Objective Mathematics Vol 1
Objective Mathematics Vol 1
ENGINEERING
ENTRANCES
OBJECTIVE
MATHEMATICS
Volume 1
COMPLETE STUDY PACK FOR
ENGINEERING
ENTRANCES
OBJECTIVE
MATHEMATICS
Volume 1
Amit M. Agarwal
© AUTHOR
Head Office
Kalindi, TP Nagar, Meerut (UP) - 250002
Tel: 0121-7156203, 7156204
ISBN 978-93-25299-12-2
PO No : TXT-XX-XXXXXXX-X-XX
Published by Arihant Publications (India) Ltd.
For further information about the books published by Arihant, log on to
www.arihantbooks.com or e-mail at info@arihantbooks.com
Follow us on
PREFACE
Engineering offers the most exciting and fulfilling of careers. As a Engineer you can find satisfaction
by serving the society through your knowledge of technology. Although the number of
Engineering colleges imparting quality education and training has significantly increased after
independence in the country, but simultaneous increase in the number of serious aspirants has
made the competition difficult, it is no longer easy to get a seat in a prestigious Engineering
college today.
For success, you require an objective approach of the study. This does not mean you 'prepare'
yourself for just 'objective questions'. Objective Approach means more than that. It could be
defined as that approach through which a student is able to master the concepts of the subject
and also the skills required to tackle the questions asked in different entrances such as JEE Main &
Advanced, as well other regional Engineering entrances. These two-volume books on Mathematics
‘Objective Mathematics (Vol.1 & 2)’ fill the needs of such books in the market in Mathematics and
are borne out of my experience of teaching Mathematics to Engineering aspirants.
The plan of the presentation of the subject matter in the books is as follows
— The whole chapter has been divided under logical topic heads to cover the syllabi of JEE Main &
Advanced and various Engineering entrances in India.
— The Text develops the concepts in an easy going manner, taking the help of the examples from the
day-to-day life.
— Important points of the topics have been highlighted in the text. Under Notes, some extra points
regarding the topics have been given to enrich the students.
— The Solved Examples make the students learn the basic problem solving skills in Mathematics. Very
detailed explanations have been provided to make the students skilled in systematically tackling
the problems.
— The answers / solutions to all the questions have been provided.
— The Objective Questions have been divided according to their types Single correct option, More
than One, Assertion-Reason, Matching Type, Integer Type, Passage Based, etc. which can take the
students to a level required for various Engineering entrances in the present scenario.
— Entrance Corner includes the Previous Years' Questions asked in JEE Main & Advanced and other
various Engineering entrances. At the end of the book, JEE Main & Advanced & Other Regional
Entrances Solved Papers have been given.
I would open-heartedly welcome the suggestions for the further improvements of this book (Vol.1)
from the students and teachers.
Amit M. Agarwal
CONTENTS
1. SETS 1-19 Ÿ Harmonic Progression (HP)
Ÿ Introduction Ÿ Arithmetico-Geometric Progression (AGP)
Ÿ Set Ÿ Some Special Series
Ÿ Notations
Ÿ Representation of Sets 4. COMPLEX NUMBERS 109-181
Ÿ The Real Number System
Ÿ Types of Sets
Ÿ Modulus of a Real Number
Ÿ Venn Diagram
Ÿ Imaginary Number
Ÿ Operations on SetsLaws of Algebra of Sets
Ÿ Complex Number
Ÿ Formulae to Solve Practical Problems on
Union and Intersection of Sets Ÿ Algebra of Complex Numbers
Ÿ Conjugate of a Complex Number
2. FUNDAMENTALS OF RELATION Ÿ Modulus of a Complex Number
AND FUNCTION 20-40 Ÿ Argument (or Amplitude) of a Complex
Ÿ Ordered Pair Number
Ÿ Cartesian Product of Sets Ÿ Various Forms of a Complex Number
Ÿ Properties of Cartesian Product of Sets Ÿ De-Moivre’s Theorem
Ÿ Relation Ÿ Roots of Unity
Ÿ Representation of Relation Ÿ Geometrical Applications of Complex
Ÿ Domain and Range of Relations Numbers
Ÿ Some Particular Types of Relations Ÿ Loci in Complex Plane
Ÿ Inverse Relation Ÿ Logarithm of Complex Numbers
Ÿ Composition of Relations
Ÿ Functions or Mappings 5. INEQUALITIES AND
QUADRATIC EQUATION 182-268
Ÿ Difference between Relation and Function
Ÿ Inequality
Ÿ Domain, Codomain and Range of a Function
Ÿ Generalised Method of Intervals for Solving
Ÿ Equal Functions
Inequalities by Wavy Curve Method
Ÿ Classification of Functions (Line Rule)
Ÿ Algebra of Real Functions Ÿ Absolute Value of a Real Number
Ÿ Composition of Functions Ÿ Logarithms
Ÿ Arithmetico-Geometric Mean Inequality
3. SEQUENCE AND SERIES 41-108
Ÿ Quadratic Equation with Real Coefficients
Ÿ Introduction
Ÿ Formation of a Polynomial Equation from
Ÿ Arithmetic Progression (AP)
Given Roots
Ÿ Geometric Progression (GP)
Ÿ Symmetric Function of the Roots
Ÿ Transformation of Equations 8. BINOMIAL THEOREM 348-417
Ÿ Common Roots Ÿ Binomial Theorem for Positive Integral Index
Ÿ Quadratic Expression and its Graph Ÿ Multinomial Theorem
Ÿ Maximum and Minimum Values of Rational Ÿ Greatest Coefficient
Expression Ÿ Greatest Term
Ÿ Location of the Roots of a Quadratic Equation Ÿ R-f Factor Relation
Ÿ Algebraic Interpretation of Rolle’s Theorem Ÿ Divisibility Problems
Ÿ Condition for Resolution into Linear Factors Ÿ Properties of Binomial Coefficients
Ÿ Some Application of Graphs to Find the Roots Ÿ Binomial Theorem for any Index
of Equations Ÿ Approximation
Ÿ Exponential Series
6. PERMUTATION AND COMBINATION 269-332
Ÿ Logarithmic Series
Ÿ Fundamental Principles of Counting (FPC)
Ÿ Factorial
9. TRIGONOMETRIC FUNCTIONS
Ÿ Exponent of Prime p in Factorial n AND EQUATIONS 418-511
n n
Ÿ Representation of Symbols Pr and Cr Ÿ Introduction
Ÿ Some Basic Arrangements and Selections Ÿ Measure of Angles
Ÿ Summation of Numbers (3 different ways) Ÿ Systems of Measurement of Angles
Ÿ Permutations under Certain Conditions Ÿ Trigonometric Ratios
Ÿ Circular Permutations Ÿ Trigonometric Function
n
Ÿ Geometrical Applications of Cr Ÿ Graph of Trigonometric Functions
Ÿ Selection of One or More Objects Ÿ Trigonometrical Identities
Ÿ Number of Divisors and the Sum of the Ÿ Trigonometric Ratios of Allied Angles
Divisors of a Given Natural Number Ÿ Trigonometrical Ratios of Compound Angles
Ÿ Division of Objects into Groups
Ÿ Trigonometric Ratios of Multiples of an Angle
Ÿ Dearrangements
Ÿ Maximum and Minimum Values of
Ÿ Number of Integral Solutions of Linear Trigonometrical Expressions
Equations and Inequations Ÿ Trigonometric Equations
Ÿ General Solution of Trigonometric Equations
7. MATHEMATICAL INDUCTION 333-347
Ÿ Solution of Trigonometric Inequality
Ÿ Introduction
Ÿ Statement
10. PROPERTIES OF TRIANGLES,
Ÿ Principle of Mathematical Induction
HEIGHTS AND DISTANCES 512-589
Ÿ Algorithm for Mathematical Induction
Ÿ Introduction
Ÿ Types of Problems
Ÿ Relation between the Sides and Angles of
Triangle
Ÿ Trigonometric Ratios of Half Angles of a Ÿ Locus and its Equation
Triangle Ÿ Combined Equation of a Pair of Straight Lines
Ÿ Area of a Triangle Ÿ Bisectors of the Angle between the Lines
Ÿ Conditional Identities Given by a Homogeneous Equation
Ÿ Solution of Triangles Ÿ General Equation of Second Degree
Ÿ Circles Connected with Triangle Ÿ Equations of the Angle Bisectors
Ÿ The Orthocentre and the Pedal Triangle Ÿ Distance between the Pair of Parallel Lines
Ÿ Cyclic Quadrilateral
Ÿ Regular Polygon 13. CIRCLE 695-791
Ÿ Introduction
Ÿ Heights and Distances
Ÿ Standard Equation of a Circle
Ÿ Some Important Properties of Triangles
Ÿ Circle Passing through Three Points
Ÿ Some Properties Related to Circle
Ÿ Position of a Point with respect to a Circle
X Example 2. Which of the following is the collection of first five prime numbers?
(a) {1, 2, 3, 5, 7} (b) {2, 3, 5, 7, 11}
(c) {3, 5, 7, 11, 13} (d) {1, 2, 3, 4, 5}
Sol. (b) It is clear that first five prime numbers are {2, 3, 5, 7, 11}.
Notations
Sets are usually denoted by capital letters A, B, C etc., and their elements by small
letters a, b, c, etc.
Let A be any set of objects and let a be a member of A, then we write a ∈ A and read it
as ‘a belongs to A’ or ‘a is an element of A’ or ‘a is member of A’. If a is not an object
of A, then we write a ∉ A and read as ‘a does not belong to A’ or ‘a is not an element of
A’ or ‘a is not a member of A’.
Representation of Sets
A set is often represented in one of the following two forms :
(i) Roster form or Tabular form (ii) Set builder form
1 Roster Form or Tabular Form
In this form, a set is described by listing its
Ø ●
●
The set {0} is not an empty set as it contains the element 0
(zero).
The set {φ} is not a null set. It is a set containing one
element φ.
Objective Mathematics Vol. 1
elements, separated by commas, within braces { }. ● A set which has atleast one element is called a non-empty set.
e.g. The set of months of a year which have thirty
days, in roster form can be described as Singleton Set
{April, June, September, November} A set consisting of only one element is called a
singleton set.
X Example 3. The roster form of set A = {x : x is
a positive integer and divisor of 9} X Example 7. A set A = {x : x ∈ N and 2 < x < 4} is
(a) {3, 6, 9} (b) {1, 5, 9} (c) {1, 3, 9} (d) {2, 3, 9} called
Sol. (c) Since, x is a positive integer and a divisor of 9. So, x (a) null set
can take values 1, 3, 9. (b) infinite set
∴Roster form of the set A is {1, 3, 9}. (c) singleton set
(d) None of the above
Set Builder Form
Sol. (c) {3}; Since, x ∈ N and 2 < x < 4 ⇒ x = 3
In this form, instead of listing all the elements of a
set we describe the set by some special property Finite Set
(properties) satisfied by all of its elements and write it
as A set which is empty or having a definite number
A = {x : P ( x ) holds} = {x | x has the property P ( x )} and of elements is called a finite set.
read it as ‘A is the set of all elements of x such that x X Example 8. A set {x | x ∈ N and 1 ≤ x ≤ 10} is
has the property P’. The symbol ‘:’ or ‘|’ stands for
‘such that’. called
(a) infinite set (b) finite set
X Example 4. If set A = {1, 2, 3, 4}, then it can be (c) singleton set (d) null set
written in set builder form as Sol. (b) Since, elements of the given set is
(a) A = {x : x ∈ N and x ≤ 5} {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
(b) A = {x : x ∈ N and x < 5}
(c) A = {x : x ∈ N and 1 < x < 5} Cardinal Number of a Finite Set
(d) A = {x : x ∈ N and x < 4} The number of distinct elements contained in a
finite set A is called its cardinal number and is denoted
Sol. (b) Clearly, A = { x : x ∈ N and x < 5} describes the set
by n( A ).
A = {1, 2, 3, 4}
e.g. If A = {1, 3, 5, 7}, then n( A ) = 4.
Sets
element of A is also an element of B and every element
element in A which is not in B.
of B is also an element of A. Thus, if x ∈ A ⇒ x ∈ B and
y ∈ B ⇒ y ∈ A, then A and B are equal sets and we can Observe that A ⊆ A i.e. every set is a subset of
write A = B . itself, but not a proper subset.
X Example 11. The set A = {x : x ∈ N and X Example 14. The set {1, 2} is the proper
subset of
1 < x < 7} is equal to
(a) {1, 2} (b) {1, 3, 4}
(a) {2, 3, 4, 5, 6} (b) {1, 2, 3, 4, 5, 6}
(c) {1, 2, 3} (d) {{1, 2}, 3, 4}
(c) {2, 3, 4, 5, 6, 7} (d) {1, 2, 3, 4, 5, 6, 7}
Sol. (c)
Sol. (a) Whenever, we have to show that two sets A and B
are equal, show that A ⊆ B and B ⊆ A, then A = B.
Intervals as Subsets of R
Equivalent Sets Let a, b ∈ R and a < b, then
(i) An open interval denoted by ( a, b) is the set of all
Two finite sets A and B are said to be equivalent, if
real numbers such that ( a, b) = {x ∈ R : a < x < b}
n( A ) = n( B ).
(ii) A closed interval denoted by [ a, b] is the set of all
Clearly, equal sets are equivalent, but equivalent real numbers such that [ a, b] = {x ∈ R : a ≤ x ≤ b}
sets need not to be equal.
(iii) Interval closed at one end and open at the other
Equivalence of two sets is denoted by the symbol are given by [ a, b) = {x ∈ R a ≤ x < b}
‘~’. Thus, if A and B are equivalent sets, we write and ( a, b] = {x ∈ R : a < x ≤ b}
A ~ B which is read as ‘A is equivalent to B’.
X Example 15. The subset of R as intervals
X Example 12. The set {1, 2, 3, 4, 5} is {x : x ∈ R , − 12 < x < − 10} is
equivalent to
(a) ( −12, − 10] (b) [ −12, − 10]
(a) {x : x ∈all vowels} (b) {2, 3, 4}
(c) ( −12, − 10) (d) [ −12, − 10)
(c) {1, 2, 4, 5} (d) {1, 2, 3}
Sol. (c) The given subset is belong to open interval.
Sol. (a)
∴ { x : x ∈ R, − 12 < x < − 10} is (−12, − 10).
U U
Thus, A ∩ B = {x : x ∈ A and x ∈ B }
W
(a) N Z (b) W N Z Clearly, x ∈A ∩ B
⇒ x ∈ A and x ∈ B
and x ∉ A ∩ B ⇒ x ∈ A or x ∈ B
U In the figure, the shaded part represents A ∩ B .
It is evident that A ∩ B ⊆ A, A ∩ B ⊆ B .
(c) N ZW (d) None of these
X Example 22. If two sets A = {1, 2, 3, 4} and
B = {2, 4, 5}, then A ∩ B is equal to
Sol. (a) U (a) {1, 3} (b) {2, 4}
W (c) {3, 4} (d) {1, 6}
N Z
Sol. (b) Since, 2 and 4 are the common elements in sets A
and B.
4
iii. Disjoint sets Two sets A and B are said to be
disjoint, if A ∩ B = φ. If A ∩ B ≠ φ, then A and
v. Symmetric difference of two sets The
symmetric difference of two sets A and B is the
1
set ( A − B ) ∪ ( B − A ) and is denoted by A∆B .
Sets
B are said to be intersecting or overlapping
sets. U
U A–B B–A
A B
A B Thus, A∆B = ( A − B ) ∪ ( B − A )
= {x : x ∉ A ∩ B }
The shaded part represents A ∆B .
X Example 23. Given that,
A = {1, 2, 3, 4, 5, 6} X Example 25. If set A = {1, 3, 5, 7, 9} and set
B = {7, 8, 9, 10, 11} B = {2, 3, 5, 7, 11}, then A ∆ B is equal to
C = {6, 8, 10, 12, 14}. (a) {3, 5, 7} (b) {1, 2}
(c) {9, 11} (d) {1, 2, 9, 11}
Which of the following pair of sets are disjoint sets?
(a) A and B Sol. (d) A ∆ B = ( A − B) ∪ (B − A)
(b) B and C = {1, 9} ∪ {2, 11} = {1, 2, 9, 11}
(c) C and A vi. Complement of a set Let U be the universal
(d) None of the above set and A ⊂ U , then the complement of A,
Sol. (a) denoted by A′ or U − A is defined as
A ′ = {x : x ∈U and x ∉ A}
iv. Difference of sets If A and B are two sets, Clearly, x ∈ A ′ ⇔ x ∉ A
then their difference A − B is the set of all
The shaded part represents A′ .
those elements of A which do not belong to B.
A' U
U
A–B A
A B
X Example 26. Given that U = {x : x is a letter in
Thus, A − B = {x : x ∈ A and x ∉ B } English alphabet} and A = {x : x is a vowel}, then
Clearly, x ∈A − B A′ is equal to
(a) φ (b)U
⇒ x ∈ A and x ∉ B (c) {x : x ∈ all consonants} (d) None of these
In the figure, the shaded part represents A − B .
Sol. (c)
Similarly, the difference B − A is the set of all
those elements of B that do not belong to A i.e. vii. Some results on complement The following
U results are the direct consequences of the
definition of the complement of the set.
B–A (a) U ′ = φ
(b) φ′ = {x ∈U : x ∉φ } = U
A B
(c) ( A ′ ) ′ = {x ∈U : x ∉ A ′ } = {x ∈U : x ∈ A} = A
B − A = {x : x ∈ B and x ∉ A} (d) A ∩ A ′ = {x ∈U : x ∈ A} ∩ {x ∈U : x ∉ A} = φ
(e) A ∪ A ′= {x ∈U : x ∈ A} ∪ {x ∈U : x ∉ A} = U
X Example 24. Given that two sets
A = {1, 3, 5, 7, 9} and B = {2, 3, 5, 7, 11}, then A − B is
(a) {1, 9} Laws of Algebra of Sets
(b) {2, 11} In this article, we shall state and prove some
(c) {3, 5, 7} fundamental laws of algebra of sets.
(d) {1, 2, 3, 5, 7, 9, 11} 1. Idempotent laws For any set A, we have
Sol. (a) {1, 9}, since 1, 9 ∉B (i) A ∪ A = A (ii) A ∩ A = A
5
1 2. Identity laws For any set A, we have
φ and U as identity elements for union and
intersection, respectively.
(ii) Let x be an arbitrary element of A ∩ ( B ∩ C ).
Then,
⇒
x ∈ A ∩ (B ∩ C )
x ∈ A and x ∈ ( B ∩ C )
Objective Mathematics Vol. 1
Sets
(ii) ( A ∩ B ) ′ = A ′ ∪ B ′
Intersection of Sets
Proof Let A, B , C be any finite sets and U be the finite
(i) Let x be an arbitrary element of ( A ∪ B ) ′. universal sets, then
Then, x ∈ ( A ∪ B )′ (i) n ( A ∪ B ) = n ( A ) + n ( B ) − n ( A ∩ B )
⇒ x ∉ (A ∪ B) (ii) If ( A ∩ B ) = φ, then n ( A ∪ B ) = n ( A ) + n ( B )
⇒ x∉A (iii) n ( A − B ) = Number of elements which belong to
and x ∉B only A of sets A and B
⇒ x ∈ A′ = n( A ) − n( A ∩ B ) = n( A ∪ B ) − n( B )
and x ∈B ′ (iv) n ( A∆B ) = Number of elements which belong
⇒ x ∈ A′ ∩ B ′ to exactly one of A or B
∴ ( A ∪ B )′ ⊆ A′ ∩ B ′ = n ( A ) + n ( B ) − 2n ( A ∩ B )
Again, let y be an arbitrary element of (v) n ( A ∪ B ∪ C ) = n ( A ) + n ( B ) + n (C )
A ′ ∩ B ′ . Then, y ∈ A ′ ∩ B ′ − n ( A ∩ B ) − n (B ∩ C ) − n ( A ∩ C )
⇒ y ∈ A′ + n (A ∩ B ∩ C)
and y ∈B ′ (vi) Number of elements in exactly two of the sets
⇒ y∉ A A, B , C
and y∉B = n ( A ∩ B ) + n ( B ∩ C ) + n (C ∩ A )
⇒ y∉ A ∩ B − 3n ( A ∩ B ∩ C )
⇒ y ∈ ( A ∪ B )′ (vii) Number of elements in exactly one of the sets
A, B , C
∴ A′ ∩ B ′ ⊆ ( A ∪ B )′
= n ( A ) + n( B ) + n (C ) − 2n ( A ∩ B )
Hence, ( A ∪ B )′ = A′ ∩ B ′
− 2n ( B ∩ C ) − 2n ( A ∩ C ) + 3n ( A ∩ B ∩ C )
(ii) Let x be an arbitrary element of ( A ∩ B ) ′ .
(viii) n( A ′ ∪ B ′ ) = n {( A ∩ B )′ } = n (U ) − n ( A ∩ B )
Then, x ∈ ( A ∩ B )′
(ix) n ( A ′∩ B ′ ) = n {( A ∪ B ) ′ } = n (U ) − n ( A ∪ B )
⇒ x ∉ (A ∩ B)
⇒ x∉A X Example 27. In a group of 50 people,
and x ∉B 35 speak Hindi, 25 speak both English and Hindi
and all the people speak atleast one of two
⇒ x ∈ A′ languages. The number of people who speak
or x ∈B ′ ‘English’, ‘English but not Hindi’ are respectively
⇒ x ∈ A′ ∪ B ′ (a) 40, 15
⇒ ( A ∩ B ) ′ ⊆ A ′∪B ′ (b) 15, 40
Again, let y be an arbitrary element of (c) 35, 15
A ′ ∪ B ′. Then, (d) 25, 15
⇒ y ∈ ( A ′∪B ′ ) Sol. (a) Let H denotes the set of people speaking Hindi and
⇒ y ∈ A′ E denotes the set of people speaking English.
We have, n (H ∪ E ) = 50, n (H) = 35, n(H ∩ E ) = 25
or y ∈B ′
Also, we have
⇒ y ∉ A or y∉B n (H ∪ E ) = n(H) + n(E ) − n (H ∩ E )
⇒ y∉ (A ∩ B) ⇒ 50 = 35 + n(E ) − 25
⇒ n(E ) = 75 − 35 = 40
⇒ y ∈ ( A ∩ B )′ which is the number of people who speak English.
∴ A′ ∪ B ′ ⊆ ( A ∩ B )′ We have to find the people speak only English
i.e. n (E − H) = n (H ∪ E ) − n(H)
Hence, ( A ∩ B ) ′ = A ′ ∪ B ′
= 50 − 35 = 15 7
1 Work Book Exercise
1 Let A = {1, 2, 3}, B = { 3, 4} C = { 4, 5, 6}. Then,
Objective Mathematics Vol. 1
8
WorkedOut Examples
Type 1. Only One Correct Option
Ex 1. If A = {1, 3, 5, 7, 9, 11, 13, 15, 17}, Now,
A ∩ B = {2, 4 , 6, 8, 12, 20} ∩ {3, 6, 9, 12, 15} = {6, 12}
B = {2, 4, ....., 18} and N is the universal set, B ∩ C = {3, 6, 9, 12, 15} ∩ {5, 10, 15, 20} = {15}
then A ′ ∪ {( A ∪ B ) ∩ B ′ } is C ∩ A = {5, 10, 15, 20} ∩ {2, 4 , 6, 8, 12, 20} = {20}
(a) A (b) N and A ∩ B ∩C =φ
(c) B (d) None of these
A B U
Sol. We have, ( A ∪ B ) ∩ B′ = A − ( A ∩ B ) 2 4 6
12
3
Hence, (b) is the correct answer. Hence, (b) is the correct answer.
Ex 2. Let A, B and C are subsets of universal setU . If Ex 3. Let A and B have 3 and 6 elements,
A = {2, 4, 6, 8, 12, 20}, B = {3, 6, 9, 12, 15}, respectively. What can be minimum number of
C = {5, 10, 15, 20} and U is the set of all whole elements in A ∪ B ?
numbers. Then, the correct Venn diagram is (a) 3 (b) 6
(c) 9 (d) 18
A B U A B U
2 4
6
3 2 4 6 3 Sol. Note that A ∪ B will contain minimum number of
12
8 12
1 9 8 1 9 elements, if A ⊂ B
(a) 20 5 (b) 20 5
So that, n ( A ∪ B) = n ( B) = 6
5 10 5 10 Hence, (b) is the correct answer.
C C
Ex 4. Two finite sets have m and n elements. The
A
2 4 6 3 B U total number of subsets of the first set is 56
8
12
9 more than total number of subsets of second
(c) 20 (d) None of these set. The values of m and n are
15
5 10 (a) 7 and 6 (b) 6 and 3
C (c) 5 and 1 (d) 8 and 7
Sol. Given, A = {2, 4 , 6, 8, 12, 20} Sol. Given, 2m − 2n = 56
B = {3, 6, 9, 12, 15} By hit and trial method, we get m = 6 and n = 3
C = {5, 10, 15, 20} Hence, (b) is the correct answer.
Sets
∴ A ∩ B′ = φ
Column I Column II
⇒ ( A ∩ B′ )′ = φ′
If A ⊂ B, then A ∩ B′ A∪B
A. p. ⇒ A′ ∪ B = U
B. If A ⊂ B, then A ′ ∪ B q. φ C. ( A − B ) ∪ A = A [Q ( A − B ) ⊂ A]
C. ( A − B) ∪ A r. U D. ( A − B ) ∪ B = ( A ∩ B ′ ) ∪ B
D. ( A − B) ∪ B s. A = ( A ∪ B) ∩ ( B′ ∪ B)
= ( A ∪ B) ∩ U
Sol. A. Since, A ⊂ B, so there is no element in A, which does
not belong to B. =A∪ B
∴ A − B = φ ⇒ A ∩ B′ = φ A → q; B → r, C → s; D → p
11
Target Exercises
Type 1. Only One Correct Option
1. The set {x : x is a positive integer less than 6 and 11. If aN = { an : n ∈ N }, bN = { nb : n ∈ N },
3 − 1 is an even number} in roster form is
x cN = { cN : n ∈ N } and bN ∩ cN = d N , where
(a) {1, 2, 3, 4, 5} (b) {1, 2, 3, 4, 5, 6}
a, b, c ∈ N and b, c are coprime, then
(c) {2, 4, 6} (d) {1, 3, 5} (a) b = cd (b) c = bd
(c) d = bc (d) None of these
2. The set A = {x : x 4 − x 3 − x 2 = 0and x ∈ N }represents
12. If A = { θ : 2cos 2 θ + sin θ < 2} and
(a) a null set (b) a singleton set
π 3π
(c) an infinite set (d) None of these B = θ : ≤ θ ≤ , then A ∩ B is equal to
3. If A = {1, 2, 3}, B = {x ∈ R : x 2 − 2x + 1 = 0}, C = {1, 2, 3} 2 2
π 5π
and D = {x ∈ R : x 3 − 6x 2 + 11x − 6 = 0}, then the (a) θ : < θ <
2 6
equal sets are 3π
(b) θ : π < θ <
(a) A and B (b) A and C 2
(c) A, B and C (d) A, C and D π 5π 3π
(c) θ : < θ < or π < θ <
4. Which of the following is true? 2 6 2
(a) a ∈{{a}, b} (b) {b, c} ⊂ {a, {b, c}} (d) None of the above
(c) {a, b} ⊂ {a,{b, c}} 13. Let A = {x : x is a digit in the number 3591},
Ta rg e t E x e rc is e s
6. If U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, A = {2, 4, 6, 8} and 14. Let A and B be two sets, such that A ∪ B = A. Then,
B = {2, 3, 5, 7}, then ( A ∪ B ) ′, ( A ′ ∩ B ′ ), ( A∆B ) is A ∩ B is equal to
equal to (a) φ (b) B
(c) A (d) None of these
(a) {1, 9}, {2, 8}, {3, 4, 5, 6, 7, 8}
(b) {1, 9}, {1, 9}, {3, 4, 5, 6, 7, 8} 15. Let A and B be two sets, then ( A ∪ B )′ ∪ ( A ′ ∩ B ) is
(c) {1, 9}, {1, 9}, {5, 6, 7, 8}
equal to
(d) None of the above
(a) A′ (b) A
7. If A = {x : x is a multiple of 3} and B = { x : x is a (c) B′ (d) None of these
multiple of 5}, then A − B is equal to 16. LetU be the universal set and A ∪ B ∪ C = U. Then,
(a) A ∩ B (b) A ∩ B (c) A ∩ B (d) A ∩ B {( A − B ) ∪ ( B − C ) ∪ (C − A )}′ is equal to
(a) A ∪ B ∪C
8. Which of the following is not correct? (b) A ∪ (B ∩ C )
(a) A ⊆ A′ if and only if A = φ (c) A ∩ B ∩C
(b) A′ ⊆ A if and only if A = X , where X is the universal (d) A ∩ (B ∪ C )
set
(c) If A ∪ B = A ∪ C , then B = C 17. If A and B are two sets, then
(d) B = C if and only if A ∪ B = A ∪ C and A ∩ B = A ∩C ( A − B ) ∪ ( B − A ) ∪ ( A ∩ B ) is equal to
(a) A ∪ B (b) A ∩ B
9. The set ( A ∪ B ∪ C ) ∩ ( A ∩ B ′ ∩ C ′ )′ ∩ C ′ is equal (c) A (d) B′
to 18. If A = { y : y = 2x, x ∈ N }, B = { y : y = 2x − 1, x ∈ N },
(a) B ∩ C ′ (b) A ∩ C
(c) B′ ∩ C ′ (d) None of these then ( A ∩ B )′ is
(a) A (b) B (c) φ (d) U
10. If A ∪ B = A ∪ C and A ∩ B = A ∩ C, then
19. If n( A ) = 4 and n( B ) = 7, then the minimum and
(a) B = C only when A ⊆ B
(b) B = C only when A ⊆ C maximum value of n( A ∪ B ) are, respectively
(c) B = C (a) 4 and 11 (b) 4 and 7
12 (d) None of the above (c) 7 and 11 (d) None of these
20. Let X be the universal set for sets A and B. If
n( A ) = 200, n( B ) = 300 and n( A ∩ B ) = 100, then
n( A ′ ∩ B ′ ) is equal to 300, provided (X) is equal to
23. In a certain town, 25% families own a phone and
15% own a car, 65% families own neither a phone
nor a car. 2000 families own both a car and a phone.
1
Sets
(a) 600 (b) 700 Consider the following statements in this regard :
(c) 800 (d) 900 I. 10% families own both a car and a phone.
21. Suppose A1 , A 2 , ... , A 30 are thirty sets each with five II. 35% families own either a car or a phone.
elements and B1 , B 2 , ... , B n are n sets each with three III. 40000 families live in the town.
30 n Which of the above statements are correct?
elements. Let ∪ A i = ∪ B j = S . Assume that (a) I and II (b) I and III
i=1 j =1
(c) II and III (d) I, II and III
each elements of S belongs to exactly 10 of the A i ’ s
and exactly 9 of B j ’s. The value of n must be 24. 20 teachers of a school either teach Mathematics or
(a) 30 (b) 40 Physics. 12 of them teach Mathematics, while 4 teach
(c) 45 (d) 50 both the subject. Then, the number of teachers
22. If there are three atheletic teams in a school, 21 are in teaching Physics only is
the basketball team, 26 in hockey team and 29 in the (a) 12 (b) 8
(c) 16 (d) None of these
football team. 14 play hockey and basketball, 15 play
hockey and football, 12 play football and basketball 25. A survey shows that 63% of the Americans like
and 8 play all the games. The total number of cheese whereas 76% like apples. If x% of the
members is Americans like both cheese and apples, then we have
(a) 42 (b) 43 (a) x ≥ 39 (b) x ≤ 63
(c) 45 (d) None of these (c) 39 ≤ x ≤ 63 (d) None of these
Targ e t E x e rc is e s
26. If A = {1, 5, 7, 9}, B = {2, 5}, then A − B is equal to 28. In a group of 50 students, the number of students
(a) {1, 7, 9} studying French, English, Sanskrit were found to be
(b) {1, 7, 9, 2} as follows
(c) A ∩ B French = 17; English = 13; Sanskrit = 15;
(d) A ∩ B French and English = 09; English and Sanskrit = 4;
French and Sanskrit = 5; English, French and
27. If X ∪ {1, 2} = {1, 2, 3, 5, 9}, then Sanskrit = 3. The number of students who study
(a) the smallest set of X is {3, 5, 9} (a) French only is 6
(b) the smallest set of X is {2, 3, 5, 9} (b) Sanskrit only is 8
(c) the largest set of X is {1, 2, 3, 5, 9} (c) French and Sanskrit but not English is 2
(d) the largest set of X is {2, 3, 4, 9} (d) atleast one of the three language is 30
13
1 Type 4. Linked Comprehension Based Questions
Passage (Q. Nos. 32-34) Out of 100 students; 15 33. The number of students only passed in Mathematics
Objective Mathematics Vol. 1
36. If A = {a, b, c}, then the number of proper subsets of A is equal to________ .
38. If A and B are two sets containing 3 and 6 elements, respectively. The maximum number of elements in A ∪ B is
equal to ________ .
39. A college awarded 38 medals in football, 15 in basketball and 20 in cricket. If these medals went to a total of 58 men
and only three men got medals in all the three sports, how many received medals in exactly two of three sports?
