HT I&ii
HT I&ii
HEAT TRANSFER
Unit No. 01
• Introduction to Heat Transfer
• Steady State Heat Conduction
Unit No. 02
• Overall Heat Transfer
• Heat Source System
Content of
• Extended Surfaces
• Unsteady state heat Conduction
Unit No. 05
• Radiation Heat Transfer
Course Outcomes
At the end of the unit you will be able to :
CO1
• Explain the laws of heat transfer and deduce the general heat conduction equation and to explain it
for 1-D steady state heat transfer in regular shape bodies
CO2
• Describe the critical radius of insulation, overall heat transfer coefficient, thermal conductivity and
lumped heat transfer
CO3
• Interpret the extended surfaces
CO4
• Illustrate the boundary layer concept, dimensional analysis, forced and free convection under
different conditions
CO5
• Describe the Boiling heat transfer, Evaluate the heat exchanger and examine the LMTD and NTU
methods applied to engineering problems
CO6
Prof. G. P. Badarkhe
• Explain the thermal radiation black body, emissivity and reflectivity and evaluation of view factor
and radiation shields
Continuous Assessment (20 Marks)
• CAI- 10 Marks
Assessment • CAII- 10 Marks
Strategy Mid Sem Exam (20 Marks)
Calculus
Fluid Mechanics
Thermodynamics
Approach towards the Course
Theoretical
Experimental
Computational
Macroscopic and Microscopic
Point of View
Macro means Big or at Bulk
• Considers certain quantity of matter(Overall behaviour)
• Requires simple mathematical Formulae
• Properties of the system are average values
• Few properties are needed to describe the system
Micro means Small or at Molecular level
• Concerned directly with the structure of matter
• Analysis requires statistical method as the number of molecules are
very large
• Properties can not be easily measured by instruments
• Large number of variables are needed to describe the system
Difference Between Heat and Temperature
HEAT TEMPERATURE
Usually denoted by T
• Explain the laws of heat transfer and deduce the general heat
conduction equation and explain it for 1-D steady state heat transfer
in regular shape bodies
• Identify different modes of heat transfer in engineering applications
Modes of Heat Transfer
Condensation
𝟏 𝑸∝ 𝑨
𝑸 ∝ ∆𝑻 𝑸∝
∆𝒙
Fourier’s law of heat conduction states that rate of heat flow
through a simple homogeneous solids is directly
proportional to the area which is normal to the direction of
heat flow and the change in temperature with respect to the
length of the path of the heat flow
𝑨𝒓𝒆𝒂)(𝑻𝒆𝒎𝒑𝒆𝒓𝒂𝒕𝒖𝒓𝒆 𝑫𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆
𝑹𝒂𝒕𝒆 𝒐𝒇 𝑯𝒆𝒂𝒕 𝑪𝒐𝒏𝒅𝒖𝒄𝒕𝒊𝒐𝒏 ∝
𝑻𝒉𝒊𝒄𝒌𝒏𝒆𝒔𝒔
𝑨 ∗ 𝒅𝑻
𝑸 ∝
𝐝𝒙
𝑸 𝐝𝑻
=𝒒 ∝
𝑨 𝐝𝒙
𝐝𝑻
𝒒=−𝒌
𝐝𝒙
Where q is heat flux
- Sign indicates heat flow in the direction of decreasing temp.
Thermal Conductivity
Ability of a material to conduct heat
𝑸 ∗ 𝒅𝒙
𝒌=
𝑨 ∗ 𝒅𝑻
Unit of thermal conductivity : 𝑾 𝒎𝒌 𝒐𝒓 𝑾 𝒎℃
K(Nickel)=91 W/m.K
Effect of Temperature:
K(Metals) α 1/T
Aluminium and Uranium as exception
(Mercury)
K(Non Metals) α T
k(water)=0.608 W/m K
k(iron)=80.2 W/m K
k is the capacity to conduct thermal
energy
𝜕
𝑑𝑄𝑥 = − 𝑄𝑥 𝑑𝑥
𝜕𝑥
𝜕 𝜕𝑇
𝑑𝑄𝑥 = − − 𝑘𝑥 𝑑𝑦. 𝑑𝑧 𝑑𝑥
𝜕𝑥 𝜕𝑥
𝜕 𝜕𝑇
𝑑𝑄𝑥 = 𝑘𝑥 𝑑𝑥. 𝑑𝑦. 𝑑𝑧
𝜕𝑥 𝜕𝑥
Similarly heat accumulated due to heat flow by conduction along y
and z direction will be:
𝜕 𝜕𝑇
𝑑𝑄𝑦 = 𝑘𝑦 𝑑𝑥. 𝑑𝑦. 𝑑𝑧
𝜕𝑦 𝜕𝑦
𝜕 𝜕𝑇
𝑑𝑄𝑧 = 𝑘 𝑑𝑥. 𝑑𝑦. 𝑑𝑧
𝜕𝑧 𝑧 𝜕𝑧
Net heat accumulated in the element due to conduction of heat from all
the direction considered per unit time =
𝜕 𝜕𝑇 𝜕 𝜕𝑇 𝜕 𝜕𝑇
𝑘 + 𝑘 + 𝑘 𝑑𝑥. 𝑑𝑦. 𝑑𝑧
𝜕𝑥 𝑥 𝜕𝑥 𝜕𝑦 𝑦 𝜕𝑦 𝜕𝑧 𝑧 𝜕𝑧
--------------------(i)
B. Total Heat generated within the element per unit time
𝜕𝑇
𝜌. 𝑉. 𝐶𝑝 .
𝜕𝜏
𝜕𝑇
𝜌. 𝐶𝑝 . . 𝑑𝑥. 𝑑𝑦. 𝑑𝑧
𝜕𝜏
------------------(iii)
Putting value of (i), (ii),(iii) in equation no. (1) the heat balance equation
will be
𝝏 𝝏𝑻 𝝏 𝝏𝑻 𝝏 𝝏𝑻 𝝏𝑻
𝒌 + 𝒌 + 𝒌 𝒅𝒙. 𝒅𝒚. 𝒅𝒛 + 𝒒′′′ ∗ 𝒅𝒙. 𝒅𝒚. 𝒅𝒛 = 𝛒. 𝑪𝒑 . . 𝐝𝐱. 𝐝𝐲. 𝐝𝐳
𝝏𝒙 𝒙 𝝏𝒙 𝝏𝒚 𝒚 𝝏𝒚 𝝏𝒛 𝒛 𝝏𝒛 𝒈
𝝏𝝉
𝝏 𝝏𝑻 𝝏 𝝏𝑻 𝝏 𝝏𝑻 𝝏𝑻
𝒌 + 𝒌 + 𝒌 + 𝒒′′′ = 𝛒. 𝑪𝒑 .
