Logic
Logic
i/iiit:r:-·S:-====--:=-===-=====-===-==-:::::-::::::~
State whi ch of the follo win g are stat eme
white.
1. All cro ws are blac k and all swans are
2. Ram a is running.
rea che d.
3. Arise, awa ke and stop not till the goal is
4. Wh at a bea utifu l piec e of liter atur e !
5. A Cretan says, "All Cretans are liars."
6. Silv er is white and iron is blac k.
7. If 4 > 3 and 3 > 2 then 4 > 2.
8. Are you a fool ?
9. If 3 > 7 and 9 > 11 then 8 > 5.
nts, othe rs are not./
[ Ans. : (1 ), (2), (6), (7), (9) are stat eme
If Ais a true st at em en
t an d X is a false st
atement determine
1. . the truth value of ea
ch of the
statements.
follow1n9 · . X (ii) N A V X (iii) AA N-X
A" "'
(i) "'
. (iV) "' (A" X) (v) rv (A v X ) (vi) {rv (A
N
X ) /\ N A }
I\ N
F - -- - -
If A an·d B are t ru e statement s and
· X is a f'a\se statement
., determ,ne '\'.he truth ,,a\ue 01 th e
2. . g
fol lOWln .
(i} A :::, ("" B ::) X )
(iii) (A :J B) :J ("' X :J "' B) (iv) l(/\ " B) ::) X 1 ::) l A::) (B :) X )1
(v) (NA::) X) V (B :) rv X) (vi) (A :) rv X) " ( B:) X )
_(vii) ~ (A v X) ::) B (viii) r:v (A v rv B) :) \_8 " ~ ( X:) A)1
[ Ans. : (i) T, (ii) T, (iii) F, {iv) T, {v) T, (vi) f , (vii) l", l~ll\) l" 1
o~V - - ;:r "'
·5Cr
1
0 . state the converse, inverse and the contrapo •t·
pie 6 · si ive of the foll ·
~~~rt1 . . cold then he wears a jacket. owing :
. If it is .
(1) ·nteger is multiple of two then it is even
,. If an I • (M
(11) . it is cold and q: he wears a jacket. .u. 2013)
') 1..et P ·
I : (1 have P :J q
so. en we
fh e is q => P
onvers
11s c a i·acket then it is cold.
wears
If he
·nverse
.
is
~ ~p :J q
1
fhe_ t cold then he does not wear a jacket.
If it IS no .
ntrapositive 1s ~ ~q :J P
115
co not wear a jacket then it is not cold.
If he doe 5 . . .
. n integer is multiple of two, q : 1t 1s even.
··,) 1..et p . a
(I ve P :J q
Then we ha
11s converse is .q .:J P .
. teger is even then 1t 1s a multiple of two.
If an in
. ~p :J ~q
Its inverse is
If an integer is not a multiple of two then it is not even.
Its contrapositive is ~ q :J ~ P
If an integer is not even then it is not a multiple of two.
t Ans.: (i) F, (ii) T, (iii) T,. (iv) T, (v) T, (vi) T, (vii) T, (viii) T, {ix) 1", (x) F, (xi) F, (xii) T 1
!
·.·>.·.•,•.·.·.·>.·.·.·>.·.•.·:•:·:•.·.•,•.·.·.·.·.·.•.•:•:•:·:·:•:•.·,·.·.·¥·'
=-==
===::=:::::::=:::::=::::::::=:::::::=:::::::::=========-==~=_:=:~~::/~X
·.·.·:.·.·.·:.·.€~ . . .·.·.·.·.·.·.·.·:.i ·i.f·.·.\V
·.·.·.·R.·.·..~!$.~ ·.·.·.·.i·~
.·.·.\/_~=
·.·.·. ===-===::::::::::::::~
. Construct truth-tables to show the truth-values of the following statements.