Entrances Gallery
JEE Advanced/IIT JEE
1. Let P = {θ :sin θ − cos θ = 2 cos θ } and 2. Let S = {1, 2, 3, 4}. The total number of unordered
Q = {θ :sin θ + cos θ = 2 sin θ} be two sets. Then, pairs of disjoint subsets of S is equal to [2010]
(a) P ⊂ Q and Q − T ≠ φ (b) Q ⊄ P [2011] (a) 25 (b) 34
(c) P ⊄ Q (d) P = Q (c) 42 (d) 41
JEE Main/AIEEE
3. Let A and B be two sets containing four and two (a) N (b) Y − X
elements respectively. Then, the number of subsets (c) X (d) Y
of the set A × B, each having atleast three elements, 5. If A, B and C are three sets, such that A ∩ B = A ∩ C
is [2015]
and A ∪ B = A ∪ C, then [2009]
(a) 219 (b) 256 (c) 275 (d) 510
(a) A = C
4. If X = {4 − 3n − 1: n ∈ N }and Y = {9 ( n − 1) : n ∈ N },
n (b) B = C
where N is the set of natural numbers, then X ∪ Y is (c) A ∩ B = φ
(d) A = B
14 equal to [2014]
Other Engineering Entrances
6. In a class of 60 students, 25 students play cricket and 11. If n( A ) = 1000, n( B ) = 500 and if n( A ∩ B ) ≥ 1 and
1
Sets
20 students play tennis and 10 students both the n( A ∪ B ) = p, then [Kerala CEE 2012]
games, then the number of students who play neither (a) 500 ≤ p ≤ 1000 (b) 1001 ≤ p ≤ 1498
is [Karnataka CET 2014] (c) 1000 ≤ p ≤ 1499 (d) 999 ≤ p ≤ 1499
(a) 45 (b) 0 (c) 25 (d) 35 (e) 1000 ≤ p ≤ 1498
7. The set A = { x : 2x + 3 < 7} is equal to the set 12. Out of 64 students, the number of students taking
Mathematics is 45 and number of students taking
[Karnataka CET 2014]
both Mathematics and Biology is 10. Then, the
(a) D = {x : 0 < (x + 5) < 7} (b) B = {x : − 3 < x < 7}
(c) E = {x : − 7 < x < 7} (d) C = {x : 13 < 2x < 4} number of students taking only Biology is
[OJEE 2012]
8. There is a group of 265 persons who like either (a) 18 (b) 19
singing or dancing or painting. In this group 200 like (c) 20 (d) None of these
singing, 110 like dancing and 55 like painting. If 60 13. There are 100 students in a class. In the examination,
persons like both singing and dancing. 30 like both 50 of them failed in Mathematics, 45 failed in
singing and painting and 10 like all three activities, Physics, 40 failed in Biology and 32 failed in exactly
then the number of persons who like only dancing two of the three subjects. Only one student passed in
and painting is [WB JEE 2014] all the subjects. Then, the number of students failing
(a) 10 (b) 20 (c) 30 (d) 40 in all the three subjects is [WB JEE 2012]
2 1 (a) 12 (b) 4
9. Let X n = z = x + iy : z < for all integers n > 1. (c) 2 (d) Cannot be determined
n
∞
14. The set A = {x : x ∈ R , x 2 = 16 and 2x = 6} is equal to
Then, ∩ X n is [WB JEE 2014] [BITSAT 2011]
Targ e t E x e rc is e s
n=1 (a) φ (b) {14, 3, 4} (c) {3} (d) {4}
(a) a singleton set
(b) not a finite set 15. Let A and B be two sets, then ( A ∪ B )′ ∩ ( A ′ ∩ B ) is
(c) an empty set equal to [GGSIPU 2011]
(d) an finite set with more than one element (a) A′ (b) A
10. The shaded region in the figure represents (c) B′ (d) None of these
[Kerala CEE 2014]
16. Let A = {1, 2}, B = {{1}, {2}}, C = {{1, 2}}. Then which
U of the following relation is true? [J&K CET 2011]
A B (a) A = B (b) B ⊆ C
(c) A ∈ C (d) D ⊂ C
17. 25 people employed for programme A, 50 people for
programme B, 10 people for both. So, number of
(a) A ∩ B (b) A ∪ B (c) B − A (d) A − B employee employed for only A is [OJEE 2011]
(e) ( A − B ) ∪ ( B − A ) (a) 15 (b) 20 (c) 35 (d) 40
Answers
Work Book Exercise
1. (b) 2. (c) 3. (b) 4. (a) 5. (c) 6. (c) 7. (b) 8. (b) 9. (b) 10. (a)
Target Exercises
1. (a) 2. (a) 3. (d) 4. (d) 5. (a) 6. (b) 7. (b) 8. (c) 9. (a) 10. (c)
11. (c) 12. (c) 13. (d) 14. (b) 15. (a) 16. (c) 17. (a) 18. (d) 19. (c) 20. (b)
21. (c) 22. (b) 23. (c) 24. (b) 25. (c) 26. (a,d) 27. (a,c) 28. (a,c,d) 29. (c) 30. (b)
31. (c) 32. (b) 33. (c) 34. (a) 35. (*) 36. (7) 37. (0) 38. (9) 39. (9)
*A → q; B → r; C → p; D → s
Entrances Gallery
1. (d) 2. (d) 3. (a) 4. (d) 5. (b) 6. (c) 7. (a) 8. (a) 9. (a) 10. (e)
11. (c) 12. (b) 13. (c) 14. (a) 15. (d) 16. (c) 17. (a) 15
Explanations
Target Exercises
1. Since, 3 x − 1 is an even number for all x ∈ Z + . So, the 7. A − B = A ∩ B is a general result.
given set in roster form is {1, 2, 3, 4, 5}.
8. Options (a) and (b) are trivially true. Option (c) is
2. Given equation can be written as incorrect because if A = {2, 3, 4}, B = { 3}, C = { 4}, then
1± 5 A ∪ B = A ∪ C but B ≠ C. Option (d) is also correct.
x 2 ( x 2 − x − 1) = 0 ⇒ x = 0,
2
9. ( A ∪ B ∪ C ) ∩ ( A ∩ B′ ∩ C′ )′ ∩ C′
∴There is no natural value of x, which satisfies
x4 − x3 − x2 = 0 = ( A ∪ B ∪ C ) ∩ ( A′ ∪ B ∪ C ) ∩ C′
= [( A ∩ A′ ) ∪ (B ∪ C )] ∩ C′
3. A = {1, 2, 3} = (φ ∪ B ∪ C ) ∩ C′
B = { x ∈ R : x 2 − 2 x + 1 = 0} = {1} = (B ∩ C′ ) ∪ (C ∩ C′ )
C = {1, 2, 3} = (B ∩ C′ ) ∪ φ = B ∩ C′
D = { x ∈ R : x 3 − 6 x 2 + 11x − 6 = 0}= {1, 2, 3} 10. Let x ∈ B ⇒ x ∈ A ∪ B ⇒ x ∈ A ∪ C
∴A, C and D are equal. Case I x ∈A
4. a is not an element of {{ a}, b} ∴ x ∈ A ∩ B or x ∈ A ∩ C or x ∈ C
∴ B ⊆C
∴ a ∈{{
/ a}, b}
Case II x ∈C
{ b, c } is the element of { a, { b, c }}
∴ { b, c } ∈ { a, { b, c }} ∴ x ∈ B ⇒ x ∈ C or B ⊆ C
b ∈{ a, b} but b ∈{ / a, { b, c }} Similarly, C⊆B
∴ { a, b} ⊄ { a, { b, c }} ∴ B =C
5. Let x ∈
/ P 11. We have, bN = { nb : n ∈ N}, cN = {cn : n ∈ N}
Ta rg e t E x e rc is e s
Sets
A∩B=φ ∴ n(P ) = 12
( A ∩ B )′ = U So, the required number
19. n( A ∪ B) is minimum when A ⊆ B. = n(P ) − n(M ∩ P ) = 12 − 4 = 8
In this case, A∪B=B 25. n( X ) = 100, n(C ) = 63, n( A) = 76, n(C ∩ A) = x
and we have n( A ∪ B) = n(B) = 7 Now, n(C ∪ A) = n(C ) + n( A) − n(C ∩ A)
n( A ∪ B) is maximum when A ∩ B = φ. ∴ n(C ∪ A) = 63 + 76 − x = 139 − x
In this case, n( A ∪ B) = n( A) + n(B) ∴ 139 − x ≤ 100 or x ≥ 39
= 4 + 7 = 11 Also, C ∩ A ⊆ C and C ∩ A ⊆ A
20. We have, n( A ∪ B) = n( A) + n(B) − n( A ∩ B) ∴ n(C ∩ A) ⊆ n(C )
∴ n( A ∪ B) = 200 + 300 − 100 = 400 and n(C ∩ A) ⊆ n( A)
Also, n( A ′ ∩ B′ ) = n(( A ∪ B)′ ) = n( X ) − n( A ∪ B) ⇒ n(C ∩ A) ≤ 63
and n(C ∩ A) ≤ 76
⇒ 300 = n( X ) − 400 ⇒ n( X ) = 700
30
⇒ n(C ∩ A) ≤ 63 i.e. x ≤ 63
21. Since, S = ∪ A i and each element of S is in 10 A i’s. ∴ 39 ≤ x ≤ 63
i =1
26. Given, A = {1, 5, 7, 9}, B = {2, 5}
1 30 1
We have, n(S ) = ∑
10 i = 1
n( A i ) =
10
(30 × 5) = 15 A − B = Set of all those elements of A, which do not
belong to B
30
Also, S = ∪ B j and each element of S is in 9 B j’s. = {1, 7, 9}
j =1
Also, A − B = A ∩ B is a general result.
1 n
9∑
We have, n(S ) = n(B j ) Hence, options (a) and (d) are correct.
j =1 27. Given, X ∪ {1, 2} = {1, 2, 3, 5, 9}
1
⇒ 15 = (n × 3) ⇒ n = 45 The smallest set of X = {1, 2, 3, 5, 9} − {1, 2} = { 3, 5, 9}
Targ e t E x e rc is e s
9 The largest set of X = The set which contains atleast
22. Let B, H, F be the sets of members in the basketball elements 3, 5, 9
team, hockey team, football team, respectively. = {1, 2, 3, 5, 9}
∴ n(B) = 21, n(H ) = 26, n(F ) = ,29 28. Given, n(F ) = 17, n(E ) = 13, n(S ) = 15, n(F ∩ E ) = 9,
n(H ∩ B) = 14, n(H ∩ F ) = 15
,
n(E ∩ S ) = 4, n(F ∩ S ) = 5, n(E ∩ F ∩ S ) = 3
n(F ∩ B) = 12, n(B ∩ H ∩ F ) = 8
∴ n(B ∪ H ∪ F ) = n(B) + n(H ) + n(F ) (a) Number of students study only French
− n(B ∩ H ) − n(H ∩ F ) − n(B ∩ F ) = n(F ) − n(F ∩ E ) − n(F ∩ S ) + n(F ∩ E ∩ S )
= 17 − 9 − 5 + 3 = 6
+ n(B ∩ H ∩ F )
= 21 + 26 + 29 − 14 − 15 − 12 + 8 = 43 (b) Number of students study only Sanskrit
= n(S ) − n(S ∩ F ) − n(S ∩ E ) + n(F ∩ E ∩ S )
23. Let X, P, C denote the sets of all families, families owning
= 15 − 5 − 4 + 3 = 9
phone, families owning car, respectively.
(c) n(F ∩ S ∩ E ) = n(F ∩ S ) − n(F ∩ E ∩ S )
Let total number of families be k.
k×5 k k = 5− 3=2
Since, n(P ∩ C ) = = ⇒ 2000 = (d) ∴ n(F ∪ E ∪ S ) = n(F ) + n(E ) + n(S )
100 20 20
⇒ k = 40000 − n(F ∩ E ) − n(E ∩ S ) − n(S ∩ F )
+ n(F ∩ E ∩ S )
∴ Statement III is correct.
2000 = 17 + 13 + 15 − 9 − 4 − 5 + 3 = 30
Now, n(C ∩ P ) = 2000 = × 100% = 5%
40000 29. In Statement I, A ∩ B = φ
∴ Statement I is incorrect. ⇒ ( A ∪ B) ∩ B′ = A
A′ ∪ (( A ∪ B) ∩ B′ ) = A ′ ∪ A = N
Statement I is true and Statement II is false.
Option (c) is true.
n(P) n(C)
= 25% – 5% 5% = 15% – 5%
30. A − (B ∪ C ) = A ∩ (B ∪ C )′ = A ∩ (B′ ∩ C′ )
= 20% = 10% = ( A ∩ B′ ) ∩ ( A ∩ C′ )
= ( A − B) ∩ ( A − C )
Statement I is true.
A ∩ (B ∆ C ) = A ∩ {(B − C ) ∪ (C − B)}
= { A ∩ (B − C )} ∪ { A ∩ (C − B)}
n (P∩C) n (P ∪C) = 65% = {( A ∩ B) − ( A ∩ C )} ∪ {( A ∩ C ) − ( A ∩ B)}
= ( A ∩ B) ∆ ( A ∩ C )
∴ It is clear from the Venn diagram that Statement II is
correct. Statement II is true.
∴ The correct answer is (c). Option (b) is true. 17
1 31. Since, n( A′ ∩ B′ ) = n(U ) − n( A ∪ B)
= n(U ) − { n( A) + n(B) − n( A ∩ B)}
= 700 − {200 + 300 − 100}
C. A − ( A ∩ B) = A ∩ ( A ∩ B)′
= A ∩ ( A′ ∪ B′ )
= ( A ∩ A′ ) ∪ ( A ∩ B′ )
Objective Mathematics Vol. 1
= 300 = φ ∪ ( A ∩ B′ )
∴Statement I is true and Statement II is false. = A ∩ B′ = A − B
Option (c) is true. D. ( A − B) ∩ (C − B)
= ( A ∩ B′ ) ∩ (C ∩ B′ )
Solutions (Q. Nos. 32-34) = ( A ∩ C ) ∩ B′ = ( A ∩ C ) − B
Let U , E, M and S be denote the total number of
students passed in English, passed in Mathematics
36. We know that the total number of proper subsets of a
and passed in Science, respectively. finite set containing n elements is 2 n − 1.
Here, n(U ) = 100, n(E ) = 15, n(M ) = 12, ∴ Number of proper subsets of A
n(S ) = 8, n(E ∩ M ) = 6, n(M ∩ S ) = 7, = 23 − 1 = 7
n(E ∩ S ) = 4 and n(E ∩ M ∩ S ) = 4 37. A = { −1, 1}, B = { −i , i , − 1, 1}
32. The number of students passed in English and A−B=φ
Mathematics but not in Science ∴ n( A − B) = 0
= n(E ∩ M ∩ S )
38. The maximum number of elements in A ∪ B iff
= n(E ∩ M ) − n(E ∩ M ∩ S ) = 6 − 4 = 2
n( A ∩ B) = 0
33. The number of students only passed in Mathematics ∴ n( A ∪ B) = n( A) + n(B) − n( A ∩ B)
= n(M ∩ E ∩ S ) = 3+ 6= 9
= n(M ) − n(M ∩ E ) − n(M ∩ S ) + n(M ∩ E ∩ S )
39. We have, n(F ) = 38, n(B) = 15 ,n(C ) = 20,
= 12 − 6 − 7 + 4 = 16 − 13 = 3
n(F ∪ B ∪ C ) = 58, n(F ∩ B ∩ C ) = 3
34. The number of students only passed in more than one Now, n(F ∪ B ∪ C ) = n(F ) + n(B) + n(C )
subject
− n(F ∩ B) − n(F ∩ C ) − n(B ∩ C )
= n(M ∩ E ) + n(M ∩ S ) + n(S ∩ E ) − 2n (M ∩ E ∩ S )
+ n(F ∩ B ∩ C )
= 6 + 7 + 4 − 2(4) = 17 − 8 = 9
⇒ n(F ∩ B) + n(B ∩ C ) + n(F ∩ C )
Ta rg e t E x e rc is e s
Entrances Gallery
1. Since, cos θ ( 2 + 1) = sin θ 4. We have, X = { 4n − 3n − 1 : n ∈ N}
⇒ tan θ = 2 + 1 X = { 0, 9, 54, 243, K } [put n = 1, 2, 3, K]
and sin θ ( 2 − 1) = cos θ Y = { 9 (n − 1) : n ∈ N}
1 2 +1 Y = { 0, 9, 18, 27, K } [put n = 1, 2, 3, K]
⇒ tan θ = × = ( 2 + 1)
2 −1 2 +1 It is clear that X ⊂ Y
∴ P =Q ∴ X∪Y=Y
2. Let A ∩ B = φ, A, B ⊂ S 5. Since, A ∩ B = A ∩ C
and A∪ B = A∪C ⇒ B =C
∴Total number of unordered pairs of disjoint subsets of
34 + 1 6. Let the number of students play cricket = C
S = = 41
2 Number of students play tennis = T
and total number of students = S
3. Given, n( A) = 4, n(B) = 2
∴ n(S ) = 60, n(C ) = 25, n(T ) = 20 and n(C ∩ T ) = 10
⇒ n( A × B) = 8 Now, n(C ∪ T ) = n (C ) + n(T ) − n(C ∩ T )
Total number of subsets of set ( A × B) = 2 8 = 25 + 20 − 10 = 35
Number of subsets of set ( A × B) having no element ∴ The number of students who play neither game
(i.e. φ ) = 1 = n(C ∪ T )′ = n(S ) − n(C ∪ T )
Number of subsets of set ( A × B) having one element = 60 − 35 = 25
= 8C1
7. Given, set A = { x :|2 x + 3| < 7}
Number of subsets of set ( A × B) having two elements
= 8C2 Now, |2 x + 3| < 7
⇒ − 7 < 2x + 3 < 7
∴Number of subsets having atleast three elements
⇒ − 7 − 3 < 2x < 7 − 3
= 2 8 − (1 + 8C1 + 8C2 )
⇒ − 10 < 2 x < 4
= 2 8 − 1 − 8 − 28 = 2 8 − 37 ⇒ − 5< x <2
18 = 256 − 37 = 219 ⇒ 0 < ( x + 5) < 7
8. Let D, P, S denote dancing, painting and singing
∴
respectively.
n(D ∪ P ∪ S ) = 265,
12. n(M ) = 45, n(M ∩ B) = 10, n(M ∪ B) = 64
⇒ n(B) = n(M ∪ B) − n(M ) + n (M ∩ B)
= 64 − 45 + 10 = 29
1
Sets
n(S ) = 200, n(D ) = 110, n(P ) = 55 , ⇒ n(only B) = n(B) − n(M ∩ B) = 29 − 10 = 19
n (S ∩ D ) = 60, n(S ∩ P ) = 30
13. n(M ) = 50 = Number of students failed in Mathematics
and n(D ∩ P ∩ S ) = 10
Q n(D ∪ P ∪ S ) = n(D ) + n(P ) + n(S ) − n(D ∩ P ) n(P ) = 45, n(B) = 40
∴ n(M ∩ P ) + n(M ∩ B) + n(P ∩ B)
− n(P ∩ S ) − n(S ∩ D ) + n(D ∩ P ∩ S )
− 3 n (M ∩ P ∩ B) = 32 ...(i)
∴ 265 = 110 + 55 + 200 − n(D ∩ P )
We have, to find n(M ∩ P ∩ B).
− 30 − 60 + 10 Total number of students = 100 [given]
⇒ 265 = 285 − n(D ∩ P ) Clearly, n(M ∪ P ∪ B) = 99
⇒ n(D ∩ P ) = 20 ⇒ n(M ) + n(P ) + n(B) − { n(M ∩ P ) + n(M ∩ B)
∴Number of persons who like dancing and painting + n(P ∩ B)} + n(M ∩ P ∩ B) = 99
= n(D ∩ P ) − n(D ∩ P ∩ S ) ⇒ 50 + 45 + 40 − { 32 + 3 n(M ∩ P ∩ B)}
= 20 − 10 + n(M ∩ P ∩ B) = 99 [from Eq. (i)]
= 10 ⇒ 135 − 32 − 2 n(M ∩ P ∩ B) = 99
⇒ 2 n(M ∩ P ∩ B) = 4
9. Given, Xn = z = x + iy :| z|2 ≤ = x 2 + y 2 ≤
1 1
n n ⇒ n(M ∩ P ∩ B) = 2
1 14. Since, x 2 = 16
∴ X1 = { x 2 + y 2 ≤ 1}, X2 = x 2 + y 2 ≤
2 ⇒ x = ± 4 and 2 x = 6
2 1 ⇒ x=3
X3 = x + y ≤ ,... X∞ = { x + y ≤ 0}
2 2 2
3 Hence, no value of x is satisfied.
∞ ∴ A=φ
∴ ∩ Xn = X1 ∩ X2 ∩ ... ∩ X∞ = { x 2 + y 2 = 0}
n =1 15.
Targ e t E x e rc is e s
∞
Hence, ∩ Xn is a singleton set.
n =1
A A A B A A A B
10. Given, figure clearly represents
( A − B ) ∪ ( B − A)
11. Given, n( A) = 1000, n(B) = 500, n( A ∩ B) ≥ 1, n( A ∪ B) = p (A ∪ B)′ (A′ ∩ B)
Q n( A ∪ B) = n( A) + n(B) − n( A ∩ B) ∴ ( A ∪ B)′ ∩ ( A′ ∩ B) = φ
⇒ 1 ≤ n( A ∩ B) ≤ 500 16. A = {1, 2} ∈ {{1, 2}} = C
Hence, p ≤ 1000 + 500 − 1 = 1499 ∴ A ∈C
and p ≥ 1000 + 500 − 500 = 1000 17. n( A − B) = n( A) − n( A ∩ B)
∴ 1000 ≤ p ≤ 1499 = 25 − 10 = 15
19
2
Fundamentals
of Relation and
Function
Ordered Pair
Two elements a and b listed in a specific order form an ordered pair, denoted by (a, b). In Chapter Snapshot
an ordered pair ( a, b); a is regarded as the first element and b is the second element. It is ● Ordered Pair
evident from the definition that
Cartesian Product of Sets
( a, b) ≠ ( b, a )
●
Let A and B be two non-empty sets. The cartesian product of A and B denoted byA × B
● Composition of Functions
is defined as the set of all ordered pairs ( a, b) , where a ∈ A and b ∈ B .
Symbolically, A × B = {( a, b); a ∈ A and b ∈ B }.
If there are three sets A, B , C and a ∈ A, b ∈ B ,
c ∈C , then we form an ordered triplet ( a, b, c). The set
of all ordered triplets ( a, b, c) is called the cartesian
Properties of
Cartesian Product of Sets
2
R 2 = {(1, 3), (3, 6), (2, 1), (1, 2)}. ∴ Domain of R = {1, 2, 3} , range of R = {3, 5, 6} and
Then, on A codomain of R = {3, 5, 6}
(a) R 1 is relation and R 2 is not Ø Let A and B be two non-empty finite sets having p and q elements
(b) R 1 and R 2 are relations respectively, then the total number of relations from A to B = 2 pq .
(c) R 1 and R 2 are not relations
(d) None of the above X Example 7. Find the domain and range of the
relation R defined by
Sol. (a) R1 ⊆ A × A, so R1 is a relation on A. But
(3, 6) ∉ A × A, so R 2 ⊆/ A × A. Hence, R 2 is not a relation R = {( x, x + 5) : x ∈{0, 1, 2, 3, 4, 5}}
on A. (a) {0, 1, 2, 3, 4, 5}, {5, 6, 7, 8, 9, 10}
(b) {1, 2, 3, 4, 5}, {5, 6, 7, 8, 9, 10}
Representation of Relation (c) {0, 1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}
(d) None of the above
Roster Form Sol. (a) Given, R = {( x, x + 5) : x ∈ {0, 1, 2, 3, 4, 5}}
In this form, a relation is represented by the set of Putting x = 0, 1, 2, 3, 4, 5, we get
all ordered pairs belonging to R. R = {(0, 5), (1, 6), (2, 7 ), (3, 8), (4, 9), (5, 10)}
⇒ Domain = {0, 1, 2, 3, 4, 5}
e.g. The relation R defined on the set of natural
Now, y = x + 5 = 5, 6, 7, 8, 9, 10 [after putting the value of x ]
number as {( a, b) : b is square of a}, then roster form of ⇒ Range = {5, 6, 7, 8, 9, 10}
this relation is
{(1, 1), (2, 4), (3, 9), ( 4, 16), … } X Example 8. If R is a relation on a finite set
having n elements, then the number of relations on
Set Builder Form A is
2
In this form, a relation is represented as (a) 2 n (b) 2 n (c) n 2 (d) n n
R = {( a, b) : a ∈ A, b ∈ B and a, b satisfy the rule Sol. (b) We have, a set having n elements
which associates a and b} i.e. n( A) = n
e.g. In set builder form, the relation and n( A × A) = n( A) × n( A) = n × n = n2
2
× A)
R = {(2, 8), (3, 27 ), (5, 125), ( 7, 343)} is written as ∴Number of relations on A = 2 n( A = 2n
x2 Classification of Functions
X Example 20. Let f = x, : x ∈ R be a
1 + x
2
Constant Function Y
function from R into R. The range of f is A function which does not
(a) [0, ∞) (b) (0, 1) change as its parameters vary, (0)
X′ X Y′
O
Y′ Properties of Modulus Function
Range of f ( x ) = [0, ∞ ) i. For any real number x, x 2 = | x |.
Exponential Function ii. If a and b are positive real numbers, then
A function of the form f ( x ) = a x , a is a positive (a) x 2 ≤ a 2 ⇔ | x | ≤ a ⇔ −a ≤ x ≤ a
real number, is an exponential function. The value of
(b) x 2 ≥ a 2 ⇔ | x | ≥ a ⇔ x ≤ − a or x ≥ a
the function depends upon the value of a. For 0 < a < 1,
function is decreasing and for a >1, function is (c) a 2 ≤ x 2 ≤ b 2 ⇔ a ≤ | x | ≤ b
increasing. ⇔ x ∈[ −b, − a ] ∪ [ a, b]
Domain of f ( x ) = R
and range of f ( x ) = [0, ∞ ) iii. | x ± y| ≤| x | +| y|
Y Y
iv. | x + y | ≥ || x | − | y ||
y = ax y = ax
X'
(0, 1)
X X′
(0, 1)
X
Greatest Integer Function
O O
For any real number x, the greatest integer
function [x] is equal to greatest integer less than or
Y′ Y′ equal to x.
0<a<1 a>1
(a) (b) In general, if n is an integer and x is any number
satisfying n ≤ x < n +1, then [ x ] = n. It is also known as
Logarithmic Function integral part function.
Function f ( x ) = log a x, ( x, a > 0) and a ≠1, is e.g. If 2 ≤ x < 3, then [ x ] = 2
known as logarithmic function. Domain = R
Domain of f ( x ) = (0, ∞ ) Range = I
and range of f ( x ) = R Y
Y Y 3
2
1
(1, 0)
X′ X X′ X X′ X
O O (1, 0) –3 –2 –1 0 1 2 3 4
–1
–2
Y′ Y′
0<a<1 a<1 –3
(a) (b)
26 Y′
Properties of Greatest Integer Function
If n is an integer and x is any real number between
n +1, then
X Example 23. The function
1 − x,
f is defined by
x <0
2
v. [ x ] > n ⇒ x ≥ n +1
Y'
Y'
vi. [x ] < n ⇒ x < n
Y Y
vii. [ x + y] = [ x ] + [ y + x − [ x ]] , ∀ x, y ∈ R
(0, 1)
(0, 1)
1 2 n − 1 (1, 0)
viii. [ x ] + x + + x + + ... + x + = [ nx ] , (c) X′ X (d) X′ X
n O (–1, 0) O
n n
n∈N
Y′ Y′
(b) [2, 4]
(c) [−2, 4] (a) R (b) R + (c) R − (d) R + R
(d) None of the above 1
Sol. Given, f (x ) = , for the function to be defined,
Sol. f (x ) = 1 + 3 cos 2x x + |x |
Q −1 ≤ cos 2x ≤ 1 the denominator should not be equal to 0.
⇒ −3 ≤ 3 cos 2x ≤ 3 x + |x |> 0 [Qx + | x | Û 0 ]
⇒ 1 − 3 ≤ 1 + 3 cos 2x ≤ 3 + 1 ⇒ |x |> −x
⇒ −2 ≤ f (x ) ≤ 4 It is true for all R + .
[R + means set of all positive real numbers]
∴ Range = [ −2, 4 ]
∴Domain of the given function = R +
Hence, (c) is the correct answer.
Hence, (b) is the correct answer.
4. A relation R from C to R is defined by xR y iff | x | = y. (a) {(1, 3), (2, 6), (3, 9)}
Which of the following is correct? (b) {(1, 1), (2, 2), (3, 3)}
(a) (2 + 3i ) R 13 (b) 3R (−3) (c) {(3, 3), (6, 6), (9, 9)}
(c) (1 + i ) R 2 (d) i R1 (d) None of the above
5. The relation R defined on the set A = {1, 2, 3, 4, 5} by 13. If R ⊆ A × B and S ⊆ B × C be two relations, then
R = {( x, y ) : | x 2 − y 2 | < 16} is given by ( SoR ) −1 is equal to
(a) {(1, 1) , (2, 1) , (3, 1) , (4, 1) , (2, 3)} (a) S −1 oR −1 (b) RoS
(b) {(2, 2) , (3, 2) , (4, 2) , (2, 4)} (c) R −1 oS −1 (d) None of these
(c) {(3, 3) , (4, 3) , (5, 4) , (3, 4)}
(d) None of the above
14. If R is a relation from a set A to the set B and S is a
6. A relation R is defined in the set Z of integers as relation from B to C, then the relation SoR
follows ( x, y ) ∈ R iff x 2 + y 2 = 9. Which of the (a) is from C to A (b) is from A to C
(c) does not exist (d) None of these
following is false?
(a) R = {(0, 3), (0, − 3), (3, 0), (−3, 0)} 15. Let A = [ − 1, 1], B = [ − 1, 1], C = [ 0, ∞ ). If
(b) Domain of R = {−3, 0, 3}
R1 = {( x, y ) ∈ A × B : x 2 + y 2 = 1}and
(c) Range of R = {− 3, 0, 3}
(d) None of the above R 2 = {( x, y ) ∈ A × C : x 2 + y 2 = 1}, then
(a) R1 defines a function from A into B
7. If R = {( x, y ) : x, y ∈ Z , x 2 + y 2 ≤ 4} is a relation in Z, (b) R2 defines a function from A into C
then domain of R is (c) R1 defines a function from A onto B
(a) {0, 1, 2} (b) {−2, − 1, 0} (d) R2 defines a function from A onto C
(c) {−2, − 1, 0, 1, 2} (d) None of these
x 2 , 0 ≤ x ≤ 3
16. The relation f is defined by f ( x ) =
8. Let R be a relation in N defined by 3x, 3 ≤ x ≤ 10
R = {( x, y ) : x + 2 y = 8}. The range of R is
and the relation g is defined by
(a) {2, 4, 6} (b) {1, 2, 3}
x , 0 ≤ x ≤ 2
2
(c) {1, 2, 3, 4, 6} (d) None of these g (x ) = . Which of the following
9. Let A = {1, 2, 3}, B = {1, 3, 5}. If relation R from A to B 3x, 2 ≤ x ≤ 10
is given by {(1, 3), (2, 5), (3, 3)}, then R −1 is relation is a function?