𝝏𝒙 𝒙 𝝏𝒙 𝝏𝒚 𝒚 𝝏𝒚 𝝏𝒛 𝒛 𝝏𝒛 𝒈
𝝏𝝉
This is known as generalised heat conduction equation in cartesian co-ordinate
system
If material or medium is Isotropic then kx=ky=kz=k then
above equation becomes
𝜕 𝜕𝑇 𝜕 𝜕𝑇 𝜕 𝜕𝑇 𝜕𝑇
𝑘 + + + 𝑞𝑔′′′ = 𝜌. 𝐶𝑝 .
𝜕𝑥 𝜕𝑥 𝜕𝑦 𝜕𝑦 𝜕𝑧 𝜕𝑧 𝜕𝜏
𝝏𝟐 𝑻 𝝏𝟐 𝑻 𝝏𝟐 𝑻 𝒒′′′
𝒈 𝝆. 𝑪𝒑 𝝏𝑻
𝟐 + 𝟐+ 𝟐+ = .
𝝏𝒙 𝝏𝒚 𝝏𝒛 𝒌 𝒌 𝝏𝝉
𝝏𝟐 𝑻 𝝏𝟐 𝑻 𝝏𝟐 𝑻 𝒒′′′
𝒈 𝟏 𝝏𝑻
𝟐
+ 𝟐+ 𝟐+ = .
𝝏𝒙 𝝏𝒚 𝝏𝒛 𝒌 𝜶 𝝏𝝉
𝒌
𝜶= Thermal diffusivity
𝝆.𝑪𝒑
Simplified forms of heat conduction equation in cartesian
coordinate system
𝝏𝟐 𝑻 𝝏𝟐 𝑻 𝝏𝟐 𝑻 𝒒′′′ 𝒈
𝟐 + 𝟐 + 𝟐 + =𝟎
𝝏𝒙 𝝏𝒚 𝝏𝒛 𝒌
Steady state heat flow without internal heat generation(Laplace
Equation)
𝝏𝟐 𝑻 𝝏𝟐 𝑻 𝝏𝟐 𝑻
+ + =𝟎
𝝏𝒙𝟐 𝝏𝒚𝟐 𝝏𝒛𝟐
Steady state, one dimensional heat flow with heat generation
𝝏𝟐 𝑻 𝒒′′′
𝒈
+ =𝟎
𝝏𝒙𝟐 𝒌
𝐍𝐞𝐭 𝐡𝐞𝐚𝐭 𝐚𝐜𝐜𝐮𝐦𝐮𝐥𝐚𝐭𝐞𝐝 𝐢𝐧 𝐭𝐡𝐞 𝐞𝐥𝐞𝐦𝐞𝐧𝐭 𝐝𝐮𝐞 𝐭𝐨 𝐜𝐨𝐧𝐝𝐮𝐜𝐭𝐢𝐨𝐧 𝐨𝐟 𝐡𝐞𝐚𝐭 𝐟𝐫𝐨𝐦 𝐚𝐥𝐥 𝐭𝐡𝐞
𝐝𝐢𝐫𝐞𝐜𝐭𝐢𝐨𝐧 𝐜𝐨𝐧𝐬𝐢𝐝𝐞𝐫𝐞𝐝(𝐀) + 𝐡𝐞𝐚𝐭 𝐠𝐞𝐧𝐞𝐫𝐚𝐭𝐞𝐝 𝐰𝐢𝐭𝐡𝐢𝐧 𝐭𝐡𝐞 𝐞𝐥𝐞𝐦𝐞𝐧𝐭(𝐁) =
𝐑𝐚𝐭𝐞 𝐨𝐟 𝐜𝐡𝐚𝐧𝐠𝐞 𝐨𝐟𝐞𝐧𝐞𝐫𝐲 𝐜𝐨𝐧𝐭𝐞𝐧𝐭 𝐨𝐟 𝐭𝐡𝐞 𝐞𝐥𝐞𝐦𝐞𝐧𝐭 (C)………………………………..(1
) heat accumulated in the
Net
Rate of change of
element due to conduction of Heat Generated within
heat from all the direction + the element
= energy content of the
element
considered
A. Net heat accumulated in the element due to conduction of heat
from all the direction considered
Quantity of heat leaving the element in r direction per unit time i.e.
Heat efflux
𝛛
𝐐𝐫+𝐝𝒓 = 𝐐𝒓 + 𝐐𝒓 𝐝𝐫
𝛛𝒓
Net Heat accumulated in the element due to heat flow in radial
direction per unit time
𝛛
𝐝𝐐𝒓 = 𝐐𝒓 − 𝐐𝒓 + 𝐐 𝐝𝒓
𝛛𝒓 𝒓
𝛛
𝐝𝐐𝒓 = − 𝐐𝒓 𝐝𝐫
𝛛𝒓
𝝏 𝝏𝑻
𝒅𝑸𝒓 = − − 𝒌 𝒓𝒅𝝓. 𝒅𝒛 𝒅𝒓
𝝏𝒓 𝝏𝒓
𝝏 𝝏𝑻
𝒅𝑸𝒓 = 𝒌 𝒅𝒓. 𝒅𝝓. 𝒅𝒛 𝒓
𝝏𝒓 𝝏𝒓
𝝏𝟐 𝑻 𝝏𝑻
𝒅𝑸𝒓 = 𝒌(𝒅𝒓. 𝒅𝝓. 𝒅𝒛) 𝒓 𝟐 +
𝝏𝒓 𝝏𝒓
𝝏𝟐 𝑻 𝟏 𝝏𝑻
𝒅𝑸𝒓 = 𝒌(𝒅𝒓. 𝒓𝒅𝝓. 𝒅𝒛) 𝟐
+
𝝏𝒓 𝒓 𝝏𝒓
Heat Flow in Tangential i.e. 𝝓 (r-z plane) Direction
Quantity of heat leaving the element in 𝝓 direction per unit time i.e.
