 4 2.02E+3 2 0
11 4 2 2.02E+3 2 0
12 2 6 2.02E+3 2 0
13 6 10 2.02E+3 2 0
14 10 5 3.8E+3 3 0
15 5 2 3.8E+3 3 0
16 3 2 3.8E+3 3 0
17 3 8 3.8E+3 3 0

Section Properties
Prop Section Area Iyy Izz J Material
(cm2) (cm4) (cm4) (cm4)
1 W6X25 47.355 711.756 2.22E+3 18.379 STEEL
2 PIPE 880.404 858E+3 858E+3 1.72E+6 STEEL
3 PIPX60 1.32E+3 1.1E+3 1.1E+3 62.969 STEEL

Materials
Mat Name E ν Density α
(kN/mm2) (kg/m3) (/°C)
1 STEEL 205.000 0.300 7.83E+3 12E -6
2 STAINLESSSTEEL 197.930 0.300 7.83E+3 18E -6
3 ALUMINUM 68.948 0.330 2.71E+3 23E -6
4 CONCRETE 21.718 0.170 2.4E+3 10E -6

Primary Load Cases


Number Name Type

1 DEAD Dead
2 LIVE LOAD Live

Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 2 of 44
Job No Sheet No Rev
3
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

Combination Load Cases


Comb. Combination L/C Name Primary Primary L/C Name Factor

3 COMBINATION LOAD CASE 3 1 DEAD 1.00


2 LIVE LOAD 1.00

Node Displacement Summary


Node L/C X Y Z Resultant rX rY rZ
(mm) (mm) (mm) (mm) (rad) (rad) (rad)
Max X 1 1:DEAD 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Min X 1 1:DEAD 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Max Y 1 1:DEAD 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Min Y 1 1:DEAD 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Max Z 1 1:DEAD 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Min Z 1 1:DEAD 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Max rX 1 1:DEAD 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Min rX 7 1:DEAD 0.000 0.000 0.000 0.000 -0.000 0.000 0.000
Max rY 1 1:DEAD 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Min rY 1 1:DEAD 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Max rZ 1 1:DEAD 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Min rZ 1 1:DEAD 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Max Rst 1 1:DEAD 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Beam Displacement Detail Summary


Displacements shown in italic indicate the presence of an offset
Beam L/C d X Y Z Resultant
(mm) (mm) (mm) (mm) (mm)
Max X 14 1:DEAD 1.9E+3 0.000 -0.060 -0.000 0.060
Min X 14 1:DEAD 1.52E+3 -0.000 -0.055 -0.000 0.055
Max Y 1 1:DEAD 0.000 0.000 0.000 0.000 0.000
Min Y 1 3:COMBINATION LOAD
1.61E+3
CASE 3 -0.000 -1.812 0.000 1.812
Max Z 6 1:DEAD 202.000 0.000 0.000 0.000 0.000
Min Z 14 1:DEAD 380.455 -0.000 -0.008 -0.000 0.008
Max Rst 1 3:COMBINATION LOAD
1.61E+3
CASE 3 -0.000 -1.812 0.000 1.812

Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 3 of 44
Job No Sheet No Rev
4
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

Beam Force Detail Summary


Sign convention as diagrams:- positive above line, negative below line except Fx where positive is compression. Distance d is given from
beam end A.
Axial Shear Torsion Bending
Beam L/C d Fx Fy Fz Mx My Mz
(mm) (kN) (kN) (kN) (kNm) (kNm) (kNm)
Max Fx 1 1:DEAD 0.000 0.000 0.586 0.000 0.000 0.000 0.315
Min Fx 1 1:DEAD 0.000 0.000 0.586 0.000 0.000 0.000 0.315
Max Fy 1 3:COMBINATION LOAD0.000
CASE 3 0.000 28.345 0.000 0.000 0.000 21.518
Min Fy 1 3:COMBINATION LOAD
3.22E+3
CASE 3 -0.000 -24.732 -0.000 -0.000 -0.000 19.691
Max Fz 1 1:DEAD 0.000 0.000 0.586 0.000 0.000 0.000 0.315
Min Fz 1 1:DEAD 0.000 0.000 0.586 0.000 0.000 0.000 0.315
Max Mx 1 1:DEAD 0.000 0.000 0.586 0.000 0.000 0.000 0.315
Min Mx 4 1:DEAD 0.000 0.000 0.586 0.000 -0.000 0.000 0.315
Max My 1 1:DEAD 0.000 0.000 0.586 0.000 0.000 0.000 0.315
Min My 1 1:DEAD 0.000 0.000 0.586 0.000 0.000 0.000 0.315
Max Mz 1 3:COMBINATION LOAD0.000
CASE 3 0.000 28.345 0.000 0.000 0.000 21.518
Min Mz 1 3:COMBINATION LOAD
1.61E+3
CASE 3 0.000 -2.491 0.000 0.000 0.000 -15.503

Beam Maximum Moments


Distances to maxima are given from beam end A.
Beam Node A Length L/C d Max My d Max Mz
(mm) (mm) (kNm) (mm) (kNm)
1 1 3.22E+3 1:DEAD Max +ve 0.000 0.000 0.000 0.315
Max -ve 0.000 0.000 1.61E+3 -0.158
2:LIVE LOAD Max +ve 0.000 0.000 0.000 21.203
Max -ve 0.000 0.000 1.61E+3 -15.346
3:COMBINATIONMax
LOAD+veCASE 3 0.000 0.000 0.000 21.518
Max -ve 0.000 0.000 1.61E+3 -15.503
2 3 3.22E+3 1:DEAD Max +ve 0.000 0.000 0.000 0.315
Max -ve 0.000 0.000 1.61E+3 -0.158
2:LIVE LOAD Max +ve 0.000 0.000 0.000 21.203
Max -ve 0.000 0.000 1.61E+3 -15.346
3:COMBINATIONMax
LOAD+veCASE 3 0.000 0.000 0.000 21.518
Max -ve 0.000 0.000 1.61E+3 -15.503
3 5 3.22E+3 1:DEAD Max +ve 0.000 0.000 0.000 0.315
Max -ve 0.000 0.000 1.61E+3 -0.158
2:LIVE LOAD Max +ve 0.000 0.000 0.000 21.203
Max -ve 0.000 0.000 1.61E+3 -15.346
3:COMBINATIONMax
LOAD+veCASE 3 0.000 0.000 0.000 21.518
Max -ve 0.000 0.000 1.61E+3 -15.503
4 7 3.22E+3 1:DEAD Max +ve 0.000 0.000 0.000 0.315
Max -ve 0.000 0.000 1.61E+3 -0.158
2:LIVE LOAD Max +ve 0.000 0.000 0.000 21.203
Max -ve 0.000 0.000 1.61E+3 -15.346
3:COMBINATIONMax
LOAD+veCASE 3 0.000 0.000 0.000 21.518
Max -ve 0.000 0.000 1.61E+3 -15.503
5 9 3.22E+3 1:DEAD Max +ve 0.000 0.000 0.000 0.315
Max -ve 0.000 0.000 1.61E+3 -0.158
2:LIVE LOAD Max +ve 0.000 0.000 0.000 21.203
Max -ve 0.000 0.000 1.61E+3 -15.346

Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 4 of 44
Job No Sheet No Rev
5
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

Beam Maximum Moments Cont...


Beam Node A Length L/C d Max My d Max Mz
(mm) (mm) (kNm) (mm) (kNm)
3:COMBINATIONMax
LOAD+veCASE 3 0.000 0.000 0.000 21.518
Max -ve 0.000 0.000 1.61E+3 -15.503
6 7 2.02E+3 1:DEAD Max +ve 0.000 0.000 2.02E+3 2.300
Max -ve 0.000 0.000 1.01E+3 -1.152
2:LIVE LOAD Max +ve 0.000 0.000 0.000 0.000
Max -ve 0.000 0.000 0.000 0.000
3:COMBINATIONMax
LOAD+veCASE 3 0.000 0.000 2.02E+3 2.300
Max -ve 0.000 0.000 1.01E+3 -1.152
7 3 2.02E+3 1:DEAD Max +ve 0.000 0.000 0.000 2.300
Max -ve 0.000 0.000 1.01E+3 -1.150
2:LIVE LOAD Max +ve 0.000 0.000 0.000 0.000
Max -ve 0.000 0.000 0.000 0.000
3:COMBINATIONMax
LOAD+veCASE 3 0.000 0.000 0.000 2.300
Max -ve 0.000 0.000 1.01E+3 -1.150
8 1 2.02E+3 1:DEAD Max +ve 0.000 0.000 0.000 2.300
Max -ve 0.000 0.000 1.01E+3 -1.150
2:LIVE LOAD Max +ve 0.000 0.000 0.000 0.000
Max -ve 0.000 0.000 0.000 0.000
3:COMBINATIONMax
LOAD+veCASE 3 0.000 0.000 0.000 2.300
Max -ve 0.000 0.000 1.01E+3 -1.150
9 5 2.02E+3 1:DEAD Max +ve 0.000 0.000 0.000 2.300
Max -ve 0.000 0.000 1.01E+3 -1.150
2:LIVE LOAD Max +ve 0.000 0.000 0.000 0.000
Max -ve 0.000 0.000 0.000 0.000
3:COMBINATIONMax
LOAD+veCASE 3 0.000 0.000 0.000 2.300
Max -ve 0.000 0.000 1.01E+3 -1.150
10 8 2.02E+3 1:DEAD Max +ve 0.000 0.000 0.000 2.300
Max -ve 0.000 0.000 1.01E+3 -1.150
2:LIVE LOAD Max +ve 0.000 0.000 0.000 0.000
Max -ve 0.000 0.000 0.000 0.000
3:COMBINATIONMax
LOAD+veCASE 3 0.000 0.000 0.000 2.300
Max -ve 0.000 0.000 1.01E+3 -1.150
11 4 2.02E+3 1:DEAD Max +ve 0.000 0.000 0.000 2.300
Max -ve 0.000 0.000 1.01E+3 -1.150
2:LIVE LOAD Max +ve 0.000 0.000 0.000 0.000
Max -ve 0.000 0.000 0.000 0.000
3:COMBINATIONMax
LOAD+veCASE 3 0.000 0.000 0.000 2.300
Max -ve 0.000 0.000 1.01E+3 -1.150
12 2 2.02E+3 1:DEAD Max +ve 0.000 0.000 0.000 2.300
Max -ve 0.000 0.000 1.01E+3 -1.150
2:LIVE LOAD Max +ve 0.000 0.000 0.000 0.000
Max -ve 0.000 0.000 0.000 0.000
3:COMBINATIONMax
LOAD+veCASE 3 0.000 0.000 0.000 2.300
Max -ve 0.000 0.000 1.01E+3 -1.150
13 6 2.02E+3 1:DEAD Max +ve 0.000 0.000 0.000 2.300
Max -ve 0.000 0.000 1.01E+3 -1.150
2:LIVE LOAD Max +ve 0.000 0.000 0.000 0.000
Max -ve 0.000 0.000 0.000 0.000
3:COMBINATIONMax
LOAD+veCASE 3 0.000 0.000 0.000 2.300

Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 5 of 44
Job No Sheet No Rev
6
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

Beam Maximum Moments Cont...