1
(i) ( p I\ q) :) p, (ii) (p V Q) ::J Q, (iii) (p /\ p) ::] p,
(iv) (p v q) /\ N r (v) (p A N q) v r (vi) (p :) N q) = r
(vii) (rv p :J r) =q (viii) N (p I\ q) /\ (p = q) (ix) (p /\ q) -:J (p v q)
(x) p:> (rv P:J q) (xi) (Np V q):) N r.
2. Prove the following equivalences by truth-tables :
(i) ( p:) q) : P V q N (ii) N ( p V q) = p /\ q N N
(iii) Npt,. q) : p V q
( N (iv) ( p I\ q) = ( q I\ p )
N
3. Using suitable symbols for the component statements symbolise the following :
(i) Milind and Sunil will go if and only if either Tushar or Yogesh won't go.
(ii) Democracy can survive if and only if people are vigilant of their rights and responsible
to their duties.
(iii) lt is not true that a quadrilateral is a rectangle if and only if its opposites sides are
parallel.
(iv) If Sunil is poor he will not go abroad and conversely.
(v) A triangle is equilateral exactly if its all sides are equal.
[ Ans.: (i) (M /\ S) =(T " Y), (ii) 0= (V /\ R), (iii) N (0 = P), (iv) S = A, (v) S = A]
•[1 , (p :J N q) == .(
i 4. l P ,,, q ) :J ( P v q )
lences by tru th -ta bl es :
tBl Prove the following equi va
,v ( p V q) =:
rv p /\ rv
q 2.
j . ( p ::J Q ) ==- N p ==.
q 4. ( p :: q) :: ( q: ) ) q
3. p (\ q) ==. N p V N
q) S, ( ,v q : NI \ ( q::, p )
N (
) p q) 6. ( p::)
s, ( q cap) a,; ( p A q V ( N I\ N
l rv
l 8. ( p = q ) ::) [ (,v Pv q) P l\(
1. l ( p " q ) ::i r l =[ P ::i ( q ::i r)-
V ( q /\ f) = ( pv q) " (
. p q V p))
10. ( p p ) = p 11
9, ( p /\ p) = p V
r) 13 . p = [ p v ( p :) q ) J. P v r)
i 2. p1d q v r ) =( p " q ) v (
P v
" - •
Ashokn Wll1S lfl U y ,111 1u llll \.• , , , '--- ---
====~ < F
f- -====================~
===-========
===
EXE
~ ~
~_ l~ £ - VII l
following sta lcrn onts in symbolic form
.
I
cas e tha t bot h Ala ska win s the silver medal (A) and Britain wins the fi
(v) It Is not the ~~I
then eith er Brit ain doe s not win the final game or China gets the gold med
game (8)
fina l gam e (B) the n Ala ska win s the silver medal (A) implies that Chin ~
(vi) If Britain wins the
does not get the gold medal ( C).
go.
only if Tushar (7) and Yogesh ( Y) will
(vii) Milind (M) and Sunil (S) will go if and
osite sides are
is a rectangle (0) if and only if its opp
(viii) It is not true that a quadrilateral
parallel (P). ~
C) (ii) N (~A " C)
~
(iii) (CI \ A) V ( B AD)
f Ans (i) A" (B
. : v N
:J (~ Bv C) (vi) (B :J A)
:J~ C
(iv) (C " N 8) v (8 :J NA) (v) ~(At-. B)
(vii) (M " S) =(T t-. Y) (viii) N (0= P). ]
statements in words.
2. Write the negatives of the following
(i) Rama is tall but weak.
(ii) Either Xis elected or Y is selected.
(iii) Rama swims if water is worm.
ill.
(iv) Rama is absent if and only if he is
uring first class implies that the student is intelligent and hard working.
(v) Sec
2 2
(vi) If x = y (A) then X= y(B).
then the side a= the side b ( q).
(vii) In a triangle ABC, if LA = LB (p),
Kant were not
o were both not artists or Hegel and
(viii) Eith er Leonardo da Vinci and Picass
both philosophers.
isosceles
+ 2 = 6 (S) althoug h 5 + 1 = 4 (F) or squ are is a circle ( C) but any triangle is a
(ix) 3
(I) .
ficient condition for healthy life (H) .