Heat efflux
𝛛
𝐐𝝓+𝐝𝝓 = 𝐐𝝓 + 𝐐 𝒓𝐝𝝓
𝒓. 𝛛𝝓 𝝓
Net Heat accumulated in the element due to heat flow in tangential
direction per unit time
𝐝𝐐𝝓 = 𝐐𝝓 − 𝐐𝝓+𝒅𝝓
Net Heat accumulated in the element due to heat flow in
tangential direction per unit time
𝛛
𝐝𝐐𝝓 = 𝐐𝝓 − 𝐐𝝓 + 𝐐 𝒓𝐝𝝓
𝒓. 𝛛𝝓 𝝓
𝛛
𝐝𝐐𝝓 = − 𝐐𝝓 𝒓𝐝𝝓
𝒓. 𝛛𝝓
𝝏 𝝏𝑻
𝒅𝑸𝝓 = − − 𝒌 𝒅𝒓. 𝒅𝒛 𝒓𝐝𝝓
𝒓. 𝛛𝝓 𝒓. 𝛛𝝓
𝝏 𝟏 𝝏𝑻
𝒅𝑸𝝓 = 𝒌 𝒅𝒓. 𝒅𝝓. 𝒅𝒛
𝝏𝝓 𝒓 𝝏𝝓
𝟏 𝝏 𝝏𝑻
𝒅𝑸𝝓 = 𝒌 𝒅𝒓. 𝒓𝒅𝝓. 𝒅𝒛 𝟐
𝒓 𝝏𝝓 𝝏𝝓
𝟏 𝝏𝟐 𝑻
𝒅𝑸𝝓 = 𝒌 𝒅𝒓. 𝒓𝒅𝝓. 𝒅𝒛 𝟐
𝒓 𝝏𝝓𝟐
Heat Flow in Axial i.e. z (r- 𝝓 plane) Direction
Quantity of heat entering the element in z direction (r- 𝛟 plane)
per unit time i.e. Heat influx in 𝒛 direction
𝝏𝑻
𝑸𝒛 = −𝒌. 𝑨.
𝝏𝒛
𝝏𝑻
𝑸𝒛 = −𝒌. 𝒓𝒅𝝓. 𝒅𝒓 .
𝝏𝒛
Quantity of heat leaving the element in r direction per unit time i.e.
Heat efflux
𝛛
𝐐 𝐳 = 𝐐𝒛 + 𝐐𝒛 𝐝𝐳
𝛛𝒛
Heat accumulated in the element due to heat flow in axial
direction per unit time
𝛛
𝐝𝐐𝒛 = 𝐐𝒛 − 𝐐𝒛 + 𝐐𝒛 𝐝𝒛
𝛛𝒛
𝛛
𝐝𝐐𝒛 = − 𝐐𝒛 𝐝𝐳
𝛛𝒛
𝛛 𝛛𝐓
𝐝𝐐𝐳 = − − 𝐤 𝐫𝐝𝛟. 𝐝𝐫 𝐝𝐳
𝛛𝐳 𝛛𝐳
𝛛𝟐 𝐓
𝐝𝐐𝐳 = 𝐤(𝐝𝐫. 𝐫𝐝𝛟. 𝐝𝐳)
𝛛𝐳 𝟐
Net heat accumulated in the element due to conduction of
heat from all the direction considered per unit time =
𝝏𝟐 𝑻 𝟏 𝝏𝑻 𝟏 𝝏𝟐 𝑻 𝛛𝟐 𝐓
𝟐
+ + 𝟐 𝟐
+ 𝟐
𝐤(𝐝𝐫. 𝐫𝐝𝛟. 𝐝𝐳)
𝝏𝒓 𝒓 𝝏𝒓 𝒓 𝝏𝝓 𝛛𝐳
--------------------(i)
𝑸𝒈 = 𝒒′′′
𝒈 ∗ 𝐝𝐫. 𝐫𝐝𝛟. 𝐝𝐳
--------------- (ii)
C. Rate of change of energy content of the element
𝛛𝐓
𝐦. 𝐂𝐩 .
𝛛𝛕
𝛛𝐓
𝛒. 𝐕. 𝐂𝐩 .
𝛛𝛕
𝛛𝐓
𝛒. 𝐂𝐩 . . 𝐝𝐫. 𝐫𝐝𝛟. 𝐝𝐳
𝛛𝛕
------------------(iii)
Now
A + B = C
Net heat accumulated in the
Rate of change of
element due to conduction of Heat Generated within
energy content of the
heat from all the direction the element
element
considered
𝝏𝟐 𝑻 𝟏 𝝏𝑻 𝟏 𝝏𝟐 𝑻 𝝏𝟐 𝑻
+ + 𝟐 + 𝐤(𝐝𝐫. 𝐫𝐝𝛟. 𝐝𝐳)
𝝏𝒓𝟐 𝒓 𝝏𝒓 𝒓 𝝏𝝓𝟐 𝛛𝒛𝟐
+
𝒒′′′
𝒈 ∗ 𝐝𝐫. 𝐫𝐝𝛟. 𝐝𝐳
=
𝝏𝑻
𝛒. 𝑪𝒑 . . 𝐝𝐫. 𝐫𝐝𝛟. 𝐝𝐳
𝝏𝝉
𝝏𝟐 𝑻 𝟏 𝝏𝑻 𝟏 𝝏𝟐 𝑻 𝛛𝟐 𝐓
𝟐
+ + 𝟐 𝟐
+ 𝐤 𝐝𝐫. 𝐫𝐝𝛟. 𝐝𝐳 + 𝒒′′′
𝒈 ∗ 𝐝𝐫. 𝐫𝐝𝛟. 𝐝𝐳
𝝏𝒓 𝒓 𝝏𝒓 𝒓 𝝏𝝓 𝛛𝐳 𝟐
𝛛𝐓
= 𝛒. 𝐂𝐩 . . 𝐝𝐫. 𝐫𝐝𝛟. 𝐝𝐳
𝛛𝛕
Dividing both side by 𝑑𝑟. 𝑟𝑑𝜙. 𝑑𝑧
𝝏𝟐 𝑻 𝟏 𝝏𝑻 𝟏 𝝏𝟐 𝑻 𝝏𝟐 𝑻 𝝏𝑻
𝟐
+ + 𝟐 𝟐
+ 𝒌+ 𝒒′′′
𝒈 = 𝝆. 𝑪𝒑 .
𝝏𝒓 𝒓 𝝏𝒓 𝒓 𝝏𝝓 𝝏𝒛𝟐 𝝏𝝉
Or
𝝏𝟐 𝑻 𝟏 𝝏𝑻 𝟏 𝝏𝟐 𝑻 𝝏𝟐 𝑻 𝒒′′′
𝒈 𝝆. 𝑪𝒑 𝝏𝑻
𝟐
+ + 𝟐 𝟐
+ + = .
𝝏𝒓 𝒓 𝝏𝒓 𝒓 𝝏𝝓 𝝏𝒛𝟐 𝒌 𝒌 𝝏𝝉
𝝏𝟐 𝑻 𝟏 𝝏𝑻 𝟏 𝝏𝟐 𝑻 𝝏𝟐 𝑻 𝒒′′′
𝒈 𝟏 𝝏𝑻
𝟐
+ + 𝟐 𝟐
+ + = .