Beam Node A Length L/C d Max My d Max Mz
(mm) (mm) (kNm) (mm) (kNm)
Max -ve 0.000 0.000 1.01E+3 -1.150
14 10 3.8E+3 1:DEAD Max +ve 0.000 0.000 0.000 0.311
Max -ve 0.000 0.000 1.9E+3 -0.155
2:LIVE LOAD Max +ve 0.000 0.000 0.000 0.000
Max -ve 0.000 0.000 0.000 0.000
3:COMBINATIONMax
LOAD+veCASE 3 0.000 0.000 0.000 0.311
Max -ve 0.000 0.000 1.9E+3 -0.155
15 5 3.8E+3 1:DEAD Max +ve 0.000 0.000 0.000 0.311
Max -ve 0.000 0.000 1.9E+3 -0.155
2:LIVE LOAD Max +ve 0.000 0.000 0.000 0.000
Max -ve 0.000 0.000 0.000 0.000
3:COMBINATIONMax
LOAD+veCASE 3 0.000 0.000 0.000 0.311
Max -ve 0.000 0.000 1.9E+3 -0.155
16 3 3.8E+3 1:DEAD Max +ve 0.000 0.000 0.000 0.311
Max -ve 0.000 0.000 1.9E+3 -0.155
2:LIVE LOAD Max +ve 0.000 0.000 0.000 0.000
Max -ve 0.000 0.000 0.000 0.000
3:COMBINATIONMax
LOAD+veCASE 3 0.000 0.000 0.000 0.311
Max -ve 0.000 0.000 1.9E+3 -0.155
17 3 3.8E+3 1:DEAD Max +ve 0.000 0.000 0.000 0.311
Max -ve 0.000 0.000 1.9E+3 -0.155
2:LIVE LOAD Max +ve 0.000 0.000 0.000 0.000
Max -ve 0.000 0.000 0.000 0.000
3:COMBINATIONMax
LOAD+veCASE 3 0.000 0.000 0.000 0.311
Max -ve 0.000 0.000 1.9E+3 -0.155

Beam Combined Axial and Bending Stresses Summary


Max Comp Max Tens
Beam L/C Length Stress d Corner Stress d Corner
(mm) (N/mm2) (mm) (N/mm2) (mm)
1 1:DEAD 3.22E+3 1.149 0.000 3 -1.149 0.000 1
2:LIVE LOAD 3.22E+3 77.293 0.000 3 -77.293 0.000 1
3:COMBINATION LOAD
3.22E+3
CASE 378.442 0.000 3 -78.442 0.000 1
2 1:DEAD 3.22E+3 1.149 0.000 3 -1.149 0.000 1
2:LIVE LOAD 3.22E+3 77.293 0.000 3 -77.293 0.000 1
3:COMBINATION LOAD
3.22E+3
CASE 378.442 0.000 3 -78.442 0.000 1
3 1:DEAD 3.22E+3 1.149 0.000 3 -1.149 0.000 1
2:LIVE LOAD 3.22E+3 77.293 0.000 3 -77.293 0.000 1
3:COMBINATION LOAD
3.22E+3
CASE 378.442 0.000 3 -78.442 0.000 1
4 1:DEAD 3.22E+3 1.149 0.000 3 -1.149 0.000 1
2:LIVE LOAD 3.22E+3 77.293 0.000 3 -77.293 0.000 1
3:COMBINATION LOAD
3.22E+3
CASE 378.442 0.000 3 -78.442 0.000 1
5 1:DEAD 3.22E+3 1.149 0.000 3 -1.149 0.000 1
2:LIVE LOAD 3.22E+3 77.293 0.000 3 -77.293 0.000 1
3:COMBINATION LOAD
3.22E+3
CASE 378.442 0.000 3 -78.442 0.000 1
6 1:DEAD 2.02E+3 0.122 2.02E+3 -0.122 2.02E+3
2:LIVE LOAD 2.02E+3

Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 6 of 44
Job No Sheet No Rev
7
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

Beam Combined Axial and Bending Stresses Summary Cont...


Max Comp Max Tens
Beam L/C Length Stress d Corner Stress d Corner
(mm) (N/mm2) (mm) (N/mm2) (mm)
3:COMBINATION LOAD
2.02E+3
CASE 3 0.122 2.02E+3 -0.122 2.02E+3
7 1:DEAD 2.02E+3 0.122 0.000 -0.122 0.000
2:LIVE LOAD 2.02E+3
3:COMBINATION LOAD
2.02E+3
CASE 3 0.122 0.000 -0.122 0.000
8 1:DEAD 2.02E+3 0.122 0.000 -0.122 0.000
2:LIVE LOAD 2.02E+3
3:COMBINATION LOAD
2.02E+3
CASE 3 0.122 0.000 -0.122 0.000
9 1:DEAD 2.02E+3 0.122 0.000 -0.122 0.000
2:LIVE LOAD 2.02E+3
3:COMBINATION LOAD
2.02E+3
CASE 3 0.122 0.000 -0.122 0.000
10 1:DEAD 2.02E+3 0.122 0.000 -0.122 0.000
2:LIVE LOAD 2.02E+3
3:COMBINATION LOAD
2.02E+3
CASE 3 0.122 0.000 -0.122 0.000
11 1:DEAD 2.02E+3 0.122 0.000 -0.122 0.000
2:LIVE LOAD 2.02E+3
3:COMBINATION LOAD
2.02E+3
CASE 3 0.122 0.000 -0.122 0.000
12 1:DEAD 2.02E+3 0.122 0.000 -0.122 0.000
2:LIVE LOAD 2.02E+3
3:COMBINATION LOAD
2.02E+3
CASE 3 0.122 0.000 -0.122 0.000
13 1:DEAD 2.02E+3 0.122 0.000 -0.122 0.000
2:LIVE LOAD 2.02E+3
3:COMBINATION LOAD
2.02E+3
CASE 3 0.122 0.000 -0.122 0.000
14 1:DEAD 3.8E+3 2.373 0.000 -2.373 0.000
2:LIVE LOAD 3.8E+3
3:COMBINATION LOAD
3.8E+3
CASE 3 2.373 0.000 -2.373 0.000
15 1:DEAD 3.8E+3 2.373 0.000 -2.373 0.000
2:LIVE LOAD 3.8E+3
3:COMBINATION LOAD
3.8E+3
CASE 3 2.373 0.000 -2.373 0.000
16 1:DEAD 3.8E+3 2.373 0.000 -2.373 0.000
2:LIVE LOAD 3.8E+3
3:COMBINATION LOAD
3.8E+3
CASE 3 2.373 0.000 -2.373 0.000
17 1:DEAD 3.8E+3 2.373 0.000 -2.373 0.000
2:LIVE LOAD 3.8E+3
3:COMBINATION LOAD
3.8E+3
CASE 3 2.373 0.000 -2.373 0.000

Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 7 of 44
Job No Sheet No Rev
8
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

Reaction Summary
Horizontal Vertical Horizontal Moment
Node L/C FX FY FZ MX MY MZ
(kN) (kN) (kN) (kNm) (kNm) (kNm)
Max FX 1 1:DEAD 0.000 14.248 0.000 0.000 0.000 0.315
Min FX 1 1:DEAD 0.000 14.248 0.000 0.000 0.000 0.315
Max FY 3 3:COMBINATION LOAD
0.000
CASE 342.989 0.000 -0.000 0.000 22.045
Min FY 7 1:DEAD 0.000 7.415 0.000 2.296 0.000 0.315
Max FZ 1 1:DEAD 0.000 14.248 0.000 0.000 0.000 0.315
Min FZ 1 1:DEAD 0.000 14.248 0.000 0.000 0.000 0.315
Max MX 8 1:DEAD 0.000 7.908 0.000 2.465 0.000 -0.579
Min MX 10 1:DEAD 0.000 7.908 0.000 -2.465 0.000 -0.579
Max MY 1 1:DEAD 0.000 14.248 0.000 0.000 0.000 0.315
Min MY 1 1:DEAD 0.000 14.248 0.000 0.000 0.000 0.315
Max MZ 3 3:COMBINATION LOAD
0.000
CASE 342.989 0.000 -0.000 0.000 22.045
Min MZ 2 3:COMBINATION LOAD
0.000
CASE 339.374 0.000 0.000 0.000 -20.217

Utilization Ratio
Beam Analysis Design Actual Allowable Ratio Clause L/C Ax Iz Iy Ix
Property Property Ratio Ratio (Act./Allow.) (cm2) (cm4) (cm4) (cm4)
1 W6X25 N/A 47.355 2.22E+3 711.756 19.188
2 W6X25 N/A 47.355 2.22E+3 711.756 19.188
3 W6X25 N/A 47.355 2.22E+3 711.756 19.188
4 W6X25 N/A 47.355 2.22E+3 711.756 19.188
5 W6X25 N/A 47.355 2.22E+3 711.756 19.188
6 PIPE N/A 880.404 858E+3 858E+3 1.72E+6
7 PIPE N/A 880.404 858E+3 858E+3 1.72E+6
8 PIPE N/A 880.404 858E+3 858E+3 1.72E+6
9 PIPE N/A 880.404 858E+3 858E+3 1.72E+6
10 PIPE N/A 880.404 858E+3 858E+3 1.72E+6
11 PIPE N/A 880.404 858E+3 858E+3 1.72E+6
12 PIPE N/A 880.404 858E+3 858E+3 1.72E+6
13 PIPE N/A 880.404 858E+3 858E+3 1.72E+6
14 PIPX60 N/A 33.548 1.1E+3 1.1E+3 2.21E+3
15 PIPX60 N/A 33.548 1.1E+3 1.1E+3 2.21E+3
16 PIPX60 N/A 33.548 1.1E+3 1.1E+3 2.21E+3
17 PIPX60 N/A 33.548 1.1E+3 1.1E+3 2.21E+3

