0% found this document useful (0 votes)
62 views22 pages

Real Business Cycles Analysis

This document summarizes the Real Business Cycles model. It begins by outlining the household and firm problems, then describes how technology evolves over time. It defines a competitive equilibrium and the social planner's problem. The document linearizes the model equations and solves for the deterministic steady state and the dynamics around it. It discusses calibrating parameter values to match empirical properties. In summary, the RBC model is used to study business cycle fluctuations that arise from technology shocks in a general equilibrium framework.

Uploaded by

wiliansster
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
62 views22 pages

Real Business Cycles Analysis

This document summarizes the Real Business Cycles model. It begins by outlining the household and firm problems, then describes how technology evolves over time. It defines a competitive equilibrium and the social planner's problem. The document linearizes the model equations and solves for the deterministic steady state and the dynamics around it. It discusses calibrating parameter values to match empirical properties. In summary, the RBC model is used to study business cycle fluctuations that arise from technology shocks in a general equilibrium framework.

Uploaded by

wiliansster
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 22

Real Business Cycles

Jesús Fernández-Villaverde
University of Pennsylvania

1
Household Problem

• Preferences:

X
max E β {log ct + ψ log (1 − lt)}
t=0

• Budget constraint:

ct + kt+1 = wtlt + rtkt + (1 − δ) kt, ∀ t > 0

2
Problem of the Firm

• Neoclassical production function:

yt = ktα (ezt lt)1−α

• By profit maximization:

αktα−1 (ezt lt)1−α = rt


(1 − α) ktα (ezt lt)1−α lt−1 = wt

3
Evolution of the technology

• zt changes over time.

• It follows the AR(1) process:

zt = ρzt−1 + εt
εt ∼ N (0, σ)

• Interpretation of ρ.

4
A Competitive Equilibrium

• We can define a competitive equilibrium in the standard way.

• The competitive equilibrium is unique.

• This economy satisfies the conditions that assure that both welfare
theorems hold.

• Why is this important? We could solve instead the Social Planner’s


Problem associated with it.

• Advantages and disadvantages of solving the social planner’s problem.


5
The Social Planner’s Problem

• It has the form:



X
max E β {log ct + ψ log (1 − lt)}
t=0

ct + kt+1 = ktα (ezt lt)1−α + (1 − δ) kt, ∀ t > 0


zt = ρzt−1 + εt, εt ∼ N (0, σ)

• This is a dynamic optimization problem.

6
Computing the RBC

• The previous problem does not have a known “paper and pencil” so-
lution.

• We will work with an approximation: Perturbation Theory.

• We will undertake a first order perturbation of the model.

• How well will the approximation work?

7
Equilibrium Conditions

From the household problem+firms’s problem+aggregate conditions:


( )
1 1 ³ ´
= βEt 1 + αktα−1 (ezt lt)1−α − δ
ct ct+1
ct
ψ = (1 − α) ktα (ezt lt)1−α lt−1
1 − lt
ct + kt+1 = ktα (ezt lt)1−α + (1 − δ) kt
zt = ρzt−1 + εt

8
Finding a Deterministic Solution

• We search for the firts component of the solution.

• If σ = 0, the equilibrium conditions are:


1 1 ³ α−1 1−α
´
=β 1 + αkt lt −δ
ct ct+1
ct
ψ = (1 − α) ktαlt−α
1 − lt
ct + kt+1 = ktαlt1−α + (1 − δ) kt

9
Deterministic Steady State

• The equilibrium conditions imply a steady state:


1 1³ α−1 1−α
´
= β 1 + αk l −δ
c c
c
ψ = (1 − α) kαl−α
1−l
c + δk = kαl1−α

• Or symplifying:
1
= 1 + αkα−1l1−α − δ
β
c
ψ = (1 − α) kαl−α
1−l
c + δk = kαl1−α
10
Solving the Steady State

Solution:
µ
k =
Ω + ϕµ
l = ϕk
c = Ωk
y = kαl1−α

³ ³ ´´ 1
where ϕ = α β − 1 + δ 1−α , Ω = ϕ1−α − δ and µ = ψ1 (1 − α) ϕ−α.
1 1

11
Linearization I

• Loglinearization or linearization?