𝝏𝒓 𝒓 𝝏𝒓 𝒓 𝝏𝝓 𝝏𝒛𝟐 𝒌 𝜶 𝝏𝝉
For Steady state, without internal heat generation and one dimensional flow
𝝏𝟐 𝑻 𝟏 𝝏𝑻
𝟐
+ =𝟎
𝝏𝒓 𝒓 𝝏𝒓
Generalised Heat Conduction equation in
Spherical Co-ordinate systems
𝑁𝑒𝑡 ℎ𝑒𝑎𝑡 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑑𝑢𝑒 𝑡𝑜 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 ℎ𝑒𝑎𝑡 𝑓𝑟𝑜𝑚 𝑎𝑙𝑙 𝑡ℎ𝑒
𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑(𝐴) + ℎ𝑒𝑎𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡(𝐵) =
𝑅𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓𝑒𝑛𝑒𝑟𝑦 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡(C)………………………………..(1)
Quantity of heat entering the element in r direction (𝜃 - 𝜙 plane) per unit time
i.e. Heat influx in r direction
𝜕𝑇
𝑄𝑟 = −𝑘. 𝐴.
𝜕𝑟
𝜕𝑇
𝑄𝑟 = −𝑘. rd𝜃. 𝑟𝑠𝑖𝑛 𝜃𝑑𝜙 .
𝜕𝑟
𝜕
𝑑𝑄𝑟 = − 𝑄𝑟 𝑑r
𝜕𝑟
𝜕 𝜕𝑇
𝑑𝑄𝑟 = − −𝑘 𝑟𝑑𝜃. 𝑟 sin 𝜃𝑑𝜙 𝑑𝑟
𝜕𝑟 𝜕𝑟
𝜕 2 𝜕𝑇
𝑑𝑄𝑟 = 𝑘 𝑑𝑟. 𝑑𝜃. sin 𝜃𝑑𝜙 𝑟
𝜕𝑟 𝜕𝑟
1 𝜕 2 𝜕𝑇
𝑑𝑄𝑟 = 𝑘 𝑑𝑟. 𝑟𝑑𝜃. 𝑟sin 𝜃𝑑𝜙 2 𝑟
𝑟 𝜕𝑟 𝜕𝑟
Heat Flow in 𝜙 (r-𝜃 plane) Direction
Quantity of heat entering the element in 𝜙 direction (r-𝜃 plane) per unit
time i.e. Heat influx in 𝜙 direction
𝜕𝑇
𝑄𝜙 = −𝑘. 𝐴.
𝑟. sin 𝜃 𝜕𝜙
𝜕𝑇
𝑄𝜙 = −𝑘. 𝑑𝑟. 𝑟𝑑𝜃 .
𝑟. sin 𝜃 𝜕𝜙
Quantity of heat leaving the element in 𝜙 direction per
unit time i.e. Heat efflux
𝜕
𝑄𝜙+𝑑𝜙 = 𝑄𝜙 + 𝑄 𝑟. sin 𝜃 𝑑𝜙
𝑟. sin 𝜃 𝜕𝜙 𝜙
Net Heat accumulated in the element due to heat flow in
𝜙 per unit time
𝑑𝑄𝜙 = 𝑄𝜙 − 𝑄𝜙+𝑑𝜙
Net Heat accumulated in the element due to heat flow in 𝜙 per unit time
𝜕
𝑑𝑄𝜙 = 𝑄𝜙 − 𝑄𝜙 + 𝑄 𝑟 sin 𝜃. 𝑑𝜙
𝑟 sin 𝜃 𝜕𝜙 𝜙
𝜕
𝑑𝑄𝜙 = − 𝑄𝜙 𝑟 sin 𝜃. 𝑑𝜙
𝑟 sin 𝜃 𝜕𝜙
𝜕 𝜕𝑇
𝑑𝑄𝜙 = − − 𝑘 𝑑𝑟. 𝑟𝑑𝜃 𝑟 sin 𝜃. 𝑑𝜙
𝑟 sin 𝜃 𝜕𝜙 𝑟 sin 𝜃 𝜕𝜙
1 𝜕2𝑇
𝑑𝑄𝜙 = 𝑘 𝑑𝑟. 𝑟𝑑𝜃. 𝑟sin 𝜃𝑑𝜙 2 2
𝑟 sin 𝜃 𝜕𝜙 2
Heat Flow in 𝜃(r-𝜙plane) Direction
Quantity of heat entering the element in 𝜃 direction (r-𝜙 plane) per unit
time i.e. Heat influx in 𝜃 direction
𝜕𝑇
𝑄𝜃 = −𝑘. 𝐴.
𝑟𝜕𝜃
𝜕𝑇
𝑄𝜃 = −𝑘. 𝑑𝑟. 𝑟sin 𝜃𝑑𝜙 .
𝑟𝜕𝜃
Quantity of heat leaving the element in 𝜃 direction per
unit time i.e. Heat efflux
𝜕
𝑄𝜃+𝑑𝜃 = 𝑄𝜃 + 𝑄 𝑟𝑑𝜃
𝑟. 𝜕𝜃 𝜃
Net Heat accumulated in the element due to heat
flow in 𝜃 direction per unit time
𝑑𝑄𝜃 = 𝑄𝜃 − 𝑄𝜃+𝑑𝜃
Net Heat accumulated in the element due to heat flow in 𝜃direction per unit
time
𝜕
𝑑𝑄𝜃 = 𝑄𝜃 − 𝑄𝜃 + 𝑄𝜃 𝑟. 𝑑𝜃
𝑟𝜕𝜃
𝜕
𝑑𝑄𝜃 = − 𝑄 𝑟𝑑𝜃
𝑟𝜕𝜃 𝜃
𝜕 𝜕𝑇
𝑑𝑄𝜃 = − − 𝑘 𝑑𝑟. 𝑟sin 𝜃𝑑𝜙 𝑟𝑑𝜃
𝑟𝜕𝜃 𝑟𝜕𝜃
𝜕 𝜕𝑇
𝑑𝑄𝜃 = 𝑘 𝑑𝑟. 𝑟𝑑𝜃. 𝑟sin 𝜃𝑑𝜙 2 sin 𝜃
𝑟 sin 𝜃 𝜕𝜃 𝜕𝜃
Net heat accumulated in the element due to conduction of heat from all the direction