Statics Check Results


L/C FX FY FZ MX MY MZ
(kN) (kN) (kN) (kNm) (kNm) (kNm)
1:DEAD Loads 0.000 -119.080 0.000 -0.000 0.000 -191.957
1:DEAD Reactions 0.000 119.080 0.000 -0.000 0.000 191.957
Difference 0.000 0.000 0.000 -0.000 0.000 0.000
2:LIVE LOAD Loads 0.000 -259.517 0.000 0.000 0.000 -398.358
2:LIVE LOAD Reactions 0.000 259.517 0.000 -0.000 0.000 398.358
Difference 0.000 0.000 0.000 0.000 0.000 0.000

Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 8 of 44
Job No Sheet No Rev
9
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

M9

M7

M5

M6

Y
M8
X
Z Load 2

Whole Structure

Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 9 of 44
Job No Sheet No Rev
10
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

Design Of Member No. 5 As Per BS 5950-1:2000


Design Of Member No. 5 As Per BS 5950-1:2000

Input Parameters

Member Section W6X25

Section Type STAAD.Pro database

2
Cross Sectional Area Ax 0.005 m
2
Shear Area Along Major Axis Az 0.003 m
2
Shear Area Along Minor Axis Ay 0.001 m
rz 0.069 m
ry 0.039 m
3
Elastic Section Modulus About Major Axis - Zzz 0.000 m
3
Elastic Section Modulus About Minor Axis - Zyy 0.000 m
3
Plastic Section Modulus About Major Axis - Szz 0.000 m
3
Plastic Section Modulus About Minor Axis - Syy 0.000 m
3
Moment of Inertia About Major Axis - Izz 0.000 m
3
Moment of Inertia About Minor Axis - Iyy 0.000 m
Steel Grade S355
Design Strength py 275.000 MPa
3
Reduced Plastic Modulus About Major Axis Srz ( Annex I.2 ) 0.000 m
3
Reduced Plastic Modulus About Minor Axis Sry ( Annex I.2 ) 0.000 m
Reduced Plastic Moment Capacity About Major Axis Mrz = pySrz 85.172 kN m
Reduced Plastic Moment Capacity About Minor Axis Mry = pySry 38.023 kN m
Equivalent Uniform Moment Factor For LTB mLT 1.000
Equivalent Uniform Moment Factor For Lateral Flexural Buckling
myz 1.000
Equivalent Uniform Moment Factor For Major Axis Flexural Buckling
mz 1.000
Equivalent Uniform Moment Factor For Minor Axis Flexural Buckling
my 1.000
Allowable Ratio For Interaction Check 1.000

Input Parameters

Member Section W6X25

Section Type STAAD.Pro database

Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 10 of 44
Job No Sheet No Rev
11
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

2
Cross Sectional Area Ax 0.005 m
2
Shear Area Along Major Axis Az 0.003 m
2
Shear Area Along Minor Axis Ay 0.001 m
rz 0.069 m
ry 0.039 m
3
Elastic Section Modulus About Major Axis - Zzz 0.000 m
3
Elastic Section Modulus About Minor Axis - Zyy 0.000 m
3
Plastic Section Modulus About Major Axis - Szz 0.000 m
3
Plastic Section Modulus About Minor Axis - Syy 0.000 m
3
Moment of Inertia About Major Axis - Izz 0.000 m
3
Moment of Inertia About Minor Axis - Iyy 0.000 m
Steel Grade S355
Design Strength py 275.000 MPa
3
Reduced Plastic Modulus About Major Axis Srz ( Annex I.2 ) 0.000 m
3
Reduced Plastic Modulus About Minor Axis Sry ( Annex I.2 ) 0.000 m
Reduced Plastic Moment Capacity About Major Axis Mrz = pySrz 85.172 kN m
Reduced Plastic Moment Capacity About Minor Axis Mry = pySry 38.023 kN m
Equivalent Uniform Moment Factor For LTB mLT 1.000
Equivalent Uniform Moment Factor For Lateral Flexural Buckling
myz 1.000
Equivalent Uniform Moment Factor For Major Axis Flexural Buckling
mz 1.000
Equivalent Uniform Moment Factor For Minor Axis Flexural Buckling
my 1.000
Allowable Ratio For Interaction Check 1.000

Details Of Calculation

Slenderness Check

No slenderness checking has been performed.


Classification Of Section Class ( BS-3.5.2 )

Class As Per d : t Ratio ( Table 11 / Table 12 ) 1


Class As Per b : t Ratio ( Table 11 / Table 12 ) 1
Section Belongs To Class 1 ( PLASTIC )

Checking Minimum Web Thickness For Serviceability ( BS-4.4.3.2 )

Root Radius r 12.700 mm

Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 11 of 44
Job No Sheet No Rev
12
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

Depth Of Web d = dww - 2tf - r 113.538 mm


(d = Overall Depth, t = Flange Thickness )
ww f
d : t ratio = d / 250 0.056
Allowable Ratio 1.0
Web Check for Serviceability SAFE

Checking Minimum Web Thickness To Avoid Compression Flange Buckling ( BS-4.4.3.3 )

Root Radius r 12.700 mm


Depth Of Web d = dww - 2tf - r 113.538 mm
(d = Overall Depth, t = Flange Thickness )
ww f
Design Strength Of Compression Flange pyf 275.000 MPa
0.5
d : t ratio = d / 250 * ( pyf / 345 ) 0.045
Allowable Ratio 1.0
Compression Flange Buckling Check SAFE

Check Against Shear ( BS-4.2.3 )

No Shear Force Developed Along Major Axis


Shear Along Minor Axis
Critical Loadcase No. 3
Critical Section 0.000 m
Beam No. 1
Shear Force Along Minor Axis Fy 28.345 kN
Shear Capacity Along Minor Axis F
y_allowable
=0.6pyAv 217.331 kN
( A = Shear Area As Per BS-4.2.3 )
v
Interaction Ratio (Along Minor Axis)
=Fy / Fy_allowable 0.130
Minor Axis Shear Check SAFE

Check Against Shear Buckling Resistance Of Web ( BS-4.4.5 )

d : t ratio = d / tw ( tw = Thickness Of Web ) 13.969


0.5
Shear Buckling Limit = 70( 275 / py ) 70.000
No check for shear buckling resistance of the web is required.

Checking Resistance To Lateral Torsional Buckling ( BS-4.3.6 )

Equivalent Uniform Moment Factor For LTB mLT 1.000

Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 12 of 44
Job No Sheet No Rev
13
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

Length Between Restraints Against LTB LLT 3.224 m


Maximum Major Axis Moment In The Segment Mz 21.518 kN m
Buckling Resistance Moment Mb ( As Per BS-4.3.6.4 ) 70.813 kN m
Major Axis Moment Capacity Of The Cross-Section
Mcz ( As Per BS-4.2.5 ) 85.172 kN m
Interaction Ratio
= Max ( Mz mLT / Mb, Mz / Mcz ) 0.304
Lateral Torsional Buckling Check ( BS-4.3.6 ) SAFE

Check Against Cross-Section Capacity ( BS-4.8.3.2 )

Design Forces

Major Axis Moment Mz 21.518 kN m


Minor Axis Moment My 0.000 kN m
Critical Loadcase No. 3
Beam No. 1

Interaction Check - More exact method ( BS-4.8.2.3 )

3
Reduced Plastic Modulus About Major Axis Srz ( Annex I.2 ) 0.000 m
3
Reduced Plastic Modulus About Minor Axis Sry ( Annex I.2 ) 0.000 m
Reduced Plastic Moment Capacity About Major Axis Mrz = pySrz 85.172 kN m
Reduced Plastic Moment Capacity About Minor Axis Mry = pySry 38.023 kN m
Constant z1 0.000
Constant z2 0.000
Interaction Ratio ( BS-4.8.2.3 )
z z
= ( Mz / Mrz ) 1 + ( My / Mry ) 2 0.064
Status SAFE

Compression Members With Moments (BS-4.8.3)

Member Buckling Resistance Check ( BS-4.8.3.3 )

Simplified Method ( BS-4.8.3.3.1 )

Design Forces

Critical Loadcase No. 3


Beam No. 1
Axial Load Fx 0.000 kN

Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 13 of 44
Job No Sheet No Rev
14
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

Equivalent Uniform Moment Factor For Major Axis Flexural Buckling


mz 1.000
Maximum Major Axis Moment In The Segment Mz 21.518 kN m
Equivalent Uniform Moment Factor For Minor Axis Flexural Buckling
my 1.000
Maximum Minor Axis Moment In The Segment My 0.000 kN m
Equivalent Uniform Moment Factor For LTB mLT 1.000
Maximum Minor Axis Moment In The Segment MLT 21.518 kN m
Buckling Resistance Moment Mb ( As Per BS-4.3.6.4 ) 70.813 kN m

Interaction Ratio ( BS-4.8.3.3.1 )


= Max ( Fx / pc + mzMz / pySzz + myMy / pySyy ,
Fx / pcy + mLTMLT / Mb + myMy / pySyy ) 0.304
Simplified Method Check ( BS-4.8.3.3.1 ) SAFE

Exact Method ( BS-4.8.3.3.2 )

Design Forces

Critical Loadcase No. 3


Beam No. 1
Axial Load Fx 0.000 kN
Equivalent Uniform Moment Factor For Major Axis Flexural Buckling
mz 1.000
Maximum Major Axis Moment In The Segment Mz 21.518 kN m
Equivalent Uniform Moment Factor For Minor Axis Flexural Buckling
my 1.000
Maximum Minor Axis Moment In The Segment My 0.000 kN m
Equivalent Uniform Moment Factor For LTB mLT 1.000
Maximum Minor Axis Moment In The Segment MLT 21.518 kN m
Equivalent Uniform Moment Factor For Lateral Flexural Buckling
myz 1.000
Major Axis Moment Capacity Of The Cross-Section
Mcz ( As Per BS-4.2.5 ) 85.172 kN m
Minor Axis Moment Capacity Of The Cross-Section
Mcy ( As Per BS-4.2.5 ) 38.023 kN m
Buckling Resistance Moment Mb ( As Per BS-4.3.6.4 ) 70.813 kN m

Interaction Ratio For Major Axis Buckling


= Fx / pcz + mzMz / Mcz ( 1 + 0.5Fx / pcz ) + 0.5myzMy / Mcy 0.253
Interaction Ratio For Lateral Torsional Buckling
= Fx / pcy + mLTMLT / Mb + myMy / Mcy ( 1 + Fx / pcy ) 0.304
Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 14 of 44
Job No Sheet No Rev
15
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

Ratio For Interactive Buckling


= mzMz / Mcz ( 1 + 0.5Fx / pcz ) / ( 1 - Fx / pcz ) +
myMy / Mcy ( 1 + Fx / pcy ) / ( 1 - Fx / pcy ) 0.000
Interaction Ratio ( Maximum of the above three - BS-4.8.3.3.2 ) 0.304
Exact Method Check ( BS-4.8.3.3.2 ) SAFE

Interaction Check ( Annex I )