• Advantages and disadvantages

• We can linearize and perform later a change of variables.

12
Linearization II

We linearize:

( )
1 1 ³ ´
= βEt 1 + αktα−1 (ezt lt)1−α − δ
ct ct+1
ct
ψ = (1 − α) ktα (ezt lt)1−α lt−1
1 − lt
ct + kt+1 = ktα (ezt lt)1−α + (1 − δ) kt
zt = ρzt−1 + εt

around l, k, and c with a First-order Taylor Expansion.


13
Linearization III

We get:
( y )
1 1
− c (ct+1 − c) + α (1 − α) β k zt+1+
− (ct − c) = Et
c α (α − 1) β ky2 (kt+1 − k) + α (1 − α) β kl
y
(lt+1 − l)
1 1 α α
(ct − c) + (lt − l) = (1 − α) zt + (kt − k) − (lt − l)
c (1 − l) k l
 µ ¶ 
 y (1 − α) z + α (k − k) + (1−α) (l − l) 
t k t l t
(ct − c) + (kt+1 − k) =
 
+ (1 − δ) (kt − k)
zt = ρzt−1 + εt

14
Rewriting the System I

Or:

α1 (ct − c) = Et {α1 (ct+1 − c) + α2zt+1 + α3 (kt+1 − k) + α4 (lt+1 − l)}


α
(ct − c) = α5zt + c (kt − k) + α6 (lt − l)
k
(ct − c) + (kt+1 − k) = α7zt + α8 (kt − k) + α9 (lt − l)

zt = ρzt−1 + εt

15
Rewriting the System II

where

α1 = − 1c α2 = α (1 − α) β ky
α3 = α (α − 1) β ky2 y
α4 = α (1 − α) β kl
µ ¶
α5 = (1 − α) c 1
α6 = − αl + (1−l) c
α7 = (1 − α) y α8 = y α
k + (1 − δ)
(1−α)
α9 = y l y = kαl1−α

16
Rewriting the System III

After some algebra the system is reduced to:

A (kt+1 − k) + B (kt − k) + C (lt − l) + Dzt = 0

Et (G (kt+1 − k) + H (kt − k) + J (lt+1 − l) + K (lt − l) + Lzt+1 + Mzt) = 0

Etzt+1 = ρzt

17
Guess Policy Functions

We guess policy functions of the form (kt+1 − k) = P (kt − k) + Qzt and


(lt − l) = R (kt − k) + Szt, plug them in and get:

A (P (kt − k) + Qzt) + B (kt − k)


+C (R (kt − k) + Szt) + Dzt = 0

G (P (kt − k) + Qzt) + H (kt − k) + J (R (P (kt − k) + Qzt) + SN zt)


+K (R (kt − k) + Szt) + (LN + M ) zt = 0

18
Solving the System I

Since these equations need to hold for any value (kt+1 − k) or zt we need
to equate each coefficient to zero, on (kt − k):

AP + B + CR = 0
GP + H + JRP + KR = 0
and on zt:

AQ + CS + D = 0
(G + JR) Q + JSN + KS + LN + M = 0

19
Solving the System II

• We have a system of four equations on four unknowns.

1 (AP + B) = − 1 AP − 1 B
• To solve it note that R = − C C C

• Then:
µ ¶
2 B K GC KB − HC
P + + − P+ =0
A J JA JA

a quadratic equation on P .

20
Solving the System III

• We have two solutions:


 õ !0.5

1  B K GC B K GC 2 KB − HC 
P =− − − + ± + − −4
2 A J JA A J JA JA
one stable and another unstable.

1 (AP + B) we have to a
• If we pick the stable root and find R = − C
system of two linear equations on two unknowns with solution:
−D (JN + K) + CLN + CM
Q =
AJN + AK − CG − CJR
−ALN − AM + DG + DJR
S =
AJN + AK − CG − CJR

21
Calibration

• What does it mean to calibrate a model?

• Our choices

Calibrated Parameters
Parameter β ψ α δ ρ σ
Value 0.99 1.75 0.33 0.023 0.95 0.01

22

You might also like