considered per unit time =
1 𝜕 2 𝜕𝑇 1 𝜕2𝑇
𝑘 𝑑𝑟. 𝑟𝑑𝜃. 𝑟sin 𝜃𝑑𝜙 2 𝑟 + 𝑘 𝑑𝑟. 𝑟𝑑𝜃. 𝑟sin 𝜃𝑑𝜙 2 2
𝑟 𝜕𝑟 𝜕𝑟 𝑟 sin 𝜃 𝜕𝜙 2
𝜕 𝜕𝑇
+ 𝑘 𝑑𝑟. 𝑟𝑑𝜃. 𝑟sin 𝜃𝑑𝜙 2 sin 𝜃
𝑟 sin 𝜃 𝜕𝜃 𝜕𝜃
1 𝜕 2 𝜕𝑇 1 𝜕 2𝑇 𝜕 𝜕𝑇
𝑟 + 2 2 + 2 sin 𝜃 𝑘 𝑑𝑟. 𝑟𝑑𝜃. 𝑟sin 𝜃𝑑𝜙
𝑟 2 𝜕𝑟 𝜕𝑟 𝑟 sin 𝜃 𝜕𝜙 2 𝑟 sin 𝜃 𝜕𝜃 𝜕𝜃
--------------------(i)
B. Total Heat generated within the element per unit time
+
𝒒′′′
𝒈 ∗ 𝒅𝒓. 𝒓𝒅𝜽. 𝒓𝒔𝒊𝒏 𝜽𝒅𝝓
=
𝝏𝑻
𝝆. 𝑪𝒑 . . 𝒅𝒓. 𝒓𝒅𝜽. 𝒓𝒔𝒊𝒏 𝜽𝒅𝝓
𝝏𝝉
1 𝜕 2 𝜕𝑇 1 𝜕2𝑇 𝜕 𝜕𝑇 ′′′
𝑟 + + 𝑠𝑖𝑛 𝜃 𝑘 𝑑𝑟. 𝑟𝑑𝜃. 𝑟𝑠𝑖𝑛 𝜃𝑑𝜙 + 𝑞𝑔
𝑟 2 𝜕𝑟 𝜕𝑟 𝑟 2 𝑠𝑖𝑛2 𝜃 𝜕𝜙 2 𝑟 2 𝑠𝑖𝑛 𝜃 𝜕𝜃 𝜕𝜃
𝜕𝑇
∗ 𝑑𝑟. 𝑟𝑑𝜃. 𝑟𝑠𝑖𝑛 𝜃𝑑𝜙 = 𝜌. 𝐶𝑝 . . 𝑑𝑟. 𝑟𝑑𝜃. 𝑟𝑠𝑖𝑛 𝜃𝑑𝜙
𝜕𝜏
Dividing both side by 𝑑𝑟. 𝑟𝑑𝜃. 𝑟𝑠𝑖𝑛 𝜃𝑑𝜙
𝟏 𝝏 𝟐 𝝏𝑻 𝟏 𝝏𝟐 𝑻 𝝏 𝝏𝑻 𝝏𝑻
𝟐 𝒓 + 𝟐 𝟐 𝟐 + 𝟐 𝒔𝒊𝒏 𝜽 𝒌 + 𝒒′′′
𝒈 = 𝝆. 𝑪𝒑 .
𝒓 𝝏𝒓 𝝏𝒓 𝒓 𝒔𝒊𝒏 𝜽 𝝏𝝓 𝒓 𝒔𝒊𝒏 𝜽 𝝏𝜽 𝝏𝜽 𝝏𝝉
Or
𝟏 𝝏 𝟐 𝝏𝑻 𝟏 𝝏𝟐 𝑻 𝝏 𝝏𝑻 𝒒′′′
𝒈 𝝆. 𝑪𝒑 𝝏𝑻
𝟐 𝒓 + 𝟐 𝟐 𝟐 + 𝟐 𝒔𝒊𝒏 𝜽 + = .
𝒓 𝝏𝒓 𝝏𝒓 𝒓 𝒔𝒊𝒏 𝜽 𝝏𝝓 𝒓 𝒔𝒊𝒏 𝜽 𝝏𝜽 𝝏𝜽 𝒌 𝒌 𝝏𝝉
𝟏 𝝏 𝟐 𝝏𝑻 𝟏 𝝏𝟐 𝑻 𝝏 𝝏𝑻 𝒒′′′
𝒈 𝟏 𝝏𝑻
𝒓 + 𝟐 + 𝟐 𝒔𝒊𝒏 𝜽 + = .
𝒓𝟐 𝝏𝒓 𝝏𝒓 𝒓 𝒔𝒊𝒏𝟐 𝜽 𝝏𝝓𝟐 𝒓 𝒔𝒊𝒏 𝜽 𝝏𝜽 𝝏𝜽 𝒌 𝜶 𝝏𝝉
For Steady state, without internal heat generation and one dimensional flow
𝟏 𝝏 𝟐 𝝏𝑻
𝟐
𝒓 =𝟎
𝒓 𝝏𝒓 𝝏𝒓
For Cartesian Coordinate system
𝝏𝟐 𝑻 𝝏𝟐 𝑻 𝝏𝟐 𝑻 𝒒′′′
𝒈 𝟏 𝝏𝑻
+ + + = .
𝝏𝒙𝟐 𝝏𝒚𝟐 𝝏𝒛𝟐 𝒌 𝜶 𝝏𝝉
𝝏𝟐 𝑻 𝟏 𝝏𝑻 𝟏 𝝏𝟐 𝑻 𝝏𝟐 𝑻 𝒒′′′
𝒈 𝟏 𝝏𝑻
𝟐
+ + 𝟐 𝟐
+ + = .
𝝏𝒓 𝒓 𝝏𝒓 𝒓 𝝏𝝓 𝝏𝒛𝟐 𝒌 𝜶 𝝏𝝉
𝟏 𝝏 𝟐 𝝏𝑻 𝟏 𝝏𝟐 𝑻 𝝏 𝝏𝑻 𝒒′′′
𝒈 𝟏 𝝏𝑻
𝒓 + 𝟐 + 𝟐 𝒔𝒊𝒏 𝜽 + = .
𝒓𝟐 𝝏𝒓 𝝏𝒓 𝒓 𝒔𝒊𝒏𝟐 𝜽 𝝏𝝓𝟐 𝒓 𝒔𝒊𝒏 𝜽 𝝏𝜽 𝝏𝜽 𝒌 𝜶 𝝏𝝉
Initial and Boundary Condition
Solving a differential equation is essentially a process of removing derivatives, or
an integration process, and thus the solution of a differential equation typically
involves arbitrary constants
Thermal Condition which is usually specified at time t=0 is called initial Condition
Heat conduction equation is first order in time thus the initial condition can not
involve any derivatives
1. Specified Temperature Boundary
Condition
Mathematical
Formulation General Application
Heat Solution of
(Diff. Solution of of
Transfer the
Equation & Diff. Boundary
Problem Problem
Boundary Equation Condition
condition)
One Dimensional Steady State Heat Conduction
Through Slab
Consider a plane wall of homogeneous material through
which heat is flowing in x direction
Let L – Thickness of slab/wall
k – Thermal Conductivity
A – Area perpendicular to heat flow
T1 & T2 are the temperatures at two faces
The general heat conduction equation in cartesian
coordinate system is given by
𝝏𝟐 𝑻 𝝏𝟐 𝑻 𝝏𝟐 𝑻 𝒒′′′
𝒈 𝟏 𝝏𝑻
𝟐
+ 𝟐+ 𝟐+ = .
