CH. VII A Direct S
CH. VII A Direct S
STRESSES
CHAPTER VII
ECCENTRICITY
Prof. Yassin Sallam
1
DIRECT AND BENDING
STRESSES
Direct stress come plays at
CHAPTER VII
of e Fig.(a)
❑ We introduce, along
the axis of the column
two equal and opposite =
forces P Fig.(b)
(a)
(b)
3
Prof. Yassin Sallam
DIRECT AND BENDING
STRESSES
❑ The forces column acting may be split up into three forces:
❑ One of these forces will be acting along the axis of the column.
CHAPTER VII
P
P
Direct Bending
(c) (d)
P M . y Pey
o = b = =
A I I 4
Prof. Yassin Sallam
DIRECT AND BENDING
STRESSES
2. SYMMETRICAL COLUMN WITH ECCENTRIC
LOADING ABUT ONE AXIS
Consider a column ABCD, subjected to an eccentric load about one axis/ yy ,
CHAPTER VII
as shown.
eP
P : Load acting on the column
e : Eccentricity of the load
b : Width of the column section
d : Depth of the column section
A C b D
•Moment due to load: M = P.e min
max
• Bending stress at any point of the column section
• at a distance y from yy axis. y y 1 M
b = M = Pe =M = 5
Prof. Yassin Sallam I I Z Z
DIRECT AND BENDING
)
STRESSES
y=
d M . ymax P.e. ymax
•Bending stress at the extreme ( 2) b = =
d I I
M( )
CHAPTER VII
b = 2 = 6M = 6 P.e = 6 P.e
bd 3 bd 2 bd 2 A.d
12
Total stress at the extreme fiber: = − o b
✓(+) or (-) signs will depend upon the position P Pey
=−
of the fiber with respect to eccentric load. A I
P M
✓The total stress along the width of the column =−
A Z
will vary a straight line law. P 6e
= − (1 + ) P 6 Pe
•The maximum Stress: max =−
A d A Ad
P 6e P 6e
•The minimum Stress: min = − (1 − ) = − (1 )
A d A d
If max min
1 o b Same nature Compressive
2 o = b 2 b 0
6
3 o b Partly compressive Partly tensile
Prof. Yassin Sallam
DIRECT AND BENDING
STRESSES
Load Example (1)
180 kN
A rectangular strut is 150 mm and 120 mm thick. It curries a e
CHAPTER VII
= 18 000 mm 2 150 mm
7
Prof. Yassin Sallam
DIRECT AND BENDING
STRESSES
•The maximum Stress:
P 6e
max = − (1 + )
CHAPTER VII
A d
180 x103 6 x10
max = − (1 + ) e 120 mm
18 x103 120
max = −10 (1 + 0.5) = 15 MPa 150 mm
Compression
min = 5MPa
•The minimum Stress: max = 15MPa
P 6e
min = − (1 − )
A d
180 x10 3
6 x10
min =− (1 − )
18 x103 120
min = −10(1 − 0.5) = 5 MPa Compression
There is no tension 8
Solution:
Width b = 200 mm
Depth d = 150 mm
Load P = 120 kN = 120x103 N
e 150 mm
Eccentricity e = 50 mm 200 mm
max = − (1 + )
A d
120 x103 6 x50
max =− (1 + ) e 150 mm
30 x10 3
150
max = −4(1 + 2) = 12 MPa 200 mm
Compression
•The minimum Stress: min = 4MPa
max
P 6e
min = − (1 − ) = 12MPa
A d
120 x103 6 x50
min =− (1 − )
30 x10 3
150
min = −4 x(1 − 2) = 4 MPa Tension
10
Prof. Yassin Sallam
DIRECT AND BENDING
STRESSES
Example (3) P kN
e
In a tension specimen 13 mm in diameter, the line of pull
CHAPTER VII
Solution:
Diameter d = 13 mm
Max. Stress max = 1.15 av .................(1)
Area of section column: 13 mm
e
d 2 2
(13)
A= = = 132.7 mm 2
4 4
11
Prof. Yassin Sallam
DIRECT AND BENDING
STRESSES
•Modulus of section:
Z= d3 = x(13)3
CHAPTER VII
32 32
Z = 215.7 mm3
•Moment due to eccentricity load:
M = P.e
By definition the mean (average) stress:
P P
av = o = =− N / mm 2
A 132.7
•Maximum stress:
max = − o − b
max = − av − b
P P.e
=− −
A Z
P P .e
max = − − ............(2)
132.7 215.7 12
Prof. Yassin Sallam
DIRECT AND BENDING
STRESSES
max = 1.15 av ....................(1)
P P.e
max = − − ............(2)
CHAPTER VII
Eccentricity e = 100 mm
Area of section column:
A = DB − db 1 .2 m
Z = ( BD 2 − bd 2 )
6
1
Z= [(1.2 x103 )(0.8 x103 )2 ] − [(0.9 x103 ) x(0.5 x103 )2 ]
6
1
Z = 768 x106 − 225 x106
6
Z = 90.5 x106 mm3
M = P.e
M = 2 x106 x100
M = 200 x106 N .mm 15
Prof. Yassin Sallam
DIRECT AND BENDING
STRESSES
• Maximum stress the section:
P M
max = −( + )
CHAPTER VII
A Z 6
2 x10 200 x106
max = −( + )
6
0.51x10 90.5 x10 6
min = −( − )
0.51x106 90.5 x106
min = −3.92 + 2.21
min = −1.71 N / mm2 = 1.71 MPa Compression
16
Prof. Yassin Sallam There is no tension