(x) Good Liver is (G) necessary and suf
s.: (i)~ (T " ~ = T v W. ~ Rama is not tall or Rama is not weak.
[An N
(iv) ,., [ ( ~ ~
= ( ~ A /\ ~ I) V ( rv , /\ ~- ~(~ ~(~/
A V ' ) V V A)
A) == (A /\ "' I ) v (I " ~ A )
arns · a b se nt and h e ·1s not ·1
1s I I or Ram . .
s is ill and h .
·11,er R H)) =~ ~F /\ ~(I e 1sno ta.b sent .
f1 JA H) =~ (~F l\ (1 1\ /\ /-f) =:F /\ ( rv f v rv
,-,( f ::> . . H)
er he is not . t .
(v) d nt sec ures first clas s and eith in elligent or he ·
stU e is not hard working .
~(~ A v B) = ~~ A I\ ~ B = A " ~ 8 . . 2
A 8) = .. X - y 2 d
(,,i)
,.,(A ::>
~(~
::> q) == ~~
p v q) = p I\~ q = p /\ ~ q - an x 1:. y.
p /\ ( p V p) • 10 ( :) N
(C) 1. [p-:J(q -:J r)] -:J[( p " q) ::J r] 2. [(p ::J q) /\ (q ::J r)] ::J (p ::Jr)
3. [ p /\ ( Q V f)] :) [( p I\ q) V (p t\ ( )] 4. [ p v ( q I\ r)] ::J [( p v q) /\ ( p v r )]
5. [p -:J (q -:J r)] :J [(p :J q) :J r] 6. [ p ::J (q ::J r )] ::J [ q ::J ( p ::J r) ]
4•
For all real numbers x, if x > 5 then x 2 > 1o.
2
s. For all real numbers x, if x + x + 1 = o then x > 2 or x < _ 3.
6. For all real numbers x, Y, z, if x- y is even and y- z is even then x - z is even.
[ Ans. : (1) there is a positive integer x such that x is not divisible 7 .
(2) No person has height 8 feet.
(3) There is an integer such that x 2 ;/> o.
(4) There is a real number x such that x > 5 and x 2 -:;. 1o.
(5) There exists x such that x + x + 1 = O and x ;/> 2 and x 1- - 3.
2
(6) There exist real numbers x, y, z such that (x- y) is not even or y- z is not even or
(x- z) is not even.]
(II) Negate each of the following propositions.
1. (Vx) (Vy) P (x, y) 2. (Vx) (3y) P (x, y)
3. (3x) (Vy) P (x. y) 4. (3x) (3y) P (x, y)
[Ans.: Remember~ (Vx) P (x, y) is (3x) ~ P (x, y) and~ (3x) P (x, y) is (Vx) ~ P (x. y) . Hence,
(1) (3x) (3y) [~ P (x. y)). (2) (3x) (Vy) ["' P (x, y)],
(3) (Vx) (3y) [~ P(x, y)], (4) (Vx) (Vy)["' P(x, y)].]
I ,, I , , """' -
• .. - •- ... - ,. -, -· ·,
__
- ,,,, .
... ,.. ,., .., ~~ m
7. "' .~ ':- :0 :,~
=========::::::::==============
=~ t i ~jpjjj:f ii~ _
· propositions.
. se of discours
1. If the un,ver e is {1, 2, 3, 4,
5, 6, 7, 8} ' d e te
rm in e th e truth
I\
following \ i
(i) (v'x) (3 y) P (x, + 0) va.1\J~
Y< 1 (Ii) (Vx) (Vy) P (x
+ y < 10) ()! \h
~
1
2. Dete rmin . the truth value o [ A n s. : (i )
e · f th e fo llo w in g p ro T ru e ('' ) \
p o si ti o n s if the
LJ : {i , 2, 3, 4} . u n iv e rs e of 'd' II Fa.1
(i) (3 x) ( y) (x 2 < 1sco1Jrss~ .11
3 y + 3) (ii) (Vx) (3 y) (x
2 2 . e Ii I
(iii) ('v'x) ('v'y) (x 2 + y < 20) I
+ / < 20) (iv) (3x) (Vy) (x 2 2
+ Y < 10)
. ( A ns. : (i ) T ru e, (i i)
3. If the universe of d1~course . . T ru e , (i ii) False
th e truth value of th 1s ~~ e se t of in te ge rs an d . 2 .