𝝏𝒙 𝝏𝒚 𝝏𝒛 𝒌 𝜶 𝝏𝝉
=0
Final equation in case of steady, one dimensional and
without heat generation will be
𝝏𝟐 𝑻 𝒅𝟐 𝑻
= 𝟎 or =𝟎
𝝏𝒙𝟐 𝒅𝒙𝟐
On integrating twice
𝑑𝑇
𝑑𝑥
= 𝐶2 and 𝑇 = 𝐶1 𝑥 + 𝐶2 …………….(i)
𝐶𝟏 & 𝐶𝟐 are the arbitrary constant and can be calculated by applying boundary
condition
At x = 0, T=T1
At x = L, T=T2
Applying first boundary condition we get
𝑇1 = 𝐶2
Applying second boundary condition we get
𝑇2 = 𝐶1 𝐿 + 𝐶2
𝑻𝟐 −𝑻𝟏
Here 𝐶1 =
𝑳
Equation i reduced to
𝑻𝟐 − 𝑻𝟏
𝑻= 𝒙 + 𝑻𝟏
𝑳
For Heat Flow through Slab/Wall
We have from Fourier’s law of heat conduction
𝒅𝑻
𝑸 = −𝒌𝑨
𝒅𝒙
𝒅𝑻 𝒅 𝑻𝟐 − 𝑻𝟏
= 𝒙 + 𝑻𝟏
𝒅𝒙 𝒅𝒙 𝑳
𝒅𝑻 𝑻𝟐 − 𝑻𝟏
=
𝒅𝒙 𝑳
𝑻𝟐 − 𝑻𝟏
∴ 𝑸 = −𝒌𝑨
𝑳
Or
𝑻𝟏 − 𝑻𝟐
𝑸 = 𝒌𝑨
𝑳
𝑻𝟏 − 𝑻𝟐
𝑸=
𝑳
𝒌𝑨
Alternative Method
We have from Fourier’s law of heat conduction
𝑑𝑇
𝑄 = −𝑘𝐴
𝑑𝑥
𝑥 𝑇
𝑄. 𝑑𝑥 = −𝑘𝐴. 𝑑𝑇
𝑄 𝑑𝑥 = −𝑘𝐴 𝑑𝑇
0 𝑇1
Integrating on both side
𝐿 𝑇2
𝑄 𝑑𝑥 = −𝑘𝐴 𝑑𝑇 𝑄. 𝑥 = 𝑘𝐴 𝑇1 − 𝑇 ……….(ii)
0 𝑇1
Dividing ii by I we get
𝐿 𝑇1
𝑄 𝑑𝑥 = 𝑘𝐴 𝑑𝑇 𝑄. 𝑥 𝑘𝐴 𝑇1 − 𝑇
0 𝑇2 =
𝑄. 𝐿 𝑘𝐴 𝑇1 − 𝑇2
𝐿 𝑇1
𝑄. 𝑥 0 = 𝑘𝐴 𝑇 𝑇2
𝑻𝟏 − 𝑻 𝒙
=
𝑄. 𝐿 = 𝑘𝐴 𝑇1 − 𝑇2 ……….(i) 𝑻𝟏 − 𝑻𝟐 𝑳
𝑻𝟏 − 𝑻𝟐
𝑸 = 𝒌𝑨
𝑳
Variable Thermal Conductivity 𝑳 𝑻𝟐
The dependence of thermal conductivity on temperature 𝑸 𝒅𝒙 = − 𝒌𝟎 𝟏 + 𝜷𝑻 . 𝑨. 𝒅𝑻
can be expressed as- 𝟎 𝑻𝟏
𝐤 = 𝐤 𝟎 𝟏 + 𝛃𝐓 𝑻𝟐
𝐤 𝟎 - thermal conductivity at reference 𝑳 𝑻𝟐
𝑸. 𝒙 𝟎 = −𝒌𝟎 𝑨 𝑻 + 𝜷
𝛃 – is constant for given material 𝟐 𝑻𝟏
T – Temperature
According to Fourier’s Law 𝜷
𝒅𝑻 𝑸. 𝑳 = −𝒌𝟎 𝑨 𝑻𝟐 − 𝑻𝟏 + 𝑻𝟐 𝟐 − 𝑻𝟏 𝟐
𝟐
𝑸 = −𝒌𝑨
𝒅𝒙
𝒅𝑻 𝑸. 𝑳 = 𝒌𝟎 𝑨 𝑻𝟏 − 𝑻𝟐
𝑸 = −𝒌𝟎 𝟏 + 𝜷𝑻 . 𝑨.