(a) {(3, 3), (3, 1) , (5, 3)} (a) f
(b) {(1, 3), (2, 5) , (3, 3)} (b) g
(c) {(1, 3), (5, 2) } (c) f,g
32 (d) None of the above (d) None of the above
17. The domain of F ( x ) =
(a) R − {− 1, − 2}
log 2 ( x + 3)
x 2 + 3x + 2
(b) (− 2, ∞ )
is 26. If f ( x ) = x 2 + 1 , then the value of ( fof ) ( x ) is equal
to
(a) x + 2x + 2
4 2
(b) x + 2x − 2
4 2
2
Targ e t E x e rc is e s
19
integer function, then x x 19x
(a) (b) (c) (d) x
(a) x ∈[ 3, 4 ] (b) x ∈ (2, 3 ] (c) x ∈[ 2, 3 ] (d) x ∈[ 2, 4 ) x −1 x − 1 x −1
1 1 1 1
23. If f ( x ) = 1 − , then f f is 31. Let f x + = x 2 + 2 , x ∈ R − { 0}, then f ( x ) is
x x x x
1 1 x 1 equal to
(a) (b) (c) (d) (a) x 2 (b) x 2 − 1
x 1+ x x −1 x −1
(c) x 2 − 2 , when | x | ≥ 2 (d) None of these
x−1
24. Let f ( x ) = , then f { f ( x )}is 32. Let f :[ 0, 1] → [ 0, 1] and g:[ 0, 1] → [ 0, 1] be two
x+1
1− x
1 1 1 1 functions defined by f (x ) = and
(a) (b) − (c) (d) 1+ x
x x x+1 x −1
g ( x ) = 4x (1 − x ), then ( fog ) ( x ) is equal to
25. Two functions f and g are said to commute, if 8x (1 − x ) 4 (1 − x )
(a) (b)
( fog ) ( x ) = ( gof ) ( x ), ∀ x, then which one of the (1 + x )2 1+ x
following functions are commute? 1 − 4 x + 4 x2
(c) (d) None of these
(a) f (x ) = x 3 , g (x ) = x + 1 1 + 4 x − 4 x2
(b) f (x ) = x , g (x ) = cos x
(c) f (x ) = x m , g (x ) = x n , m ≠ n, m, n ∈ I
33. Let f ( x ) = | x − 1 | , x ∈ R, then
(I is the set of all integers) (a) f (x 2 ) = ( f (x ))2 (b) f (x + y) = f (x ) + f ( y)
(d) f (x ) = x − 1, g (x ) = x 2 + 1 (c) f (| x |) = | f (x ) | (d) None of these
–2 (b) {−2, − 3, − 5}
25 –3 (c) {−5, − 3, − 2, 2, 3, 5}
–5 (d) {−5, − 3, − 2, 1, 2, 3, 5}
A. If P = { x : x < 3, x ∈ N} and Q = { x : x ≤ 2, x ∈ N}, then p. {(0, 8), (8, 0), ( 0, − 8), ( −8, 0)}
( P ∪ Q ) × ( P ∩ Q ) is equal to
B. If A = { x : x ∈ W , x < 2}, B = { x : x ∈ N, 1 < x < 5} and q. {( −2, 3), ( −1, 5), (0, 7),
C = { 3, 5}, where W is the set of whole numbers, then (1, 9) , (2, 11)}
A × ( B ∩ C ) is equal to
C. If R = {( x, y) : x and y are integers and { x 2 + y 2 = 64} is r. {(0, 3) , (1, 3)}
a relation, then R in roster form is
34
Entrances Gallery
AIEEE
1 4. A real valued function f ( x ) satisfies the functional
1. The domain of the function f ( x ) = is
| x | − x [2011] equation f ( x − y ) = f ( x ) f ( y ) − f ( a − x ) f ( a + y ) ,
(a) (0, ∞ ) (b) (−∞ , 0) where a is a given constant and f ( 0) = 1, f ( 2a − x ) is
(c) (−∞ , ∞ ) − {0} (d) (−∞ , ∞ )
equal to [2005]
2. Let for a ≠ a1 ≠ 0, f ( x ) = ax 2 + bx + c, (a) f (− x ) (b) f (a) + f (a − x )
g ( x ) = a1 x 2 + b1 x + c1 and p( x ) = f ( x ) − g ( x ). If (c) f (x ) (d) − f (x )
p( x ) = 0 only for x = − 1 and p( − 2) = 2 , then the 5. If f : R → R satisfies f ( x + y ) = f ( x ) + f ( y ) ,
value of p( 2) is [2011] n
(a) 18 (b) 3 (c) 9 (d) 6 ∀ x, y ∈ R and f (1) = 7, then Σ
r =1
f ( r ) is [2003]
3. Let f : N → Y be a function defined as f ( x ) = 4x + 3 7n
(a)
where Y = { y ∈ N : y = 4x + 3 for some x ∈ N }. 2
If f is invertible, then its inverse is [2008] 7(n + 1)
(b)
y−3 3y + 4 2
(a) g ( y) = (b) g ( y) = (c) 7n(n + 1)
4 3
y+ 3 y+ 3 7n(n + 1)
(c) g ( y) = 4 + (d) g ( y) = (d)
2
4 4
Targ e t E x e rc is e s
Other Engineering Entrances
6. Let A = {1, 2, 3, 4} and R be the relation on A defined x+2
10. If f ( x ) = , then f { f ( x )}is
by {( a, b ) : a, b ∈ A, a × b is an even number}, then 3x − 1 [Kerala CEE 2014]
the range of R is [J&K CET 2014] (a) x (b) −x
1 1
(a) {1, 2, 4} (b) {2, 4} (c) (d) −
(c) {2, 3, 4} (d) {1, 2, 4} x x
(e) 0
( x 2 + 1)
7. The domain of the function f ( x ) = is 11. The range of the function f ( x ) = log e ( 3x 2 + 4 ) is
x 2 − 3x + 3
equal to [Kerala CEE 2012]
[J&K CET 2014]
(a) [loge 2, ∞ ) (b) [loge 3, ∞ )
(a) R − {1, 2}
(b) R − {1, 4} (c) [ 2 loge 3, ∞ ) (d) [ 0, ∞ )
(c) R (e) [ 2 loge 2, ∞ )
(d) R − {1}
12. Let R be the set of real numbers and the functions
8. Let A = {1, 2, 3, 4, 5}. The domain of the relation on A f : R → R and g : R → R be defined by
defined by R = {( x, y ) : y = 2x − 1} is [J&K CET 2014] f ( x ) = x 2 + 2x − 3 and g ( x ) = x + 1. Then, the value
(a) {1, 2, 3} of x for which g ( f ( x )) = f ( g ( x )) is [WB JEE 2012]
(b) {1, 2} (a) −1 (b) 0
(c) {1, 3, 5} (c) 1 (d) 2
(d) {2, 4}
13. Let A = {x, y, z}and B = {a, b, c, d}. Which one of the
9. If f ( x ) = x and g ( x ) = 2x − 3, then domain of
following is not a relation from A to B?
( fog ) ( x ) is [Kerala CEE 2014] [Kerala CEE 2011]
(a) (− ∞ , − 3) (a) {(x , a), (x , c)}
3 (b) {( y, c), ( y, d )}
(b) − ∞ , −
2 (c) {(z, a), (z, d )}
3 (d) {(z, b), ( y, b), (a, d )}
(c) − , 0 (e) {(x , c)}
2
3 14. If f ( x ) = 3 − x, − 4 ≤ x ≤ 4, then the domain of
(d) 0,
2 log e ( f ( x )) is [J&K CET 2011]
3 (a) [ −4 , 4 ] (b) (−∞ , 3 ]
(e) , ∞
2 (c) (−∞ , 3) (d) [ −4 , 3) 35
2 15. Let f = {( 0, − 1), ( −1, 3), ( 2, 3), ( 3, 5)} be a function
from Z to Z defined by f ( x ) = ax + b. Then,
[AMU 2011]
17. Let R be the set of real numbers and the mapping
f : R → R and g : R → R be defined by f ( x ) = 5 − x 2
and g ( x ) = 3x − 4, then the value of ( fog ) ( −1) is
Objective Mathematics Vol. 1
Answers
Work Book Exercise 2.1
1. (c) 2. (b) 3. (c) 4. (c) 5. (a) 6. (a) 7. (c) 8. (c)
Target Exercises
1. (b) 2. (d) 3. (d) 4. (d) 5. (d) 6. (d) 7. (c) 8. (b) 9. (d) 10. (b)
11. (b) 12. (b) 13. (c) 14. (b) 15. (d) 16. (a) 17. (d) 18. (b) 19. (c) 20. (c)
21. (a) 22. (d) 23. (c) 24. (b) 25. (c) 26. (a) 27. (b) 28. (a) 29. (d) 30. (a)
31. (c) 32. (c) 33. (d) 34. (c,d) 35. (a,b,c) 36. (d) 37. (c) 38. (a) 39. (c) 40. (*)
41. (9) 42. (2)
* A → s; B → r; C → p; D → q
Entrances Gallery
1. (b) 2. (a) 3. (a) 4. (d) 5. (d) 6. (b) 7. (c) 8. (a) 9. (e) 10. (a)
11. (e) 12. (a) 13. (d) 14. (d) 15. (c) 16. (c) 17. (a) 18. (a)
36
Explanations
Target Exercises
1. n[( A × B) ∩ (B × A)] = n[( A ∩ B) × (B ∩ A)] and R −1 = {(3, 1), (6, 2 ), (9, 3)}
= n( A ∩ B) × n(B ∩ A) ∴ ROR −1 = {(1, 1), (2, 2 ), (3, 3)}
= 99 × 99 = 992 13. SoR is a relation from A to C.
2. Given, n( A) = m and n(B) = n ∴ (SoR )−1 is a relation from C to A.
Now, total number of relations from A to B = 2 mn R −1 is a relation from B to A.
∴Total number of non-empty relations from A to B S −1 is a relation from C to B.
= 2 mn − 1 ∴R −1oS −1 is a relation from C to A.
Let (c , a) ∈ (SoR )−1
3. R1 is a relation from X to Y because R1 ⊆ X × Y. ∴ (a, c ) ∈ SoR
R2 is a relation from X to Y because R2 ⊆ X × Y. ⇒ ∃ b ∈ B : (a, b) ∈ R and (b, c ) ∈ S
R3 is a relation from X to Y because R3 ⊆ X × Y. ⇒ (b, a) ∈ R −1 and (c , b) ∈ S −1
R4 is not a relation from X to Y because (2, 4), (7, 9) ⇒ (c , a) ∈ R −1oS −1
∉ X × Y. ∴ (SoR )−1 ⊆ R −1oS −1
4. | i | = 0 2 + (1)2 = 1 = 1 Conversely, let (c , a) ∈ R −1oS −1
∴ iR1 is correct. ⇒ ∃ b ∈ B : (c , b) ∈ S −1 and (b, a) ∈ R −1
5. We have, R = {( x, y ):| x 2 − y 2| < 16} ⇒ (b, c ) ∈ S and (a, b) ∈ R
⇒ (a, c ) ∈ SoR ⇒ (c , a) ∈ (SoR )−1
∴ R = {(1, 1), (1, 2 ), (1, 3), (1, 4), (2, 1), (2, 2 ), (2, 3),(2, 4),
(3, 1), (3, 2 ), (3, 3), (3, 4), (4, 1), (4, 2 ), ∴ R −1oS −1 ⊆ (SoR )−1
Combining, we get (SoR )−1 = R −1oS −1
Targ e t E x e rc is e s
(4, 3), (4, 4), (4, 5), (5, 4), (5, 5)}
6. x 2 + y 2 = 9 ⇒ y = 9 − x 2 14. Since, R ⊆ A × B and S ⊆ B × C, we have SoR ⊆ A × C
⇒ y = ± 9− x 2 ∴ SoR is a relation from A to C.
∴ R = {(0, 3), (0, − 3), (3, 0 ), (−3, 0 )} 15. R2 = {( x, y ) ∈ A × C : x 2 + y 2 = 1}
Domain of R = { x : ( x, y ) ∈ R} = { 0, 3, − 3} x2 + y2 = 1 ⇒ y = ± 1 − x2
Range of R = { y : ( x, y ) ∈ R} = { 3, − 3, 0} ⇒ y = 1 − x2 [Q y ≥ 0 ]
7. We have, R = {( x, y ) : x, y ∈ Z, x + y ≤ 4} 2 2
∴R2 is a function from A onto C.
R = {(0, 0 ), (0, − 1), (0, 1), (0, − 2 ), (0, 2 ),(−1, 0 ), (1, 0 ), x 2, 0 ≤ x ≤ 3
16. Given, f ( x ) =
(1, 1), (1, − 1), (−1, 1), (−1, − 1), (2, 0 ), (−2, 0 )} 3 x, 3 ≤ x ≤ 10
∴ Domain of R = { x : ( x, y ) ∈ R} = { 0, − 1, 1, − 2, 2} Q f ( x ) = x 2 is well-defined in 0 ≤ x ≤ 3
8. R = {( x, y ) : x + 2 y = 8, x, y ∈ N} and f ( x ) = 3 x is also well-defined in 3 ≤ x ≤ 10
At x = 3, f ( x ) = x 2
8− x
x + 2y = 8 ⇒ y= ⇒ f(3) = 32 = 9
2
R = {(2, 3), (4, 2 ), (6, 1)} At x = 3, f ( x ) = 3 x
⇒ f(3) = 3 × 3 = 9
∴ Range of R = { y : ( x, y ) ∈ R} = {1, 2, 3}
⇒ f ( x ) is defined at x = 3. Hence, f is a function.
9. We have, R = {(1, 3), (2, 5), (3, 3)} x 2, 0 ≤ x ≤ 2
g( x ) =
∴ R −1 = {( y, x ) : ( x, y ) ∈ R} = {(3, 1), (5, 2 ), (3, 3)}
3 x, 2 ≤ x ≤ 10
10. We have, R = {( x, y ) : y = x − 3, x = 11or 12 or 13, Q g( x ) = x is well-defined in 0 ≤ x ≤ 2
2
and x 2 + 3x + 2 ≠ 0
= ( x 3 )1/ 3 = x
⇒ F( x ) is defined, if x > − 3
Let x ≥ 0
and x ≠ − 1, − 2
∴ (gof )( x ) = g(f ( x )) = g( x 2 + 1) = [( x 2 + 1) − 1]1/ 2
⇒ Domain of F( x ) = (−3, ∞ ) − { − 1, − 2}
[Q x ≥ 0 ⇒ x 2 + 1 ≥ 1]
18. Given, f ( x ) = 2 −| x − 5|
= ( x 2 )1/ 2 = | x | = x [Q x ≥ 0]
Domain of f ( x ) is defined for all real values of x.
∴ (gof ) ( x ) = x, ∀ x ∈ R
Q | x − 5| ≥ 0 ⇒ − | x − 5| ≤ 0
⇒ 2 − | x − 5| ≤ 2 ⇒ f ( x ) ≤ 2 29. (f + g )( x ) = f ( x ) + g( x ) = [ x ] + ( x − [ x ]) = x ≠ 0
Hence, range of f ( x ) is (−∞, 2 ]. (fg )( x ) = f ( x )⋅ g( x ) = [ x ]( x − [ x ]) ≠ 0
x −2 x −2 (f − g )( x ) = f ( x ) − g( x ) = [ x ] − ( x − [ x ])
19. f ( x ) = =− = − 1, if x ≠ 2
2−x x −2 = 2 [x] − x ≠ 0
∴ Range of f = { −1} (fog )( x ) = f (g( x )) = f ( x − [ x ]) = [ x − [ x ]] = 0
20. f ( x ) =| x | ⇒ R(f ) = [0, ∞) [Q x − [ x ] ∈ [0, 1)]
x
21. D(f + g ) = D(f ) ∩ D(g ) x x −1
(−∞, 0 ] ∩ [0, ∞ ) = { 0} 30. (fof )x = f = =x
x − 1 x
−1
22. Given, [ x ] − 5[ x ] + 6 = 0
2
x − 1
⇒ [ x ]2 − 3[ x ] − 2[ x ] + 6 = 0 x
⇒ (fofof )x = f (fof )( x ) = f ( x ) =
⇒ [ x ]([ x ] − 3) − 2([ x ] − 3) = 0 x −1
⇒ ([ x ] − 3) ([ x ] − 2 ) = 0 x
∴ (fofof…19 times )( x ) =
⇒ [ x ] = 3 or [ x ] = 2 x −1
Ta rg e t E x e rc is e s
⇒ x ∈[3, 4) or x ∈[2, 3) 2
31. f x + = x 2 + 2 = x + − 2
∴ x ∈[2, 4) 1 1 1
x x x
1 1
23. f f = f 1 −
1
= f (1 − x ) = 1 − 1
x (1 / x ) 1− x Let z=x+
x
1− x − 1 x
= = ∴ f ( z) = z2 − 2
1− x x −1
Replacing z by x, we get
x −1 f ( x ) = x 2 − 2, when| x | ≥ 2
−1
x − 1 x+1
24. f { f ( x )}d = f = 1 − g( x ) 1 − 4 ( x )(1 − x )
x + 1 x −1 32. f { g( x )} = =
+1 1 + g( x ) 1 + 4 x(1 − x )
x+1
x − 1 − x − 1 −2 1 1 − 4x + 4x 2
= = =− =
x − 1+ x + 1 2x x 1 + 4x − 4x 2
∴This is a relation.
= x4 + 2 x2 + 2
(3, b) ∉ A × B
27. Let x ∈[0, 1] ∴ (a, 2 ), (b, 3), (3, b) is not a relation from A to B.
Case I x ∈ Q (3, c ) ∈
/ A×B
∴ f( x) = x ∴ {(a, 1), (b, 2 ), (3, c )} is not a relation from A to B.
and (fof ) ( x ) = f { f ( x )} = f ( x ) = x [Q x ∈ Q ] 35. Q R = {(1, 1), (1, 2 ), (2, 1), (2, 2 ), (2, 3), (3, 2 ), (3, 3)}
Case II x ∉ Q
R −1 = {( y, x ) : ( x, y ) ∈ R}
∴ f( x) = 1 − x
and (fof )( x ) = f { f ( x )} = f (1 − x ) = {(1, 1), (2, 1), (1, 2 ), (2, 2 ), (3, 2 ), (2, 3), (3, 3)}= R
= 1 − (1 − x ) = x [Q 1 − x ∉ Q ] Domain of R = { x : ( x, y ) ∈ R} = {1, 2, 3}
38 Now, in both cases, (fof )( x ) = x and range of R = { y : ( x, y ) ∈ R} = {1, 2, 3}
36. We have, f ( x ) = x − 1
f ( x ) is defined, if x − 1 ≥ 0
i.e. x ≥1
39. Range of R = Set of second elements of ordered pairs in R
= { −5, 5, − 3, 3, − 2, 2}
40. A. P = {1, 2}, Q = {1, 2}
2
Entrances Gallery
1 ⇒ 1 = 1 − { f (a)} 2 [f(0 ) = 1, given]
Targ e t E x e rc is e s
1. y =
| x| − x ⇒ f (a) = 0
For domain,| x | − x > 0 ∴ f (2 a − x ) = f { a − ( x − a)}
⇒ | x| > x = f (a)f ( x − a) − f (a − a)f ( x )
This is possible, only if x < 0. = 0 − f ( x )⋅ 1 = − f ( x )
∴ x ∈ (−∞, 0 ) n
⇒
2x − 3 ≥ 0 ⇒ 2x ≥ 3
x≥
3
13. {( z, b), ( y, b), (a, d )} is not a relation from A to B because
a ∉ A.
14. Given, f ( x ) = 3 − x, here −4 ≤ x ≤ 4
Objective Mathematics Vol. 1
2
3 To find domain of loge { f ( x )} = loge (3 − x )
∴ x ∈ , ∞
2 For loge { f ( x )} to be defined,
x+2 3− x > 0 ⇒ 3> x
10. Given, f ( x ) = ⇒ x<3
3x − 1
⇒ Domain = [−4, 3)
x+2
+2 15. Here, f (0 ) = 0 + b ⇒ −1 = b
x + 2 3x − 1
∴ f { f ( x )} = f =
3 x − 1 x + 2 and f (−1) = − a + b
3 −1 ⇒ −3 = − a + b
3 x − 1
⇒ −a = − 3 + 1
x + 2 + 6x − 2
= ⇒ a=2
3 x + 6 − (3 x − 1)
16. (gof )( x ) = g{ f ( x )} = g( x 2 − 1) = ( x 2 − 1 + 1)2 = x 4
7x
= =x
7 17. (fog )(−1) = f { g(−1)} = f (−7 ) = 5 − 49 = − 44
11. Given, f ( x ) = loge (3 x + 4)
2
18. We have, A = {1, 0, 1, 2}
Let y = loge (3 x + 4)
2
B = { 4, 2, 0, 2}
⇒ 3x 2 + 4 = e y and f , g : A → B
Now, f( x) = x2 − x
ey − 4
⇒ x= ⇒ f(0 ) = 0 − 0 = 0
3
and f(1) = 1 − 1 = 0
ey − 4 f(2 ) = 2 2 − 2 = 2
Here, ≥0 and
3
Ta rg e t E x e rc is e s
1
⇒ ey ≥ 4 Also, g( x ) = 2 x − − 1
2
⇒ y ≥ 2 loge 2 −1
⇒ g(0 ) = 2 − 1= 1− 1= 0
12. Given, f( x) = x2 + 2 x − 3 2
1
and g( x ) = x + 1 and g(1) = 21 − − 1 = 1 − 1 = 0
2
Q f { g( x )} = g{ f ( x )}
1
⇒ f ( x + 1) = g( x 2 + 2 x − 3) and g(2 ) = 2 2 − − 1
2
⇒ ( x + 1) + 2( x + 1) − 3 = x + 2 x − 3 + 1
2 2
2⋅3
= − 1= 2
⇒ x2 + 2 x + 1 + 2 x − 1 = x2 + 2 x − 2 2
⇒ 2x = −2 Thus, f ( x ) = g( x ), ∀x
∴ x = −1 Hence, f =g
40
3
Sequence and
Series
Introduction
Sequence Sequence is a function whose domain is the set N of natural numbers. Chapter Snapshot
Real Sequence A sequence whose range is a subset of R, is called a real sequence.
● Introduction
Progression It is not necessary that the terms of a sequence always follow a certain
● Arithmetic Progression (AP)
pattern or they are described by some explicit formula for the nth term.
Those sequences whose terms follow certain patterns, are called ● Geometric Progression (GP)
progressions. ● Harmonic Progression (HP)
Series By adding or subtracting the terms of a sequence, we get an expression ● Arithmetico-Geometric
which is called a series. If a1 , a 2 , a 3 , a 4 , ..., a n , ... is a sequence, then Progression (AGP)
the expression a1 + a 2 + a 3 + K + a n + K is the corresponding series. ● Some Special Series
A series is finite or infinite according as corresponding sequence is
finite or infinite, i.e. the number of terms in the corresponding
sequence is finite or infinite.
n
X Example 1. The first 3 terms of the sequence which is defined by a n = ,
n +1
2
are
5 10 1 2 3 2 1
(a) 2, , (b) , , (c) , , 3 (d) None of these
2 3 2 5 10 5 2
n
Sol. (b) On putting n = 1, 2, 3 in an = , we get
n2 + 1
1 1 2 2
a1 = =
, a2 = 2 =
12 + 1
2 2 +1 5
3 3
and a3 = 2 =
3 + 1 10
1 2 3
Hence, the first 3 terms are , and .
2 5 10
common difference.
Sol. We have, an = 4n + 5 (a) 2 (b) 3 (c) 4 (d) 5
On replacing n by (n + 1,) we get Sol. (b) Since, nth term is of the form An + B , therefore it is
an + 1 = 4(n + 1) + 5 = 4n + 9 an AP and the common difference is coefficient of n i.e. 3.
Now, an + 1 − an = (4 n + 9) − (4 n + 5)
Clearly, an + 1 − an = 4, ∀ n ∈ N iii. If a constant is added to or subtracted from
So, the given sequence is an AP with common each term of an AP, then the resulting
difference 4. sequence is also an AP with the same common
difference.
Properties of an Arithmetic Progression
X Example 6. If a, b and c are in AP, then which
i. If a is the first term and d is the common of the following will also be in AP?
difference of an AP, then its nth term or general
term a n is given by (a) 3 + a, 3 + b, 3 + c
a n = a + ( n − 1) d (b) a − 1, b − 2, c − 3
(c) a + 1, b + 2, c + 3
X Example 3. If the sequence 9, 12, 15, 18, ... is (d) a − k , b − 2k , c − 3k
an AP, then its general term is Sol. (a) a + 3, b + 3 and c + 3 are in AP because each
(a) 3n + 1 (b) 3n + 2 (c) 3n + 4 (d) 3n + 6 term of the given AP is being added by a constant number
Sol. (d) We have, d = (12 − 9) = 3 3.
As the given sequence is an AP with common
difference 3 and first term 9.
iv. If each term of a given AP is multiplied or
∴General term = nth term
divided by a non-zero constant k, then the
= a + (n − 1)d = 9 + (n − 1) 3 = 3n + 6 resulting sequence is also an AP with common
difference kd or d / k respectively, where d is
X Example 4. Let Tr be the rth term of an AP for the common difference of the given AP.
r =1, 2, 3,K , if for some positive integers m, n, we
1 1 X Example 7. If a, b and c are in AP, then
have Tm = and Tn = , then Tmn is equal to
n m prove that
1 1 1 1 1 1 1 1 1
(a) (b) + (c)1 (d) 0 a + , b + , c + are in AP.
mn m n b c c a a b
Sol. (c) Let a be the first term and d be the common Sol. Since, a, b and c are in AP.
difference. On dividing each term by abc, the resulting sequence
1 a b c
∴ Tm = a + (m − 1) d = ...(i) , and are in AP.
n abc abc abc
1 1 1 1
and Tn = a + (n − 1) d = ...(ii) ⇒ , and are in AP.
m bc ac ab
On subtracting Eq. (ii) from Eq. (i), we get ab + bc + ca ab + bc + ca ab + bc + ca
⇒ , , are in AP
1 1 m− n bc ac ab
(m − n)d = − =
n m mn [on multiplying each term by ab + bc + ca]
1 ab + bc + ca ab + bc + ca ab + bc + ca
⇒ d= ⇒ − 1, − 1, −1
mn bc ac ab
Again, Tmn = a + (mn − 1)d are in AP.
= a + (mn − n + n − 1)d [on adding − 1 to each term]
ab + ac ab + bc bc + ca
= a + (n − 1)d + (mn − n)d ⇒ , , are in AP.
1 bc ca ab
= Tn + n(m − 1)
⇒ a + , b + , c + are in AP.
1 1 1 1 1 1
mn
1 (m − 1) b c c a a b
= + =1
m m Hence proved.
Sol. (b) a + 1 , b + 1 and c + 1 are in AP, if and only if X Example 13. If the sum of three numbers in
bc ca ab
AP is − 3 and their product is 8, then the numbers
b + 1 − a + 1 = c + 1 − b + 1
are
ca bc ab ca
( b − a) (c − b ) (a) 2, 1, 4 (b) 2, −1, − 4
⇒ ( b − a) + = (c − b ) +
abc abc (c) 4, 2, 1 (d) None of these
⇒ (b − a){abc + 1} = (c − b ){abc + 1} Sol. (b) Let the numbers be a − d , a and a + d .
⇒ b− a=c − b Given, sum = − 3
⇒ 2b = a + c ⇒ (a − d ) + a + (a + d ) = − 3
which is true, as given a, b and c are in AP. ⇒ 3a = − 3 ⇒ a = − 1
vii. If the terms of an AP are chosen at regular and product = 8
intervals, then they form an AP. ⇒ ( a − d ) a( a + d ) = 8
⇒ a(a2 − d 2 ) = 8
X Example 11. If T1 , T2 , T3 , T4 , T5 , T6 , T7 ,… are ⇒ (− 1)(1 − d 2 ) = 8
in AP with common difference 2. Then, the ⇒ d2 = 9
difference of any two consecutive terms of the ⇒ d=± 3
sequence T1 , T4 , T7 , ... is If d = 3, then the numbers are − 4, − 1, 2.
(a) 3 (b) 4 (c) 6 (d) 8 If d = − 3, then the numbers are 2, − 1, − 4.
Sol. (c) Clearly, T1, T4 , T7,... are in AP. X Example 14. In a triangle, the lengths of the
Now, T4 − T1 = T1 + 3 × 2 − T1 = 6 two larger sides are 10 and 9, respectively. If the
angles are in AP, then the length of the third side
viii. If a n , a n +1 and a n + 2 are any three consecutive
can be
terms of an AP, then
(a) 91 (b) 3 3
2a n +1 = a n + a n + 2 43
(c) 5 (d) None of these
3 Sol. (d) Since, angles of a triangle are in AP.
∴
⇒
α + (α − δ) + (α + δ) = 180°
α = 60°
Sum of n Terms of an AP
The sum S n of n terms of an AP with first term a
Objective Mathematics Vol. 1
is equal to the sum of the first five terms, then the ratio of the
105 104 106 112 first term to the common difference is
1/2 2 1/4 4
2 If the 5th term of an AP is 11 and the 9th term is
7, then the 14th term is 10 If p, q and r are in AP, then p + r − 8 q is equal
3 3 3
−1 2 1 0 to
3 If p − 1, p + 3 and 3 p − 1 are in AP, then p is equal to − 6 pqr 4 pqr
2 pqr None of these
a 4 b −4 c 2 d −2
4 The 15th term of sequence x −7, x − 2 and x + 3 is 11 Consider an AP with first term a and common
difference d. Let S k denotes the sum of first k
x + 63 x − 63 63 − x 63 + x S
terms. If kx is independent of x, then
5 If the sum of three numbers of an AP is 24, then Sx
middle term is a = 2d a=d
6 8 3 2 2a = d None of these
6 The sum of the integers from 1 to 100 that are 12 If a1, a2 , a3 ,... are in AP such that
divisible by 2 or 5, is a1 + a5 + a10 + a15 + a20 + a24 = 225,
3000 3050
then a1 + a2 + a3 + .... + a23 + a24 is equal to
3600 None of these
909 75 750 900
7 If N which is the set of natural numbers, is
13 If the numbers a, b, c , d , e are in AP, then the
partitioned into subsets S1 = {1},S 2 = {2, 3},
S 3 = { 4, 5, 6}, ... , then the sum of the members in value of a − 4 b + 6 c − 4 d + e is
S 50 is 1 2 0 16c
62255 62525 14 Sum of n terms of the series
65225 62555
1 1 1
3 + 5 + 7 + ... + n terms + + + ... is
8 If = 7, then the value of n 2+ 5 5+ 8 8 + 11
5 + 8 + 11 + ...+ 10 terms
1
is 3n + 2 − 2 ( 3n + 2 − 2 )
3
35 36 37 40 3n + 2 + 2 None of these
Number of terms Terms Common ratio X Example 31. If 5, 25, 125,... are in GP, then
a 1, 5, 25,... are in
3 , a, ar r
r (a) AP (b) GP
a a
4 , , ar, ar 3 r2 (c) HP (d) None of these
r3 r
a a
, , a, ar, ar 2 Sol. (b)Q5, 25, 125,... are in GP.
5 r
r2 r On dividing each term by 5, we get the following
sequence 1, 5, 25 ,..., which is again a GP as here
If the product of the numbers is not given, then the a a
a1 = 1, 2 = 5, 3 = 5 and so on.
numbers can be taken as a, ar, ar 2 , ar 3 , ... . a1 a2
X Example 29. If the sum of three numbers in
GP is 38 and their product is 1728, then numbers
ii. The reciprocals of the terms of a given GP
form a GP.
are
(a) 8, 12, 18 (b) 8, 16, 32 1 1 1 1
X Example 32. If , 2 , 3 , 4 ,... are in GP,
(c) 18, 12, 8 (d) None of these 2 2 2 2
Sol. (a,c) Let the three numbers be a , a and ar. then 2, 2 2 , 2 3 ,... are in
r (a) AP (b) GP
Then, product = 1728 (c) HP (d) None of these
a. .
⇒ a ar = 1728
r Sol. (b) On reciprocating each term of a GP, we get the
⇒ a3 = 1728 following sequence 2, 2 2 , 2 3 , 2 4 ,... which is again a GP as
⇒ a = 12 a a
here a1 = 2, 2 = 2, 3 = 2 and so on.
Q Sum = 38 a1 a2
+ a + ar = 38 ⇒ a + 1 + r = 38
a 1
∴
r r iii. If each term of a GP is raised to the same
1 + r + r2 power, then the resulting sequence also form
⇒ 12 = 38
r a GP. 47
Example 37. If 3, 3 2 , 3 3 are in GP, then
3 X Example 33. If a, b and c are in GP, then
a 1/ 2 , b1/ 2 , c1/ 2 are in
X
log 3, log 9 and log 27 are in
(a) AP (b) GP
Objective Mathematics Vol. 1
(a) AP (b) GP
(c) HP (d) None of these
(c) HP (d) None of these
Sol. (a) Since, 3, 9 and 27 are in GP.
Sol. (b) Since, a, b and c are in GP.
1/ 2 1/ 2 ∴ 92 = 3 × 27
b b1/ 2 c1/ 2
=
b c c
= ⇒ ⇒ = ⇒ log 92 = log(3 × 27 )
a b a b a1/ 2 b1/ 2
⇒ 2 log 9 = log 3 + log 27
Hence, a1/ 2 , b1/ 2 and c1/ 2 are in GP.
Hence, log 3, log 9 and log 27 are in AP.
iv. In a finite GP, the product of the terms 5c 3b
X Example 38. If log , log and
equidistant from the beginning and the end is a 5c
always same and is equal to the product of the a
first and the last terms. log are in AP, where a, b and c are in GP,
3b
X Example 34. If 2, a, 2 3 , b and 2 5 are in GP, then a, b, c are the lengths of sides of
then ab is (a) an isosceles triangle (b) an equilateral triangle
(a) 32 (b) 64 (c) 128 (d) 55 (c) a scalene triangle (d) None of these
Sol. (b) Since, 2, a, 2 3 , b and 2 5 are in GP.. Sol. (d) Since, log 5c , log 3b and log a are in AP.
a 5c 3b
∴ Product of a and b = Product of first and last terms
= 2 ⋅ 2 5 = 2 6 = 64 ⇒
5c 3b
, and
a
are in GP.
a 5c 3b
v. Three non-zero numbers a, b and c are in GP 3b
2
5c a
⇒ = .
iff b 2 = ac. 5c a 3b
n n n ⇒ 3b = 5c
10
X Example 35. If ∑ n, ⋅ ∑ n 2 and ∑ n 3 Also, b 2 = ac
n =1 3 n =1 n =1 ∴ 9ac = 25c 2
are in GP, then the value of n is ⇒ 9a = 25c
9a
(a) 2 (b) 3 ⇒ = 5c = 3b
5
(c) 4 (d) None of these a b c
n
⇒ = =
10 n 2 n
5 3 9/ 5
∑ n, ⋅ ∑ n and ∑ n are in GP.
3
Sol. (c) Since,
3 n =1 ⇒ b+ c< a
n =1 n =1
Since, sum of two sides is smaller than the third side.
n (n + 1) 10 n (n + 1) (2 n + 1) n (n + 1) 2 2
⇒ , . , are in GP. So, triangle is not formed.
2 3 6 4
10 n (n + 1) (2 n + 1)
. 2 2 2
n (n + 1) n (n + 1)2
2
X Example 39. A circle of radius r is inscribed
⇒ = ⋅
9 .36 2 4 in a square. The mid-points of sides of the square
⇒ 20 (2 n + 1)2 = 81n (n + 1) have been connected by line segment and a new
⇒ n2 + n − 20 = 0 ⇒ n = 4 square resulted. The sides of the resulting square
were also connected by segment so that a new
vi. If the terms of a given GP are chosen at
square was obtained and so on, then the radius of
regular intervals, then the new sequence so
the circle inscribed in the nth square is
formed also form a GP.