Design Forces

Critical Loadcase No. 3


Beam No. 1
Axial Load Fx 0.000 kN
3
Reduced Plastic Modulus About Major Axis Srz ( Annex I.2 ) 0.000 m
3
Reduced Plastic Modulus About Minor Axis Sry ( Annex I.2 ) 0.000 m
Reduced Plastic Moment Capacity About Major Axis Mrz = pySrz 85.172 kN m
Reduced Plastic Moment Capacity About Minor Axis Mry = pySry 38.023 kN m
0.5
Myz = Mcz ( 1 - Fx / pcy ) 85.172 kN m
ky 1.000
Moy = Mcy ( 1 - Fx / pcy ) / ( 1 + ky Fx / pcy ) 38.023 kN m
Moz = Mcz ( 1 - Fx / pcz ) / ( 1 + 0.5Fx / pcy ) 85.172 kN m
May = Moy + ( 85.8ε - λy ) / 68.65ε ( Mry - Moy ) 38.023 kN m
Maz = Moz + ( 85.8ε - λz ) / 68.65ε ( Mrz - Moz ) 85.172 kN m
rc = Fx / pcy 0.000
rb = mLTMLT / Mb 0.304

λLT 53.802

λr = ( rbλLT + rcλy ) / ( rb + rc ) 53.802

λr0 = 17.15ε ( 2rb + rc ) / ( rb + rc ) 34.300


Mob = Mb ( 1 - Fx / pcy ) 70.813 kN m
Mab = Mob+ ( 85.8ε - λr ) / (85.8ε - λr0 )*( Mrz - Mob ) 79.734 kN m

Interaction Ratio For Major Axis Buckling


= mzMz / Mcz / Maz + 0.5myzMy/ Mcy / ( 1 - Fx / pcy ) 0.253
Interaction Ratio For Lateral Torsional Buckling
= mLTMLT / Mab + myMy / May 0.270
Ratio For Interactive Buckling
= mzMz / Maz + myMy / May 0.253
Interaction Ratio ( Maximum of the above three - Annex I.1 ) 0.270
Interaction Check ( Annex-I ) SAFE

Deflection Checking Ignored

Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 15 of 44
Job No Sheet No Rev
16
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

DESIGN SUMMARY : ALL UNITS ARE - KN METE

Member : 1 Result : PASS Critical Cond : BS-4.3.6 Ratio : 0.304


Loading : 3 Fx : 0.00 My : 0.00 Mz : 21.52 Location : 0.00

Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 16 of 44
Job No Sheet No Rev
17
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

Design Of Member No. 6 As Per BS 5950-1:2000


Design Of Member No. 6 As Per BS 5950-1:2000

Input Parameters

Member Section W6X25

Section Type STAAD.Pro database

2
Cross Sectional Area Ax 0.005 m
2
Shear Area Along Major Axis Az 0.003 m
2
Shear Area Along Minor Axis Ay 0.001 m
rz 0.069 m
ry 0.039 m
3
Elastic Section Modulus About Major Axis - Zzz 0.000 m
3
Elastic Section Modulus About Minor Axis - Zyy 0.000 m
3
Plastic Section Modulus About Major Axis - Szz 0.000 m
3
Plastic Section Modulus About Minor Axis - Syy 0.000 m
3
Moment of Inertia About Major Axis - Izz 0.000 m
3
Moment of Inertia About Minor Axis - Iyy 0.000 m
Steel Grade S355
Design Strength py 275.000 MPa
3
Reduced Plastic Modulus About Major Axis Srz ( Annex I.2 ) 0.000 m
3
Reduced Plastic Modulus About Minor Axis Sry ( Annex I.2 ) 0.000 m
Reduced Plastic Moment Capacity About Major Axis Mrz = pySrz 85.172 kN m
Reduced Plastic Moment Capacity About Minor Axis Mry = pySry 38.023 kN m
Equivalent Uniform Moment Factor For LTB mLT 1.000
Equivalent Uniform Moment Factor For Lateral Flexural Buckling
myz 1.000
Equivalent Uniform Moment Factor For Major Axis Flexural Buckling
mz 1.000
Equivalent Uniform Moment Factor For Minor Axis Flexural Buckling
my 1.000
Allowable Ratio For Interaction Check 1.000

Input Parameters

Member Section W6X25

Section Type STAAD.Pro database

Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 17 of 44
Job No Sheet No Rev
18
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

2
Cross Sectional Area Ax 0.005 m
2
Shear Area Along Major Axis Az 0.003 m
2
Shear Area Along Minor Axis Ay 0.001 m
rz 0.069 m
ry 0.039 m
3
Elastic Section Modulus About Major Axis - Zzz 0.000 m
3
Elastic Section Modulus About Minor Axis - Zyy 0.000 m
3
Plastic Section Modulus About Major Axis - Szz 0.000 m
3
Plastic Section Modulus About Minor Axis - Syy 0.000 m
3
Moment of Inertia About Major Axis - Izz 0.000 m
3
Moment of Inertia About Minor Axis - Iyy 0.000 m
Steel Grade S355
Design Strength py 275.000 MPa
3
Reduced Plastic Modulus About Major Axis Srz ( Annex I.2 ) 0.000 m
3
Reduced Plastic Modulus About Minor Axis Sry ( Annex I.2 ) 0.000 m
Reduced Plastic Moment Capacity About Major Axis Mrz = pySrz 85.172 kN m
Reduced Plastic Moment Capacity About Minor Axis Mry = pySry 38.023 kN m
Equivalent Uniform Moment Factor For LTB mLT 1.000
Equivalent Uniform Moment Factor For Lateral Flexural Buckling
myz 1.000
Equivalent Uniform Moment Factor For Major Axis Flexural Buckling
mz 1.000
Equivalent Uniform Moment Factor For Minor Axis Flexural Buckling
my 1.000
Allowable Ratio For Interaction Check 1.000

Details Of Calculation

Slenderness Check

No slenderness checking has been performed.


Classification Of Section Class ( BS-3.5.2 )

Class As Per d : t Ratio ( Table 11 / Table 12 ) 1


Class As Per b : t Ratio ( Table 11 / Table 12 ) 1
Section Belongs To Class 1 ( PLASTIC )

Checking Minimum Web Thickness For Serviceability ( BS-4.4.3.2 )

Root Radius r 12.700 mm

Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 18 of 44
Job No Sheet No Rev
19
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

Depth Of Web d = dww - 2tf - r 113.538 mm


(d = Overall Depth, t = Flange Thickness )
ww f
d : t ratio = d / 250 0.056
Allowable Ratio 1.0
Web Check for Serviceability SAFE

Checking Minimum Web Thickness To Avoid Compression Flange Buckling ( BS-4.4.3.3 )

Root Radius r 12.700 mm


Depth Of Web d = dww - 2tf - r 113.538 mm
(d = Overall Depth, t = Flange Thickness )
ww f
Design Strength Of Compression Flange pyf 275.000 MPa
0.5
d : t ratio = d / 250 * ( pyf / 345 ) 0.045
Allowable Ratio 1.0
Compression Flange Buckling Check SAFE

Check Against Shear ( BS-4.2.3 )

No Shear Force Developed Along Major Axis


Shear Along Minor Axis
Critical Loadcase No. 3
Critical Section 0.000 m
Beam No. 2
Shear Force Along Minor Axis Fy 28.345 kN
Shear Capacity Along Minor Axis F
y_allowable
=0.6pyAv 217.331 kN
( A = Shear Area As Per BS-4.2.3 )
v
Interaction Ratio (Along Minor Axis)
=Fy / Fy_allowable 0.130
Minor Axis Shear Check SAFE

Check Against Shear Buckling Resistance Of Web ( BS-4.4.5 )

d : t ratio = d / tw ( tw = Thickness Of Web ) 13.969


0.5
Shear Buckling Limit = 70( 275 / py ) 70.000
No check for shear buckling resistance of the web is required.

Checking Resistance To Lateral Torsional Buckling ( BS-4.3.6 )

Equivalent Uniform Moment Factor For LTB mLT 1.000

Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 19 of 44
Job No Sheet No Rev
20
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

Length Between Restraints Against LTB LLT 3.224 m


Maximum Major Axis Moment In The Segment Mz 21.518 kN m
Buckling Resistance Moment Mb ( As Per BS-4.3.6.4 ) 70.813 kN m
Major Axis Moment Capacity Of The Cross-Section
Mcz ( As Per BS-4.2.5 ) 85.172 kN m
Interaction Ratio
= Max ( Mz mLT / Mb, Mz / Mcz ) 0.304
Lateral Torsional Buckling Check ( BS-4.3.6 ) SAFE

Check Against Cross-Section Capacity ( BS-4.8.3.2 )

Design Forces

Major Axis Moment Mz 21.518 kN m


Minor Axis Moment My 0.000 kN m
Critical Loadcase No. 3
Beam No. 2

Interaction Check - More exact method ( BS-4.8.2.3 )

3
Reduced Plastic Modulus About Major Axis Srz ( Annex I.2 ) 0.000 m
3
Reduced Plastic Modulus About Minor Axis Sry ( Annex I.2 ) 0.000 m
Reduced Plastic Moment Capacity About Major Axis Mrz = pySrz 85.172 kN m
Reduced Plastic Moment Capacity About Minor Axis Mry = pySry 38.023 kN m
Constant z1 0.000
Constant z2 0.000
Interaction Ratio ( BS-4.8.2.3 )
z z
= ( Mz / Mrz ) 1 + ( My / Mry ) 2 0.064
Status SAFE

Compression Members With Moments (BS-4.8.3)

Member Buckling Resistance Check ( BS-4.8.3.3 )

Simplified Method ( BS-4.8.3.3.1 )

Design Forces

Critical Loadcase No. 3


Beam No. 2
Axial Load Fx 0.000 kN

Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 20 of 44
Job No Sheet No Rev
21
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

Equivalent Uniform Moment Factor For Major Axis Flexural Buckling


mz 1.000
Maximum Major Axis Moment In The Segment Mz 21.518 kN m
Equivalent Uniform Moment Factor For Minor Axis Flexural Buckling
my 1.000
Maximum Minor Axis Moment In The Segment My 0.000 kN m
Equivalent Uniform Moment Factor For LTB mLT 1.000
Maximum Minor Axis Moment In The Segment MLT 21.518 kN m
Buckling Resistance Moment Mb ( As Per BS-4.3.6.4 ) 70.813 kN m

Interaction Ratio ( BS-4.8.3.3.1 )


= Max ( Fx / pc + mzMz / pySzz + myMy / pySyy ,
Fx / pcy + mLTMLT / Mb + myMy / pySyy ) 0.304
Simplified Method Check ( BS-4.8.3.3.1 ) SAFE