, (iv) F I
e tollowmg propos P (x ) . x > x, 2
0 (x) . x = x, deterrn al se \
1t1ons. \ne
(i) (\7'x) [N p (x))
(ii) (3x) [ Q (x)]
(iv) (3x) ( P (x) v Q (i ii) (3 x) [ P (x ) /\
(x) l (v) (Vx) [ P (x) /\ Q (x )]
0 (x )] (v i) (V x) [ P (x )
[ Ans. : (i) False, (i v Q (x )] \
4. If the universe i) T rue, (i ii) F al se ,
of discourse is th (i v) T ru e , (v ) F al se ,
propositions in sym e se t o f re al n u (vi) True.
bols and determin
e its truth value.
m b e rs , re w ri te
e a ch o f th e follo 1
(i) The product of w in g
any two real nu m
be rs x an d y is po
(ii) There are real si tiv e.
numbers x, y such
x = 2y.
(iii) For each real
number x there is
a real nu m be r y,
(iv) For each real su ch th a t x x y =
number x there is
a real nu m be r y x.
[ A ns . : (i) (\7'x) su ch x + y = x.
(\7'y) (x y > 0) ; Fals
e, (i i) (3
(ii i) (Vx) (3y) (x x x) (3 y) (x = 2y ) ;
y = x ) ; True, T ru e,
5: _If the (i v) (V x) (3 y) (x + y = x
prop osrtr ons. un iverse of discourse is th e set ) ; T ru e ]
of in te ge rs , fin d
th e tr ut h va lu e
(i) ('v'X) (x 2 o f th e following
> 0)
(iii) (3 x ) (3y ) (x +
y = 13)
(ii) ~ (3x) (x 2 = 3)
(iv) (Vx) (Vy) (x +
y = y + x)
[ Ans. : (i ) T ru e, (i
i) T ru e, (iii) Tru
e, (i v) True. ]
- - -- -
(x ): x?: y,
rs , p (x , y) : xi s a multiple of y ; Q
6
llotwof intege
un iv er se of
lu e di
of sc
eaouch e is
rsof e efose
thth ing.
e th e
rrn·.1nIf the tr ut h va
x) (iii) (\ix) P (x, 2)
(ii) (Vx) P (21,
dele (i) (3 x) P (21, x ) i) (\ix) (3 y) Q (x, ..Y )
v Q (x, 6) ] (v
(v ) (3 x) [ P (x, 2)
~) (3 x) P (x
(ivii) (3 x) [ Q (x, 5)
(v
, 3)::, P (x , 5) ]
True. l
(iv) Fa lse, (v ) Tr ue, (vi) True, (vu)
\ ) False, (iii) False,
[ A n s. : (i) Tr ue , (ii
. . • ''Y J
en ce s co rr es po
nd in g to ea ch of
(i) (Vx)(3y) R (x, y) the following.
(ii) (3 x) (v 'y ) R (x
(iii) N (3 x) P (x ) , y)
(M ~c1
( Hint : Putting the given truth values. 11
.lJ. 199 9 \
Expression = [TAT A F] v N [ (T v T) v (F v F) J I(~ I
11;
= [TAF ]vN[ TvF] 1
= F V ( N T) = F V F = F. )
q
1o. Prove by the truth table : [ ( p v q) A ( p v "" q) v q] == P v
[Ans.: (M.u
. <o
p q pvq tvq pvtvq (pvq) t..(pv tv q) (pvq) l\(pv" '
~;)
q) vq
T T T F T T
T
T F T T T T T
F T T F F F T
F F F T T F F
T T F F F F T F T T
-
T F T T F F F T T T
F T F F T T F T T T
F F T F T F F F F F
T T F T T F
T F T T T F
F T F F F T
F F T T F T
(M.U. 2000)
13. Verify whether p v N ( p I\ q) is a tautology.
[Ans. :
p q p t.. q N(p 11 q) p v rv (p 11 q)
T T T F T
T F F T T
F T F T T
F F F T T
,~'•' Logi c
. ct the truth table for the sl ntement ( P )
ons\1U , . :l q ;::: ("1 Q '.J N •
1A, C . P ). Is it a tautology ?