1−n
X Example 36. If 1, 5, 25, 125, 625,... forms a (a) 2 2 r
GP, then the sequence consisting odd term of the
given GP, is 3 − 3 n
(a) AP (b) GP (c) HP (d) None of these (b) 2 2 r
Sol. (b) Clearly, the sequence of odd terms of the given GP
is 1, 25, 625 ,..., which is a GP as every term except the −n
first term bears a constant ratio to the term immediately (c) 2 2 r
preceding it.
vii. If a1 , a 2 , a 3 , ... , a n , ... are in GP of non-zero − 5 − 3n
non-negative terms, then log a1 , log a 2 , ..., (d) 2 2 r
48
log a n K are in AP and vice-versa.
n n
Sol. (a) Side of square S1 = 2 r 2r − 1
Side of square S 2 = r 2
Sol. (c) S n =
r
∑
=1 2
r
=
r =1
= n − + 2 + ... + n
1 1 1
1
∑ 1 − 2 r
3
3
1 1 1 Sol. (b) Let G1, G2 , G3 , G4 and G5 be five geometric means
Sol. (d) S k = 1 + + + ... = =
k + 1 (k + 1)2
1−
1 k between a = 576 and b = 9.
k+1 Then, 576, G1, G2 , G3 , G4 , G5 , 9 are in GP with common
Objective Mathematics Vol. 1
∴ k Sk = k + 1 ratio r given by
n n 1 1 1
Now, ∑ k Sk = ∑ (k + 1) = 2 + 3 + ... + (n + 1) r =
9 5+1 1 6 1
576
= =
64
Q r = b n + 1
a
k =1 k =1 2
n n(n + 3)
= [2 + (n + 1)] = 1 1
2 2 ∴ G1 = ar = 576 × = 288 , G2 = ar = 576 × = 144
2
2 4
1 1
Geometric Mean of Two Given Numbers G3 = ar 3 = 576 × = 72, G4 = ar 4 = 576 × = 36
8 16
Let a and b be two given numbers. Then, the 1
and G5 = ar 5 = 576 × = 18
geometric mean of a and b is a number G, such that a, 32
G, b are in GP. Hence, 288, 144, 72, 36, 18 are the required geometric
means between 576 and 9.
Now, a, G, b in GP.
G b X Example 46. If a is the AM of b and c and the
⇒ = ⇒ G 2 = ab ⇒ G = ab two geometric means are G1 and G2 , then G13 + G23
a G
This, the geometric mean of a and b is given by is equal to
(a) abc (b) 2abc (c) 3abc (d) 5abc
G = ab.
Sol. (b) It is given that a is the AM of b and c.
b+c
∴ a= ⇒ b + c = 2a ...(i)
Geometric Mean of n Given Numbers 2
Let a1 , a 2 , a 3 , ...., a n be n given numbers, then the Since, G1 and G2 are two geometric means between b
and c.
geometric mean of a1 , a 2 , ..., a n is given by
Therefore, b, G1, G2 , c are in GP with common ratio
G = ( a1 a 2K a n )1/ n 1
r = .
c 3
b
Insertion of n Geometric Means between 1/ 3
G1 = br = b
c
Now, = c1/ 3 b 2 / 3
a and b b
2/ 3
G2 = br 2 = b
c
Let a and b be two given numbers. If n numbers and = b1/ 3 c 2 / 3
b
G1 , G2 , ..., Gn are inserted between a and b such that
the sequence a, G1 , G2 , ..., Gn , b is a GP. Then, the ⇒ G13 = b 2c and G23 = bc 2
numbers G1 , G2 , ..., Gn are known as n geometric ⇒ G13 + G23 = b 2c + bc 2 = bc(b + c )
means (GM’s) between a and b. ⇒ G13 + G23 = 2 abc [from Eq. (i)]
Now, sequence a, G1 , G2 , ..., Gn , b is a GP X Example 47. If the arithmetic mean and
consisting of ( n + 2) terms. Let r be the common ratio of
geometric mean of a and b are A and G
this GP. respectively, then the value of A − G will be
Then, b = ( n + 2)th term = ar n + 1 2
a−b a+b a − b 2ab
1( n + 1) (c)
b b (a) (b) (d)
⇒ rn +1 = ⇒ = 2 2 2 a+b
a a
b
1/ ( n + 1 )
Sol. (c) Arithmetic mean of a and b = A = a + b
∴ G1 = ar = a 2
a Geometric mean of a and b = G = ab
2/ ( n + 1 ) a+ b a + b − 2 ab
b ∴ A−G = − ab =
G2 = ar 2 = a 2 2
a ( a )2 + ( b )2 − 2 a b a − b
2
= =
M M M 2 2
n / ( n + 1)
b
Gn = ar = a
n X Example 48. In the sequence 1, 2, 2, 4, 4, 4,
a 4, 8, 8, 8, 8, 8, 8,…, where n consecutive terms
Ø Product of n GM's between a and b, i.e.
have the value n, then 1025th term is
G1 × G 2 × G3 × ... × G m = (ab)n / 2 = G n (a) 2 9 (b) 210 (c) 211 (d) 2 8
Sol. (b) Let the 1025th term be 2 n . Then,
X Example 45. The five geometric means
1 + 2 + 4 + 8 +…+ 2 n − 1 < 1025 < 1 + 2 + 4 + 8 +…+ 2 n
between 576 and 9 are
∴ 2 n − 1 < 1025 < 2 n + 1 − 1 or 2 n < 1026 < 2 n + 1
(a) 192, 96, 48, 24, 12 (b) 288, 144, 72, 36, 18 ⇒ n = 10
50
(c) 208, 104, 52, 26, 13 (d) None of these Hence, 1025th term is 210 .
Work Book Exercise 3.2
1 The common ratio of a GP having 10th term and 8 If a,2b, 3c are in AP and a, b, c (distinct) are in
3
2 Any geometric series can be summed till infinite 9 If a GP having an even number of terms and the
number of terms by the formula sum of all terms is five times the sum of terms
a a occupying odd places, then the common ratio
S∞ = ;r∈R S∞ = ; r <1
1− r 1− r will be
a 3 5 4 1/4
S∞ = ; r >1 None of these
1− r
10 For n ≥ 3, the nth roots of unity form
3 If x, 2 x + 2 and 3 x + 3 are in GP, then the 4th an HP an AP
term is a GP None of these
27 − 27 13.5 − 13.5 11 If 1 + a + a2 + a3 + ... + an = (1 + a) (1 + a2 ) (1 + a4 ),
4 If 1, x, y, z and 2 are in GP, then xyz is equal to then n is equal to
3 5 7 9
4 2
8 None of these 12 The rational number 2.357357357 ... is
2355 2379 2355 2379
5 Which term of the sequence
10001 999 999 10001
2, 1, 2 − 1, 4− 1, 8− 1, ... is 128− 1?
13 91/ 3 ⋅ 91/ 9 ⋅ 91/ 27K is equal to
9th 8th 3
9 3 81 81
7th 10th
6 If a1, a2 , K , an are in AP, then 14 If b1, b2 and b3 (b1 > 0 ) are three successive terms
of a GP with common ratio r, then the possible
log a1, log a2 , ..., log an are in
value of r for which the inequality b3 > 4b2 − 3 b1
GP holds, is given by
not GP
4 2 2.5
AP
None of the above 15 If S denotes the sum to infinity and S n denotes
7 If the sum of the first 10 terms of a certain GP is the sum of n terms of the series
1 1 1 1
equal to 244 times the sum of first 5 terms. Then, 1 + + + + K, such that S − S n < , then
the common ratio is 2 4 8 1000
4 7 the least value of n is
2 3 8 9 10 11
X Example 50. The harmonic mean of the roots i. These three means possess the following
of the equation properties: A ≥G ≥ H
(5 + 2 ) x 2 − ( 4 + 5 ) x + 8 + 2 5 = 0 is X Example 52. The minimum value of
(a) 2 (b) 4 (c) 6 (d) 8 4 x + 41− x , x ∈ R , is
Sol. (b) Let α and β be the roots of given quadratic equation. (a) 2 (b) 4
Then, (c)1 (d) None of these
4+ 5 8+2 5
α +β = and αβ = Sol. (b)QAM ≥ GM for positive numbers.
5+ 2 5+ 2
4
4x +
Let H be the harmonic mean between α and β, then 4x ≥ 4
So, 4x ⋅ =2
2αβ 16 + 4 5 2 4x
H= = =4
α+β 4+ 5 ⇒ 4 x + 41− x ≥ 4
Insertion of n Harmonic Means between X Example 53. If 3, A and 2 are in AP, then
a and b 3+ 2
is greater than or equal to
The n numbers H1 , H 2 , ..., H n are said to be 2
harmonic means between a and b, if a, H1 , H 2 , ..., H n , b (a) 5 (b) 6
1 1 1 1 1 (c) 8 (d) None of these
are in HP, i.e. if , , , ..., , are in AP. Let d
a H1 H 2 Hn b Sol. (b)Q 3, A and 2 are in AP.
be the common difference of this AP. Then, 3+ 2
1 1 ∴ A= is the AM of 3 and 2.
= + ( n + 2 − 1) d 2
b a 3+ 2
Thus, ≥ 3⋅ 2 = 6
1 1 1 a−b 2
⇒ d= − =
n + 1 b a ( n + 1) ab X Example 54. If the product of n positive
1 1 a−b numbers is unity, then their sum is
Thus, = +
H1 a ( n + 1 ) ab (a) a positive integer (b) divisible by n
1
1 1 2( a − b) (c) equal to n + (d) never less than n
⇒ = + n
H 2 a ( n + 1) ab
Sol. (d) Since, product of n positive numbers is unity.
M M
∴ x1 ⋅ x2 ⋅ x3 K xn = 1 ...(i)
1 1 n( a − b) Using AM ≥ GM, we have
= +
H n a ( n + 1) ab x1 + x2 + x3 + K + xn
≥ ( x1 ⋅ x2 ⋅ x3 K xn )1/ n
n
X Example 51. Insert two harmonic means ⇒ x1 + x2 + K + xn ≥ n(1)1/ n
between 3 and 5. Hence, sum of n positive numbers is never less than n.
30 30 45 45
(a) , (b) , ii. A, G, H form a GP i.e. G 2 = AH
11 13 13 11
30 45 X Example 55. If AM of two terms is 9 and HM
(c) , (d) None of these
12 14 is 36, then GM will be
Sol. (b) a = 3, b = 5 and n = 2 (a)18 (b)12
1 1 (3 − 5) 13 45 (c)16 (d) None of these
∴ = + = ⇒ H1 =
H1 3 (2 + 1) (15) 45 13 Sol. (a)Q(AM)(HM) = (GM)2
1 1 2(3 − 5) 11 45
and = + = ⇒ H2 = ∴ 9 ⋅ 36 = (GM)2 ⇒ GM = 18
H2 3 (2 + 1) (15) 45 11
52
iii. If A, G and H are arithmetic, geometric and
harmonic means between three given
Sum of n Terms of an
Arithmetico-Geometric Progression 3
Arithmetico-Geometric − {a + ( n − 1) d} r n ; r ≠ 1
1 − r n − 1 [ a + ( n − 1) d ] r n
Progression (AGP) ⇒ Sn =
a
1− r
+ dr −
1− r
; r ≠1
(1 − r ) 2
A sequence of the form
a, ( a + d ) r, ( a + 2d ) r 2 , ..., [ a + ( n − 1) d ]r n − 1 , ... For r =1,
S n = a + ( a + d ) + ( a + 2d ) +…+ [ a + ( n − 1) d ]
is called an arithmetico-geometric progression.
n
= [2a + ( n − 1) d ]
Arithmetico-Geometric Series 2
Let a, ( a + d ) r, ( a + 2d ) r 2 , ( a + 3d ) r 3 , ... be an X Example 58. The sum of 10 terms of the
arithmetico-geometric progression. sequence 1, 6, 27, 108, ... is
Then, a + ( a + d ) r + ( a + 2d ) r 2 + ( a + 3d ) r 3 + K (a) 280481 (b) 280482
is an arithmetico-geometric series. (c) 280484 (d) 280483
Sol. (d) The given sequence can be rewritten as
X Example 57. The 8th term of the sequence 1, (1 + 1) ⋅ 3, (1 + 2 ⋅ 1) ⋅ 32 , (1 + 3 ⋅ 1) ⋅ 33 , ....
1, 4, 12, 32, 80, .... is which is an arithmetico-geometric progression with
(a) 1000 (b) 1200 a = 1, d = 1 and r = 3.
(c) 1024 (d) None of these a 1 − r9 [a + 9d ] r10
Hence, S10 = + dr −
1− r (1 − r )2
1− r
Sol. (c) The given sequence can be rewritten as
1 (1 − 39 ) [1 + 9] 310
1, (1 + 1) ⋅ 2, (1 + 2 ⋅ 1) ⋅ 2 2 , (1 + 3 ⋅ 1) ⋅ 2 3 ,... = + 3 −
−2 (1 − 3)2 (1 − 3)
Clearly, the sequence is an arithmetico-geometric
− 1 (3 − 310 ) 310 ⋅ 10
progression with a = 1, d = 1 and r = 2. = + +
2 4 2
∴ 8th term = (a + 7d ) ⋅ r 7 − 2 + 3 − 310 + 20 ⋅ 310
=
= (1 + 7 ⋅ 1) ⋅ 2 7= 8 ⋅ 2 7 4
1 + 19 ⋅ 310
= 2 3 ⋅ 2 7 = 210 = 1024 = = 280483 53
4
3
1
Sum of an Infinite Arithmetico-Geometric 1 102
= +
Progression 1−
1 1 − 1
2
102
Let r <1, then r n , r n − 1 → 0 as n → ∞ and it can
Objective Mathematics Vol. 1
102
also be shows that n ⋅ r n → 0 as n → ∞. So, from = +
102 104
a (1 − r n −1 ) [ a + ( n − 1) d ] r n 102 − 1 102 (102 − 1)2
Sn = + dr − , we get 102 − 1 + 1 104
1− r (1 − r ) 2 1− r = 102 2
=
(10 − 1) (10 − 1)
2 2 2
a dr 4
Sn → + as n → ∞ ∴ S=
2
×
10
=
2000
1 − r (1 − r ) 2 10 (102 − 1)2 9801
(c)
1000
∑ ∑ ∑ 1.
9801 i =1 j =1 k =1
(d) None of the above n i j n i
Sol. ∑ ∑ ∑1 = ∑ ∑ j
Sol. (b) Sum = 2 + 43 + 65 + 87 + ... i =1 j =1k =1 i =1 j =1
10 10 10 10
1 n 2 n
=
2 2 3 2 S
1 + 2 + 4 + ... =
= ∑ i + ∑ i
10 10 10 10 1 2 i = 1 i =1
Clearly, S1 is an arithmetico-geometric series with a = 1, 1 n(n + 1) (2 n + 1) n(n + 1)
1 = +
d = 1 and r = 2 . 2 6 2
10 n(n + 1)
a dr = [2 n + 1 + 3]
∴ S1 = + n
1 − r (1 − r )2 n(n + 1) (n + 2 )
=
6
(a) (3 n + 8n − 1) (b) (3 n + 7n + 1)
2 2
1 n 1 i. Denote the n th term by Tn and the sum of the
(c) (3 + 5n) (d) (3 n + 7n) series upto n terms by S n .
2 2
Sol. (a) The given series is 5 + 7 + 13 + 31 + 85 + ... ii. Rewrite the given series with each term shifted
The differences of successive terms are 2, 6, 18, 54, which
by one place to the right.
are in GP with common ratio i.e. 3.
∴ Tn = a(3)n −1 + bn + c iii. By subtracting the later series from the
On putting n = 1, 2, 3, we get former, find Tn .
T1 = a + b + c = 5 ...(i)
T2 = 3a + 2 b + c = 7 ...(ii) iv. From Tn , S n can be found by appropriate
and T3 = 9a + 3b + c = 13 ...(iii) summation.
On solving Eqs. (i), (ii) and (iii), we get
a = 1, b = 0 and c = 4
X Example 66. The sum of n terms of the series
∴ Tn = 3n −1 + 4
1 + 2 + 5 + 12 + 25 + 46 + ... is
1
∴ S n = ∑ Tn = ∑ (3n −1 + 4) (a) n ( n − 1) ( n 2 − 3n + 8)
12
3n − 1
= ∑ 3n −1 + ∑ 4 = + 4n 1
3−1 (b) n ( n + 1) ( n 2 − 3n + 8)
24
3n − 1 1
= + 4n = (3n + 8n − 1) 1
2 2 (c) n ( n + 1) ( n 2 − 3n + 8)
12
X Example 64. Find the sum to n terms (d) None of the above
3 + 7 + 13 + 21 + ... . Sol. (c) Let the sum of the series be S n and nth term of the
series be Tn . Then,
Sol. Let S = 3 + 7 + 13 + 21 + ... + Tn ... (i) S n = 1 + 2 + 5 + 12 + 25 + 46 + ... + Tn −1 + Tn …(i)
and S = 3 + 7 + 13 + ... + Tn − 1 + Tn ... (ii) Sn = 1 + 2 + 5 + 12 + 25 + ... + Tn −1 + Tn …(ii)
On subtracting Eq. (ii) from Eq. (i), we get
On subtracting Eq. (ii) from Eq. (i), we get
Tn = 3 + 4 + 6 + 8 + ... + (Tn − Tn − 1 )
0 = 1 + 1 + 3 + 7 + 13 + 21 + ... + (Tn − Tn −1 ) − Tn
n−1
=3+ [8 + (n − 2 )2 ] = 3 + (n − 1) (n + 2 ) ⇒ Tn = 1 + 1 + 3 + 7 + 13 + 21 + ... + t n −1 + t n …(iii)
2
[since, nth term of Tn is t n ]
= n2 + n + 1
⇒ Tn = 1 + 1 + 3 + 7 + 13 + ... + t n −1 + t n …(iv)
Hence, S = Σ(n2 + n + 1)
On subtracting Eq. (iv) from Eq. (iii), we get
= Σn2 + Σn + Σ1
0 = 1 + 0 + 2 + 4 + 6 + 8 + ... + (t n − t n −1 ) − t n
n(n + 1) (2 n + 1) n(n + 1)
= + + n ⇒ t n = 1 + 2 + 4 + 6 + 8 + ... + (n − 1) terms
6 2
n = 1 + [2 + 4 + 6 + 8 + ... + (n − 2 ) terms
= (n2 + 3n + 5) n−2
3 = 1+ [2 ⋅ 2 + (n − 2 − 1) 2 ]
2
X Example 65. Find the sum to n terms = 1 + (n − 2 ) (2 + n − 3)
= n2 − 3n + 3
1 + 4 + 10 + 22 + ... .
∴ Tn = Σt n = Σn2 − 3Σn + 3n
Sol. Let S = 1 + 4 + 10 + 22 + ... + Tn …(i) n(n + 1) (2 n + 1) n (n + 1)
= − 3⋅ + 3n
and S= 1 + 4 + 10 + ... + Tn − 1 + Tn …(ii) 6 2
n
On subtracting Eq. (ii) from Eq. (i), we get = (n2 − 3n + 5)
Tn = 1 + (3 + 6 + 12 + ... + Tn − Tn − 1 ) 3
2 n − 1 − 1 1
∴ S n = Σn3 − Σn2 + 5Σn
⇒ Tn = 1 + 3 3
2 −1 2
1 n (n + 1) 1 n(n + 1) (2 n + 1) 5 n (n + 1)
⇒ Tn = 3 ⋅ 2 n − 1 − 2 = − ⋅ + ⋅
3 2 6 1 3 2
So, S = ΣTn = 3Σ 2 n − 1 − Σ 2 n(n + 1) 2
= ⋅ [n + n − 4n − 2 + 10]
2 n − 1 6×2
= 3⋅ − 2n
2 −1 =
1
⋅ n (n + 1) (n2 − 3n + 8)
56 = 3⋅ 2n − 2n − 3 12
X Example 67. Find the sum to n terms of the
series 1 ⋅ 2 + 2 ⋅ 3 + 3 ⋅ 4 + ... .
Solution of Form (i) Let d be the common
difference of an AP. Then, a n = a1 + ( n − 1) d
Let sum of the series and n th term be denoted by S n
3
Sn =
1
( r − 1)( a 2 − a1 )
⇒ Tn =
1
( r + 1) d
(Vn − Vn − 1 )
Objective Mathematics Vol. 1
1 1 1 For r = 3
= −
3( a 2 − a1 ) a1 a 2 a 3 a n +1 a n + 2 + a n + 3 a1 a 2 a 3 + a 2 a 3 a 4 + ...+ a n a n + 1 a n + 2
1
= {a a a a − a 0 a1 a 2 a 3 }
Solution of Form (ii) Let S n be the sum and 4( a 2 − a1 ) n n + 1 n + 2 n + 3
Tn be the nth term of the series, then
S n = a1 a 2K a r + a 2 a 3K a r + 1 X Example 69. The sum of n terms of the series
+L + a n a n + 1 ... a n + r − 1 4 5 6
+ + + ... is
∴ Tn = a n a n + 1 a n + 2 ... a n + r − 2 a n + r − 1 1⋅ 2 ⋅ 3 2 ⋅ 3 ⋅ 4 3 ⋅ 4 ⋅ 5
Let Vn = a n a n + 1 a n + 2 ... a n + r − 2 a n + r − 2 a n + r n+3
(a)
[taking one extra term in Tn for Vn ] n( n + 1) ( n + 2)
∴ Vn − 1 = a n − 1 a n a n + 1 ... a n + r − 3 a n + r − 2 a n + r −1 n ( n + 1)
(b)
⇒ Vn − Vn − 1 = a n a n + 1 a n + 2 ... n( n + 1) ( n + 2)
a n + r − 1 ( a n + r − a n − 1 ) [from Eq. (i)] 5 2n + 5
= Tn {([ a1 + ( n + r − 1) d ] − [ a1 + ( n − 2) d ])} (c) −
4 2( n + 1) ( n + 2)
= ( r + 1) d Tn
(d) None of the above
58
n+ 3 1
Sol. (c) Here, Tn =
⇒ Tn =
1
n(n + 1) (n + 2 )
+
3
(n + 1) (n + 2 ) n(n + 1) (n + 2 ) ∴
1
=−
1
4
n(n + 1)(n + 2 )
= − (Vn − Vn − 1 )
= −2
Tn
[from Eq. (i)]
3
3
n
1 r
5 If ∑ Tr = (3n − 1), then find the sum of ∑T . 8 The sum of the series ∑ (r + 1)!, where
r =1 r =1 r r =1
n n ! = 1⋅ 2 ⋅ 3 ... n, is
Objective Mathematics Vol. 1
3 1 3 n
a 1 − b ( 3 − 1) n 1
4 3 2 a b 1−
( n + 1)! ( n + 1)!
3 1 1
n
c (1 − 3 n ) d 1 − 1 n +1
4 2 3 c d
( n + 1)! n!
6 The sum of n terms of the series 9 The sum of first n terms of the series
5 + 7 + 13 + 31 + 85 + ... is 13 + 3 × 2 2 + 33 + 3 × 42 + 53 + 3 × 62 + ..., when
1
a n(2 n + 1) n is even, is
2
1 n n+1 3 n 3
b ( 3 + 8n − 1) a ( n + 7 n2 − 3n − 1) b ( n + 7 n2 − 4n + 1)
2 8 8
1 2n n 3
c ( 3 − 2 n) c ( n + 4n2 + 10n + 8) d None of these
2 8
d None of the above
10 The sum of first n terms of the series
360
1 1 2 3
7 The sum of the series ∑ + + + ... is
k + 1 + (k + 1) k 1 + 12 + 14 1 + 2 2 + 2 4 1 + 32 + 34
k = 1 k
is 1 1 1
a 1 − 2 b
a
18
b
15 4 n + n + 1 n2 + n + 1
19 19
1 1 1
c
17
d
16 c d 1 − 2
19 19 n + n2 + n4 2 n + n + 1
60
WorkedOut Examples
Type 1. Only One Correct Option
Ex 1. If S 1 , S 2 and S 3 denote the sum of first n1 , n2 Ex 3. The sum of the products of 2n numbers
and n3 terms respectively of an AP, then ± 1, ± 2, ± 3, ..., ± n taking two at a time is
S1 S S n ( n + 1) n ( n + 1) ( 2n + 1)
( n2 − n3 ) + 2 ( n3 − n1 ) + 3 ( n1 − n2 ) is (a) − (b)
n1 n2 n3 2 6
n ( n + 1) ( 2n + 1)
equal to (c) − (d) None of these
(a) 0 6
(b) 1 Sol. We have, (1 − 1 + 2 − 2 + 3 − 3 + K + n − n)2
(c) S 1 S 2 S 3 = 12 + 12 + 22 + 22 + K + n2 + n2 + 2S
(d) n1 n 2 n 3 where, S is the required sum.
n1 ⇒ 0 = 2(12 + 22 + K + n2 ) + 2S
Sol. We have, S 1 = [ 2a + (n1 − 1)d ]
2 n(n + 1)(2n + 1)
⇒ S = − (12 + 22 + K + n2 ) = −
2S 1 6
⇒ = 2a + (n1 − 1)d
n1 Hence, (c) is the correct answer.
n2
S 2 = [ 2a + (n 2 − 1)d ] Ex 4. The number of terms common to two AP’s
2
2S 2 3, 7, 11, ..., 407 and 2, 9, 16, ..., 709 is
⇒ = 2a + (n 2 − 1)d (a) 21 (b) 28
n2
n3 (c) 14 (d) None of these
and S3 = [ 2a + (n 3 − 1)d ] Sol. By inspection, first common term to both the sequences
2
2S 3 is 23. Second common term = 51
⇒ = 2a + (n 3 − 1)d Third term = 79 and so on.
n3
These numbers form an AP 23, 51, 79, ...
2S 1 2S 2 2S 3
∴ (n 2 − n3 ) + (n 3 − n1 ) + (n1 − n 2 ) Q T15 = 23 + 14 (28) = 23 + 392 = 415 > 407
n1 n2 n3 and T14 = 23 + 13 (28) = 387 < 407
= [ 2a + (n1 − 1)d ](n 2 − n 3 ) + [ 2a + (n 2 − 1)d ] ∴ Number of common terms = 14
(n 3 − n1 ) + [ 2a + (n 3 − 1)d ](n1 − n 2 ) Hence, (c) is the correct answer.
=0 Aliter
Hence, (a) is the correct answer. Let tm = tn
⇒ 3 + (m − 1) 4 = 2 + (n − 1) 7
Ex 2. Let a and b be two given numbers. If A denotes ⇒ 4 m − 1 = 7n − 5
the single AM and S denotes the sum of n AM’s ⇒ 4 (m + 1) = 7n
between a and b, then S / A depends on m+1 n
⇒ = = λ,
(a) n, a, b (b) n, b (c) n, a (d) n 7 4
where, m ≤ 102
Sol. Q A is the single AM between a and b.
and n ≤ 102
a+ b
∴ A= ∴ m = 7λ − 1, n = 4 λ
2 5 2
Let A1 , A2 , K , An be n AM’s between a and b. λ ≤ 14 and λ ≤ 25
7 4
∴ a, A1 , A2 , ..., An , b is an AP with common difference ∴ λ ≤ 14 , number of common terms = 14
b−a Hence, (c) is the correct answer.
d=
n+1
n
Ex 5. The sum of all the numbers of the form n 3
Now, S = A1 + A2 + K + An = ( A1 + An ) which lie between 100 and 10000, is
2
n n (a) 43261
= (a + d + b − d ) = (a + b) (b) 53261
2 2
a + b (c) 63261
∴ S =n = nA (d) None of the above
2
S Sol. The smallest and the largest numbers between 100 and
⇒ =n 10000, which can be written in the form n3, are
A 61
Hence, (d) is the correct answer. 53 = 125 and 213 = 9261
∴ Required sum
3 = 5 + 6 + 7 + ... + 21 =
3 3 3 3
21
∑ n3 − ∑ n
n= 1
4
n= 1
3
Ex 8. If three positive real numbers a, b and c are in
AP such that abc = 4, then the minimum
possible value of b is
Objective Mathematics Vol. 1
−2
(a) z = x
3
(b) x = y Thus, minimum possible value ofb is 22 / 3, that is the
case when d = 0.
(c) z −2 = y (d) None of these
Hence, (b) is the correct answer.
Sol. Let d be the common difference.
Then, log y x = 1 + d ⇒ x = y1 + d Ex 9. If the lengths of sides of a right triangle are in
logz y = 1 + 2d ⇒ y = z1 + 2 d AP, then the sines of the acute angle are
and − 15 logx z = 1 + 3d 3 4 2 1
(a) , (b) ,
⇒ z = x − (1 + 3 d) / 15 5 5 3 3
∴ x = y1 + d = z(1 + 2 d) (1 + d )
5−1 5+1 3 −1 3+1
= x − (1 + d ) (1 + 2 d) (1 + 3 d) / 15 (c) , (d) ,
⇒ (1 + d ) (1 + 2d ) (1 + 3d ) = − 15
2 2 2 2
⇒ 6d 3 + 11d 2 + 6d + 16 = 0 Sol. Let the sides of the triangle be a − d, a, a + d, where
⇒ (d + 2) (6d 2 − d + 8) = 0 a > d > 0. By Pythagoras theorem, we have
⇒ d = −2 (a + d )2 = (a − d )2 + a2
∴ x = y1 + d = y−1 , y = z1 − 4 = z−3 a
⇒ 4 ad = a2 ⇒ d =
4
and x = (z−3 )−1 = z3 a 4
Hence, (a) is the correct answer. We have, sinθ = =
a+ d 5
1 ⋅ 2 ⋅ 3 + 2 ⋅ 3 ⋅ 4 + 3 ⋅ 4 ⋅ 5 +... upto n terms sin (90° − θ ) =
3
Ex 7. L = lim and
n→ ∞ n (1 ⋅ 2 + 2 ⋅ 3 + 3 ⋅ 4 +... upto n terms) 5
Hence, (a) is the correct answer.
is equal to
n
3 1 1
(a)
4
(b)
4
Ex 10. If S n = ∑ t r = 6 n(2n 2 + 9n + 13), then
r =1
1 5 n
(c) (d)
2
n+ 1
4 ∑ t r is equal to
r =1
Sol. Numerator = ∑ (r − 1) r (r + 1) (a)
1
n ( n + 1) (b)
1
n( n + 2)
r=2
n+ 1 n+ 1
2 2
= ∑ (r3 − r) = ∑ (r3 − r) 1
(c) n( n + 3)
1
(d) n( n + 5)
r=2 r=1 2 2
1 1
= (n + 1)2 (n + 2)2 − (n + 1) (n + 2) Sol. We have, tn = S n − S n − 1 , ∀ n ≥ 1
4 2 1
n n ∴ tn = n(2n2 + 9n + 13)
Also, ∑ r (r + 1) = ∑ [(r + 1)2 − (r + 1)] 6
1
r=1
n+ 1
r=1
n+ 1
− (n − 1) {2(n − 1)2 + 9(n − 1) + 13}
6
= ∑ (s2 − s) = ∑ (s2 − s) 1
= [ 2{(n)3 − (n − 1)3} + 9{n2 − (n − 1)2}
s=2 s=1 6
=
1 1
(n + 1)(n + 2)(2n + 3) − (n + 1)(n + 2) + 13 (n − n + 1)]
6 2 1
= [ 6n − 6n + 2 + 9 (2n − 1) + 13 ]
2
Thus, 6
1 1 2
2
1 1 2
2 1
1 + 1 + − 2 1 + 1 + = (6n2 + 12n + 6) = (n + 1)2
4 n n 2n n n 6
L = lim n n
1
n→ ∞ 1 1 2 3 1 1
1 + 1 + 2 + − 1 + 1 +
2 ∴ ∑ tr = ∑ (r + 1) = (n + 1) (n + 2) − 1
6 n n n 2n n n r=1 r=1
2
1 6 3 1
= × = =
n (n + 3)
62 4 2 4 2
Hence, (a) is the correct answer. Hence, (c) is the correct answer.
Ex 11. Let a n be the nth term of an AP. If
1099
∑ a 2r = 10100 and
1099
∑ a 2r − 1 = 10 99 , then the
Ex 14. The sum of infinite terms of a decreasing GP is
equal to the greatest value of the function
f ( x ) = x 3 + 3x − 9 in the interval [− 2, 3] and
3
(a) 3 (b)
1 On solving Eqs. (i) and (ii), i.e. a = 27(1 − r) and
3 2 4
a(1 − r) = 3, we get r = , but r < 1
(c) 9 (d) None of these 3 3
3n Hence, (c) is the correct answer.
Sol. S (3n) = [ 2a + (3n − 1)d ]
2
2n
Ex 15. The value of
S (2n) = [ 2a + (2n − 1)d ] n
1
n
2
∑ a + rx + a + ( r − 1) x
is
S (n) = [ 2a + (n − 1) d ] r =1
2 n
n (a)
∴ S (2n) − S (n) = [ 2{2a + (2n − 1) d} − 2a − (n − 1)d ] a + a + nx
2
n
= [ 2a + (3n − 1)d ] =
S (3n) a + nx + a
2 3 (b)
S (3n) x
∴ =3 n( a + nx − a )
S (2n) − S (n) (c)
Hence, (a) is the correct answer. x
(d) None of the above
Ex 13. The lengths of three unequal edges of a 1
Sol. Let tr =
rectangular solid block are in GP. The volume a + rx + a + (r − 1)x
of the block is 216 cm 3 and the total surface a + rx − a + (r − 1)x
area is 252 cm 2 . The length of the longest edge =
a + rx − a − (r − 1)x
is
1
(a) 12 cm (b) 6 cm (c) 18 cm (d) 3 cm = [ a + rx − a + (r − 1)x ]
x
a 1
Sol. Let the edges be , a and ar, where r > 1. ∴ t1 + t2 + ... + tn = [{ a + x − a} + { a + 2x
r x
According to the question, − a + x } + ... + { a + nx − a + (n − 1)x }]
a
⋅ a ⋅ ar = 216 ⇒ a3 = 216 ⇒ a = 6 1
r = [ a + nx − a ]
x
a a a + nx − a
and 2 ⋅ a + a ⋅ ar + ⋅ ar = 252 =
r r
x ( a + nx + a )
1 7 1
∴ + r + 1= ⇒ r= ,2 n
r 2 2 =
a + a + nx
Since, a = 6 and r = 2, so the longest side = ar = 12 63
Hence, (a) is the correct answer. Hence, (a) is the correct answer.