Exact Method ( BS-4.8.3.3.2 )

Design Forces

Critical Loadcase No. 3


Beam No. 2
Axial Load Fx 0.000 kN
Equivalent Uniform Moment Factor For Major Axis Flexural Buckling
mz 1.000
Maximum Major Axis Moment In The Segment Mz 21.518 kN m
Equivalent Uniform Moment Factor For Minor Axis Flexural Buckling
my 1.000
Maximum Minor Axis Moment In The Segment My 0.000 kN m
Equivalent Uniform Moment Factor For LTB mLT 1.000
Maximum Minor Axis Moment In The Segment MLT 21.518 kN m
Equivalent Uniform Moment Factor For Lateral Flexural Buckling
myz 1.000
Major Axis Moment Capacity Of The Cross-Section
Mcz ( As Per BS-4.2.5 ) 85.172 kN m
Minor Axis Moment Capacity Of The Cross-Section
Mcy ( As Per BS-4.2.5 ) 38.023 kN m
Buckling Resistance Moment Mb ( As Per BS-4.3.6.4 ) 70.813 kN m

Interaction Ratio For Major Axis Buckling


= Fx / pcz + mzMz / Mcz ( 1 + 0.5Fx / pcz ) + 0.5myzMy / Mcy 0.253
Interaction Ratio For Lateral Torsional Buckling
= Fx / pcy + mLTMLT / Mb + myMy / Mcy ( 1 + Fx / pcy ) 0.304
Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 21 of 44
Job No Sheet No Rev
22
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

Ratio For Interactive Buckling


= mzMz / Mcz ( 1 + 0.5Fx / pcz ) / ( 1 - Fx / pcz ) +
myMy / Mcy ( 1 + Fx / pcy ) / ( 1 - Fx / pcy ) 0.000
Interaction Ratio ( Maximum of the above three - BS-4.8.3.3.2 ) 0.304
Exact Method Check ( BS-4.8.3.3.2 ) SAFE

Interaction Check ( Annex I )

Design Forces

Critical Loadcase No. 3


Beam No. 2
Axial Load Fx 0.000 kN
3
Reduced Plastic Modulus About Major Axis Srz ( Annex I.2 ) 0.000 m
3
Reduced Plastic Modulus About Minor Axis Sry ( Annex I.2 ) 0.000 m
Reduced Plastic Moment Capacity About Major Axis Mrz = pySrz 85.172 kN m
Reduced Plastic Moment Capacity About Minor Axis Mry = pySry 38.023 kN m
0.5
Myz = Mcz ( 1 - Fx / pcy ) 85.172 kN m
ky 1.000
Moy = Mcy ( 1 - Fx / pcy ) / ( 1 + ky Fx / pcy ) 38.023 kN m
Moz = Mcz ( 1 - Fx / pcz ) / ( 1 + 0.5Fx / pcy ) 85.172 kN m
May = Moy + ( 85.8ε - λy ) / 68.65ε ( Mry - Moy ) 38.023 kN m
Maz = Moz + ( 85.8ε - λz ) / 68.65ε ( Mrz - Moz ) 85.172 kN m
rc = Fx / pcy 0.000
rb = mLTMLT / Mb 0.304

λLT 53.802

λr = ( rbλLT + rcλy ) / ( rb + rc ) 53.802

λr0 = 17.15ε ( 2rb + rc ) / ( rb + rc ) 34.300


Mob = Mb ( 1 - Fx / pcy ) 70.813 kN m
Mab = Mob+ ( 85.8ε - λr ) / (85.8ε - λr0 )*( Mrz - Mob ) 79.734 kN m

Interaction Ratio For Major Axis Buckling


= mzMz / Mcz / Maz + 0.5myzMy/ Mcy / ( 1 - Fx / pcy ) 0.253
Interaction Ratio For Lateral Torsional Buckling
= mLTMLT / Mab + myMy / May 0.270
Ratio For Interactive Buckling
= mzMz / Maz + myMy / May 0.253
Interaction Ratio ( Maximum of the above three - Annex I.1 ) 0.270
Interaction Check ( Annex-I ) SAFE

Deflection Checking Ignored

Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 22 of 44
Job No Sheet No Rev
23
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

DESIGN SUMMARY : ALL UNITS ARE - KN METE

Member : 2 Result : PASS Critical Cond : BS-4.3.6 Ratio : 0.304


Loading : 3 Fx : 0.00 My : 0.00 Mz : 21.52 Location : 0.00

Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 23 of 44
Job No Sheet No Rev
24
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

Design Of Member No. 7 As Per BS 5950-1:2000


Design Of Member No. 7 As Per BS 5950-1:2000

Input Parameters

Member Section W6X25

Section Type STAAD.Pro database

2
Cross Sectional Area Ax 0.005 m
2
Shear Area Along Major Axis Az 0.003 m
2
Shear Area Along Minor Axis Ay 0.001 m
rz 0.069 m
ry 0.039 m
3
Elastic Section Modulus About Major Axis - Zzz 0.000 m
3
Elastic Section Modulus About Minor Axis - Zyy 0.000 m
3
Plastic Section Modulus About Major Axis - Szz 0.000 m
3
Plastic Section Modulus About Minor Axis - Syy 0.000 m
3
Moment of Inertia About Major Axis - Izz 0.000 m
3
Moment of Inertia About Minor Axis - Iyy 0.000 m
Steel Grade S355
Design Strength py 275.000 MPa
3
Reduced Plastic Modulus About Major Axis Srz ( Annex I.2 ) 0.000 m
3
Reduced Plastic Modulus About Minor Axis Sry ( Annex I.2 ) 0.000 m
Reduced Plastic Moment Capacity About Major Axis Mrz = pySrz 85.172 kN m
Reduced Plastic Moment Capacity About Minor Axis Mry = pySry 38.023 kN m
Equivalent Uniform Moment Factor For LTB mLT 1.000
Equivalent Uniform Moment Factor For Lateral Flexural Buckling
myz 1.000
Equivalent Uniform Moment Factor For Major Axis Flexural Buckling
mz 1.000
Equivalent Uniform Moment Factor For Minor Axis Flexural Buckling
my 1.000
Allowable Ratio For Interaction Check 1.000

Input Parameters

Member Section W6X25

Section Type STAAD.Pro database

Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 24 of 44
Job No Sheet No Rev
25
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

2
Cross Sectional Area Ax 0.005 m
2
Shear Area Along Major Axis Az 0.003 m
2
Shear Area Along Minor Axis Ay 0.001 m
rz 0.069 m
ry 0.039 m
3
Elastic Section Modulus About Major Axis - Zzz 0.000 m
3
Elastic Section Modulus About Minor Axis - Zyy 0.000 m
3
Plastic Section Modulus About Major Axis - Szz 0.000 m
3
Plastic Section Modulus About Minor Axis - Syy 0.000 m
3
Moment of Inertia About Major Axis - Izz 0.000 m
3
Moment of Inertia About Minor Axis - Iyy 0.000 m
Steel Grade S355
Design Strength py 275.000 MPa
3
Reduced Plastic Modulus About Major Axis Srz ( Annex I.2 ) 0.000 m
3
Reduced Plastic Modulus About Minor Axis Sry ( Annex I.2 ) 0.000 m
Reduced Plastic Moment Capacity About Major Axis Mrz = pySrz 85.172 kN m
Reduced Plastic Moment Capacity About Minor Axis Mry = pySry 38.023 kN m
Equivalent Uniform Moment Factor For LTB mLT 1.000
Equivalent Uniform Moment Factor For Lateral Flexural Buckling
myz 1.000
Equivalent Uniform Moment Factor For Major Axis Flexural Buckling
mz 1.000
Equivalent Uniform Moment Factor For Minor Axis Flexural Buckling
my 1.000
Allowable Ratio For Interaction Check 1.000

Details Of Calculation

Slenderness Check

No slenderness checking has been performed.


Classification Of Section Class ( BS-3.5.2 )

Class As Per d : t Ratio ( Table 11 / Table 12 ) 1


Class As Per b : t Ratio ( Table 11 / Table 12 ) 1
Section Belongs To Class 1 ( PLASTIC )

Checking Minimum Web Thickness For Serviceability ( BS-4.4.3.2 )

Root Radius r 12.700 mm

Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 25 of 44
Job No Sheet No Rev
26
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

Depth Of Web d = dww - 2tf - r 113.538 mm


(d = Overall Depth, t = Flange Thickness )
ww f
d : t ratio = d / 250 0.056
Allowable Ratio 1.0
Web Check for Serviceability SAFE

Checking Minimum Web Thickness To Avoid Compression Flange Buckling ( BS-4.4.3.3 )

Root Radius r 12.700 mm


Depth Of Web d = dww - 2tf - r 113.538 mm
(d = Overall Depth, t = Flange Thickness )
ww f
Design Strength Of Compression Flange pyf 275.000 MPa
0.5
d : t ratio = d / 250 * ( pyf / 345 ) 0.045
Allowable Ratio 1.0
Compression Flange Buckling Check SAFE

Check Against Shear ( BS-4.2.3 )

No Shear Force Developed Along Major Axis


Shear Along Minor Axis
Critical Loadcase No. 3
Critical Section 0.000 m
Beam No. 3
Shear Force Along Minor Axis Fy 28.345 kN
Shear Capacity Along Minor Axis F
y_allowable
=0.6pyAv 217.331 kN
( A = Shear Area As Per BS-4.2.3 )
v
Interaction Ratio (Along Minor Axis)
=Fy / Fy_allowable 0.130
Minor Axis Shear Check SAFE

Check Against Shear Buckling Resistance Of Web ( BS-4.4.5 )

d : t ratio = d / tw ( tw = Thickness Of Web ) 13.969


0.5
Shear Buckling Limit = 70( 275 / py ) 70.000
No check for shear buckling resistance of the web is required.

Checking Resistance To Lateral Torsional Buckling ( BS-4.3.6 )

Equivalent Uniform Moment Factor For LTB mLT 1.000

Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 26 of 44
Job No Sheet No Rev
27
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

Length Between Restraints Against LTB LLT 3.224 m


Maximum Major Axis Moment In The Segment Mz 21.518 kN m
Buckling Resistance Moment Mb ( As Per BS-4.3.6.4 ) 70.813 kN m
Major Axis Moment Capacity Of The Cross-Section
Mcz ( As Per BS-4.2.5 ) 85.172 kN m
Interaction Ratio
= Max ( Mz mLT / Mb, Mz / Mcz ) 0.304
Lateral Torsional Buckling Check ( BS-4.3.6 ) SAFE

Check Against Cross-Section Capacity ( BS-4.8.3.2 )