𝒅𝒙 𝜷
+ 𝑻 − 𝑻𝟐 𝑻𝟏 + 𝑻𝟐
𝑸. 𝒅𝒙 = −𝒌𝟎 𝟏 + 𝜷𝑻 . 𝑨. 𝒅𝑻 𝟐 𝟏
Integrating on both side and applying boundary condition
as 𝜷
𝑸. 𝑳 = 𝒌𝟎 𝑨 𝑻𝟏 − 𝑻𝟐 𝟏 + 𝑻𝟏 + 𝑻𝟐
At x = 0, T=T1 𝟐
At x = L, T=T2 𝜷
We get 𝒌 𝒎 = 𝒌𝟎 𝟏 + 𝟐 𝑻 𝟏 + 𝑻 𝟐
𝑳 𝑻𝟐
𝑸 𝒅𝒙 = − 𝒌𝟎 𝟏 + 𝜷𝑻 . 𝑨. 𝒅𝑻 𝑻𝟏 − 𝑻𝟐
𝟎 𝑻𝟏 𝑸 = 𝒌𝒎 𝑨
𝑳
Electrical Analogy
As per Fourier’s Law As per Ohm’s Law
𝒅𝑻 𝒅𝑽
𝑸 = −𝒌𝑨 𝑰=
𝒅𝒙 𝑹
I – Current flow
𝑻𝟏 − 𝑻𝟐
𝑸 = 𝒌𝑨 dV – Voltage difference
𝑳 R – Electrical Resistance
𝑻𝟏 − 𝑻𝟐
𝑸= I is analogous to Q
𝑳
𝒌𝑨 dV is analogous to dT
𝒅𝑻 R is analogous to 𝑹𝒕𝒉
𝑸=
𝑹𝒕𝒉
𝑹𝒕𝒉 𝑪𝒐𝒏𝒅𝒖𝒄𝒕𝒊𝒐𝒏 ) = 𝑳 𝒌𝑨
𝑹𝒕𝒉 𝑪𝒐𝒏𝒅𝒖𝒄𝒕𝒊𝒐𝒏 ) = 𝟏 𝒉𝑨
Resistances in series and parallel
𝑹 = 𝑹𝒄𝒐𝒏𝒗𝟏 + 𝑹𝟏 + 𝑹𝟐 + 𝑹𝑪𝒐𝒏𝒄𝟐 𝟏 𝟏 𝟏 𝟏 𝟏 𝟏
= + = +
𝟏 𝑳𝟏 𝑳𝟐 𝟏 𝑹𝒆𝒒. 𝑹𝟏 𝑹𝟐 𝑹𝒆𝒒. 𝑳𝟏 𝑳𝟐
𝑹= + + + 𝒌𝟏 𝑨𝟏 𝒌𝟐 𝑨𝟐
𝒉𝟏 𝑨 𝒌𝟏 𝑨 𝒌𝟐 𝑨 𝒉𝟐 𝑨 𝟏
𝑹𝒆𝒒. =
𝟏 𝟏
𝟏 𝟏 𝑳 𝟏 𝑳𝟐 𝟏 +𝑳
𝑹= + + + 𝑳𝟏 𝟐
𝑨 𝒉𝟏 𝒌𝟏 𝒌𝟐 𝒉𝟐 𝒌𝟏 𝑨𝟏 𝒌𝟐 𝑨𝟐
Resistances in combination
𝑹 = 𝑹𝒆𝒒. + 𝑹𝟑 + 𝑹𝒄𝒐𝒏𝒗
𝟏 𝟏 𝟏
= +
𝑹𝒆𝒒. 𝑳𝟏 𝑳𝟐
𝒌𝟏 𝑨𝟏 𝒌𝟐 𝑨𝟐
𝟏
𝑹𝒆𝒒. =
𝟏 𝟏
𝑳𝟏 +𝑳
𝟐
𝒌𝟏 𝑨𝟏 𝒌𝟐 𝑨𝟐
𝟏 𝑳𝟑 𝟏
𝑹= + +
𝟏 𝟏 𝒌𝟑 𝑨𝟑 𝒉𝑨𝟑
𝑳𝟏 +𝑳
𝟐
𝒌𝟏 𝑨𝟏 𝒌𝟐 𝑨𝟐
Heat flow through the composite wall/slab
Heat flow through the composite wall/slab
In steady state conduction heat transfer rate is constant
through out this composite slab so we can write
𝒌𝟏 𝑨 𝑻 𝟏 − 𝑻 𝟐 𝒌𝟐 𝑨 𝑻 𝟐 − 𝑻 𝟑
𝑸 = 𝒉𝟏 𝑨 𝑻∞𝟏 − 𝑻𝟏 = = = 𝒉𝟐 𝑨 𝑻𝟑 − 𝑻∞𝟐
𝑳𝟏 𝑳𝟐
𝑻∞𝟏 − 𝑻𝟏 𝑻𝟏 − 𝑻𝟐 𝑻𝟐 − 𝑻 𝟑 𝑻𝟑 − 𝑻∞𝟐
𝑸= = = =
𝟏 𝑳𝟏 𝑳𝟐 𝟏
𝒉𝟏 𝑨 𝒌𝟏 𝑨 𝒌𝟐 𝑨 𝒉𝟐 𝑨
𝑻∞𝟏 − 𝑻𝟏 = 𝑸 ∗ 𝟏 𝒉𝟏 𝑨------------------(1)
𝑻𝟏 − 𝑻𝟐 = 𝑸 ∗ 𝑳𝟏 𝒌𝟏 𝑨-------------------(2)
𝑻𝟐 − 𝑻𝟑 = 𝑸 ∗ 𝑳𝟐 𝒌𝟐 𝑨-------------------(3)
𝑻𝟑 − 𝑻∞𝟐 = 𝑸 ∗ 𝟏 𝒉𝟐 𝑨------------------(4)
Adding 1, 2, 3 & 4 we get
𝑳 𝑳
𝑻∞𝟏 − 𝑻∞𝟐 = 𝑸 𝟏 𝒉 𝑨 + 𝟏 𝒌 𝑨 + 𝟐 𝒌 𝑨 + 𝟏 𝒉 𝑨
𝟏 𝟏 𝟐 𝟐
𝑻∞𝟏 − 𝑻∞𝟐
𝑸=
𝟏 𝑳 𝑳 𝟏
+ 𝟏 + 𝟐 +
𝒉𝟏 𝑨 𝒌𝟏 𝑨 𝒌𝟐 𝑨 𝒉𝟐 𝑨
𝑻∞𝟏 − 𝑻∞𝟐
𝑸=
𝟏 𝑳 𝟏
+ 𝒏𝟏 𝒏 +
𝒉𝟏 𝑨 𝒌𝒏 𝑨 𝒉𝟐 𝑨
𝑻∞𝟏 − 𝑻∞𝟐
𝑸=
𝟏 𝟏 𝑳 𝟏
+ 𝒏𝟏 𝒏 +
𝑨 𝒉𝟏 𝒌𝒏 𝒉𝟐
𝑻∞𝟏 − 𝑻∞𝟐
𝑼. 𝑨. 𝑻∞𝟏 − 𝑻∞𝟐 =
𝟏 𝑳 𝑳 𝟏
+ 𝟏 + 𝟐 +
𝒉𝟏 𝑨 𝒌𝟏 𝑨 𝒌𝟐 𝑨 𝒉𝟐 𝑨
𝟏 𝟏
𝑼𝑨 =
𝑹
0r 𝑼 = 𝑨 𝑹
=0
𝝏𝟐 𝑻 𝟏 𝝏𝑻 𝒅𝟐 𝑻 𝟏 𝒅𝑻
+ =𝟎 or + =𝟎
𝝏𝒓𝟐 𝒓 𝝏𝒓 𝒅𝒓𝟐 𝒓 𝒅𝒓
𝒅𝟐 𝑻 𝟏 𝒅𝑻 𝟏 𝒅 𝒅𝑻
+
𝒅𝒓𝟐 𝒓 𝒅𝒓
=𝟎 ⟹ .
𝒓 𝒅𝒓
𝒓.
𝒅𝒓
=0
𝒅 𝒅𝑻
𝒓. =0
𝒅𝒓 𝒅𝒓
On integrating both side we get
𝒅𝑻 𝒅𝑻 C
𝒓.