3 Sol. On taking AM and GM of 7 numbers
n k
Ex 16. If ∑ ∑ m 2 = an 4 + bn 3 + cn 2 + dn + e, then a a b b b
, , , , ,
c c
, , we get
k = 1 m = 1 2 2 3 3 3 2 2
Objective Mathematics Vol. 1
1 1 a b c 1
(a) a = (b) b = 2⋅ + 3⋅ + 2⋅ a 2 b 3 c 2 7
2 3 2 ≥
12 2
7 2 3 2
1
(c) d = (d) e = 1 1
5 3 a2b3c2 7
⇒ ≥
n k n
k (k + 1)(2k + 1) 7 223322
Sol. ∑ ∑ m2 = ∑
k = 1 m = 1
6 37 a2b3c2
k=1 ⇒ ≥ 2 3 2
n 7 7
2 ⋅3 ⋅2
1
6 k∑
= (2k 3 + 3k 2 + k ) 310 ⋅ 24
=1
⇒ a2b3c2 ≤
77
2
1 n(n + 1) 1 n(n + 1)(2n + 1) 1 n(n + 1) ∴ Greatest value of a b c2 3 2
= ⋅ + +
3 2 2 6 6 2 310 ⋅ 24
=
1 1 1
a = Coefficient of n4 = ⋅ = 77
3 4 12 Hence, (a) is the correct answer.
Hence, (a) is the correct answer.
1 1 1
Ex 20. If a, b and c are digits, then the rational number
log + +
5 4
+K represented by 0. cababab..., is
8 16
Ex 17. The value of (0. 2) is 99c + ba 99c + 10a + b
1 (a) (b)
(a) 1 (b) 2 (c) (d) 4 990 99
2 99c + 10a + b
1 (c) (d) None of these
990
1 1 1 1
Sol. We have, + + +K= 4 = = 2−1 Sol. Let R = 0. cababab K
4 8 16 1 2
1− = 0. c + 0.0ab + 0.000ab + K
2
1 1 1 2−1 c ab ab
log + +
54
+ K
1
log
5 = + + +K
∴ (0.2) 8 16
= 10 103 105
5
−1
ab
log 5 2 2 c 103 c ab 102
= (5−1 ) 1/ 2 = 52 log 5 2 = 5log 5 (2) = 22 = 4 = + = + ×
10 1 − 1 10 103 99
Hence, (d) is the correct answer.
10
2
(a)
3 ⋅210 4
(b)
3 ⋅2
9 4 integral part of x, then the value of ∑ f (n) is
n =1
77 77
(a) 50 (b) 51
3 ⋅ 24
8
64 (c) (d) None of these (c) 1 (d) None of these
77
1 1
Sol. f (1) =
M
+
2 100
M
= 0,...,
M
Ex 24. ABCD is a square of length a, a ∈ N , a >1.
Let L1 , L2 , L3 , ... , La − 1 be points on BC such
that BL1 = L1 L2 = L2 L3 = K = 1 and
3
1 100 1
f (100) = + =1 (a) a( a − 1) 2
2 100 2
100
1
∴ ∑ f (n) = (10 44
+ 0 + K + 0) + (1 + 1 + K + 1) = 51 (b) a( a − 1)( 4a − 1)
n= 1
2443 1442443 2
49 terms 51terms
1
Hence, (b) is the correct answer. (c) ( a − 1)( 2a − 1)( 4a − 1)
2
Ex 22. Ar , r =1, 2, 3, ..., n are n points on the parabola (d) None of the above
y 2 = 4x in the first quadrant. If Ar = ( x r , yr ), Sol. a
A B
where x1 , x 2 , x 3 , ..., x n are in GP and x1 = 1,
L1
x 2 = 2, then yn is equal to L2
n+1
(a) 2 2 (b) 2n + 1 (c) ( 2 ) n + 1 (d) 2n/ 2
La – 1
Sol. y = 2 x , being in the first quadrant.
D Ma –1 M 2 M2 C
The sequence of x-coordinates is 1, 2, 4, 8, ...
∴The sequence of y -coordinates is AL21 + L1M 12 = (a + 12 ) + {(a − 1)2 + 12}
2
n+1 a
a AL 2 L 2M 2 (a) AP (b) GP
⇒ L1M 1 = and =
n+1 AB BC (c) HP (d) None of these
2 L 2M 2
⇒ = Sol. Since, x , y and z are in GP.
n+1 a
∴ y2 = xz
2a
⇒ L 2M 2 = and so on. Taking log on both sides, we get
n+1
2ln y = ln x + ln z
∴ Required sum ⇒ 2 + 2 ln y = (1 + ln x ) + (1 + ln z)
a 2a 3a na
= + + +K+ ⇒ 2(1 + ln y) = (1 + ln x ) + (1 + ln z)
n+1 n+1 n+1 n+1 ∴ 1 + ln x , 1 + ln y and 1 + ln z are in AP.
a a n(n + 1) an 1 1 1
= (1 + 2 + K + n) = ⋅ = ⇒ , and are in HP.
n+1 n+1 2 2 1 + ln x 1 + ln y 1 + ln z
Hence, (c) is the correct answer. Hence, (c) is the correct answer.
1 1 β + δ 1 1 6/ B
∴ H m − H 1 = (m + 1) ab − ∴ = + = =6
b + ma a + mb βδ β δ 1/ B
(m − 1) (b − a) 1 1
+ d + + 3d = 6
= (m + 1) ab
or
α α
(b + ma)(a + mb) 1
(m2 − 1) ab (b − a) ⇒ + 2d = 3 …(ii)
= α
m (a2 + b2 ) + (m2 + 1) ab From Eqs. (i) and (ii), we get
(m2 − 1) ab (b − a) 1
= 1, d = 1
= [from Eq. (i)]
m2 − 1 α
1 1 1 1
= ab (b − a) ∴ = 1, = 2, = 3 and =4
α β γ δ
Hence, (c) is the correct answer.
1
Since, =A ⇒ A=3
Ex 34. If a, b and c are in AP and a, mb, c are in GP, αγ
1
then a, m 2 b and c are in Also, =B ⇒ B=8
βδ
(a) HP (b) GP Thus, A = 3 and B = 8
(c) AP (d) None of these 67
Hence, (a) is the correct answer.
3 Ex 37. If log (x + z ) + log (x + z − 2 y) = 2 log (x − z ),
then x, y and z are in
Sol. We have, ai = ai − 1 + 1
⇒ ai2 = ai2− 1 + 2ai − 1 + 1
Putting i = 1, 2, 3, ..., n + 1, we get
Objective Mathematics Vol. 1
(a) GP (b) AP
(c) HP (d) None of these a12 = 0
Sol. Given, log(x + z) + log(x + z − 2 y) = 2 log(x − z) a22 = a12 + 2a1 + 1
⇒ log[(x + z − 2 y) (x + z)] = log(x − z)2 a32 = a22 + 2a2 + 1
⇒ (x + z − 2 y) (x + z) = (x − z)2 M M M
an2 = an2 − 1 + 2an − 1 + 1
⇒ x 2 + 2xz + z2 − 2 yz − 2xy = x 2 + z2 − 2xz
⇒ 4 xz = 2 yz + 2xy ⇒ 2xz = y (x + z) an2 + 1 = an2 + 2an + 1
2xz n+ 1 n n
∴ y=
x+z On adding, we get ∑ ai2 = ∑ ai2 + 2 ∑ ai + n
i=1 i=1 i=1
So, x , y and z are in HP. n
Hence, (c) is the correct answer. ⇒ 2 ∑ ai = − n + an2 + 1 ≥ − n
i=1
Ex 38. If H1 , H 2 , ..., H n are n harmonic means a1 + a2 + ... + an 1
⇒ ≥−
between a and b ( ≠ a ), then value of n 2
H1 + a H n + b According to the question,
+ is a + a2 + ... + an
H1 − a H n − b x= 1 ⇒ x≥−
1
n 2
(a) n + 1 (b) n − 1 Hence, (b) is the correct answer.
(c) 2n (d) 2n + 3
Sol. As a, H 1 , H 2 , ..., H n , b are in HP. Ex 40. The sum of first n terms of the series
1 1 1
⇒ , , , ...,
1 1
, are in AP.
12 + 2 ⋅ 2 2 + 3 2 + 2 ⋅ 4 2 + 5 2 + 2 ⋅ 6 2 + ... is
a H1 H2 Hn b n( n +1) 2
Let d be the common difference of an AP, then , when n is even. When n is odd, the
2
1 1
= + (n + 1) d sum is
b a
1 a−b n 2 ( n + 1) n( n + 1) 2
⇒ d= ⋅ (a) (b)
n + 1 ab 2 2
Thus,
1 1
= + d and
1 1
= −d n( n + 1) 2 n( n + 1)
H1 a Hn b (c) (d)
a b 2 2
⇒ = 1 + ad and = 1 − bd
H1 Hn Sol. When n is odd, last term will be n2.
a b Then, the sum is
1+ 1+
H1 + a Hn + b H1 Hn 12 + 2 ⋅ 22 + 32 + 2 ⋅ 4 2 + 52 + 2 ⋅ 62 + ... + 2(n − 1)2 + n2
Now, + = +
H1 − a Hn − b 1 − a 1−
b (n − 1)n2 n(n + 1)2
H1 Hn = + n2 replacing n by n − 1 in
2 2
1 + 1 + ad 1 + 1 − bd n3 − n2 + 2n2
= + =
1 − 1 − ad 1 − 1 + bd 2
2 + ad 2 − bd 2a − abd − 2b − abd n3 + n2 n2 (n + 1)
= + = = =
− ad bd abd 2 2
2[(a − b) − abd ] Hence, (a) is the correct answer.
=
abd
Ex 41. If three positive real numbers a, b, c are in AP
2[(n + 1) dab − abd ]
= = 2n such that abc = 4, then the minimum possible
abd
value of b is
Hence, (c) is the correct answer.
(a) 23/ 2 (b) 22/ 3 (c) 21/ 3 (d) 25/ 2
Ex 39. If a1 = 0 and a1 , a 2 , a 3 , ..., a n are real numbers Sol. Let d be the common difference of an AP, then
such that a i = a i − 1 + 1 for all i, then the AM 4 = abc = (b − d ) b(b + d ) = b(b2 − d 2 )
9 9
91 times
2 1
1
= [(107 )13 − 1] + tan −1 + tan −1 + ... is
9 25 18
(107 )13 − 1 107 − 1 1
= (a) tan −1 ( 3) (b) cot −1
10 − 1 10 − 1
7
3
= [(107 )12 + (107 )11 + ...+ 107 + 1] 1
(c) tan −1 (d) None of these
× [106 + 105 + ...+ 10 + 1] 3
⇒ a 91 is not prime. 2
2
Hence, (a), (b), (c) and (d) are the correct answers. Sol. Let Tr = tan −1 , then
r + 1
−1
n n
Ex 46. If a, b, c and d are four unequal positive 2 r+ 2−r
numbers which are in AP, then
Sn = ∑ tan = ∑
r + 2r + 1 r = 1
2
tan −1
1 + r(r + 2)
r=1
1 1 1 1 1 1 1 1 n
+ = + + < +
(a)
a d b c
(b)
a d b c
= ∑ (tan −1 (r + 2) − tan −1 r)
r=1
1 1 1 1 1 1 4 S n = tan −1 (n + 2) + tan −1 (n + 1) − tan −1 2 − tan −1 1
(c) + > + (d) + >
a d b c b c a+d 3n2 + 7n
= tan −1 2
Sol. Let b = a + p, c = a + 2 p, d = a + 3 p n + 9n + 10
1 1 1 1 1
+ + ∴ S ∞ = tan −1 (3) = cot −1
a d = a a + 3p 3
1 1 1 1 Hence, (a) and (b) are the correct answers.
+ +
b c a + p a + 2p
(a + p) (a + 2 p) Ex 48. If a, b and c are three unequal positive
=
a (a + 3 p) quantities in HP, then
a2 + 3ap + 2 p2 (a) a100 + c100 > 2b100 (b) a 3 + c 3 > 2b 3
= >1
a2 + 3ap (c) a 5 + c 5 > 2b 5 (d) a 2 + c 2 > 2b 2
1 1 1 1
⇒ + > + Sol. Since, b is the HM of a and c and their GM = ac
a d b c
1 1 1 1 ∴ GM > HM
∴ + (a + d ) = + (a + a + 3 p) ⇒ ac > b
b c a + p a + 2 p
and AM of a n and c n > GM of an and cn
(2a + 3 p)2
= an + cn
a + 3ap + 2 p2
2
> a nc n
2
p2
=4+ 2 >4 a n + c n > 2( ac )n > 2bn
a + 3ap + 2 p2 Put n = 100, 3, 5, 2
Hence, (c) and (d) are the correct answers. Hence, (a), (b), (c) and (d) are the correct answers.
70
Sol. Let Tk + 1 = ark and T ′ k + 1 = brk
3
6
1 a3b2c 9 1
⇒ ≥ or a3b2 c ≤ 6 ⇒ a3b2c ≤
6 9 6 5184 Q T ″ k + 1 = ark + brk = (a + b)rk
Also, sum upto n terms of an AP is always a quadratic ∴T ″ k + 1 is general term of a GP with common
(b) GP
Sol. Since, p, q and r are in AP. (c) HP
∴b p , bq , br are in GP for any b (b > 0) (d) AGP
⇒ b p − 1 , bq − 1 , br − 1 are in GP. Sol. We have, A171 + A172 = − 2 + 1027 = 1025
p −1 q −1 r−1 2 A171 + 2 A172
⇒ ab , ab , ab are in GP for any a (a ≠ 0) ∴ = 1025
2
. So, pth, qth and rth terms of any GP are in GP.
Also, G5 = 1 × 25 = 32
Hence, (b) is the correct answer.
Now, G52 = 1024
Passage II (Ex. Nos. 56-60) Let A1, A2, A3, ..., A m be
i.e. G52 + 1 = 1025
arithmetic means between −2 and 1027 and
G1, G2, G3, ..., Gn be geometric means between 1 and So, 2 A171 , G52 + 1 and 2 A172 are in AP.
1024. Product of geometric means is 2 45 and sum of Hence, (a) is the correct answer.
arithmetic means is 1025 × 171.
Passage III (Ex. Nos. 61-63) There are two sets A
and B each of which consists of three numbers in AP
Ex 56. The value of n is
whose sum is 15 and where D and d are the common
(a) 7 (b) 9 p 7
difference such that D − d = 1. If = , where p and q
(c) 11 (d) None of these q 8
Sol. G1 G2 … Gn = ( 1 × 1024 )n = 25n are the product of the numbers respectively and d > 0, in
the two sets.
∴ 25n = 245 ⇒ n=9
Hence, (b) is the correct answer. Ex 61. The value of p is
(a) 100 (b) 120
Ex 57. The value of m is (c) 105 (d) 110
(a) 340 (b) 342 (c) 344 (d) 346
Sol. Q A1 + A2 + A3 + ... + Am− 1 + Am Ex 62. The value of q is
= 1025 × 171 (a) 100 (b) 120
− 2 + 1027 (c) 105 (d) 110
∴ m = 1025 × 171
2
⇒ m = 342 Ex 63. The value of D + d is
Hence, (b) is the correct answer. (a) 1 (b) 2
(c) 3 (d) 4
Ex 58. The value of G1 + G2 + G3 + K + Gn is Sol. (Ex. Nos. 61-63) Let numbers in set A be a − D, a, a + D
(a) 1022 (b) 2044 and in set B be b − d , b, b + d.
(c) 512 (d) None of these 3a = 3b = 15
⇒ a=b=5
Sol. Q n = 9
1 Now, set A = {5 − D , 5, 5 + D}
∴ r = (1024 )=2 9+ 1 and set B = {5 − d , 5, 5 + d}
where, D=d+1
So, G1 = 2 andr=2
2 (29 − 1) p 5(25 − D 2 ) 7
Now, G1 + G2 + K + Gn = ∴ = =
2−1 q 5(25 − d 2 ) 8
= 1024 − 2 = 1022 ⇒ 25 (8 − 7) = 8 (d + 1)2 − 7d 2
Hence, (a) is the correct answer. ⇒ d = − 17, 1 but d > 0
⇒ d =1
Ex 59. The common difference of the progression
So, numbers in set A are {3, 5, 7} and in set B are{4 , 5, 6}.
A1 , A3 , A5 , ..., Am − 1 is
Now, p = 3 × 5 × 7 = 105
(a) 6 (b) 3 (c) 2 (d) 1
and q = 4 × 5 × 6 = 120
Sol. Common difference of sequence A1 , A2 ,..., Am
Hence, value of D + d = 3
1027 + 2
= =3
342 + 1 61. (c)
∴Common difference of sequence A1 , A3 , A5 ,..., Am− 1 62. (b)
is 6.
Hence, (a) is the correct answer. 63. (c)
72
⇒ 2d 2 − 2d + 3a2 − a = 0
Passage IV (Ex. Nos. 64-66) Four different integers
form an increasing AP. One of these numbers is equal to
the sum of the squares of the other three numbers.
∴
1
d = [1 ± 1 + 2a − 6a2 ] …(i)
2
3
+
(10 − 7) (10 + 7)
+ ...
⇒ S =
1
3
Objective Mathematics Vol. 1
1 1 1 1
72 ⋅ 102 C. HM of , , ,
2 3 4 5
4 2 − 12 72 − 4 2 102 − 72 4 240
⇒ 3S = + 2 2 + 2 + ... = =
12 ⋅ 4 2 4 ⋅7 7 ⋅ 102 1 1 1 1 77
+ + +
1 1 1 1 1 2 3 4 5
⇒ 3S = 1 − 2 + 2 − 2 + 2 − 2 + ...
4 4 7 7 10 A → q; B → r; C → p
74
Target Exercises
Type 1. Only One Correct Option
1. The next term of the sequence 1, 5, 14, 30, 55, ... is 1 1 1 1 1 1
12. If , and are in AP, then + −
(a) 91 (b) 85 (c) 90 (d) 95 a b c a b c
1 1 1
2. The next term of the sequence 1, 3, 6, 10, ... is + − is equal to
b c a
(a) 16 (b) 13 (c) 15 (d) 14
4 3 b2 − ac
3. In a certain AP, 5 times the 5th term is equal to (a) − (b)
ac b2 a2 b2 c2
8 times the 8th term, then 13th term is
4 1
(a) − 13 (b) − 12 (c) − 1 (d) 0 (c) − (d) None of these
ac b2
4. If a1 = a 2 = 2, a n = a n − 1 − 1 ( n > 2), then a 5 is 13. If 7th and 13th terms of an AP are 34 and 64
(a) 0 (b) − 2 (c) − 1 (d) 1 respectively, then its 18th term is
(a) 87 (b) 88 (c) 89 (d) 90
5. The second term of an AP is ( x − y ) and the fifth term
is ( x + y ), then its first term is 14. If the roots of the equation x − 12x + 39x − 28 = 0
3 2
Targ e t E x e rc is e s
6. If a, b and c are the sides of a ∆ABC are in AP, then 15. Given that a, b and c are in AP. The determinant
C x+1 x+ 2 x+ a
cot is equal to
2 x + 2 x + 3 x + b in its simplest form is equal to
(a) 3 tan
A
(b) 3 tan
B x+3 x+4 x+c
2 2
A B (a) x 3 + 3ax + 7c (b) 0
(c) 3 cot (d) 3 cot
2 2 (c) 15 (d) 10x 2 + 5x + 2c
7. If a, b, c, d , e and f are in AP, then e − c is equal to 1 1 1 1 1 1
16. If a + , b + and c + are in AP,
b c c a a b
(a) 2 (c − a) (b) 2 (d − c)
then
(c) 2 ( f − d ) (d) d − c
1 1 1
(a) , and are in AP (b) a, b and c are in HP
8. If cos x = b, then for what b do the roots of the a b c
equation form an AP? 1 1 1
(c) , and are in GP (d) a, b and c are in AP
1 a b c
(a) − 1 (b)
2 17. If a, b and c are in AP, then ( a + 2b − c ) ( 2b + c − a )
3
(c) (d) None of these ( c + a − b ) equals
2 abc
(a) (b) abc (c) 2abc (d) 4 abc
9. If log 3 2, log 3 ( 2x − 5) and log 3 ( 2x − 7 / 2) are in 2
AP, then x is equal to 18. If a, b and c are in arithmetic progression, then
(a) 2 (b) 3 (c) 4 (d) 2, 3 1 1 1
, and are in
10. If the pth term of an AP is q and the qth term is p, a+ b a+ c b+ c
then the rth term is (a) AP (b) GP
(c) HP (d) None of these
(a) q − p + r (b) p − q + r
1 1 1
(c) p + q + r (d) p + q − r 19. If , and are in AP, then
p + q q+ r r+ p
1 1 1
11. The consecutive terms , , of a (a) p, q and r are in AP
1+ x 1− x 1− x
(b) q2 , p2 and r2 are in AP
series are in
(c) p2 , q2 and r2 are in AP
(a) HP (b) GP
(c) AP (d) AGP (d) p, q and r are in GP 75
3 20. The number of numbers lying between 100 and 500
that are divisible by 7 but not by 21, is
(a) 57 (b) 19
31. The maximum sum of an AP 40, 38, 36, 34, ... is
(a) 390
(c) 460
(b) 420
(d) None of these
Objective Mathematics Vol. 1
(c) 5, 10, 15, 20 (d) None of these number of members in the club is
25. If the sum of four integers in AP is 24 and their (a) 15 (b) 25 (c) 20 (d) 30
product is 945, then the numbers are 35. The sum of the series 2, 5, 8, 11, ... is 60100, then n is
(a) 3, 5, 7, 9 (b) 5, 8, 11, 14 equal to
(c) 4, 8, 12, 16 (d) None of these
(a) 100 (b) 200
26. If the sum of any number of terms in a sequence is (c) 150 (d) 250
always three times the squared number of these 36. If the sum of n terms of an AP is 3n 2 + 5n, then which
terms, then the sequence is
of its terms is 164?
(a) an AP (b) a GP
(c) an HP (d) None of these (a) 26th (b) 27th
(c) 28th (d) None of these
27. The sum of all two digit numbers which when
37. The first and last terms of an AP are 1 and 11. If the
divided by 4, yield unity as remainder, is
sum of its terms is 36, then the number of terms
(a) 1100 (b) 1200 will be
(c) 1210 (d) None of these
(a) 5 (b) 6 (c) 7 (d) 8
28. The sum of numbers of three digits which are
38. Sum of n terms of the series
divisible by 7, is
2 + 8 + 18 + 32 + ... is
(a) 70336 (b) 70331
n (n + 1)
(c) 70330 (d) None of these (a) (b) 2n (n + 1)
2
29. The sum of all odd numbers of four digits which are n (n + 1)
(c) (d) 1
divisible by 9, is 2
(a) 2754000 (b) 2753000
(c) 2752000 (d) None of these 39. The sum of n terms of the series
1 1 1
30. The sum of positive terms of the series + + + ... is
4 1 1+ 3 3+ 5 5+ 7
10 + 9 + 9 + ... is
7 7 2n + 1 −1+ 2n + 1
352 437 (a) (b)
(a) (b) 2 2
7 7 1
852 (c) (d) 2n − 1
(c) (d) None of these 2n + 1
7
76
40. The sum of all two digit odd numbers is
(a) 2475 (b) 2530 (c) 4905 (d) 5049
51. If 4th, 7th and 10th terms of a GP are p, q and r
respectively, then
(a) p2 = q2 + r2 (b) p2 + qr
3
Targ e t E x e rc is e s
(a) 1 (b) 2
r (r + 1) r (r − 1)
(a) + ry (b) (c) − 1 (d) None of these
2x 2x
r (r − 1) r (r + 1)
56. The sum of three numbers in GP is 56. If we subtract
(c) −xy (d) − rx 1, 7, 21 from these numbers in that order, we obtain
2x 2x an AP. Then, three numbers are
46. If S n denotes the sum of n terms of an AP, then (a) 8, 16, 32 (b) 10, 18, 26
S n + 3 − 3S n + 2 + 3S n + 1 − S n is equal to (c) 9, 16, 23 (d) None of these
1 57. If the sides of a right angled triangle are in GP, then
(a) 0 (b) 1 (c) (d) 2
2 the cosine of the greater acute angle is
a + be y b + ce y c + de y 2 1
47. If = = , then a, b, c and d (a)
1+ 5
(b)
1− 5
a − be y
b − ce y
c − de y
1+ 5
are in (c) (d) None of these
2
(a) AP (b) GP
(c) HP (d) None of these 58. The consecutive numbers of a three digit number
form a GP. If we subtract 792 from this number, then
48. In a GP, if ( m + n )th term is p and ( m − n )th term is q,
we get a number consisting of the same digits written
then its mth term is in the reverse order and if we increase the second
1
(a) 0 (b) pq (c) pq (d) ( p + q) digit of the required number by 2, then resulting
2 number forms an AP. The number is
1 π
49. If cosec 2 θ, 2 cot θ, sec θ, 0 < θ < are in GP, then θ (a) 139 (b) 193
2 2 (c) 931 (d) None of these
is equal to 59. Three non-zero numbers a, b and c are in AP. If
π π
(a) (b) increasing a by 1 or increasing c by 2, the numbers
6 4
π are in GP, then b equals
(c) (d) None of these (a) 10 (b) 14
3
(c) 12 (d) 16
50. If 10th term of a GP is 9 and 4th term is 4, then its 7th
term is 60. The sum of the series 0.4 + 0.004 + 0.00004 + ... is
27 56 11 41 40 2
(a) 6 (b) 14 (c) (d) (a) (b) (c) (d)
14 15 25 100 99 5 77
3 61. If x > 0, then the sum of the series
e −x
−e − 2x
+e − 3x
− ... is
69. Let a n be the nth term of a GP of positive numbers.
If
100 100
∑ a 2n = α and ∑ a 2n − 1 = β , such that α ≠ β,
Objective Mathematics Vol. 1
1 1
(a) (b) x n=1 n=1
1 − e− x e −1
then the common ratio is
1 1
(c) (d) α β
1 + e− x 1 + ex (a) (b)
β α
62. The n th term of a GP is 128 and the sum to its n terms α β
(c) (d)
β α
is 255. If its common ratio is 2, then its first term is
(a) 1 (b) 3 70. If f (x ) is a function satisfying
(c) 8 (d) None of these
f ( x + y ) = f ( x ) f ( y ), ∀ x, y ∈ N such that f (1) = 3
n
63. The sum of
( x + 2) n − 1 + ( x + 2) n − 2 ( x + 1) + ( x + 2) n − 3
and ∑ f ( x ) = 120. Then, the value of n is
x =1
( x + 1) 2 + ... + ( x + 1) n − 1 is equal to (a) 4 (b) 5
n− 2
(a) (x + 2) − (x + 1 ) n (c) 6 (d) None of these
(b) (x + 2)n − 1 − (x + 1)n − 1 71. The value of 0.423 is
(c) (x + 2) − (x + 1)
n n
419 419
(a) (b)
(d) None of the above 999 990
423
64. If ( a, b ), ( c, d ), ( e, f ) are the vertices of a triangle (c) (d) None of these
1000
such that a, c, e are in GP with common ratio r and
72. If x = 1 + y + y 2 + ... , then y is
b, d , f are in GP with common ratio s, then the area
x x x −1 1− x
Ta rg e t E x e rc is e s
Targ e t E x e rc is e s
is
5 2 1 3 1 1 (a) 2007006 (b) 1005004
(a) n − 1 − n
10
(b) 3 − 1 − n
10
(c) 2000506 (d) None of these
9 9 9 9
7 2 1 5 1 1 92. The value of n for which
(c) n − 1 − n
10
(d) n − 1 − n
10 1 1
9 9 9 9 704 + ( 704 ) + ( 704 ) + ... n terms
2 4
82. A number consists of three digits in GP. If the sum of 1 1
extreme digits is greater than twice middle digit by 1 = 1984 − (1984 ) + (1984 ) − ... n upto terms, is
2 4
and the sum of the left hand and middle digit is (a) 5 (b) 3 (c) 4 (d) 10
two-third of the sum of the middle and right hand
digits, then the number is 93. The positive integer n for which
(a) 4, 6, 9 (b) 3, 7, 6 2 ⋅ 22 + 3 ⋅ 23 + 4 ⋅ 24 + ... + n ⋅ 2n = 2n + 10 , is
(c) 4, 6, 8 (d) None of these (a) 510 (b) 511 (c) 512 (d) 513
83. If one geometric mean G and two arithmetic means p 94. If 1 + 2 + 3 + ... + 2003 = ( 2003) ( 4007) ( 334 )
2 2 2 2
imaginary roots, where a, b, c ∈ R + , then 112. Let a1 , a 2 , ... , a10 be in AP and h1 , h2 , ... , h10 be in
a , b and c HP. If a1 = h1 = 2 and a10 = h10 = 3, then a 4 h7 is
(a) can be sides of a triangle (a) 2 (b) 3 (c) 5 (d) 6
(b) can’t be sides of a triangle
113. If x, y and z are in HP, where z > y > x. Then, value
(c) nothing can be said
(d) None of the above of log ( x + z ) + log ( x − 2 y + z ) is
(a) 2log ( y − z) (b) 2log (z − x )
1 1
103. If first three terms of sequence , a, b, are in (c) 4 log (x − z) (d) log (x − z)
16 6
geometric series and the last three terms are in 114. If H1 , H 2 , H 3 , ... , H 2n + 1 are in HP, then
harmonic series, then the values of a and b will be 2n Hi + Hi + 1
1 1 1 ∑ ( − 1)i H is equal to
(a) a = − , b = 1 (b) a = , b = i=1 i − Hi + 1
4 12 9
80 (c) Both (a) and (b) are true (d) None of these (a) 2n − 1 (b) 2n + 1 (c) 2n (d) 2n + 2
Type 2. More than One Correct Option
115. For the AP given by a1 , a 2 , ... , a n , ... , the equation 119. The roots of the equation
3
Targ e t E x e rc is e s
118. If a, b and c are three terms of an AP such that a ≠ b, HP of positive terms are equal and their ( n + 1)th
b−c terms are a, b and c respectively, then
then may be equal to
a−b (a) a = b = c (b) a ≥ b ≥ c
(a) 2 (b) 3 (c) 1 (d) 2 (c) a + c = 2b (d) ac = b2
Column I Column II
a b c 1/ n
A. ( a b c ) is less than or equal to p. ab + bc + ca
n
B. ( a b bcc a )1/ n is less than or equal to q. a2 + b 2 + c 2
n
C. ( ac b ac b )1/ n is less than or equal to r. abc
82
137. Match the statements of Column I with values of Column II.
Column I Column II
3
Targ e t E x e rc is e s
Entrances Gallery
JEE Advanced/IIT JEE
1. Let a, b and c be positive integers such that b/a is an 5. Let a1 , a 2 , a 3 ,... , a100 be an arithmetic progression
p
integer. If a, b and c are in geometric progression and
the arithmetic mean of a, b, c is b + 2, then the value with a1 = 3 and S p = ∑ a i , 1≤ p ≤ 100. For any
i=1
a 2 + a − 14
of is __________ . [2014] Sm
a+1 integer n with 1≤ n ≤ 20, let m = 5n. If does not
Sn
23 depend on n, then a 2 is__________ . [2011]
1 + ∑ 2k is
n
2. The value of cot ∑ cot − 1 [2013]
6. The minimum value of the sum of real numbers
n = 1 k = 1
a − 5 , a − 4 , 3a − 3 , 1, a 8 and a10 with a > 0is___. [2011]
23 25
(a) (b)
25 23 7. If S k , k = 1, 2 ... 100, denotes the sum of the infinite
23 24
(c) (d) k −1
24 23 geometric series, whose first term is and the
k!