Design Forces

Major Axis Moment Mz 21.518 kN m


Minor Axis Moment My 0.000 kN m
Critical Loadcase No. 3
Beam No. 3

Interaction Check - More exact method ( BS-4.8.2.3 )

3
Reduced Plastic Modulus About Major Axis Srz ( Annex I.2 ) 0.000 m
3
Reduced Plastic Modulus About Minor Axis Sry ( Annex I.2 ) 0.000 m
Reduced Plastic Moment Capacity About Major Axis Mrz = pySrz 85.172 kN m
Reduced Plastic Moment Capacity About Minor Axis Mry = pySry 38.023 kN m
Constant z1 0.000
Constant z2 0.000
Interaction Ratio ( BS-4.8.2.3 )
z z
= ( Mz / Mrz ) 1 + ( My / Mry ) 2 0.064
Status SAFE

Compression Members With Moments (BS-4.8.3)

Member Buckling Resistance Check ( BS-4.8.3.3 )

Simplified Method ( BS-4.8.3.3.1 )

Design Forces

Critical Loadcase No. 3


Beam No. 3
Axial Load Fx 0.000 kN

Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 27 of 44
Job No Sheet No Rev
28
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

Equivalent Uniform Moment Factor For Major Axis Flexural Buckling


mz 1.000
Maximum Major Axis Moment In The Segment Mz 21.518 kN m
Equivalent Uniform Moment Factor For Minor Axis Flexural Buckling
my 1.000
Maximum Minor Axis Moment In The Segment My 0.000 kN m
Equivalent Uniform Moment Factor For LTB mLT 1.000
Maximum Minor Axis Moment In The Segment MLT 21.518 kN m
Buckling Resistance Moment Mb ( As Per BS-4.3.6.4 ) 70.813 kN m

Interaction Ratio ( BS-4.8.3.3.1 )


= Max ( Fx / pc + mzMz / pySzz + myMy / pySyy ,
Fx / pcy + mLTMLT / Mb + myMy / pySyy ) 0.304
Simplified Method Check ( BS-4.8.3.3.1 ) SAFE

Exact Method ( BS-4.8.3.3.2 )

Design Forces

Critical Loadcase No. 3


Beam No. 3
Axial Load Fx 0.000 kN
Equivalent Uniform Moment Factor For Major Axis Flexural Buckling
mz 1.000
Maximum Major Axis Moment In The Segment Mz 21.518 kN m
Equivalent Uniform Moment Factor For Minor Axis Flexural Buckling
my 1.000
Maximum Minor Axis Moment In The Segment My 0.000 kN m
Equivalent Uniform Moment Factor For LTB mLT 1.000
Maximum Minor Axis Moment In The Segment MLT 21.518 kN m
Equivalent Uniform Moment Factor For Lateral Flexural Buckling
myz 1.000
Major Axis Moment Capacity Of The Cross-Section
Mcz ( As Per BS-4.2.5 ) 85.172 kN m
Minor Axis Moment Capacity Of The Cross-Section
Mcy ( As Per BS-4.2.5 ) 38.023 kN m
Buckling Resistance Moment Mb ( As Per BS-4.3.6.4 ) 70.813 kN m

Interaction Ratio For Major Axis Buckling


= Fx / pcz + mzMz / Mcz ( 1 + 0.5Fx / pcz ) + 0.5myzMy / Mcy 0.253
Interaction Ratio For Lateral Torsional Buckling
= Fx / pcy + mLTMLT / Mb + myMy / Mcy ( 1 + Fx / pcy ) 0.304
Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 28 of 44
Job No Sheet No Rev
29
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

Ratio For Interactive Buckling


= mzMz / Mcz ( 1 + 0.5Fx / pcz ) / ( 1 - Fx / pcz ) +
myMy / Mcy ( 1 + Fx / pcy ) / ( 1 - Fx / pcy ) 0.000
Interaction Ratio ( Maximum of the above three - BS-4.8.3.3.2 ) 0.304
Exact Method Check ( BS-4.8.3.3.2 ) SAFE

Interaction Check ( Annex I )

Design Forces

Critical Loadcase No. 3


Beam No. 3
Axial Load Fx 0.000 kN
3
Reduced Plastic Modulus About Major Axis Srz ( Annex I.2 ) 0.000 m
3
Reduced Plastic Modulus About Minor Axis Sry ( Annex I.2 ) 0.000 m
Reduced Plastic Moment Capacity About Major Axis Mrz = pySrz 85.172 kN m
Reduced Plastic Moment Capacity About Minor Axis Mry = pySry 38.023 kN m
0.5
Myz = Mcz ( 1 - Fx / pcy ) 85.172 kN m
ky 1.000
Moy = Mcy ( 1 - Fx / pcy ) / ( 1 + ky Fx / pcy ) 38.023 kN m
Moz = Mcz ( 1 - Fx / pcz ) / ( 1 + 0.5Fx / pcy ) 85.172 kN m
May = Moy + ( 85.8ε - λy ) / 68.65ε ( Mry - Moy ) 38.023 kN m
Maz = Moz + ( 85.8ε - λz ) / 68.65ε ( Mrz - Moz ) 85.172 kN m
rc = Fx / pcy 0.000
rb = mLTMLT / Mb 0.304

λLT 53.802

λr = ( rbλLT + rcλy ) / ( rb + rc ) 53.802

λr0 = 17.15ε ( 2rb + rc ) / ( rb + rc ) 34.300


Mob = Mb ( 1 - Fx / pcy ) 70.813 kN m
Mab = Mob+ ( 85.8ε - λr ) / (85.8ε - λr0 )*( Mrz - Mob ) 79.734 kN m

Interaction Ratio For Major Axis Buckling


= mzMz / Mcz / Maz + 0.5myzMy/ Mcy / ( 1 - Fx / pcy ) 0.253
Interaction Ratio For Lateral Torsional Buckling
= mLTMLT / Mab + myMy / May 0.270
Ratio For Interactive Buckling
= mzMz / Maz + myMy / May 0.253
Interaction Ratio ( Maximum of the above three - Annex I.1 ) 0.270
Interaction Check ( Annex-I ) SAFE

Deflection Checking Ignored

Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 29 of 44
Job No Sheet No Rev
30
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

DESIGN SUMMARY : ALL UNITS ARE - KN METE

Member : 3 Result : PASS Critical Cond : BS-4.3.6 Ratio : 0.304


Loading : 3 Fx : 0.00 My : 0.00 Mz : 21.52 Location : 0.00

Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 30 of 44
Job No Sheet No Rev
31
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

Design Of Member No. 8 As Per BS 5950-1:2000


Design Of Member No. 8 As Per BS 5950-1:2000

Input Parameters

Member Section W6X25

Section Type STAAD.Pro database

2
Cross Sectional Area Ax 0.005 m
2
Shear Area Along Major Axis Az 0.003 m
2
Shear Area Along Minor Axis Ay 0.001 m
rz 0.069 m
ry 0.039 m
3
Elastic Section Modulus About Major Axis - Zzz 0.000 m
3
Elastic Section Modulus About Minor Axis - Zyy 0.000 m
3
Plastic Section Modulus About Major Axis - Szz 0.000 m
3
Plastic Section Modulus About Minor Axis - Syy 0.000 m
3
Moment of Inertia About Major Axis - Izz 0.000 m
3
Moment of Inertia About Minor Axis - Iyy 0.000 m
Steel Grade S355
Design Strength py 275.000 MPa
3
Reduced Plastic Modulus About Major Axis Srz ( Annex I.2 ) 0.000 m
3
Reduced Plastic Modulus About Minor Axis Sry ( Annex I.2 ) 0.000 m
Reduced Plastic Moment Capacity About Major Axis Mrz = pySrz 85.172 kN m
Reduced Plastic Moment Capacity About Minor Axis Mry = pySry 38.023 kN m
Equivalent Uniform Moment Factor For LTB mLT 1.000
Equivalent Uniform Moment Factor For Lateral Flexural Buckling
myz 1.000
Equivalent Uniform Moment Factor For Major Axis Flexural Buckling
mz 1.000
Equivalent Uniform Moment Factor For Minor Axis Flexural Buckling
my 1.000
Allowable Ratio For Interaction Check 1.000

Input Parameters

Member Section W6X25

Section Type STAAD.Pro database

Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 31 of 44
Job No Sheet No Rev
32
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

2
Cross Sectional Area Ax 0.005 m
2
Shear Area Along Major Axis Az 0.003 m
2
Shear Area Along Minor Axis Ay 0.001 m
rz 0.069 m
ry 0.039 m
3
Elastic Section Modulus About Major Axis - Zzz 0.000 m
3
Elastic Section Modulus About Minor Axis - Zyy 0.000 m
3
Plastic Section Modulus About Major Axis - Szz 0.000 m
3
Plastic Section Modulus About Minor Axis - Syy 0.000 m
3
Moment of Inertia About Major Axis - Izz 0.000 m
3
Moment of Inertia About Minor Axis - Iyy 0.000 m
Steel Grade S355
Design Strength py 275.000 MPa
3
Reduced Plastic Modulus About Major Axis Srz ( Annex I.2 ) 0.000 m
3
Reduced Plastic Modulus About Minor Axis Sry ( Annex I.2 ) 0.000 m
Reduced Plastic Moment Capacity About Major Axis Mrz = pySrz 85.172 kN m
Reduced Plastic Moment Capacity About Minor Axis Mry = pySry 38.023 kN m
Equivalent Uniform Moment Factor For LTB mLT 1.000
Equivalent Uniform Moment Factor For Lateral Flexural Buckling
myz 1.000
Equivalent Uniform Moment Factor For Major Axis Flexural Buckling
mz 1.000
Equivalent Uniform Moment Factor For Minor Axis Flexural Buckling
my 1.000
Allowable Ratio For Interaction Check 1.000

Details Of Calculation

Slenderness Check

No slenderness checking has been performed.