\ ~ns, ·
I
r---i I NP (M.U. 1996)
I---
p q p =i q N Q I
"' q -) "' f)
(p - >q ) -=> rv ( q :::> Np)
T T T F F T
T F F F T T
F
F T T T F T
T
F F T T T T
I T
I
....--- T
- ' ~
where P(x) ·· xis even; 0 (x) : xis a prime, R (x, y) : x + y is even. (M.U. 2005)
l Ans.: (i) (v'x)(3y) R (x, y) means for all x there exists a y such that x + y is even .
(ii) (3x)(\iy) R (x, y) means for all y there exists an x such that x + y is even.
(iii) (\1' x) l~ Q (x)l means for all x, x not a prime.
(iv) (3y)l~ P (y)1 means there exists a y such that y is not even.
(v) (\1' x) P (x) means for all x, xis even. 1
================~{1.%\~i-S!§~:::e:::x!JJ\:Js:-r-~=-==-=====--=====-======::::===-====-====-~:::::~
Use Mathematical Induction to prove.
(A) 1 .. 1 + 5 + 9 + .. ~ .. + (4n - 3) = n (2n - 1)
(M.U. 2012)
2. 2 + 4 + 6 ..... + 2n = n (n + 1)
n(n+1) n
3. 1+ 3+6+ ..... + - - - = --(n+1)(n+2)
2 6
. n{:;n + 1)
4. 2 1 5 + 8 + ..... + (3n -1) =- -- (M.U. 199n
2
2 2 2 n
5. 1 +3 +5 + ..... +(2n-1) 2 =-(2n-1)(2n+1)=--- (4n3 - n)
(M.U. 1999, 2013, 13)
3 3
3 3 3
6. 1 + 3 + 5 + ..... + (2n - 1)3 :;: n 2 (2n 3 - 1)
7. i 1+ 22 + 23 + ..... + 2n == 2n+ 1 - 2
2
8. 1 + 2 2 + 3 2 + ..... + n2 = n (n + 1)(2n + 1)
6 -
9. _1 + _1 _1 . 1 1
21 i2- + 23 + ..... + 2" =1 - 2n
1 o. 1 • 2 + 2 • 3 + 3. 4 + ( n
· .... + n • n + 1) === - (n + 1)(n + 2)
1 1 1 3
11.--+--+--+ 1 n
3•7 7•11 11•15 ..... + - : - - : - - - - - - = - - -
(4n -1)• (4n + 3) 3(4n + 2)
Jlscrete iv1au i t: 11,au'- »
1 1 1 1 _ n
12· 2-5 + 5 • 8 + 8 • 11 + · · · · · + (3n - 1) • (3n + 2) - 2 (3n + 2)
14. a+(a +d)+ (a+2 d)+ ...... +[a+ (n-1) d]= ;[2a+ (n-1) d]
2
B) 1. Prove that 4 n - 1 is divisib le by 15.
3
2. Prove that 2 n - 1 is divisib le by 7.
3. Prove that gn - 2n is divisib le by 7.
4. Assum ing log mn = log m + log n, prove that log x n = n log x.
( Hint : P (k + 1) = log x'< + = log (x'< · x)
1
+
= log JI + log x = k log x log x = ( k + 1) log x )
2
6. Prove that 2n+ + a2 n+ 1 is divisib le by 7.
7. Prove that 3n+
2
- Bn - 9 is divisib le by 64. (M.U. 2006)
17. lfy=xl og(x+ 1)then prove that Yn =(-1t -2. (n-2) !(x+n )
(x + 1 )n