4n k (k + 1)
common ratio is 1/k. Then, the value of
3. If S n = ∑ ( − 1) 2 k 2 , then S n can take value(s) 1002 100
2 [2013] + ∑ | ( k 2 − 3k + 1) S k is _________ . [2010]
100! k = 1
(a) 1056
(b) 1088
(c) 1120 8. Let a1 , a 2 , a 3 ,... , a11 be real numbers satisfying
(d) 1332 a1 = 15, 27 − 2a 2 > 0 and a k = 2 a k − 1 − a k − 2 for
4. If a1 , a 2 , a 3 ,... are in a harmonic progression with a 2 + a 22 + ...+ a11
2
k = 3, 4,... ,11. If 1 = 90, then the
a1 = 5 and a 20 = 25. Then, least positive integer n for 11
which a n < 0, is a + a 2 + ...+ a11
[2012] value of 1 is _______ . [2010]
(a) 22 (b) 23 (c) 24 (d) 25 11
83
3 JEE Main/AIEEE
9. If m is the AM of two distinct real numbers l and 17. A man saves ` 200 in each of the first three months of
Objective Mathematics Vol. 1
n( l, n > 1) and G1 , G2 and G3 are three geometric his service. In each of the subsequent months, his
savings increases by `40 more than the savings of
means between l and n , then G14 + 2G24 + G34 equals
immediately previous month. His total saving from
[2015]
the start of service will be ` 11040 after [2011]
(a) 4 l 2mn (b) 4 lm2n (c) 4 lmn2 (d) 4 l 2m2n2 (a) 19 months (b) 20 months
(c) 21 months (d) 18 months
10. The sum of first 9 terms of the series
13 13 + 23 13 + 23 + 33 18. A person is to count 4500 currency notes. Let a n
+ + + ... is [2015]
1 1+ 3 1+ 3 + 5 denotes the number of notes he counts in the nth
minute. If a1 = a 2 = ... = a10 = 150 and a10 , a11 ,... are
(a) 71 (b) 96 (c) 142 (d) 192
in AP with common difference −2 , then the time
11. Let α and β be the roots of equation px 2 + qx + r = 0, taken by him to count all notes, is [2010]
1 1 (a) 24 min (b) 34 min (c) 125 min (d) 135 min
p ≠ 0 . If p, q and r are in AP and + = 4, then the
α β 2 6 10 14
19. The sum of the series 1 + + 2 + 3 + 4 +... is
value of |α − β | is [2014] 3 3 3 3 [2009]
61 2 17 34 2 13 (a) 3 (b) 4 (c) 6 (d) 2
(a) (b) (c) (d)
9 9 9 9
20. The first two terms of a geometric progression add
12. If (10) 9 + 2(11)1 (10) 8 + 3(11) 2 (10) 7 + ... + 10(11) 9 upto 12. The sum of the third and fourth terms is 48.
= k(10) 9 , then k is equal to If the terms of the geometric progression are
[2014]
alternately positive and negative, then the first term
121 441
(a) (b) (c) 100 (d) 110 is
Ta rg e t E x e rc is e s
10 100
[2008]
13. Three positive numbers form an increasing GP. If (a) − 4 (b) − 12 (c) 12 (d) 4
the middle term in this GP is doubled, then new 21. In a geometric progression consisting of positive
numbers are in AP. Then, the common ratio of a GP terms, each term equals the sum of the next two
is [2014] terms. Then, the common ratio of this progression
(a) 2 + 3 (b) 3 + 2 equals [2007]
(c) 2 − 3 (d) 2 + 3 1 1 1
(a) (1 − 5 ) (b) 5 (c) 5 (d) ( 5 − 1)
2 2 2
14. The sum of first 20 terms of the sequence 0.7, 0.77,
0.777,… is [2013] 22. Let a1 , a 2 , a 3 ,... be terms of an AP. If
7 7 a1 + a 2 +...+ a p p2 a
(a) (179 − 10− 20 ) (b) (99 − 10− 20 ) = 2 , p ≠ q, then 6 equals
81 9 a1 + a 2 + ...+ a q q a 21
7 7 [2006]
(c) (179 + 10− 20 ) (d) (99 + 10− 20 ) 7 2 11 41
81 9 (a) (b) (c) (d)
2 7 41 11
15. If 100 times the 100th term of an AP with non-zero
common difference equal to 50 times its 50th term, 23. If a1 , a 2 ,... , a n are in HP, then the expression
then the 150th term of this AP is [2012] a1 a 2 + a 2 a 3 +...+ a n− 1 a n is equal to [2006]
(a) − 150 (b) 150 times its 50th term (a) (n − 1)(a1 − an ) (b) na1an
(c) 150 (d) 0 (c) (n − 1)a1an (d) n(a1 − an )
∞ ∞ ∞
16. Statement I The
∑ a n , y = ∑ b n , z = ∑ c n , where a, b, c are
sum of the series
24. If x =
1 + (1 + 2 + 4 ) + ( 4 + 6 + 9) + ( 9 + 12 + 16) n=0 n=0 n=0
+ ...+ ( 361 + 380 + 400) is 8000. in AP and | a| < 1, | b| < 1, | c| < 1, then x, y and z are in
n [2005]
Statement II ∑ [k 3
− ( k − 1) ] = n for any natural
3 3
(a) HP (b) AGP (c) AP (d) GP
k =1
1 1 1
number n. [2012] 25. The sum of the series 1 + + + +...
4 ⋅ 2! 16⋅ 4 ! 64 ⋅ 6!
(a) Statement I is false, Statement II is true
(b) Statement I is true, Statement II is true; Statement II is is [2005]
a correct explanation for Statement I e+1 e−1
(a) (b)
(c) Statement I is true, Statement II is true; Statement II is 2 e 2 e
not a correct explanation for Statement I e+1 e−1
84 (c) (d)
(d) Statement I is true, Statement II is false e e
3
−x
26. Let Tr be the rth term of an AP, whose first term is a 30. If 1, log 3 ( 31 + 2), log 3 ( 4 ⋅ 3x − 1) are in AP.
and common difference is d. If for some positive Then, x equals [2002]
1 1 (b) 1 − log3 4 (c) 1 − log4 3 (d) log4 3
Targ e t E x e rc is e s
(a) 2 loge 2
e (d) None of the above
[AMU 2012]
of
Objective Mathematics Vol. 1
2 3 n
(a) 1 (b) 0 (a) H n + 2n (b) n − 1 + H n (c) H n − 2n (d) 2n − H n
(c) − 1 (d) − 2
53. If AM and HM between two numbers are 27 and 12
44. For every real number x, let respectively, then their GM is [BITSAT 2011]
x 3 7 15
f ( x ) = + x 2 + x 3 + x 4 +… . Then, the (a) 9 (b) 18
1! 2! 3! 4! (c) 24 (d) 36
equation f ( x ) = 0 has [WB JEE 2014]
54. If x, y and z are in geometric progression, then
(a) no real solution
(b) exactly one real solution log x 10, log y 10 and log z 10 are in [UP SEE 2011]
(c) exactly two real solutions (a) AP (b) GP
(d) infinite number of real solutions (c) HP (d) None of these
45. Let denotes the sum
S of the series 2(1 + 22 )
8 21 40 65 55. The value of 4 + 2(1 + 2) log 2 + (log 2) 2
1+ + + + +…, then [WB JEE 2014] 2!
2! 3! 4 ! 5! 2(1 + 23 )
(a) S < 8 (b) S > 12 (c) 8 < S < 12 (d) S = 8 + (log 2) 3 + … is
3! [UP SEE 2011]
46. In an arithmetical progression a1 , a 2 , a 3 ,…, sum (a) 10 (b) 12
(c) log(32 ⋅ 4 2 ) (d) log(22 ⋅ 32 )
( S ) = a12 − a 22 + a 32 − a 42 + ...− a 22k is equal to
2 2+ 4 2+ 4 + 6
[BITSAT 2013] 56. The value of + + + K is
k 2k 1! 2! 3!
(a) (a12 − a22k ) (b) (a22k − a12 ) [BITSAT 2011]
2k − 1 k −1
Ta rg e t E x e rc is e s
k (a) e (b) 2e
(c) (a12 − a22k ) (d) None of these (c) 3e (d) None of these
k +1
57. If the sum to first n terms of an AP 2, 4, 6,… is 240,
47. If log x ax, log x bx and log x cx are in AP, where a, b,
then the value of n is [BITSAT 2010]
c, x belong to (1, ∞ ), then a, b and c are in (a) 14 (b) 15
[UP SEE 2013] (c) 16 (d) 17
(a) AP (b) HP
(c) GP (d) None of these
4
58. If sum of an infinite geometric series is and its 1st
3
48. Six numbers are in AP such that their sum is 3. The 3
first term is 4 times the third term. Then, the fifth term is , then its common ratio is [BITSAT 2010]
4
term is [WB JEE 2012]
7 9 1 7
(a) − 15 (b) − 3 (a) (b) (c) (d)
16 16 9 9
(c) 9 (d) − 4
xn + 1 + yn + 1
49. If log 10 2, log 10 ( 2x − 1) and log 10 ( 2x + 3) are in AP, 59. The value of n for which is the
then x is equal to [AMU 2012]
xn + yn
1 geometric mean of x and y, is [WB JEE 2010]
(a) log2 5 (b) log2 (− 1) (c) log2 (d) log5 2 1 1
5 (a) n = − (b) n = (c) n = 1 (d) n = − 1
2 2
50. 0.2 + 0.22 + 0.222 + ... upto n terms is equal to
60. GM and HM of two numbers are 10 and
[BITSAT 2012]
8 respectively. The numbers are [WB JEE 2010]
2 2 1
(a) − (1 − 10− n ) (b) n − (1 − 10− n ) (a) 5, 20 (b) 4, 25
9 81 9
(c) 2, 50 (d) 1,100
2 1 2
(c) n − (1 − 10− n ) (d) 61. Sum of n terms of the series 13 + 33 + 53 + 73 +... is
9 9 9
[WB JEE 2010]
51. The sum of the series
(a) n2 (2n2 − 1) (b) n3 (n − 1)
1 1⋅ 3 1⋅ 3⋅ 5 1⋅ 3⋅ 5⋅ 7 (c) n3 + 8n + 4 (d) 2n4 + 3n2
1+ + + + +… is [WB JEE 2013]
3 3⋅ 6 3⋅ 6⋅ 9 3⋅ 6⋅ 9⋅ 12
2 4 6
(a) 2 (b) 3 62. The value of + + + K is [WB JEE 2010]
3 1 3! 5! 7!
86 (c)
2
(d)
3 (a) e1/ 2 (b) e−1 (c) e (d) e−1/ 3
Answers
Work Book Exercise 3.1
1. (c) 2. (b) 3. (a) 4. (a) 5. (b) 6. (b) 7. (b) 8. (a) 9. (a) 10. (a)
11. (c) 12. (d) 13. (c) 14. (b)
Target Exercises
1. (a) 2. (c) 3. (d) 4. (c) 5. (d) 6. (a) 7. (b) 8. (a) 9. (b) 10. (d)
11. (c) 12. (a) 13. (c) 14. (c) 15. (b) 16. (d) 17. (d) 18. (a) 19. (b) 20. (c)
21. (c) 22. (a) 23. (b) 24. (c) 25. (a) 26. (a) 27. (c) 28. (a) 29. (a) 30. (c)
31. (b) 32. (c) 33. (a) 34. (b) 35. (b) 36. (b) 37. (b) 38. (c) 39. (b) 40. (a)
Targ e t E x e rc is e s
41. (d) 42. (a) 43. (d) 44. (b) 45. (a) 46. (a) 47. (b) 48. (c) 49. (c) 50. (a)
51. (c) 52. (b) 53. (a) 54. (c) 55. (a) 56. (a) 57. (a) 58. (c) 59. (c) 60. (c)
61. (d) 62. (a) 63. (c) 64. (c) 65. (c) 66. (a) 67. (c) 68. (d) 69. (a) 70. (a)
71. (b) 72. (c) 73. (b) 74. (b) 75. (a) 76. (c) 77. (b) 78. (a) 79. (a) 80. (b)
81. (d) 82. (a) 83. (b) 84. (b) 85. (b) 86. (c) 87. (d) 88. (b) 89. (c) 90. (b)
91. (a) 92. (a) 93. (d) 94. (a) 95. (c) 96. (b) 97. (a) 98. (b) 99. (c) 100. (b)
101 (b) 102. (a) 103. (c) 104. (c) 105. (a) 106. (d) 107. (a) 108. (c) 109. (b) 110. (a)
111. (c) 112. (d) 113. (b) 114. (c) 115. (b,d) 116. (b,d) 117. (a,c) 118. (c,d) 119. (a,c) 120. (b,d)
121. (a,c) 122. (b,d) 123. (b) 124. (a) 125. (d) 126. (a) 127. (d) 128. (c) 129. (a) 130. (c)
131. (c) 132. (b) 133. (b) 134. (a) 135. (b) 136. (* ) 137. (**) 138. (3) 139. (2) 140. (2)
141. (5)
* A → q,r; B → p, q, r; C → p, q, r; D → s
** A → p, r; B → q; C → s, t
Entrances Gallery
1. (4) 2. (b) 3. (a,d) 4. (d) 5. (3) 6. (8) 7. (4) 8. (0) 9. (b) 10. (b)
11. (d) 12. (c) 13. (d) 14. (c) 15. (d) 16. (b) 17. (c) 18. (b) 19. (a) 20. (b)
21. (d) 22. (c) 23. (c) 24. (a) 25. (a) 26. (a) 27. (b) 28. (b) 29. (d) 30. (b)
31. (b) 32. (b) 33. (b) 34. (c) 35. (b) 36. (c) 37. (a) 38. (a) 39. (a) 40. (c)
41. (d) 42. (c) 43. (a) 44. (b) 45. (c) 46. (a) 47. (c) 48. (d) 49. (a) 50. (c)
51. (b) 52. (d) 53. (b) 54. (c) 55. (b) 56. (c) 57. (b) 58. (a) 59. (a) 60. (a)
61. (a) 62. (b)
87
Explanations
Target Exercises
5 = 2 2 + 1, 9. Given, log 3 2, log 3 (2 x − 5) and log 3 2 x − are in AP.
1. We have, 7
14 = 3 + 5,
2 2
30 = 42 + 14, 7
∴ 2 log 3 (2 x − 5) = log 3 2 + log 3 2 x −
2
55 = 52 + 30,
⇒ 2 x = 8 or 2 x = 4
i.e. square of term is added to previous term.
∴ Next term = 62 + 55 = 36 + 55 = 91 ⇒ x = 3 or x = 2
Neglecting x = 2 as (2 x − 5) < 0 for x = 2
2. We have, 3 = 1+ 2 ⇒ x=3
6= 3+ 3
10. Given,Tp = q ⇒a + ( p − 1)d = q ...(i)
10 = 6 + 4
∴ Next term = 10 + 5 = 15 and Tq = p ⇒ a + (q − 1)d = p ...(ii)
On subtracting Eq. (ii) from Eq. (i), we get
3. Given, 5T5 = 8T8
⇒ ( p − q )d = − ( p − q ) ⇒ d = − 1
⇒ 5 (a + 4 d ) = 8(a + 7d )
On putting d = −1 in Eq. (i), we get
∴ 3 a + 36 d = 0
a + ( p − 1) (−1) = q
⇒ a + 12d = 0
⇒ a= p+ q −1
⇒ T13 = 0
∴ Tr = a + (r − 1)d
4. We have, a3 = a2 − 1 = 2 − 1 = 1 = ( p + q − 1) + (r − 1) (−1)
a4 = a3 − 1 = 1 − 1 = 0 = p + q − 1− r + 1= p + q − r
a5 = a4 − 1 = 0 − 1 = − 1 x
Ta rg e t E x e rc is e s
1 1
11. Here, − =
5. Let a and d be the first term and common difference 1− x 1+ x 1− x
respectively of given AP. Then, 1 1 x
T2 = x − y and − =
1− x 1− x 1− x
⇒ a+d = x − y
and T5 = x + y Hence, these terms are in AP.
⇒ a + 4d = x + y 1 1 1
12. Since, , and are in AP.
5 a b c
⇒ a= x − y 1 1 2
3 ∴ + = …(i)
a c b
6. Given a, b and c are in AP.
1 1 1 1 1 1
⇒ 2b = a + c Now, + − + −
a b c b c a
⇒ 3 b = a + b + c = 2s
s(s − c ) 1 1 2 1 1 1 2 1
C
Now, cot = = + − − + − −
2 (s − a)(s − b) a b b a b c b c
[from Eq. (i)]
2 s(2 s − 2c ) 3b(2 s − 2c )
= = 2 1 2 1 4 2 1 1 1
(2 s − 2 a) (2 s − 2 b) (2 s − 2 a) (3b − 2 b) = − − = − + +
a b c b ac b a c b2
3 (s − c ) s −c
= =3 4 2 2 1 4 3
s−a 3 (s − a) = − + 2 = − 2
ac b b b ac b
b(s − c ) (2 s − 2 b) (s − c )
=3 =3 13. Let a and d be the first term and common difference,
3 b (s − a) 2 s(s − a)
respectively of given AP, then
( s − b) ( s − c ) a7 = 34 ⇒ a + 6 d = 34 ...(i)
=3
s(s − a) and a13 = 64 ⇒ a + 12d = 64 ...(ii)
A On solving Eqs. (i) and (ii), we get
= 3 tan
2 a = 4, d = 5
7. Let x be the common difference of AP a, b, c, d, e, f. ∴ a18 = a + 17d = 4 + 85 = 89
Then, e − c = (a + 4 x ) − (a + 2 x ) 14. Let roots of given equation in AP be a − d , a and a + d .
= 2 x = 2 (d − c ) Then, (a − d ) + a + (a + d ) = 12
8. From given options, if we consider b = − 1, cos x = b ⇒ a=4
⇒ cos x = − 1, which is satisfied for x = π, 3π, 5π, ..., Also, (a − d ) a (a + d ) = 28
which form an AP with common difference 2π. For other ⇒ a (a2 − d 2 ) = 28 ⇒ 4 (16 − d 2 ) = 28
88 values of b, the roots of the equation are not in AP. ⇒ 16 − d 2 = 7 ⇒ d 2 = 9 ⇒ d = ± 3
x+1 x+2 x+a
15. x + 2 x + 3 x + b
x+3 x+4 x+c
21. We have, first term = a
∴ T1 = a
and second term = b
3
Targ e t E x e rc is e s
∴ Maximum sum,
17. Given a, b and c are in AP. 31 2
S 31 = 2 × 20 + (31 − 1) −
∴ 2b = a + c …(i) 2 3
Now, (a + 2 b − c ) (2 b + c − a) (c + a − b) 31
= { 40 − 20} = 310
= (a + a + c − c ) (a + c + c − a) (2 b − b) [from Eq. (i)] 2
= (2 a) (2c ) (b) = 4 abc 23. Required sum
1 1 1 = (1 + 2 + 3 + K + 199) − (3 + 6 + 9 + K + 198)
18. We know, , and are in AP, if
− (5 + 10 + 15 + K + 195) + (15 + 30 + 45 + K + 195)
a+ b a+ c b+ c
199 66
1 1 1 1 = (1 + 199) − (3 + 198)
− = − 2 2
a+ c a+ b b+ c a+ c 39 13
b− c a− b − (5 + 195) + (15 + 195)
i.e. = 2 2
a+ b b+ c = 199 × 100 − 33 × 201− 39 × 100 + 13 × 105 = 10732
i.e. b − c = a − b, which is true. 24. Let the four numbers in AP be
1 1 1 α − 3 β, α − β, α + β, α + 3 β.
19. Given, , and are in AP.
p+q q + r r+ p Given, α − 3 β + α − β + α + β + α + 3 β = 50
25
⇒
1
−
1
=
1
−
1 ⇒ 4 α = 50 ⇒ α =
q + r p+q r + p q + r 2
and α + 3 β = 4 (α − 3 β )
⇒ p2 − r 2 = q 2 − p2
2 2 2
⇒ 3 α = 15 β
So, q , p and r are in AP. α 25 5
∴ β= = =
20. The numbers between 100 and 500 that are divisible by 5 5×2 2
7 are 105, 112, 119, 126, 133, 140, 147, …, 483, 490, Hence, the four numbers are 5, 10, 15 and 20.
497. 25. Let the four numbers in AP be
Let such numbers be n. α − 3 β, α − β, α + β and α + 3 β.
Then, 497 = 105 + (n − 1) × 7 Given, α − 3 β + α − β + α + β + α + 3 β = 24
⇒ n = 57 ⇒ 4α = 24
The number between 100 and 500 that are divisible by and (α − 3 β ) (α − β ) (α + β ) (α + 3 β ) = 945
21 are 105, 126, 147, ..., 483. ⇒ (α 2 − 9 β 2 ) (α 2 − β 2 ) = 945
Let such numbers be m. ⇒ (36 − 9 β 2 ) (36 − β 2 ) = 945
Then, 483 = 105 + (m − 1) × 21
⇒ β 4 − 40 β 2 + 144 = 105
⇒ m = 19
∴Required number = n − m = 57 − 19 = 38 ⇒ β 4 − 40β 2 + 39 = 0 89
3 ⇒
⇒
β 4 − β 2 − 39 β 2 + 39 = 0
(β − 1) (β − 39) = 0
2 2
7
∴ β 2 ≠ 39
Now, t n is positive, if
∴ β2 − 1 = 0
3
⇒ β = ±1 10 + (n − 1) − ≥ 0
7
Hence, the four integers are 3, 5, 7 and 9.
⇒ 70 − 3 (n − 1) ≥ 0
26. Given, S n = 3 n2 1
⇒ 73 ≥ 3 n ⇒ 24 ≥n
∴ Tn = S n − S n −1 3
= 3 n 2 − 3 (n − 1)2 = 6 n − 3 So, first 24 terms are positive.
Now, sum of the positive terms,
On putting n = 1, 2, 3, ..., the sequence is 3, 9, 15, 21, ...
24 −3
which is clearly an AP. S 24 = 2 × 10 + 23 ×
2 7
27. The first two digit number which when divided by 4
69 852
leaves remainder 1 is 4 ⋅ 3 + 1 = 13 and last is = 12 20 − =
7 7
4 ⋅ 24 + 1 = 97.
Thus, we have to find the sum of the series 31. Let nth term be the first negative term.
13 + 17 + 21 + K + 97 Then, nth term, t n < 0
which is an AP. ∴ 40 + (n − 1) (−2 ) < 0 ⇒ 42 − 2 n < 0
∴ 97 = 13 + (n − 1)4 ⇒ 2 n > 42 ⇒ n > 21
⇒ n = 22 ∴ Least value of n = 22
n
and S n = [a + l ] = 1113
[ + 97 ] Hence, first 21 terms of an AP are non-negative.
2 Since, sum will be maximum, if no negative terms is
= 11 × 110 = 1210 taken.
21
Ta rg e t E x e rc is e s
28. The least and the greatest numbers of three digits ∴ Maximum sum, S 21 = [2 ⋅ 40 + (20 ) (−2 )]
divisible by 7 are 105 and 994, respectively. 2
21
So, it is required to find the sum of the series = × 40 = 420
105 + 112 + 119 + K + 994 2
Here, a = 105, d = 7, an = 994 32. Let the first instalment be a and common difference of
Now, an = a + (n − 1)d an AP be d.
⇒ 994 = 105 + (n − 1) × 7 Given, 3600 = Sum of 40 terms
⇒ 994 − 105 = 7(n − 1) 40
⇒ 3600 = [2 a + (40 − 1)d ]
⇒ 889 = 7 (n − 1) 2
889 ⇒ 3600 = 20 [2 a + 39 d ]
⇒ n − 1=
7 ⇒ 180 = 2 a + 39 d …(i)
∴ n − 1 = 127 After 30 instalments, one-third of the debt is unpaid.
⇒ n = 127 + 1 = 128 3600
Hence, = 1200 is unpaid and 2400 is paid.
n 3
∴ Sum = [2 a + (n − 1)d ] 30
2 Now, 2400 = [2 a + (30 − 1)d ]
128 2
= [2 × 105 + (128 − 1) × 7 ]
2 ⇒ 160 = 2 a + 29 d …(ii)
= 64 (210 + 889) On subtracting Eq. (ii) from Eq. (i), we get
= 64 × 1099 20 = 10 d
= 70336 ∴ d =2
From Eq. (i),
29. The odd numbers of four digits which are divisible by 9
180 = 2 a + 39 ⋅ 2
are 1017, 1035, …, 9999.
⇒ 2 a = 180 − 78 = 102
These are in AP with common difference 18.
∴ a = 51
a = 1017, d = 18and l = 9999
Now, the value of 8th instalment
∴ nth term, an = a + (n − 1)d
= a + (8 − 1)d = 51 + 7 ⋅ 2 = ` 65
⇒ 9999 = 1017 + (n − 1) × 18
⇒ 18 n = 9999 − 999 = 9000 33. Let a be the length of the smallest side and d be the
⇒ n = 500 common difference.
n Here, n = 25 and S 25 = 2100
∴ S n = (a1 + an ) n
2 Now, S n = [2 a + (n − 1)d ]
500 2
= (1017 + 9999) 25
2 ⇒ 2100 = [2 a + (25 − 1)d ]
= 250 × 11016 2
90 = 2754000 ⇒ a + 12d = 84 ...(i)
∴
The largest side = 25th side
= a + (25 − 1)d = a + 24 d
a + 24 d = 20 a [given] ...(ii)
40. Two digit odd numbers are 11, 13, ..., 99. These clearly
form an AP with a = 11, d = 2 and n = 45.
∴ Required sum
3
Targ e t E x e rc is e s
2 ∴ T2 = S 2 − S1
⇒ n = 200 = 24 − 7 = 17
36. Tn = S n − S n −1 n
45. Given, t n = + y
x
= [3 n + 5 n ] − [3 (n − 1) + 5 (n − 1)]
2 2
1 2
= [3 n 2 + 5 n ] − [3 (n 2 − 2 n + 1) + 5 (n − 1)] ⇒ t1 =
+ y and t 2 = + y
x x
= 6n + 2 ⇒ d = t 2 − t1 =
1
Let Tn = 164 x
Then, 164 = 6n + 2 ⇒ 6 n = 162 ⇒ n = 27 where, d is common difference of given AP.
r
Hence, 164 is 27th term. ∴ S r = [2 a1 + (r − 1)d ]
2
37. Here, a = 1, l = 11and S n = 36 r (r + 1) 1
n = + ry Q a1 = + y
Q Sn = (a + l ) 2x x
2
∴ 36 =
n
(1 + 11) = 6 n ⇒ n = 6 46. S n + 3 − 3 S n + 2 + 3 S n + 1 − S n
2 = (S n + 3 − S n + 2 ) − 2(S n + 2 − S n + 1 ) + (S n + 1 − S n )
38. Given series is 2 + 2 2 + 3 2 + 4 2 + ... = Tn + 3 − 2Tn + 2 + Tn + 1
= 2 [1 + 2 + 3 + 4 + K upto n terms] = (Tn + 3 − Tn + 2 ) − (Tn + 2 − Tn + 1 )
n(n + 1) n(n + 1) =d −d = 0
= 2 (∑ n ) = 2 Q∑ n =
2 2 a + be y b + ce y c + de y
47. = =
n(n + 1) a − be y b − ce y c − de y
∴ Sn =
2 Applying componendo and dividendo rule, we get
1 1 1 b c d
39. Let S n = + + = =
1+ 3 3+ 5 5+ 7 a b c
1 ⇒ a, b, c and d are in GP.
+K+
2n − 1 + 2n + 1 48. Given, Tm+ n = p and Tm− n = q
3 − 1 5 − 3 7 − 5 ⇒ ar m+ n −1 = p …(i)
= + +
2 2 2 and ar m− n −1 = q …(ii)
2 n + 1 − 2 n − 1 On multiplying Eqs. (i) and (ii), we get
+…+ a2 r 2 m− 2 = pq
2
⇒ (ar m−1 )2 = pq ⇒ ar m−1 = pq
2n + 1 − 1
= ⇒ Tm = pq 91
2
3 49. Since,1/ 2 cosec 2θ, 2 cot θ and sec θ are in GP.
∴
1
2
cosec 2θ ⋅ sec θ = 4 cot 2 θ
⇒ a − 2 ar + ar 2 = 8
On subtracting Eq. (ii) from Eq. (i), we get
3 ar = 48 ⇒ a =
16
…(ii)
Objective Mathematics Vol. 1
…(iii)
1 π r
⇒ cos θ = ⇒ θ= 16
2 3 On substituting a = in Eq. (i), we get
r
50. Let a and r be the first term and the common ratio 16
respectively of GP. + 16 + 16 r = 56
r
Then, T10 = 9 ⇒ ar 9 = 9
⇒ 16 r 2 − 40 r + 16 = 0
and T4 = 4 ⇒ ar 3 = 4
⇒ 2r 2 − 5 r + 2 = 0
∴ T7 = ar 6 = (ar 9 ⋅ ar 3 )1/ 2 = (9 × 4)1/ 2 = 6
⇒ (r − 2 ) (2 r − 1) = 0
51. Let A and R be the first term and the common ratio 1
∴ r = 2,
respectively of given GP. Then, 2
T4 = p ⇒ AR 3 = p If r = 2, then from Eq. (iii), a = 8 and the numbers are
T7 = q ⇒ AR 6 = q 8, 16, 32.
1
and T10 = r ⇒ AR 9 = r If r = , then from Eq. (iii), a = 32 and the numbers are
2
Now, ( AR 3 ) ( AR 9 ) = A2 R12 = ( AR 6 )2 ⇒ pr = q 2 32, 16, 8.
52. Let a and r be the first term and the common ratio 57. Let the sides of the right angled triangle be a, ar and ar 2 ,
respectively of GP. out of which ar 2 is the hypotenuse, then r > 1.
Then, a 6 = 32 ⇒ ar 5 = 32 …(i) Now, a2 r 4 = a2 + a2 r 2
and a8 = 128 ⇒ ar = 128 7
…(ii) 1± 5
⇒ r4 − r2 − 1= 0 ⇒ r2 =
On dividing Eq. (ii) by Eq. (i), we get 2
r2 = 4 ⇒ r = ± 2 Q r >1
∴ r2 > 1
Ta rg e t E x e rc is e s
63. Clearly,
( x + 2 )n − ( x + 1)n ∴ ∑ f ( x ) = 120
x =1
( x + 2 ) − ( x + 1) n
= ( x + 2 )n − 1 + ( x + 2 )n − 2 ( x + 1) ⇒ ∑ 3 x = 120
n−3 n −1 x =1
+ ( x + 2) ( x + 1) + … + ( x + 1)
2
⇒ 31 + 32 + 33 + K + 3n = 120
∴Required sum = ( x + 2 )n − ( x + 1)n
⇒ 3n − 1 = 80
[Q( x + 2 ) − ( x + 1) = 1]
⇒ 3n = 81 = 34 ⇒ n = 4
64. Here, c = ar , e = ar 2 , d = bs, f = bs2
a b 1 71. 0.423 = 0.4 + 0.023 + 0.00023 + K
1
∴ Area of triangle = c d 1 4 23 23 23 419
2 = + + + +K=
Targ e t E x e rc is e s
e f 1 10 10 3 10 5 10 7 990
1
= ab(s − r )(s − 1)(r − 1)
72. Given, x = 1 + y + y 2 + K
2 1 1
⇒ x= ⇒ 1− y =
65. Let S denotes the sum of all terms and S1 denotes the 1− y x
sum of odd terms. 1 x −1
⇒ y = 1− =
a x x
S1 = (i.e. sum of odd terms)
1− r2 73. Let the GP be a, ar, ar 2 and ar 3 .
1 a 1 a Then, a (1 + r + r 2 + r 3 )
Given, S = ⋅ S1 ⇒ = ⋅
5 1− r 5 1− r2 1 − r 4
1 4 =a×
⇒ 1+ r = ⇒ r =− 1− r
5 5
= 12 (1 − 5 ) [given]
66. The given series is a GP with a = 2, r = 3 > 1 12 (1 + 5 ) (1 − 5 )
=
a(r 10 − 1) 2 [( 3 )10 − 1] 1+ 5
∴ S10 = =
r −1 3 −1 − 48
=
2 1+ 5
= (242 )( 3 + 1) = 121 ( 6 + 2 )
2 a (1 − 25 − 48
⇒ =
49 1+ 5 1+ 5
67. ∑ (105
. )n = 105
. + (105 . )3 + … + (105
. )2 + (105 . )49 ⇒ a=2
n =1
74. Sum of areas of all the squares
105 . )49 − 1]
. [(105
= a2 a2
. −1
105 = a2 + + +K
2 4
= 212 .16 a2
= = 2 a2
68. Let a and r be the first term and the common ratio 1
1−
respectively of given infinite GP. Then, 2
ar = 2 …(i) 75. Let a be the first term and r (| r | < 1) be the common ratio
a
Also, =8 …(ii) of infinite GP. Then,
1− r
a a2
2 = 3 and =3 …(i)
From Eq. (i), r = 1− r 1− r2
a
a2
On putting the value of r in Eq. (ii), we get Also, =9 …(ii)
a=4 (1 − r )2 93
3 On solving Eqs. (i) and (ii), we get
a=
3
2
81. Let S n = 0.5 + 0.55 + 0.555 + K upto n terms
=
5
[0.9 + 0.99 + 0.999 + K upto n terms]
Objective Mathematics Vol. 1
1 9
and r= 5 1 1 1
2 = 1 − + 1 − + 1 − + K
Hence, the sequence corresponding to the series will 9 10 100 1000
3 3 3 5 1 1 1
be , , , K = (1 + 1 + 1 + K ) − + + + K
2 4 8 9 10 10 2 10 3
1
1
2 1 −
1 1 1 1 5 1 10 n 5 1 10 1
+ + + ... 1− = n − ⋅ = n− × 1 −
10 1 − 1 9 10 9 10 n
2
76. Given product = x 2 4 8 =x =x 9
10
77. QLength of a side ofS n = Length of a diagonal ofS n + 1
5 1 1
⇒ Length of a side of S n = 2(Length of a side of S n + 1) = n − 1 − n
9 9 10
Length of a side of S n + 1 1
⇒ = ,∀ n ≥ 1 82. Let the three digits be a, ar and ar 2 .
Length of a side of S n 2
Given, a + ar 2 = 2 ar + 1
⇒ Side of S1, S 2 , K , S n form a GP with common ratio
1 ⇒ a(r − 2 r + 1) = 1
2
and first term 10. ⇒ a(r − 1)2 = 1 …(i)
2
n −1 2
1 Also, given a + ar = (ar + ar ) 2
∴ Side of S n = 10
2 3
10 ⇒ 3 a(1 + r ) = 2 ra (1 + r )
= n −1 ⇒ (1 + r ) (3 − 2 r ) = 0 [Q a ≠ 0 ]
3
2 2 ∴ r = , −1
100 2
⇒ Area of S n = (S n )2 = n − 1
Ta rg e t E x e rc is e s
3 1 1
2 If r = , then from Eq. (i), a = = =4
Area of S n < 1 [given] 2 (r − 1)2 3 2
Q − 1
100 2
⇒ <1
2n − 1 1
If r = − 1, then from Eq. (i), a = , which is not possible,
⇒ 2 n − 1 > 100 4
⇒ n − 1≥ 7 as a is an integer.