Classification Of Section Class ( BS-3.5.2 )

Class As Per d : t Ratio ( Table 11 / Table 12 ) 1


Class As Per b : t Ratio ( Table 11 / Table 12 ) 1
Section Belongs To Class 1 ( PLASTIC )

Checking Minimum Web Thickness For Serviceability ( BS-4.4.3.2 )

Root Radius r 12.700 mm

Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 32 of 44
Job No Sheet No Rev
33
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

Depth Of Web d = dww - 2tf - r 113.538 mm


(d = Overall Depth, t = Flange Thickness )
ww f
d : t ratio = d / 250 0.056
Allowable Ratio 1.0
Web Check for Serviceability SAFE

Checking Minimum Web Thickness To Avoid Compression Flange Buckling ( BS-4.4.3.3 )

Root Radius r 12.700 mm


Depth Of Web d = dww - 2tf - r 113.538 mm
(d = Overall Depth, t = Flange Thickness )
ww f
Design Strength Of Compression Flange pyf 275.000 MPa
0.5
d : t ratio = d / 250 * ( pyf / 345 ) 0.045
Allowable Ratio 1.0
Compression Flange Buckling Check SAFE

Check Against Shear ( BS-4.2.3 )

No Shear Force Developed Along Major Axis


Shear Along Minor Axis
Critical Loadcase No. 3
Critical Section 0.000 m
Beam No. 4
Shear Force Along Minor Axis Fy 28.345 kN
Shear Capacity Along Minor Axis F
y_allowable
=0.6pyAv 217.331 kN
( A = Shear Area As Per BS-4.2.3 )
v
Interaction Ratio (Along Minor Axis)
=Fy / Fy_allowable 0.130
Minor Axis Shear Check SAFE

Check Against Shear Buckling Resistance Of Web ( BS-4.4.5 )

d : t ratio = d / tw ( tw = Thickness Of Web ) 13.969


0.5
Shear Buckling Limit = 70( 275 / py ) 70.000
No check for shear buckling resistance of the web is required.

Checking Resistance To Lateral Torsional Buckling ( BS-4.3.6 )

Equivalent Uniform Moment Factor For LTB mLT 1.000

Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 33 of 44
Job No Sheet No Rev
34
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

Length Between Restraints Against LTB LLT 3.224 m


Maximum Major Axis Moment In The Segment Mz 21.518 kN m
Buckling Resistance Moment Mb ( As Per BS-4.3.6.4 ) 70.813 kN m
Major Axis Moment Capacity Of The Cross-Section
Mcz ( As Per BS-4.2.5 ) 85.172 kN m
Interaction Ratio
= Max ( Mz mLT / Mb, Mz / Mcz ) 0.304
Lateral Torsional Buckling Check ( BS-4.3.6 ) SAFE

Check Against Cross-Section Capacity ( BS-4.8.3.2 )

Design Forces

Major Axis Moment Mz 21.518 kN m


Minor Axis Moment My 0.000 kN m
Critical Loadcase No. 3
Beam No. 4

Interaction Check - More exact method ( BS-4.8.2.3 )

3
Reduced Plastic Modulus About Major Axis Srz ( Annex I.2 ) 0.000 m
3
Reduced Plastic Modulus About Minor Axis Sry ( Annex I.2 ) 0.000 m
Reduced Plastic Moment Capacity About Major Axis Mrz = pySrz 85.172 kN m
Reduced Plastic Moment Capacity About Minor Axis Mry = pySry 38.023 kN m
Constant z1 0.000
Constant z2 0.000
Interaction Ratio ( BS-4.8.2.3 )
z z
= ( Mz / Mrz ) 1 + ( My / Mry ) 2 0.064
Status SAFE

Compression Members With Moments (BS-4.8.3)

Member Buckling Resistance Check ( BS-4.8.3.3 )

Simplified Method ( BS-4.8.3.3.1 )

Design Forces

Critical Loadcase No. 3


Beam No. 4
Axial Load Fx 0.000 kN

Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 34 of 44
Job No Sheet No Rev
35
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

Equivalent Uniform Moment Factor For Major Axis Flexural Buckling


mz 1.000
Maximum Major Axis Moment In The Segment Mz 21.518 kN m
Equivalent Uniform Moment Factor For Minor Axis Flexural Buckling
my 1.000
Maximum Minor Axis Moment In The Segment My 0.000 kN m
Equivalent Uniform Moment Factor For LTB mLT 1.000
Maximum Minor Axis Moment In The Segment MLT 21.518 kN m
Buckling Resistance Moment Mb ( As Per BS-4.3.6.4 ) 70.813 kN m

Interaction Ratio ( BS-4.8.3.3.1 )


= Max ( Fx / pc + mzMz / pySzz + myMy / pySyy ,
Fx / pcy + mLTMLT / Mb + myMy / pySyy ) 0.304
Simplified Method Check ( BS-4.8.3.3.1 ) SAFE

Exact Method ( BS-4.8.3.3.2 )

Design Forces

Critical Loadcase No. 3


Beam No. 4
Axial Load Fx 0.000 kN
Equivalent Uniform Moment Factor For Major Axis Flexural Buckling
mz 1.000
Maximum Major Axis Moment In The Segment Mz 21.518 kN m
Equivalent Uniform Moment Factor For Minor Axis Flexural Buckling
my 1.000
Maximum Minor Axis Moment In The Segment My 0.000 kN m
Equivalent Uniform Moment Factor For LTB mLT 1.000
Maximum Minor Axis Moment In The Segment MLT 21.518 kN m
Equivalent Uniform Moment Factor For Lateral Flexural Buckling
myz 1.000
Major Axis Moment Capacity Of The Cross-Section
Mcz ( As Per BS-4.2.5 ) 85.172 kN m
Minor Axis Moment Capacity Of The Cross-Section
Mcy ( As Per BS-4.2.5 ) 38.023 kN m
Buckling Resistance Moment Mb ( As Per BS-4.3.6.4 ) 70.813 kN m

Interaction Ratio For Major Axis Buckling


= Fx / pcz + mzMz / Mcz ( 1 + 0.5Fx / pcz ) + 0.5myzMy / Mcy 0.253
Interaction Ratio For Lateral Torsional Buckling
= Fx / pcy + mLTMLT / Mb + myMy / Mcy ( 1 + Fx / pcy ) 0.304
Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 35 of 44
Job No Sheet No Rev
36
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

Ratio For Interactive Buckling


= mzMz / Mcz ( 1 + 0.5Fx / pcz ) / ( 1 - Fx / pcz ) +
myMy / Mcy ( 1 + Fx / pcy ) / ( 1 - Fx / pcy ) 0.000
Interaction Ratio ( Maximum of the above three - BS-4.8.3.3.2 ) 0.304
Exact Method Check ( BS-4.8.3.3.2 ) SAFE

Interaction Check ( Annex I )

Design Forces

Critical Loadcase No. 3


Beam No. 4
Axial Load Fx 0.000 kN
3
Reduced Plastic Modulus About Major Axis Srz ( Annex I.2 ) 0.000 m
3
Reduced Plastic Modulus About Minor Axis Sry ( Annex I.2 ) 0.000 m
Reduced Plastic Moment Capacity About Major Axis Mrz = pySrz 85.172 kN m
Reduced Plastic Moment Capacity About Minor Axis Mry = pySry 38.023 kN m
0.5
Myz = Mcz ( 1 - Fx / pcy ) 85.172 kN m
ky 1.000
Moy = Mcy ( 1 - Fx / pcy ) / ( 1 + ky Fx / pcy ) 38.023 kN m
Moz = Mcz ( 1 - Fx / pcz ) / ( 1 + 0.5Fx / pcy ) 85.172 kN m
May = Moy + ( 85.8ε - λy ) / 68.65ε ( Mry - Moy ) 38.023 kN m
Maz = Moz + ( 85.8ε - λz ) / 68.65ε ( Mrz - Moz ) 85.172 kN m
rc = Fx / pcy 0.000
rb = mLTMLT / Mb 0.304

λLT 53.802

λr = ( rbλLT + rcλy ) / ( rb + rc ) 53.802

λr0 = 17.15ε ( 2rb + rc ) / ( rb + rc ) 34.300


Mob = Mb ( 1 - Fx / pcy ) 70.813 kN m
Mab = Mob+ ( 85.8ε - λr ) / (85.8ε - λr0 )*( Mrz - Mob ) 79.734 kN m

Interaction Ratio For Major Axis Buckling


= mzMz / Mcz / Maz + 0.5myzMy/ Mcy / ( 1 - Fx / pcy ) 0.253
Interaction Ratio For Lateral Torsional Buckling
= mLTMLT / Mab + myMy / May 0.270
Ratio For Interactive Buckling
= mzMz / Maz + myMy / May 0.253
Interaction Ratio ( Maximum of the above three - Annex I.1 ) 0.270
Interaction Check ( Annex-I ) SAFE

Deflection Checking Ignored

Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 36 of 44
Job No Sheet No Rev
37
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

DESIGN SUMMARY : ALL UNITS ARE - KN METE

Member : 4 Result : PASS Critical Cond : BS-4.3.6 Ratio : 0.304


Loading : 3 Fx : 0.00 My : 0.00 Mz : 21.52 Location : 0.00

Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 37 of 44
Job No Sheet No Rev
38
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

Design Of Member No. 9 As Per BS 5950-1:2000


Design Of Member No. 9 As Per BS 5950-1:2000

Input Parameters

Member Section W6X25

Section Type STAAD.Pro database

2
Cross Sectional Area Ax 0.005 m
2
Shear Area Along Major Axis Az 0.003 m
2
Shear Area Along Minor Axis Ay 0.001 m
rz 0.069 m
ry 0.039 m
3
Elastic Section Modulus About Major Axis - Zzz 0.000 m
3
Elastic Section Modulus About Minor Axis - Zyy 0.000 m
3
Plastic Section Modulus About Major Axis - Szz 0.000 m
3
Plastic Section Modulus About Minor Axis - Syy 0.000 m
3
Moment of Inertia About Major Axis - Izz 0.000 m
3
Moment of Inertia About Minor Axis - Iyy 0.000 m
Steel Grade S355
Design Strength py 275.000 MPa
3
Reduced Plastic Modulus About Major Axis Srz ( Annex I.2 ) 0.000 m
3
Reduced Plastic Modulus About Minor Axis Sry ( Annex I.2 ) 0.000 m
Reduced Plastic Moment Capacity About Major Axis Mrz = pySrz 85.172 kN m
Reduced Plastic Moment Capacity About Minor Axis Mry = pySry 38.023 kN m
Equivalent Uniform Moment Factor For LTB mLT 1.000
Equivalent Uniform Moment Factor For Lateral Flexural Buckling
myz 1.000
Equivalent Uniform Moment Factor For Major Axis Flexural Buckling
mz 1.000
Equivalent Uniform Moment Factor For Minor Axis Flexural Buckling
my 1.000
Allowable Ratio For Interaction Check 1.000

Input Parameters

Member Section W6X25

Section Type STAAD.Pro database

Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 38 of 44
Job No Sheet No Rev
39
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

2
Cross Sectional Area Ax 0.005 m
2
Shear Area Along Major Axis Az 0.003 m
2
Shear Area Along Minor Axis Ay 0.001 m
rz 0.069 m
ry 0.039 m
3
Elastic Section Modulus About Major Axis - Zzz 0.000 m
3
Elastic Section Modulus About Minor Axis - Zyy 0.000 m
3
Plastic Section Modulus About Major Axis - Szz 0.000 m
3
Plastic Section Modulus About Minor Axis - Syy 0.000 m
3
Moment of Inertia About Major Axis - Izz 0.000 m
3
Moment of Inertia About Minor Axis - Iyy 0.000 m
Steel Grade S355
Design Strength py 275.000 MPa
3
Reduced Plastic Modulus About Major Axis Srz ( Annex I.2 ) 0.000 m
3
Reduced Plastic Modulus About Minor Axis Sry ( Annex I.2 ) 0.000 m
Reduced Plastic Moment Capacity About Major Axis Mrz = pySrz 85.172 kN m
Reduced Plastic Moment Capacity About Minor Axis Mry = pySry 38.023 kN m
Equivalent Uniform Moment Factor For LTB mLT 1.000
Equivalent Uniform Moment Factor For Lateral Flexural Buckling
myz 1.000
Equivalent Uniform Moment Factor For Major Axis Flexural Buckling
mz 1.000
Equivalent Uniform Moment Factor For Minor Axis Flexural Buckling
my 1.000
Allowable Ratio For Interaction Check 1.000

Details Of Calculation

Slenderness Check

No slenderness checking has been performed.