𝒅𝒓
=C ⟹ =
𝒅𝒓 𝒓
On integrating both side we get
𝑻𝟏 = 𝑪. 𝒍𝒏 𝒓𝟏 + 𝑪𝟏
𝑻 = 𝑪. 𝒍𝒏 𝒓 + 𝑪𝟏 −−−− −(𝒊) - 𝑻𝟐 = 𝑪. 𝒍𝒏 𝒓𝟐 + 𝑪𝟏
C & 𝐶𝟐 are the arbitrary constant and can be calculated by
applying boundary condition
𝑻𝟏 − 𝑻𝟐 = 𝑪 𝒍𝒏 𝒓𝟏 − 𝒍𝒏 𝒓𝟐
At 𝒓 = 𝒓𝟏 ; 𝑻 = 𝑻𝟏
𝒓 = 𝒓𝟐 ; 𝑻 = 𝑻𝟐
𝑻𝟏 − 𝑻𝟐 𝑻𝟏 − 𝑻𝟐
𝑪= 𝒓𝟏 =− 𝒓𝟐
𝒍𝒏 𝒓𝟐 𝒍𝒏 𝒓𝟏
𝑻𝟏 − 𝑻𝟐
𝑻𝟏 = − 𝒓𝟐 . 𝒍𝒏 𝒓𝟏 + 𝑪𝟏
𝒍𝒏 𝒓𝟏
𝑻𝟏 − 𝑻𝟐 𝒓𝟐
𝑪𝟏 = 𝑻𝟏 + . 𝒍𝒏 𝒓𝟏 𝑻 − 𝑻𝟏 × 𝒍𝒏 𝒓𝟏 = 𝑻𝟏 − 𝑻𝟐 . 𝒍𝒏 𝒓𝟏 − 𝑻𝟏 − 𝑻𝟐 . 𝒍𝒏 𝒓
𝒓𝟐
𝒍𝒏 𝒓𝟏
= 𝑻𝟐 − 𝑻𝟏 . 𝒍𝒏 𝒓 − 𝑻𝟐 − 𝑻𝟏 . 𝒍𝒏 𝒓𝟏
By putting value of 𝑪 and 𝑪𝟏 in equation no. (i)
= 𝑻𝟐 − 𝑻𝟏 𝒍𝒏 𝒓 − 𝒍𝒏 𝒓𝟏
𝑻𝟏 − 𝑻𝟐 𝑻𝟏 − 𝑻𝟐
𝑻 = 𝑻𝟏 + . 𝒍𝒏 𝒓 − . 𝒍𝒏 𝒓
𝒍𝒏
𝒓𝟐
𝒓𝟏
𝟏
𝒍𝒏
𝒓𝟐
𝒓𝟏 𝑻 − 𝑻𝟏 𝒍𝒏 𝒓 𝒓𝟏
=
𝑻𝟐 − 𝑻𝟏 𝒍𝒏 𝒓𝟐 𝒓
𝟏
For Heat Flow through Slab/Wall
We have from Fourier’s law of heat conduction
𝒅𝑻
𝑸 = −𝒌𝑨
𝒅𝒓
𝒅𝑻 𝒅 𝑻𝟏 − 𝑻𝟐 𝑻𝟏 − 𝑻𝟐
= 𝑻 + . 𝒍𝒏 𝒓𝟏 − . 𝒍𝒏 𝒓
𝒅𝒓 𝒅𝒓 𝟏 𝒍𝒏 𝒓𝟐 𝒓 𝒍𝒏
𝒓𝟐
𝒓𝟏
𝟏
𝒅𝑻 𝑻𝟏 − 𝑻𝟐
=− 𝒓
𝒅𝒓 𝒓. 𝒍𝒏 𝟐 𝒓 𝟏
𝑻𝟏 − 𝑻𝟐 𝑻𝟏 − 𝑻𝟐
∴ 𝑸 = −𝒌𝑨 − 𝒓
𝑸= 𝒓
𝒓. 𝒍𝒏 𝟐 𝒓𝟏 𝒍𝒏 𝟐 𝒓𝟏
Or 𝟐𝝅𝒌𝑳
𝑻𝟏 − 𝑻𝟐
𝑸 = 𝒌. 𝟐𝝅𝒓𝑳 𝒓𝟐
𝒓. 𝒍𝒏 𝒓𝟏
Alternative Method
We have from Fourier’s law of heat conduction
𝑑𝑇 𝑟2 𝑇1
𝑄 = −𝑘𝐴 𝑄. 𝑙𝑛 𝑟 𝑟1 = 2𝜋𝑘𝐿 𝑇 𝑇2
𝑑𝑟
𝑑𝑇 𝑟2
𝑄 = −𝑘. 2𝜋𝑟𝐿. 𝑄. 𝑙𝑛 = 2𝜋𝑘𝐿 𝑇1 − 𝑇2
𝑑𝑟 𝑟1
𝑄
. 𝑑𝑟 = −𝑘. 2𝜋𝐿. 𝑑𝑇 2𝜋𝑘𝐿 𝑇1 − 𝑇2
𝑟 𝑄=
𝑟
𝑙𝑛 2
Integrating on both side 𝑟1
𝑟2
1 𝑇2 𝑇1 − 𝑇2
𝑄 𝑑𝑟 = −𝑘. 2𝜋𝐿 𝑑𝑇 𝑄=
𝑟1 𝑟 𝑇1 𝑟2
𝑙𝑛
𝑟1
𝑄
𝑟2
1
𝑑𝑟 = 𝑘. 2𝜋𝐿
𝑇1
𝑑𝑇
2𝜋𝑘𝐿
𝑟1 𝑟 𝑇2
Heat flow through the composite cylinder
EXTENDED SURFACES - FINS
Mechanical Attachment to the base surface of a system for enhancing
the heat transfer rate by increasing the effective area of the body is
called as extended surfaces of fins
Combine Conduction through the fin and Convection to/from the fin
Heat rate from the base surface is given by
𝑄𝐶𝑜𝑛𝑣. = ℎ 𝐴𝑠 𝑇𝑠 − 𝑇∞
Applications of Extended Surfaces or Fins
Heat Exchangers used in Process Industries
Economiser used to heat the feed water in steam
power plant
Radiators of automobiles
Air Cooled Engine Cylinder and Head
Cooling coils and condenser coils in refrigerator
and air conditioners
Small Capacity Compressor
Electric motor bodies
Transformer and electronic equipment's
Handle of ladle used to pour the molten metal
Types of Extended Surfaces or Fins
Rectangular Fins Trapezoidal Fins
IC Engines and Electronic Component Rocket Engines and Fishes
Splines Annular Fins
Electrical Generator Shaft Fin Tube heat exchanger
Longitudinal Fins Pin Fins
Electrical motor bodies Electrical motor bodies