3 9
⇒ n≥8 Hence, a = 4, ar = 4 ⋅ = 6 and ar 2 = 4 ⋅ = 9
2 4
78. Let r be the common ratio of the given GP Then, terms of
GP are α , αr αr 2 and αr 3 . 83. Let the two numbers be a and b, then
G = ab or G 2 = ab
According to the question,
Also, p and q are two AM’s between a and b.
α (1 + r ) = 1, α 2 r = p, α r 2 (1 + r ) = 4, α 2 r 5 = q
∴ a, p, q and b are in AP.
On solving, we get ( p, q ) = (− 2, − 32 ) Now, p − a = q − p and q − p = b − q
79. Consider, (1 + x ) + (1 + x + x 2 ) ∴ a = 2 p − q and b = 2q − p
+ (1 + x + x 2 + x 3 ) + K upto n terms Hence, G 2 = ab = (2 p − q ) (2q − p)
1− x 2
1− x 3
1 − x4 84. Let the 3 n terms of a GP be a, ar, ar 2 , …, ar n − 1, ar n ,
= + + + K upto n terms
1− x 1− x 1− x ar n + 1, ar n + 2 , …, ar 2 n − 1, ar 2 n , ar 2 n + 1, ar 2 n + 2 ,…, ar 3 n − 1.
=
1
[(1 + 1 + 1 + K to n terms) Then, S1 = a + ar + ar 2 + K + ar n − 1
1− x a(1 − r n )
− (x 2 + x 3 + x 4 + K upto n terms)] =
1− r
1 x 2 (1 − x n ) S 2 = ar n + ar n + 1 + ar n + 2 + K + ar 2 n − 1
= n−
1− x 1 − x ar n (1 − r n )
=
80. We have, 9 + 99 + 999 + K upto n terms 1− r
= (10 − 1) + (10 2 − 1) + (10 3 − 1) + K upto n terms S 3 = ar 2 n + ar 2 n + 1 + ar 2 n + 2 + K + ar 3 n − 1
= (10 + 10 2 + 10 3 + K upto n terms) − n ar 2 n (1 − r n )
=
10(10 n − 1) 1− r
= −n 2 2 n (1 − r )
n 2
10 − 1 Now, (S 2 ) = a r
2
(1 − r )2
10(10 − 1) n
= −n a(1 − r ) 2 n (1 − r n )
n
9 = ⋅ ar = S1 S 3
1 1− r 1− r
94 = (10 n + 1 − 9n − 10 )
9 Hence, S1, S 2 and S 3 are in GP.
85. (32 )(32 )1/ 6 (32 )1/ 36 K = 32
= 32
1+
1
+
6 36
= (2 ) = 2 = 64
1
+K
11
1−
= 32 6
93. We have, 2 n + 10 = 2 ⋅ 2 2 + 3 ⋅ 2 3 + 4 ⋅ 2 4 + K + n ⋅ 2 n
⇒ 2(2 n + 10 ) = 2 ⋅ 2 3 + 3 ⋅ 2 4 + K + (n − 1)⋅ 2 n + n ⋅ 2 n + 1 3
Targ e t E x e rc is e s
− (a1b1 + a2 b2 + K + ambm )2
= 1 + 2(2 99 − 1) − 100 ⋅ 2100
= (a1b2 − a2 b1 ) + (a1b3 − a3 b1 )2 + K+ (am − 1bm − ambm − 1 )2
2
⇒ S = 99 ⋅ 2100 + 1
n 2 (n + 1)2 Thus, ( x12 + x22 + K + xn2 − 1 ) ( x22 + x32 + K + xn2 )
Σn 3
4 − ( x1 x2 + x2 x3 + K + xn −1 xn )2 ≤ 0
89. Here, Tn = =
n n 2
⇒ ( x1 x3 − x2 x2 ) + ( x1 x4 − x3 x3 )2
2
[2 × 1 + (n − 1)2 ]
2 + K + ( xn − 2 xn − xn − 1 xn − 1 )2 ≤ 0
16
1
⇒ S16 = ∑ (k + 1)2 As x1, x2 , …, xn are real, this is possible if and only if
4 k =1
x1 x3 − x22 = x2 x4 − x32 = K = xn − 2 xn − xn2 − 1 = 0
= 446
x1 x2 x3 x
n(n + 1) n(n + 1) ⇒ = = =K= n
x2 x3 x4 xn − 1
90. Tn = 2 ⋅ 2 = 2 4 2
Σ n3 n (n + 1) ⇒ x1, x2 , …, xn are in GP.
4 97. We have,
n 2n n
1 1 1
= = −
n(n + 1) n n + 1 ∑ (2 r − 1)4 = ∑ r4 − ∑ (2 r )4
r =1 r =1 r =1
1 n
∴ Sn = 1 − = = f (2 n ) − 16 f (n )
n+1 n+1
1 2 (2 r + 1) − (2 r − 1)
91. We can write S as 98. We have, = 2 =
2r 2 4r 1 + (2 r + 1)(2 r − 1)
S = (1 − 2 )(1 + 2 ) + (3 − 4)(3 + 4)
1 (2 r + 1) − (2 r − 1)
+ K + (2001 − 2002 )(2001 + 2002 ) + 20032 tan −1 2 = tan −1
2r 1 + (2 r + 1) (2 r − 1)
= − [1 + 2 + 3 + 4 + K + 2002 ] + 20032
1 = tan −1(2 r + 1) − tan −1(2 r − 1)
= − (2002 )(2003) + (2003)2 = 2007006 n n
2 1
92. According to the given condition,
⇒ ∑ tan−1 2 r 2 = ∑ { tan−1 (2 r + 1) − tan−1(2 r − 1)}
r =1 r =1
1 1984 (2 ) (− 1)n = tan −1(2 n + 1) − tan −1(1)
(704)(2 ) 1 − n = 1 − n
2 3 2 π
= tan –1(2 n + 1) −
2112 (−1)n 4
⇒ 128 = n − 1984 n n
−1 1 −1 π
2 2 ⇒ lim ∑ tan 2 = lim tan (2 n + 1) −
If n is odd, then we get 2 n = 32 ⇒ n = 5 n→ ∞ 2r n → ∞ 4
r =1
128 π π π
If n is even, then we get 128 = n ⇒ n = 0 = − =
2 95
2 4 4
3 99. 13 = 1⋅ (1 − 1) + 1
2 3 = (2 ⋅ 1 + 1) + 5
3 = (3 ⋅ 2 + 1) + 9 + 11
3
,
106. Given, log(a + c ), log (c − a) and log (a − 2 b + c ) are
in AP.
⇒ 2 log(c − a) = log (a + c ) + log (a − 2 b + c )
Objective Mathematics Vol. 1
,
⇒ (c − a)2 = (a + c ) (a − 2 b + c )
43 = (4 ⋅ 3 + 1) + 15 + 17 + 19, etc
⇒ (c − a)2 = (a + c )2 − 2 b (a + c )
∴ n 3 = { n ⋅ (n − 1) + 1} + K, in which next term being 2
more than the previous ⇒ 2 b (a + c ) = (a + c )2 − (c − a)2 = 4 ac
∴ n3 = (n2 − n + 1) + (n2 − n + 3) + K + (n2 + n − 1) 2 ac
⇒ b=
r −1 a+c
r
100. ∑ r − r − 1 = −n
n 2 n
∑ r ! − (r + 1)! = (n + 1)! ⇒ a, b and c are in HP.
r = 1 ( r + 1 )! r =1
n 107. Given, cos ( x − y ), cos x and cos ( x + y ) are in HP.
=− 2 cos( x − y ) cos ( x + y )
(n + 1) n ⋅ (n − 1)! ⇒ cos x =
1 cos ( x − y ) + cos ( x + y )
=−
(n + 1)(n − 1)! 2 (cos 2 x − sin 2 y )
⇒ cos x =
2 cos x cos y
101. Applying AM ≥ GM y
Since, AM = GM ⇒ cos x = 1 + cos y = 2 cos 2
2
2
∴ ( 2 + 2 )x = ( 2 − 2 )x i.e. for x = 0 y
⇒ cos 2 x sec 2 = 2
2
[Q AM = GM iff a = b] y
⇒ cos x sec = ± 2
102. As, D < 0 2
⇒ (a + b + c )2 − 4 (ab + bc + ca) < 0 108. log 2 6 = log 2 (3 × 2 ) = log 2 3 + log 2 2 = 1 + log 2 3
⇒ (a − b + c ) < 4 ac
2
and log 2 12 = log 2 (2 2 × 3)
⇒ − 2 ac < a − b + c = log 2 3 + 2 log 2 2
⇒ ( a + c)> b = 2 + log 2 3
Ta rg e t E x e rc is e s
∴
1
D=−
=
1
1
54
+ 6D
118. If a, bandc are pth,qth and rth terms of an AP, then
Targ e t E x e rc is e s
114. Let
Hi + 1 Hi ⇒ 2 + 8 d = 41 × 2
2n Hi + Hi + 1 ⇒ d = 10
∴ ∑ (− 1)i H ⇒ r 8 = 81
i =1 i − Hi + 1
⇒ r 8 = ( 3 )8
2n
(− 1)i 1 1
=∑ + = 2 n ⇒ r= 3
i =1
K Hi + 1 Hi ∴ b7 = ( 3 )6 = 9 × 3 = 27
115. Let the given AP be a1, a1 + d , a1 + 2d , … and b9 = 81
By substituting the value, we can find that only options 121. Given, sin β = sin α cos α
(b) and (d) are correct. ⇒ sin 2 β = sin α cos α
116. Let the AP be a, a + d , a + 2d , a + 3 d , K Now, cos 2β = 1 − 2 sin 2 β = 1 − 2 sin α cos α
Given that, 3 a + 3d = 9 = (sin α − cos α )2
⇒ a+d =3
π
and a2 + (a + d )2 + (a + 2d )2 = 35 = 2 sin 2 − α
4
⇒ a2 + (3)2 + (3 + d )2 = 35 π
or 2 cos 2 + α
⇒ (3 − d )2 + 32 + (3 + d )2 = 35 4
⇒ d =±2
122. Since, a is AM between 1st and (2 n + 1) th terms, b is GM
and a = 1, 5
n between 1st and (2 n + 1) th terms and c is HM between
∴ S n = [2 a + (n − 1) d ] 1st and (2 n + 1) th terms.
2
⇒ AM ≥ GM ≥ HM and AM × HM = (GM)2
where d = 2, a = 1
⇒ S n = n2 123. If each of x, y and z is less than 1, then Statement I is
When d = − 2, a = 5 , then S n = n(6 − n ) obviously true.
1 + a1a2 Also, 1 − 2 x + 1 − 2 y + 1 − 2 z = 3 − 2( x + y + z ) = 1,
−1 1 + a2 a3
117. cot −1 + cot a − a The sum of the three given numbers is positive also at
2
a − a1 3 2
must one of x, y and z can be more than 1.
1 + a3 a4 1 + an an − 1 1
+ cot −1 −1
+ K + cot a − a If one of x, y and z is more than or equal to , then their
4
a − a 3 n n −1
2
product is less than equal to zero, hence still remains
= cot −1 a1 − cot −1 a2 + cot −1 a2 − cot −1 a3 true.
+ K+ cot −1 an − 1 − cot −1 an Statement II is always true but it does not explain
= cot −1 a1 − cot −1 an = tan −1 an − tan −1 a1 Statement I.
97
3 124. Since, ax 2 + bx + c = 0 and a1 x 2 + b1 x + c1 = 0 have
common root.
(a1 c − ac1 )2 = 4 (ab1 − ba1) (bc1 − b1c ) …(i)
Let other root be α, then
1× α =
c ( a − b)
a(b − c )
Objective Mathematics Vol. 1
2 ac
a b c
If , , are in AP, then c a −
a1 b1 c 1 a + c
= =1
ba1 − ab1 cb1 − c 1b 2 ac
= =k a − c
a1 b1 b1c 1 a+ c
ca1 − ac1 ∴ α =1
and = 2k
a1 c1 Hence, both roots of Eq. (i) are 1, 1.
On putting these values in Eq. (i), we get Then, roots of x 2 − Px + Q = 0 are also 1, 1.
c1a1 = b12 Now, 1 + 1 = P, 1⋅ 1 = Q
125. Statement I is false, since each term of the series ∴ P = 2, Q = 1
1 1 1 1 ∴ [P ] = [2 ] = 2
+ + + + K is smaller than 10 −5 but its
10 6 10 6 10 6 10 6 Now, [2 P − Q ] = [4 − 1] = 3
sum upto infinity is infinity. Q Roots of Eq. (i) are 1, 1, then
n b (c − a)
Statement II is true, since lim is not finite as 1+ 1 = −
n→ ∞ 10 5 a (b − c )
n→ ∞ a (b − c ) 1
⇒ =−
126. Statement I can be proved by taking the intersection of b (c − a) 2
the inequalities. a n/ 2 an
133. An = 2 ∫ 2 an xdx + 2 ∫ 2 an an − xdx
a > 0, ar > 0, ar 2 > 0 0 a n/ 2
8 a a 8 a a
Hence, Statement I is false and Statement II is true. = an n n − an 0 − n n
3 2 2 3 2 2
128. Statement I is true, since for any x > 0, we can choose
xn 2 ⋅ 8 an2 4 2 2
sufficiently larger n such that is small. Statement II is = = an sq units
n! 3⋅ 2 2 3
(n !)2 134. We have, y 2 = 4 x and y 2 = 4 − 4 x
false, since contains n ! in the denominator but
n! ⇒ 8x = 4
diverges to ∞. 1
⇒ x=
129. We can show that Statement I is true and follows from 2
Statement II. Indeed and y=± 2
a1 + a2 + K+ an + an + 1 a1 + a2 + K + an 135. For an = 1,
Sn + 1 − Sn = −
n+1 n 4 2
nan + 1 − (a1 + a2 + K + an ) An = sq units
= 3
n(n + 1)
(an + 1 − a1 ) + (an + 1 − a2 ) + K + (an + 1 − an )
136. aa bbc c = (aa K a times) (bb K b times) (cc K c times)
= >0 Applying AM-GM inequality,
n(n + 1)
(aa bbc c )1/ n
[ Q an + 1 > a1, an + 1 > a2 , K , etc. ]
a + a + K + a times ) + (b + b + K + b times )
Solutions (Q. Nos. 130-132) + (c + c + K + c times )
Given, a(b − c )x 2 + b(c − a)x + c (a − b) = 0 ...(i) ≤
n
Since, a(b − c ) + b(c − a) + c (a − b) = 0, therefore x = 1 a2 + b2 + c 2
is a root of Eq. (i). =
98 n
Similarly, (abbc c a )1/ n ≤
c a b 1/ n
≤
ab + bc + ca a2 + b2 + c 2
n
≤
ac + ba + cb a2 + b2 + c 2
≤
n
138. Let us add one more number an+1 to the given sequence.
The number an+1 is such that | an + 1 | = | an + 1|. On
squaring all the numbers, we have
3
Targ e t E x e rc is e s
B. Q …(i) ∴ y 2 = xz i.e. (a + nd )2 = (a + rd ) (a + md )
1
and H= b [if b > a] d r + m − 2n
5 So, =
bA a n 2 − rm
Q G 2 = AH =
5 Now, m, n and r are in HP.
⇒ 5 ab = bA 2 1 1
⇒ = +
⇒ A = 5a n m r
a+ b 2 m+ r
⇒ = 5a ⇒ =
2 n mr
⇒ b = 9a r + m mr
2 − n 2 − n
d 2 n −2 λ
From Eq. (i), 5 a = ab + 2 Hence, = = = =−
⇒ 5a = 3a + 2 a rm rm n n
n n − n n −
∴ a = 1and b = 9 n n
⇒ α = a + b = 10 ⇒ λ =2
and β = | a − b| = 8 140. Let f ( x ) = x 4 + ax 3 + bx 2 + cx + 1
∴ α + β 2 = 10 + 64 = 74
As a, b and c are non-negative, no root of the equation
C. Q H=4 f ( x ) = 0 can be positive. Further as f(0 ) ≠ 0, all the roots
⇒ 2 A + G 2 = 27 of the equation, say x1, x2 , x3 and x4 are negative.
⇒ 2 A + AH = 27 [Q G 2 = AH ] We have,
⇒ 6 A = 27 ∑ x1 = − a, ∑ x1 x2 = b, ∑ x1 x2 x3 = − c and x1 x2 x3 x4 = 1
9 Using AM ≥ GM for positive numbers − x1, − x2 , − x3 and
⇒ A=
2 − x4 , we get
9 a
and G 2 = × 4 = 18 ≥1 ⇒ a≥ 4
2 4
Since, a and b are the roots of x 2 − 9 x + 18 = 0. Using AM ≥ GM for positive numbers x1 x2 , x1 x3 , x1 x4 ,
∴ a = 6, b = 3 or a = 3, b = 6 x2 x3 , x2 x4 and x3 x4 , we get
b
Now, α = a + b = 9, β = | a − b| = 3 ≥1 ⇒ b≥ 6
∴ α 2 + β = 81 + 3 = 84 6
2 3 4 5 Finally, using AM ≥ GM for positive numbers
α α α α α − x1 x2 x3 , − x1 x2 x4 , − x1 x3 x4 and − x2 x3 x4 , we get
and 1+ + + + +
β β β β β c
≥1 ⇒ c ≥ 4
= 1 + 3 + 32 + 33 + 34 + 35 4
= 364 ∴ HCF of { a, b, c } = HCF of {4, 6, 4} = 2 99
3 141. Let the three consecutive terms be
a − d , a, a + d, where d > 0
Then, a2 − 2 ad + d 2 = 36 + K …(i)
Again, subtracting Eq. (iv) from Eq. (v), we get
2d 2 = 32 ⇒ d 2 = 16 ⇒ d = 4
[Qd = − 4, rejected]
Objective Mathematics Vol. 1
Entrances Gallery
b c k( k + 1)
1. = = (integer) 4n
2
a b 3. S n = ∑ (− 1) ⋅ k2
b2 k =1
⇒ b2 = ac ⇒ c= ...(i)
a = − (1)2 − 2 2 + 32 + 42 − 52 − 62 + 7 2 + 82 + K
a+ b+c
Also, =b+2 = (32 − 12 ) + (42 − 2 2 ) + (7 2 − 52 ) + (82 − 62 ) + K
3
= 2{(4 + 12 + 20 + ... ) + (6 + 14 + 22 + ... )}
⇒ a+ b+c = 3b + 6 14442444 3 144 42444 3
n terms n terms
⇒ a − 2b + c =6
n n
b2 b2 = 2 {2 × 4 + (n − 1)8} + {2 × 6 + (n − 1)8}
2
⇒ a − 2b + =6 from Eq. (i), c = a 2
a
= 2[n(4 + 4 n − 4) + n(6 + 4 n − 4)]
2 b b2 6
⇒ 1− + 2 = = 2[4n 2 + 4 n 2 + 2 n ] = 4 n(4n + 1)
a a a
Here, 1056 = 32 × 33 , 1088 = 32 × 34 ,
Ta rg e t E x e rc is e s
2
b 6
− 1 = 1120 = 32 × 35 , 1332 = 36 × 37
a a
⇒ a = 6 only Hence, 1056 and 1332 are possible answers.
a2 + a − 14 4. Here, a1 = 5, a20 = 25 for HP
⇒ =4
a+1 ∴
1
=5
a
23 n 1
2. cot ∑ cot −1 1 + ∑ 2 k and = 25
n = 1 k =1 a + 19 d
1 1
23 ⇒ + 19 d =
= cot ∑ cot −1(1 + 2 + 4 + 6 + 8 + ... + 2n ) 5 25
n =1 ⇒ 19 d =
1 1
− =−
4
23 25 5 25
= cot ∑ cot −1{1 + n(n + 1)} −4
∴ d =
n =1 19 × 25
23 1 an < 0 ⇒
1
<0
= cot ∑ tan −1 Q
a + (n − 1)d
n =1 1 + n(n + 1)
1
23 ⇒ + (n − 1)d < 0
n + 1 − n 5
= cot ∑ tan −1
1 4 95
n =1 1 + n(n + 1) ⇒ − (n − 1) < 0 ⇒ (n − 1) >
5 19 × 25 4
23
= cot ∑ [tan −1(n + 1) − tan −1 n ] ⇒ n > 1+
95
⇒ n > 2475 .
n = 1 4
= cot [(tan 2 − tan 1) + (tan 3 − tan −1 2 )
−1 −1 −1 Hence, the least positive value of n is 25.
+ (tan −1 4 − tan −1 3) + K+ (tan −1 24 − tan −1 23)] 5. Given, a1 = 3, m = 5 n and a1, a2 , ..., a100 are in AP.
S m S 5n
= cot{tan −1 24 − tan −1 1} Also, = is independent of n.
Sn Sn
24 − 1 −1 23
= cot tan −1 = cot tan 5n
[2 × 3 + (5 n − 1)d ]
1 + 24 ⋅ (1) 25 Sm
Consider = 2
25 Sn n
= cot cot −1 [2 × 3 + (n − 1)d ]
23 2
5 {(6 − d ) + 5 nd }
=
25 =
100 23 (6 − d ) + nd
For independent of n, put 6 − d = 0
⇒
∴
d =6
a2 = a1 + d = 3 + 6 = 9
Now, G14 + 2G24 + G34 = (lr )4 + 2 (lr 2 )4 + (lr 3 )4
= l 4 × r 4 (1 + 2 r 4 + r 8 )
n n + l
2
3
Targ e t E x e rc is e s
p p
100 2 Since, p, q and r are in AP.
= 4−
100 ! ∴ 2q = p + r ...(ii)
100 1 1
100 2 + =4
⇒
100 !
+ ∑|(k 2 − 3k + 1)S k| = 4 Also,
α β
k =1
α+β
⇒ =4
8. Since, ak = 2 ak − 1 − ak − 2 αβ
So, a1, a2 , K a11 are in AP. − q 4r
⇒ α + β = 4αβ ⇒ = [from Eq. (i)]
a2 + a22 + K + a11 2
11a12 + 35 × 11d 2 + 10 × 11a1d p p
∴ 1 =
11 11 ⇒ q = − 4r
= 90 On putting the value of q in Eq. (ii), we get
⇒ 225 + 35 d 2 + 150 d = 90 2(− 4r ) = p + r
⇒ 35 d 2 + 150 d + 135 = 0 ⇒ p = − 9r
9 − q 4r 4r 4
⇒ d = − 3, − Now, α+β= = = =−
7 p p −9r 9
27 r r 1
Given, a2 < and αβ = = =
2 p − 9r − 9
9 16 4 16 + 36
∴ d = − 3 and d ≠ − ∴ (α − β )2 = (α + β )2 − 4αβ = + =
7 81 9 81
a1 + a2 + K + a11 1
⇒ = [30 − 10 × 3] = 0 52 2
11 2 ⇒ (α − β )2 = ⇒ |α − β| = 13
81 9
9. Given, m is the AM of l and n. 12. Given, k ⋅ 10 9 = 10 9 + 2(11)1(10 )8 + 3 (11)2 (10 )7
∴ l + n = 2m …(i)
+ K + 10(11)9
and G1, G2 , G3 are geometric means between l and n.
2 9
∴ l, G1, G2, G3, nare in GP. 11 11 11
⇒ k = 1 + 2 + 3 + K + 10 ...(i)
Let r be the common ratio of this GP. 10 10 10
∴ G1 = lr 11 11 11 11
2
11
9 10
G2 = lr 2 ⇒ k = 1 + 2 + K + 9 + 10
10 10 10 10 10
G3 = lr 3 ...(ii)
n = lr 4 On subtracting Eq. (ii) from Eq. (i), we get
1 2 9 10
n 4 11 11 11 11 11
⇒ r = k 1 − = 1 + + + K + − 10
l 10 10 10 10 10
101
3 ⇒
10 − 11
k
10
=
11 10
1 − 1
10
11
− 10 11
10
10
Now, we can clearly observe the first elements in each
bracket.
In second bracket, the first element is 1 = 12
Objective Mathematics Vol. 1
4 ± 16 − 4
Sn = ∑ {(r − 1)2 + (r − 1)r + (r )2}
⇒ r= =2 ± 3 r =1
2 n
r 3 − (r − 1)3
⇒ r =2 + 3 [Q GP is increasing] ⇒ Sn = ∑ r − (r − 1)
r = 1
7 77 777
14. Let S = + + + K upto 20 terms n
10 10 2 10 3
79 99 999
⇒ Sn = ∑ { r 3 − (r − 1)3}
r =1
= + + + K upto 20 terms
9 10 100 1000 n
7 1 1
= 1 − + 1 − 2 + 1 − 3
1 Now, let S n = ∑ { k 3 − (k − 1)3}
k =1
9 10 10 10
Ta rg e t E x e rc is e s
7 1 10 1
20
17. Let the time taken to save ` 11040 be (n + 3) months.
= 20 − × 1 −
9 10 9 10 For first 3 months, he save `s 200 each month.
In (n + 3) months, his total savings is
7 10 −20 7
= 20 − (1 − 10 ) = (180 − 1 + 10 −20 ) n
3 × 200 + [2(240 ) + (n − 1) × 40 ] = 11040
9 9 81 2
7 −20
= (179 + 10 ) ⇒ 600 + 20 n(n + 11) = 11040
81
⇒ 20 n(n + 11) = 10440
15. Here, T100 = a + (100 − 1)d = a + 99 d ⇒ n(n + 11) = 522
T50 = a + (50 − 1)d = a + 49 d ⇒ n 2 + 11n − 522 = 0
T150 = a + (150 − 1)d = a + 149 d
⇒ n 2 + 29n − 18 n − 522 = 0
Now, according to the given condition,
⇒ n(n + 29) − 18 (n + 29) = 0
100 × T100 = 50 × T50
⇒ n = 18
⇒ 100(a + 99 d ) = 50(a + 49 d )
or n = − 29
⇒ 2(a + 99 d ) = (a + 49 d )
∴ n = 18 [neglecting n = − 29]
⇒ a + 149 d = 0
Hence, total time = n + 3
⇒ T150 = 0 = 18 + 3 = 21months
16. Statement I Let S = (1) + (1 + 2 + 4) + (4 + 6 + 9) 18. Number of notes that the person counts in 10 min
+ ... + (361 + 380 + 400 ) = 10 × 150 = 1500
S = (0 + 0 + 1) + (1 + 2 + 4) + (4 + 6 + 9) We have, a10 , a11, a12 , ... are in AP with common
102 + K + (361 + 380 + 400 ) difference − 2.
Let n be the time taken to count remaining 3000 notes,
then
n
[2 × 148 + (n − 1) × (− 2 )] = 3000
∴
⇒
1 1
− =d
a2 a1
a1 − a2 = a1a2d
3
Targ e t E x e rc is e s
and ar 2 + ar 3 = ar 2 (1 + r ) = 48 …(ii) Now, a, b and c are in AP.
From Eqs. (i) and (ii), we get ⇒ − a, − b and − c are in AP.
r2 = 4 ⇒ r = −2 ⇒ 1 − a, 1 − b and 1 − c are also in AP.
On putting the value of r in Eq. (i), we get 1 1 1
⇒ , and are in HP.
a = − 12 1− a 1− b 1− c
21. Since, each term is equal to the sum of the next two ⇒ x, y, z are in HP.
terms. Aliter
∴ ar n − 1 = ar n + ar n + 1 ⇒ 1 = r + r 2 From Eqs. (i), (ii) and (iii),
⇒ r2 + r − 1= 0 1 1 1
x= ,y= and z =
5 −1 − 5 − 1 1− a 1− b 1− c
r= Q r ≠
2 2 x −1 y −1 z −1
⇒ a= ,b= and c =
x y z
a1 + a2 + K + ap p2
22. Since, = Since, a, b and c are in AP.
a1 + a2 + K + aq q2
∴ 2b = a + c
p y − 1 x − 1 z − 1
[2 a1 + ( p − 1)d ] ⇒
2 p2 2 = +
∴ = 2 y x z
q
[2 a1 + (q − 1) d ] q 2 1 1
2 ⇒ 2 − = 1− + 1−
(2 a1 − d ) + pd p y x z
⇒ = 2 1 1
(2 a1 − d ) + qd q ⇒ = +
⇒ (2 a1 − d ) ( p − q ) = 0 y x z
d Hence, x, y and z are in HP.
⇒ a1 = [Q p ≠ q]
2 25. We know that,
d
+ 5d e x + e−x x2 x4 x6
a6 a1 + 5 d 11d 11 = 1+ + + +K
Now, = = 2 = = 2 2! 4! 6!
a21 a1 + 20 d d
+ 20 d 41d 41 1
2 On putting x = in both sides, we get
2
23. Since, a1, a2 , a3 , ..., an are in HP.
e 1/ 2 + e − 1/ 2
2 4
1 1 1 1
1 1 1 1 = 1+ + +K
∴ , , , K , are in AP. 2 2 2 ! 2 4!
a1 a2 a3 an
e +1 1 1 1
Let d be the common difference of AP. ⇒ = 1+ + + +K
2 e 4 ⋅ 2 ! 16 ⋅ 4 ! 64 ⋅ 6 !
103
3 26. Given,
⇒ a + (m − 1)d =
1
n
1
Tm =
...(i)
⇒
⇒
⇒
12 t 2 − 5 t − 3 = 0
(3 t + 1) (4 t − 3) = 0
t =−
1 3
Objective Mathematics Vol. 1
,
n 3 4
1 3
and Tn = ⇒ 3x = [Q 3 x cannot be negative]
m 4
1 3
⇒ a + (n − 1)d = ...(ii) ⇒ log 3 = x
m 4
On solving Eqs. (i) and (ii), we get
⇒ x = 1 − log 3 4
1
a=d = 31. Let S =2 1/ 4
⋅ 41/ 8 ⋅ 81/ 16 ...
mn
∴ a−d = 0 =2 1/ 4
⋅ 2 2 / 8 ⋅ 2 3 / 16 ...
1 2 3
27. Given that the sum of n terms of given series is 1 + + 2 + ...
1
( S1 )
n(n + 1)2 =2 4 2 2
= 24
, if n is even.
2 2 3
where, S1 = 1 +
+ + ...
Let n be odd, i.e. n = 2 m + 1 2 22
Then, S 2 m + 1 = S 2 m + (2 m + 1)th term It is an infinite arithmetico-geometric progression.
(n − 1)n 2 a d ⋅r
= + nth term ∴ S1 = +
2 1 − r (1 − r )2
(n − 1) n 2 1
= + n2 1⋅
2 1 2
= + =2 + 2 = 4
n − 1 + 2 1−
1 1
2
= n2 1 −
2 2 2
(n + 1) n 2 1
= ( 4)
2 ∴ S = 24 =2
Ta rg e t E x e rc is e s
n(n + 1) 3n + 3n − 2 n − 1 + 3
⇒ M ≤1 ⇒ M ≤1
Also, ( p + q ) (r + s) > 0
∴ M>0
[Q p, q, r , s > 0] 3
Targ e t E x e rc is e s
Hence, roots are 1 and log a c.
1 2x + 1 α 2 + β2 2 α 3 + β3 3
37. Given, f ( x ) = x + = 40. Given, (α + β)x − x + x +K
2 2 2 3
1 4x + 1 1 1
∴ f (2 x ) = 2 x + ⇒ f (2 x ) = = α x − (α x)2 + (α x)3 − ...
2 2 2 3
1
and f (4 x ) = 4 x + 1 1
+ βx − (βx )2 + (βx )3 − ...
2 2 3
8x + 1
⇒ f (4 x ) = = log (1 + αx ) + log (1 + βx )
2
= log [1 + (α + β ) x + αβx 2 ]
Since, f ( x ), f (2 x ) and f (4 x ) are in HP.
1 1 1 Now, α + β = p and αβ = q
∴ , and are in AP.
f ( x ) f (2 x ) f (4 x ) α 2 + β2 2 α 3 + β3 3
Hence, (α + β ) x − x + x +K
1 1 2 3
+
1 f ( x ) f (4 x ) = log (1 + px + qx 2 )
⇒ =
f (2 x ) 2
2 2 41. Given, log 4 2 − log 8 2 + log16 2 − ...
+ 1 1 1
2 2 x + 1 8x + 1 = − + − ...
⇒ = log 2 4 log 2 8 log 2 16
4x + 1 2
10 x + 2 1 1 1
⇒
2
= = − + − ...
4 x + 1 (2 x + 1) (8 x + 1) 2 3 4
1 1 1 1
⇒ (2 x + 1) (8 x + 1) = (5 x + 1) (4 x + 1) = 1 − 1 − + − + − ...
2 3 4 5
⇒ 16 x 2 + 10 x + 1 = 20 x 2 + 9 x + 1
= 1 − loge 2
⇒ 4x 2 − x = 0
42. We have, e x = (1 − x ) (B0 + B1 x + B2 x 2
⇒ x (4 x − 1) = 0
1 + ... + Bn − 1 x n − 1 + Bn x n + .... )
⇒ x= [Q x ≠ 0]
4 By the expansion of e x , we get
Hence, one real value of x for which the three unequal x x2 xn
terms are in HP. 1+ + + ... + + ...
1! 2 ! n!