Classification Of Section Class ( BS-3.5.2 )

Class As Per d : t Ratio ( Table 11 / Table 12 ) 1


Class As Per b : t Ratio ( Table 11 / Table 12 ) 1
Section Belongs To Class 1 ( PLASTIC )

Checking Minimum Web Thickness For Serviceability ( BS-4.4.3.2 )

Root Radius r 12.700 mm

Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 39 of 44
Job No Sheet No Rev
40
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

Depth Of Web d = dww - 2tf - r 113.538 mm


(d = Overall Depth, t = Flange Thickness )
ww f
d : t ratio = d / 250 0.056
Allowable Ratio 1.0
Web Check for Serviceability SAFE

Checking Minimum Web Thickness To Avoid Compression Flange Buckling ( BS-4.4.3.3 )

Root Radius r 12.700 mm


Depth Of Web d = dww - 2tf - r 113.538 mm
(d = Overall Depth, t = Flange Thickness )
ww f
Design Strength Of Compression Flange pyf 275.000 MPa
0.5
d : t ratio = d / 250 * ( pyf / 345 ) 0.045
Allowable Ratio 1.0
Compression Flange Buckling Check SAFE

Check Against Shear ( BS-4.2.3 )

No Shear Force Developed Along Major Axis


Shear Along Minor Axis
Critical Loadcase No. 3
Critical Section 0.000 m
Beam No. 5
Shear Force Along Minor Axis Fy 28.345 kN
Shear Capacity Along Minor Axis F
y_allowable
=0.6pyAv 217.331 kN
( A = Shear Area As Per BS-4.2.3 )
v
Interaction Ratio (Along Minor Axis)
=Fy / Fy_allowable 0.130
Minor Axis Shear Check SAFE

Check Against Shear Buckling Resistance Of Web ( BS-4.4.5 )

d : t ratio = d / tw ( tw = Thickness Of Web ) 13.969


0.5
Shear Buckling Limit = 70( 275 / py ) 70.000
No check for shear buckling resistance of the web is required.

Checking Resistance To Lateral Torsional Buckling ( BS-4.3.6 )

Equivalent Uniform Moment Factor For LTB mLT 1.000

Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 40 of 44
Job No Sheet No Rev
41
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

Length Between Restraints Against LTB LLT 3.224 m


Maximum Major Axis Moment In The Segment Mz 21.518 kN m
Buckling Resistance Moment Mb ( As Per BS-4.3.6.4 ) 70.813 kN m
Major Axis Moment Capacity Of The Cross-Section
Mcz ( As Per BS-4.2.5 ) 85.172 kN m
Interaction Ratio
= Max ( Mz mLT / Mb, Mz / Mcz ) 0.304
Lateral Torsional Buckling Check ( BS-4.3.6 ) SAFE

Check Against Cross-Section Capacity ( BS-4.8.3.2 )

Design Forces

Major Axis Moment Mz 21.518 kN m


Minor Axis Moment My 0.000 kN m
Critical Loadcase No. 3
Beam No. 5

Interaction Check - More exact method ( BS-4.8.2.3 )

3
Reduced Plastic Modulus About Major Axis Srz ( Annex I.2 ) 0.000 m
3
Reduced Plastic Modulus About Minor Axis Sry ( Annex I.2 ) 0.000 m
Reduced Plastic Moment Capacity About Major Axis Mrz = pySrz 85.172 kN m
Reduced Plastic Moment Capacity About Minor Axis Mry = pySry 38.023 kN m
Constant z1 0.000
Constant z2 0.000
Interaction Ratio ( BS-4.8.2.3 )
z z
= ( Mz / Mrz ) 1 + ( My / Mry ) 2 0.064
Status SAFE

Compression Members With Moments (BS-4.8.3)

Member Buckling Resistance Check ( BS-4.8.3.3 )

Simplified Method ( BS-4.8.3.3.1 )

Design Forces

Critical Loadcase No. 3


Beam No. 5
Axial Load Fx 0.000 kN

Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 41 of 44
Job No Sheet No Rev
42
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

Equivalent Uniform Moment Factor For Major Axis Flexural Buckling


mz 1.000
Maximum Major Axis Moment In The Segment Mz 21.518 kN m
Equivalent Uniform Moment Factor For Minor Axis Flexural Buckling
my 1.000
Maximum Minor Axis Moment In The Segment My 0.000 kN m
Equivalent Uniform Moment Factor For LTB mLT 1.000
Maximum Minor Axis Moment In The Segment MLT 21.518 kN m
Buckling Resistance Moment Mb ( As Per BS-4.3.6.4 ) 70.813 kN m

Interaction Ratio ( BS-4.8.3.3.1 )


= Max ( Fx / pc + mzMz / pySzz + myMy / pySyy ,
Fx / pcy + mLTMLT / Mb + myMy / pySyy ) 0.304
Simplified Method Check ( BS-4.8.3.3.1 ) SAFE

Exact Method ( BS-4.8.3.3.2 )

Design Forces

Critical Loadcase No. 3


Beam No. 5
Axial Load Fx 0.000 kN
Equivalent Uniform Moment Factor For Major Axis Flexural Buckling
mz 1.000
Maximum Major Axis Moment In The Segment Mz 21.518 kN m
Equivalent Uniform Moment Factor For Minor Axis Flexural Buckling
my 1.000
Maximum Minor Axis Moment In The Segment My 0.000 kN m
Equivalent Uniform Moment Factor For LTB mLT 1.000
Maximum Minor Axis Moment In The Segment MLT 21.518 kN m
Equivalent Uniform Moment Factor For Lateral Flexural Buckling
myz 1.000
Major Axis Moment Capacity Of The Cross-Section
Mcz ( As Per BS-4.2.5 ) 85.172 kN m
Minor Axis Moment Capacity Of The Cross-Section
Mcy ( As Per BS-4.2.5 ) 38.023 kN m
Buckling Resistance Moment Mb ( As Per BS-4.3.6.4 ) 70.813 kN m

Interaction Ratio For Major Axis Buckling


= Fx / pcz + mzMz / Mcz ( 1 + 0.5Fx / pcz ) + 0.5myzMy / Mcy 0.253
Interaction Ratio For Lateral Torsional Buckling
= Fx / pcy + mLTMLT / Mb + myMy / Mcy ( 1 + Fx / pcy ) 0.304
Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 42 of 44
Job No Sheet No Rev
43
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

Ratio For Interactive Buckling


= mzMz / Mcz ( 1 + 0.5Fx / pcz ) / ( 1 - Fx / pcz ) +
myMy / Mcy ( 1 + Fx / pcy ) / ( 1 - Fx / pcy ) 0.000
Interaction Ratio ( Maximum of the above three - BS-4.8.3.3.2 ) 0.304
Exact Method Check ( BS-4.8.3.3.2 ) SAFE

Interaction Check ( Annex I )

Design Forces

Critical Loadcase No. 3


Beam No. 5
Axial Load Fx 0.000 kN
3
Reduced Plastic Modulus About Major Axis Srz ( Annex I.2 ) 0.000 m
3
Reduced Plastic Modulus About Minor Axis Sry ( Annex I.2 ) 0.000 m
Reduced Plastic Moment Capacity About Major Axis Mrz = pySrz 85.172 kN m
Reduced Plastic Moment Capacity About Minor Axis Mry = pySry 38.023 kN m
0.5
Myz = Mcz ( 1 - Fx / pcy ) 85.172 kN m
ky 1.000
Moy = Mcy ( 1 - Fx / pcy ) / ( 1 + ky Fx / pcy ) 38.023 kN m
Moz = Mcz ( 1 - Fx / pcz ) / ( 1 + 0.5Fx / pcy ) 85.172 kN m
May = Moy + ( 85.8ε - λy ) / 68.65ε ( Mry - Moy ) 38.023 kN m
Maz = Moz + ( 85.8ε - λz ) / 68.65ε ( Mrz - Moz ) 85.172 kN m
rc = Fx / pcy 0.000
rb = mLTMLT / Mb 0.304

λLT 53.802

λr = ( rbλLT + rcλy ) / ( rb + rc ) 53.802

λr0 = 17.15ε ( 2rb + rc ) / ( rb + rc ) 34.300


Mob = Mb ( 1 - Fx / pcy ) 70.813 kN m
Mab = Mob+ ( 85.8ε - λr ) / (85.8ε - λr0 )*( Mrz - Mob ) 79.734 kN m

Interaction Ratio For Major Axis Buckling


= mzMz / Mcz / Maz + 0.5myzMy/ Mcy / ( 1 - Fx / pcy ) 0.253
Interaction Ratio For Lateral Torsional Buckling
= mLTMLT / Mab + myMy / May 0.270
Ratio For Interactive Buckling
= mzMz / Maz + myMy / May 0.253
Interaction Ratio ( Maximum of the above three - Annex I.1 ) 0.270
Interaction Check ( Annex-I ) SAFE

Deflection Checking Ignored

Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 43 of 44
Job No Sheet No Rev
44
Part
Software licensed to
Job Title DESIGN OF NAOC FLOATING JETTY Ref

By I.O.E Date11-Nov-22 Chd I.OE


Client NAOC File NAOC Floating Jetty Date/Time
Design Revised.std
11-Nov-2022 16:13

DESIGN SUMMARY : ALL UNITS ARE - KN METE

Member : 5 Result : PASS Critical Cond : BS-4.3.6 Ratio : 0.304


Loading : 3 Fx : 0.00 My : 0.00 Mz : 21.52 Location : 0.00

Print Time/Date: 11/11/2022 16:16 STAAD.Pro V8i (SELECTseries 6) 20.07.11.33 Print Run 44 of 44

You might also like