38. Q AM ≥ GM = (1 − x ) (B0 + B1 x + B2 x 2 + ... + Bn − 1 x n − 1 + Bn x n + ... )
( p + q ) + (r + s)
∴ ≥ ( p + q ) (r + s) On equating the coefficient of x n both sides, we get
2
1
⇒
2
≥ M Bn − Bn − 1 =
n! 105
2
3
∞ ∞
x 3n x 3n − 2 46. Since, a1, a2 , ..., an are in AP, therefore
43. We have, a= ∑ (3 n )! , b = ∑ (3 n − 2 )! a2 − a1 = a3 − a2 = ... = a2 k − a2 k − 1 = d [say]
n=0 n =1
∞ 3n − 1 Now, a12 − a22 = (a1 − a2 ) (a1 + a2 )
Objective Mathematics Vol. 1
x
and c= ∑ (3 n − 1)! = − d (a1 + a2 )
n =1
∞ ∞ ∞
a32 − a42 = − d (a3 + a4 )
x 3n x 3n − 2 x 3n − 1
Now, a + b + c = ∑ + ∑ + ∑ (3 n − 1)! a22k − 1 − a22k = − d (a2 k −1 + a2 k )
n=0
(3 n )! n = 1(3 n − 2 )! n =1
On adding, we get
x2 x3 S = − d (a1 + a2 + ... + a2 k )
=1+ x + + + ... = e x
2! 3! 2 k
= −d (a + a2 k )
ω2 x2 ω3 x3 2 1
a + bω + cω 2 = 1 + ω x + + + ... = e ωx
2! 3! − dk
2 = − dk (a1 + a2 k ) = (a12 − a22k )
and a + bω 2 + cω = e ω x , ω is an imaginary cube root (a1 − a2 k )
of unity. − dk (a12 − a22k )
=
Now, a3 + b3 + c 3 − 3 abc [(a1 − a2 ) + (a2 − a3 ) + (a3 − a4 )
= (a + b + c ) (a + bω + cω 2 ) ( a + bω 2 + cω ) + ...+ (a2 k − 2 − a2 k −1 ) + (a2 k −1 − a2 k )]
2 2 − dk (a12 − a22k ) k
= e x ⋅ e ωx ⋅ e ω x
= e x (1 + ω + ω )
= e 0⋅ x = 1 = = (a12 − a22k )
(− d ) (2 k − 1) 2k − 1
x 3 2 7 3 15 4
44. Given, f ( x ) = + x + x + x + ... 47. Given, log x (ax ), log x (bx )and log x (cx ) are in AP.
1! 2 ! 3! 4!
2 x (2 x )2 (2 x )3 (2 x )4 ⇒ 1 + log x a, 1 + log x b, 1 + log x c are in AP.
= + + +
1! 2! 3! 4! ⇒ log x a, log x b, log x care in AP.
x x2 x3 x4 log a log c log b
+ ... − + + + + ... ∴ + =2
1! 2 ! 3! 4! log x log x log x
2 x (2 x )2 (2 x )3 (2 x )4 ⇒ log a + log c = 2 log b ⇒ ac = b2
Ta rg e t E x e rc is e s
= 1+ + + +
1! 2! 3! 4! 48. Let the six numbers in AP be
x x2 x3 x4
+ ... − 1 + + + + + ... a − 5d , a − 3d , a − d , a + d , a + 3d , a + 5d
1! 2 ! 3! 4! ∴ a − 5d + a − 3d + a − d + a + d + a
⇒ f( x) = e 2 x − e x + 3 d + a + 5 d = 3 [Q sum = 3]
Put f ( x ) = 0, we get ⇒ 6a = 3
1
e2x − e x = 0 ⇒ a=
2
⇒ e x (e x − 1) = 0
Also, T1 = 4T3 , where T1, T3 are respectively first and third
⇒ ex = 0 or e x = 1 terms of an AP.
⇒ x=0 ⇒ a − 5 d = 4 (a − d ) ⇒ d = − 3 a = −
3
Hence, exactly one real solution exists. 2
8 21 40 65 So, the fifth term = a + 3d
45. We have, S = 1 + + + + + ... 1 3 1 9
2 ! 3! 4! 5! = + 3 − = − = − 4
Let S1 = 1 + 8 + 21 + 40 + 65 + .... + Tn ...(i) 2 2 2 2
and S1 = 1 + 8 + 21 + 40 + ...+ Tn − 1 + Tn ...(ii) 49. Since,log10 2, log10 (2 x − 1) and log10 (2 x + 3) are in AP.
On subtracting Eq. (ii) from Eq. (i), we get log10 2 + log10 (2 x + 3)
0 = 1 + 7 + 13 + 19 + 25 + ... − Tn ∴ log10 (2 x − 1) =
2
Tn = 1 + 7 + 13 + 19 + 25 + ... upto n terms ⇒ 2 log10 (2 x − 1) = log10 2 (2 x + 3)
n
= [2(1) + (n − 1) 6] ⇒ log10 (2 x − 1)2 = log10 2 (2 x + 3)
2
= n [1 + 3 (n − 1)] = n (3 n − 2 ) ⇒ (2 x − 1)2 = 2 (2 x + 3)
n(3 n − 2 ) 3n − 2 ⇒ 22 x + 1 − 2 x + 1 = 2 x + 1 + 6
∴ S =Σ =Σ
n! (n − 1)! ⇒ 2 2x
+ 1 − 2 ⋅ 2 x+1 = 6
3n − 3 + 1 ⇒ 22 x − 4⋅ 2 x − 5 = 0
=Σ
(n − 1)! Now, let 2x = t
3 1 ⇒ t − 4t − 5 = 0
2
⇒ S =Σ +Σ = 3e + e = 4e
(n − 2 )! (n − 1)! ⇒ (t − 5) (t + 1) = 0
1 1 ⇒ t = 5 or t = − 1
Qe = 1+ + + ...
1! 2 ! ⇒ 2x = 5
We know that, 2 < e < 3 [neglecting 2 x = − 1as 2 x is always positive]
∴ 8 < 4 e < 12 ⇒ x log 2 2 = log 2 5
106 ⇒ 8 < S < 12 ⇒ x = log 2 5
50. S n = 0.2 + 0.22 + 0.222 + ... upto n terms
= 2 [0.1 + 0.11 + 0.111 + ... upto n terms]
2
= [0.9 + 0.99 + 0.999 + ... upto n terms]
55. 4 + 2 (1 + 2 ) log 2 +
2 (1 + 2 2 ) (log 2 )2
2!
+
2(1 + 2 3 ) (log 2 )3
+ ...
3
1 1⋅ 3 1⋅ 3 ⋅ 5 1⋅ 3 ⋅ 5 ⋅ 7 = 4 + 2 × 4 = 12
51. 1 + + + + +… 56. Let Tn be the nth term of the given series.
3 3 ⋅ 6 3 ⋅ 6 ⋅ 9 3 ⋅ 6 ⋅ 9 ⋅ 12
1 3 1 3 5 n(n + 1) n + 1 (n − 1) + 2
⋅ 2 ⋅ ⋅ 3 ∴ Tn = = =
1 2 2 2 2 2 2 2 + ... n! (n − 1)! (n − 1)!
= 1+ + +
3 1 ⋅ 2 3 1 ⋅ 2 ⋅ 3 3 =
1
+
2
1 1 (n − 2 )! (n − 1)!
+ 1 ∞ ∞ ∞
1 2 2 2 2 2 1 1
= 1+ . +
2 3 2!
3
∴ S = ∑ Tn = ∑ (n − 2 )! + 2 ∑ (n − 1)!
n =1 n=2 n =1
1 1 1
+ 1 + 2 = e + 2e = 3 e
2 2 2 2 3
+ + ... 57. Given, sum of n terms of an AP = 240
3! 3
−1/ 2 n
2 ∴ [2 × 2 + (n − 1) × 2 ] = 240
= 1 − = 31/ 2 = 3 2
3
Targ e t E x e rc is e s
⇒ n(2 + n − 1) = 240
52. We have, Hn = 1 +
1
+ ... +
1 ⇒ n(n + 1) = 15 × 16
2 n ⇒ n = 15
3 5 2n − 1
Consider, S n = 1 + + + ... + 4 3
2 3 n 58. Given, S ∞ = and a =
3 4
1 1 1
= 1 + 2 − + 2 − + ... + 2 − Let r be the common ratio.
2 3 n a 4
[1 + {2 + 2 + ... + 2}] 1 1 1 ∴ =
= 144424443 − + + ... + 1− r 3
( n − 1) times 2 3 n 4 4 3
⇒ − r=
1 1 1 3 3 4
= [1 + 2 (n − 1)] − 1 + + + ... + +1 16 − 9 4
2 3 n ⇒ = r
1 1 1 12 3
= 2 n − 1 + + + ... + = 2n − Hn 7 4
2 3 n ⇒ = r
12 3
53. Let the numbers be a and b. 7
a+ b 2 ab ⇒ r=
∴ = 27 and = 12 16
2 a+ b
xn + 1 + yn + 1
⇒ a + b = 54 and 2 ab = 12 (a + b) 59. We have, = xy , for some n
xn + yn
⇒ 2 ab = 12 (54)
⇒ ab = 6 (54) = 324 ⇒ x n + 1 + y n + 1 = ( xy )1/ 2 ( x n + y n )
⇒ ab = 18 ⇒ x n ⋅ x + y n ⋅ y = x n ⋅ x1/ 2 y1/ 2 + y n ⋅ x1/ 2 y1/ 2
Thus, GM = 18. ⇒ x n( x − xy ) + y n ( y − xy ) = 0
54. Since, x, y and z are in GP. ⇒ x ⋅ x( x −
n
y) + y ⋅ y n( y − x)= 0
∴ y2 = x z
⇒ ( x − y )( x ⋅ x − y ⋅ y ) = 0
n n
2 ab +6 −n
and =8 2
a+ b
= 2 n 2 (n + 1)2 − 2 n(n + 1)(2 n + 1) + 3 n(n + 1) − n
200
⇒ =8 = n(n + 1)[2 n(n + 1) − 2 (2 n + 1) + 3] − n
a+ b
= n(n + 1)[2 n 2 + 2 n − 4 n − 2 + 3] − n
⇒ a + b = 25 ...(ii)
= n(n + 1)[2 n 2 − 2 n + 1] − n
On solving Eqs. (i) and (ii), we get
a = 5 and b = 20 = n(n + 1)⋅ 2 n(n − 1) + n(n + 1) − n
or a = 20 and b = 5 = 2 n 2 (n 2 − 1) + n 2 = n 2 (2 n 2 − 1)
61. Tn = (2 n − 1)3 = 8 n 3 − 13 − 3 ⋅ 2 n ⋅ 1(2 n − 1) 62. Here, Tn =
2n
=
1
−
1
= 8 n − 1 − 12 n + 6 n
3 2 (2 n + 1)! 2 n ! (2 n + 1)!
= 8 n 3 − 12 n 2 + 6 n − 1 1 1 1 1
ΣTn = − + − +K
2 ! 3! 4! 5!
∴ S n = ΣTn 1 1 1 1 1
= 8 Σn 3 − 12 Σ n 2 + 6 Σ n − Σ1 = 1− + − + − + K = e −1
1! 2 ! 3 ! 4 ! 5 !
Ta rg e t E x e rc is e s
108
4
Complex
Numbers
The Real Number System
Natural Numbers ( N ) The numbers which are used for counting are known as Chapter Snapshot
natural numbers (also known as set of positive integers),
The Real Number System
i.e. N = {1, 2, 3, …}.
●
Real Numbers ( R ) The set of rational and irrational numbers is called a set of
real numbers, i.e.
N ⊂W ⊂ Z ⊂Q ⊂ R
4 Ø ●
●
The real number system is totally ordered for any two
numbers a, b ∈R. We must say, either a < b or b < a or b = a.
All real numbers can be represented by points on a straight
line. This line is called as number line.
X Example 3. If f (x ) = | x − 2 | + | x | + | x + 3 | , then
the value of f ( x ) for x ≤ − 3 is
Objective Mathematics Vol. 1
(a) 3x − 1
● Division by zero is meaningless.
● Number zero is neither positive nor negative but it is an even (b) −3x + 1
number. (c) x − 3
● Square of a real number is always non-negative. (d) −(3x + 1)
● An integer is said to be even, if it is divisible by 2, otherwise it
is an odd number. Sol. (d) Q | x − 2| = − ( x − 2 ) = 2 − x for x ≤ − 3
● Number ‘0’ is an additive identity. | x| = − x for x ≤ − 3
● The magnitude of a physical quantity may be expressed as a and | x + 3| = − ( x + 3) for x ≤ −3
real number times, a standard unit.
∴ f ( x) = 2 − x − x − x − 3
● Number ‘1’ is multiplicative identity.
= − 3x − 1
● A positive integer p is called prime, if its only divisors are ± 1
and ± p. = − (3 x + 1)
● Between two real numbers, there lie infinite real numbers.
Infinity (∞) is the concept of the number greater than
●
(b) | a |⋅ b ⋅ i
Complex Number
The complex number z = a + ib = ( a, b) can be
4
Complex Numbers
represented by a point P, whose coordinates are referred
(c) | a | b (d) None of these
to rectangular axes XOX ′ and YOY ′, which are called
Sol. (b) As we can only multiply the positive values in square real and imaginary axis respectively. The plane formed
root. by rectangular axes is called argand plane or argand
∴ a b = −|a| b , as a < 0 and b > 0 diagram or complex plane or Gaussian plane.
i.e. −1 ⋅ |a| b = i |a| b = |a|⋅b ⋅ i Y P (a , b )
Imaginary
axis
X Example 6. The value of the sum b
13
∑ (i n + i n + 1 ), where i = −1 is
X′
Real axis O a M
X
n =1
(a) i (b) i −1 (c) − i (d) 0
Y′
Sol. (b) Since, the sum of any four consecutive powers of i,
(i) A number of the form z = x + iy = Re z + i Im z
is zero.
13 13 13 is called a complex number.
∑ (i + i n + 1) = ∑i ∑i
n+1
∴ n n
+ …(i) (ii) Two complex numbers are said to be equal, if
n =1 n =1 n =1
and only if their real parts and imaginary parts
= (i + i 2 + i 3 + K + i 13 ) + (i 2 + i 3 + i 4 + K + i 14 ) are separately equal,
= i −1 [from Eq. (i)] i.e. a + ib = c + id ⇔ a = c and b = d.
(iii) The complex numbers do not possess the
X Example 7. The value of property of order, i.e.
2n (1 + i) 2n x + iy < (or ) > c + id is not defined.
+ , n ∈ I , is equal to (iv) A complex number z is purely real, if Im( z ) = 0
(1 + i) 2n 2n
and said to be purely imaginary, if Re( z ) = 0.
(a) 0 (b) 2 The complex number 0 = 0 + i. 0 is both purely
(c) {1 + ( −1) } ⋅ i
n n
(d) None of these real and purely imaginary.
2n (1 + i )2 n 1
Sol. (c) Here, +
(1 + i ) 2n
2n X Example 9. If z = (−5 i) i , then Im ( z ) is
8
2n (1 + i 2 + 2 i )n
= + equal to
(1 + i 2 + 2 i )n 2n
(a)1 (b) 0
2n (2 i )n 1
= n
+ = n + in (c) −1 (d) None of these
(2 i ) 2n i
in in 1 Sol. (b) Consider z = (−5 i ) 1 i
= 2n + i n = + in = in + 1 8
i (−1)n ( − 1)n
Let us first express z in the format a + ib, then
= i n ⋅ {(−1)n + 1}
−5 2 5 5
z= i = − (−1) = + i 0 ⇒ Im ( z) = 0
X Example 8. If i = −1, then the number of 8 8 8
numbers, then
Let z1 = x1 + iy1 and z 2 = x 2 + iy2 be two complex z1 ⋅ z 2 = ( x1 + iy1 )( x 2 + iy2 )
numbers, then = ( x1 x 2 − y1 y2 ) + i( x1 y2 + x 2 y1 )
z1 + z 2 = x1 + iy1 + x 2 + iy2 ⇒ z1 ⋅ z 2 = [ Re ( z1 ) Re ( z 2 ) − Im ( z1 ) Im ( z 2 )]
= ( x1 + x 2 ) + i( y1 + y2 ) + i [ Re ( z1 ) Im ( z 2 ) + Re ( z 2 )Im ( z1 )]
⇒ Re ( z1 + z 2 ) = Re ( z1 ) + Re ( z 2 )
Properties of Multiplication of Complex Numbers
and Im ( z1 + z 2 ) = Im ( z1 ) + Im ( z 2 )
(a) z1 ⋅ z 2 = z 2 ⋅ z1 [commutative law]
Properties of Addition of Complex Numbers (b) ( z1 ⋅ z 2 ) z 3 = z1 ( z 2 ⋅ z 3 ) [associative law]
(a) z1 + z 2 = z 2 + z1 [commutative law] (c) If z1 ⋅ z 2 = 1 = z 2 ⋅ z1 , then z1 and z 2 are
(b) z1 + ( z 2 + z 3 ) = ( z1 + z 2 ) + z 3 [associative law] multiplicative inverse of each other.
(c) z + 0 = 0 + z (where, 0 = 0 + i 0) (d) (i) z1 ( z 2 + z 3 ) = z1 ⋅ z 2 + z1 ⋅ z 3
[additive identity law] [left distribution law]
(ii) ( z 2 + z 3 ) z1 = z 2 ⋅ z1 + z 3 ⋅ z1
X Example 11. The value of 3(7 + i7) + i(7 + i7) is [right distribution law]
(a)15 + 27 i (b)14 + 28 i (c)14 − 28 i (d)14 + 23 i
X Example 13. The real values of x and y, if
Sol. (b) We have, 3(7 + i 7 ) + i (7 + i 7 ) (1 + i) x − 2i (2 − 3i) y + i
= 21 + 21i + 7 i + 7 i 2 + = i, are respectively
(3 + i) (3 − i)
= 21 + 28 i − 7 [Q i 2 = − 1]
= 14 + 28i (a) 3, −1 (b) 3, 1
(c) −3, 1 (d) −3, −1
Subtraction of Complex Numbers Sol. (a) (1 + i )x − 2 i + (2 − 3i )y + i = i
Let z1 = x1 + iy1 and z 2 = x 2 + iy2 be two complex (3 + i ) (3 − i )
numbers, then ⇒ {(1 + i )x − 2 i }(3 − i ) + {(2 − 3 i )y + i }(3 + i )
z1 − z 2 = ( x1 + iy1 ) − ( x 2 + iy2 ) = i (3 + i )(3 − i )
= ( x1 − x 2 ) + i( y1 − y2 ) ⇒ (1 + i )(3 − i )x − 2 i (3 − i ) + (2 − 3i )(3 + i )y
⇒ Re( z1 − z 2 ) = Re( z1 ) − Re( z 2 ) + i (3 + i ) = 10 i
⇒ (4 + 2 i ) x − 6 i − 2 + (9 − 7 i )y + 3 i − 1 = 10 i
and Im ( z1 − z 2 ) = Im ( z1 ) − Im ( z 2 )
⇒ (4 x − 2 + 9 y − 1) + i (2 x − 6 − 7 y + 3) = 10 i
X Example 12. The value of ⇒ (4 x + 9 y − 3) + i (2 x − 7 y − 3) = 10 i
1 7 1 4 On equating real and imaginary parts on both sides, we
3 + i 3 + 4 + i 3 − − 3 + i is get
4x + 9y = 3 …(i)
5 17 and x − 7 y = 13 …(ii)
(a) − i
3 3 On solving Eqs. (i) and (ii), we get x = 3, y = − 1
17 5
(b) − i X Example 14. The multiplicative inverse of 4 − 3i
3 3
is
17 5
(c) + i 4 3i 4 3i
3 3 (a) − (b) +
25 25 25 25
17 4
(d) − i 4 3i
5 3 (c) + (d) None of these
16 25
Sol. (c) 1 + i 7 + 4 + i 1 + 4 − i Sol. (b) Let z = 4 − 3 i
3 3 3 3
Then, its multiplicative inverse is
= + 4 +
1 4 7 1
+ i + − 1 1 1 1 4 + 3i 4 + 3i
3 3 3 3 = = × =
z 4 − 3 i 4 − 3 i 4 + 3 i 16 − 9 i 2
= + +
1 4 4 7 1 1
+ i + − [Q(a − b )(a + b ) = a2 − b 2 ]
3 1 3 3 3 1
(1 + 12 + 7 + 1 − 3 4 + 3i
=
4)
+ i = [Q i 2 = − 1]
16 + 9
3 3
4 + 3i 4 3i
=
17
+ i
5 = = +
112 3 3 25 25 25
Division of Complex Numbers
Let z1 = x1 + iy1 and z 2 = x 2 + iy2 ( ≠ 0) be two
(iv) Re ( z ) = Re ( z ) =
z−z
z+z
2 4
Complex Numbers
complex numbers, then (v) Im ( z ) =
z1 x1 + iy1 2i
=
z 2 x 2 + iy2 (vi) z1 + z 2 = z1 + z 2
=
1
[( x1 x2 + y1 y2 ) + i ( x2 y1 − x1 y2 )] (vii) z1 − z 2 = z1 − z 2
x22 + y22 (viii) z1 z 2 = z1 z 2
z1 z z
X Example 15. The value of , where z1 = 2 + 3i (ix) 1 = 1 , ( z 2 ≠ 0)
z2
z2 z2
and z 2 = 1 + 2 i, is
8 1 8 1 (x) z1 z 2 + z1 z 2 = 2Re ( z1 z 2 ) = 2Re ( z1 z 2 )
(a) + i (b) − i
5 5 5 5 (xi) z n = ( z ) n = ( z n )
1 8 (xii) If z = f ( z1 ), then z = f ( z1 )
(c) − i (d) None of these
5 5
X Example 16. If z1 = 9 y 2 − 4 − 10 ix and
Sol. (b)Q z1 = 2 + 3i and z2 = 1 + 2 i
1 1− 2 i z 2 = 8 y 2 + 20 i, where z1 = z 2 , then z = x + iy is
∴ z2−1 = =
1 + 2 i (1 + 2 i )(1 − 2 i ) equal to
1− 2 i 1 2 (a) − 2 + 2 i
= = − i
1+ 4 5 5
(b) − 2 ± 2 i
= z1 ⋅ z2 = (2 + 3 i ) − i
z1 −1 1 2
Then,
5 5
(c) − 2 ± i
z2
(d) None of the above
= + + i − + = − i
2 6 4 3 8 1
5 5 5 5 5 5 Sol. (b) Given, z1 = z2
Aliter ⇒ 9 y2 − 4 − 10 i x = 8 y2 + 20 i
Here, x1 = 2, y1 = 3, x2 = 1 and y2 = 2. ⇒ ( y2 − 4) − 10 i ( x + 2 ) = 0
z1 1
∴ = 2 {( x1 x2 + y1 y2 ) + i ( x2 y1 − x1 y2 )} Since, complex number is zero.
z2 x2 + y22 ⇒ y2 − 4 = 0 and x + 2 = 0
1 ∴ y=±2
= 2 {(2 × 1 + 3 × 2 ) + i (3 × 1 − 2 × 2 )}
1 + 22 and x = −2
1 8 1 Thus, z = x + iy = − 2 ± 2 i
= {(2 + 6) + i (3 − 4)} = − i
5 5 5
X Example 17. If (1 + i) z = (1 − i) z, then z is
(a) x (1 − i), x ∈ R
Conjugate of a Complex Number (b) x (1 + i), x ∈ R
Geometrically, the conjugate of z is the reflection x
of point image of z in the real axis. (c) , x ∈R +
1+ i
Y
(d) None of the above
Imaginary axis
1
(a) (1 + 4 i)
2 | y|
Here, θ = tan −1 , where z = x + iy
1 |x|
(b) (3 + 4 i)
2 Y
1 arg (z) = π – θ arg (z) = θ
(c) (1 − 4 i)
2
1
(d) (3 − 4 i) θ θ
2 X' θ
X
θ
Sol. (c) Let z = x + iy
∴ | x + iy + 1| = x + iy + 2(1 + i )
arg (z) = – π + θ arg (z) = – θ
⇒ ( x + 1) + y2 = ( x + 2 ) + i ( y + 2 )
2
⇒ ( x + 1) + 4 = ( x + 2 )
2 2
and y = −2 1 π
e.g. arg (1 + i) = tan −1 =
⇒ 2 x + 5 = 4 x + 4 and y = − 2 1 4
1
⇒ x= and y = − 2 −1 − π
2 arg (1 − i) = tan −1 =
1 1 4
⇒ z = (1 − 4 i )
2 −1 π
arg ( −1 − i) = tan −1 = − π +
X Example 19. If z = 1 + i tan α, where −1 4
3π −1 π
π < α < , then | z | is equal to arg ( −1 + i) = tan −1 = π −
2 1 4
(a) sec α
Ø Argument of 0 is not defined.
(b) −sec α
●
∴
z=−
| z| =
1 1
+ i
2 2
2
− 1 + 1
2
[Q|a + ib| = a + b ]
2 2
⇒ tan θ = 1 = tan
4
⇒ θ=
4
Since, the real part of z is negative and imaginary part
4
Complex Numbers
of z is positive, so the point lies in IInd quadrant.
2 2
π 3π
1 1 2 1 1 ∴ arg ( z) = π = θ = π − =
+ == = = 4 4
4 4 4 2 2 1
Hence, modulus =
1 2
Im ( z)
∴ Now, tan θ = 2 Qθ = tan−1 arg( z) =
3π
and
1 Re ( z) 4
−2
4 Various Forms of a
Complex Number
Hence, cosθ =
sinθ =
2
3
Objective Mathematics Vol. 1
2
π 2π
⇒ θ= π− =
Polar Form 3 3
Let z = a + ib be any complex number, then by Thus, the required polar form is
2π 2π
taking 8 cos + i sin
3 3
a = r cos θ and b = r sin θ
We have, z = a + ib X Example 22. Let z and w be two non-zero
= r (cos θ + i sin θ ) complex numbers, such that | z | = | w | and
arg( z ) + arg( w) = π. Then, z is equal to
(known as polar form)
(a) w (b) − w (c) − w (d) w
(a, b)
Imaginary axis
θ
Let θ be the argument of z. Then,
2 3π
X′ X tan θ = = −1 ⇒ θ =
O −2 4
i 3π
So, Eulerian form of z is 2 2e 4 .
(iii) Given, z = −1 − i 3
Y′ Then, r = | z| = (−1)2 + (− 3 )2 = 2
Let − 4 = rcos θ, 4 3 = rsin θ Let θ be the argument of z. Then,
By squaring and adding, we get − 3 2π
tan θ = = 3 ⇒ θ=−
16 + 48 = r 2 (cos 2 θ + sin2 θ) −1 3
2π
−i
116 which gives, r 2 = 64, i.e. r=8 So, Eulerian form of z is 2e 3 .
X Example 24. Complex numbers z1 , z 2 , z 3 are
the vertices A, B , C respectively of an isosceles
xii. | z1 + z 2 | 2 = | z1 | 2 + | z 2 | 2
z
⇔ 1 is purely imaginary.
4
Complex Numbers
right angled triangle with right angle at C. Show
z2
that
( z1 − z 2 ) 2 = 2( z1 − z 3 ) ( z 3 − z 2 ). xiii. | z1 + z2 |2 + | z1 − z2 |2 = 2{| z1 |2 + | z2 |2 }
a − ib
Properties of Modulus of Complex Number X Example 25. If x − iy = , then
c − id
i. | z | ≥ 0 ⇒ | z | = 0 iff z = 0 and | z | > 0 iff z ≠ 0 ( x 2 + y 2 ) 2 is equal to
a 2 − b2 a 2 + b2
ii. −| z | ≤ Re ( z ) ≤ | z | and −| z | ≤ Im ( z ) ≤ | z | (a) 2 (b)
c − d2 c2 + d 2
iii. | z | = | z | = |− z | = |− z | a 2 + b2
(c) 2 (d) None of these
c − d2
iv. zz = | z | 2
(a) 1 (b) 2
Sol. (b) Given, −8 − 6i = x + iy = z
(c) 3 (d) None of these | z| + x | z| − x
Then, z=± −i [QIm( z) < 0 ]
Sol. (b) By using | z1| + | z2| ≥ | z1 − z2| 2 2
We have, | z| + | z − 2| ≥ | z − ( z − 2 )| 10 − 8 10 + 8
⇒ z=± −i [Q z = x + y ]
2 2
∴ | z| + | z − 2| ≥ 2 2 2
⇒ z = ± (1 − 3 i )
X Example 27. If | z1 − 1| < 1, | z 2 − 2 | < 2 and
| z 3 − 3 | < 3, then | z1 + z 2 + z 3 | X Example 31. The value of
(a) is less than 6 (b) is more than 3 ( 4 + 3 − 20 )1/ 2 + ( 4 − 3 − 20 )1/ 2 is
(c) is less than 12 (d) lies between 6 and 12 (a) ±6 (b) 0 (c) ± 5 (d) ± 3
Sol. (c)| z1 + z2 + z3| = |( z1 − 1) + ( z2 − 2 ) + ( z3 − 3) + 6|
Sol. (a) We may write, (4 + 3 − 20 ) = (4 + 6 i 5 )
≤ | z1 − 1| + | z2 − 2| + | z3 − 3| + 6 Let (4 + 3 − 20 )1/ 2 = ( x + iy)
< 1 + 2 + 3 + 6 = 12
Then, (4 + 6 i 5 )1/ 2 = ( x + i y)
X Example 28. If α, β are two complex numbers, ⇒ 4 + 6i 5 = ( x2 − y2 ) + (2 xy) i
then | α | 2 + | β | 2 is equal to ⇒ x + y2 = 4 and 2 xy = 6 5
2
1 1 ∴ x2 + y2 = ( x2 − y2 )2 + 4 x2 y2
(a) (| α + β | 2 − | α − β | 2 ) (b) (| α + β | 2 + | α − β | 2 )
2 2 = (16 + 180) = 196 = 14
(c) | α + β | + | α − β |
2 2
(d) None of these On solving the equations x2 = y2 = 14 and x2 − y2 = 4,
we get
Sol. (b)|α + β|2 = (α + β)(α + β) = (α + β)(α + β ) x2 = 9 and y2 = 5
∴ x = ± 3 and y = ± 5
= αα + ββ + αβ + αβ
Since, xy > 0, it follows that x and y are of the same sign.
= |α|2 + |β|2 + αβ + αβ …(i)
∴ x = 3, y = 5 or x = − 3, = − 5
|α − β| = (α − β )(α − β ) = αα + ββ − αβ − αβ
2
So, (4 + 3 − 20 )1/ 2 = (4 + 6 i 5 )1/ 2
= |α|2 + |β|2 − αβ − αβ …(ii) = ± (3 + 5i) …(i)
∴ (4 − 3 −20 )1/ 2 = ± (3 − 5 i) …(ii)
Adding Eqs. (i) and (ii), we get
1 Hence, (4 + 3 − 20 )1/ 2 + (4 − 3 20 )1/ 2 = ± 6
|α|2 + |β|2 = {|α + β|2 + |α − β|2 }
2 [on adding Eqs. (i) and (ii)]
Aliter
X Example 29. If z1 and z 2 are two complex Here, x = 4, y = 6 5
numbers, such that | z1 | < 1 < | z 2 |, then prove that ∴ = (4 + 3 − 20 )1/ 2 + (4 − 3 − 20 )1/ 2
1 − z1 z 2 = 2 { 42 + (6 5 )2 + 4} = 2( 16 + 180 + 4 )
< 1.
z1 − z 2 = 2 (14 + 4) = 36 = ± 6
Complex Numbers
Now, arg 1 + arg 2 = arg
vii. If arg( z ) = 0 ⇒ z is real. 4
z z3 z4 z3
| z |2 z 2
viii. arg( z1 z 2 ) = arg( z1 ) − arg( z 2 ) = arg 1 2 = arg 1 = 0
| z3| z
3
π
ix. | z1 + z 2 | = | z1 − z 2 | ⇒ arg( z1 ) − arg( z 2 ) = [Qargument of positive real number is zero]
2
x. | z1 + z 2 | = | z1 | + | z 2 | ⇒ arg( z1 ) = arg( z 2 ) De-Moivre’s Theorem
xi. If | z1 | ≤ 1, | z 2 | ≤ 1, then (a) If n ∈ I (the set of integers), then
(cos θ + i sin θ ) n = cos n θ + i sin n θ.
(a) | z1 − z 2 | 2 ≤ (| z1 | − | z 2 | ) 2 +
(b) If n ∈Q (the set of rational numbers), then
[arg( z1 ) − arg( z 2 )]2 cos n θ + i sin n θ is one of the values of
(b) | z1 + z 2 | 2 ≥ (| z1 | + | z 2 | ) 2 − (cos θ + i sin θ ) n .
the value of x1 x 2 x 3 K ∞ is
π
2
π
Example 36. If x r = cos r + i sin r , then
2 X Example 38. If z =
3 i
2 2
+ +
3 i
5
− ,
2 2
5
Objective Mathematics Vol. 1
then
(a) −1 (b) 1
(a) Re ( z ) = 0 (b) Im ( z ) = 0
(c) 0 (d) None of these
(c) Re ( z ) > 0, Im ( z ) > 0 (d) Re ( z ) > 0, Im ( z ) < 0
Sol. (a)Q xr = cos πr + i sin πr Sol. (b) Given,
2 2 5 5
π π 3 i 3 i
∴ x1 = cos + i sin z= + + −
2 2 2 2 2 2
π π π π
5
π π
5
x2 = cos 2 + i sin 2
= cos + i sin + cos − i sin
2 2
6 6 6 6
M M 5π 5π 5π 5π 5π
= cos + i sin + cos − i sin = 2 cos
π π π π
⇒ x1 x2 x3 … = cos + i sin cos 2 + i sin 2 K
6 6 6 6 6
2 2 2 2 Hence, Im ( z) = 0.
π π π π
= cos + 2 + K + i sin + 2 + K X Example 39. The product of all the values of
2 2 2 2 3/ 4
π π π π
cos + i sin is
= cos 2 + i sin 2 3 3
1
1 − 1 − 1
2 2
(a) −1 (b) 1 (c) 3/2 (d) −1/ 2
3/ 4
= cos π + i sin π = − 1 Sol. (b) Given, cos π + i sin π = [cos π + i sin π ]1/ 4
3
3
(cos θ + i sin θ ) 4 Since, the expression has only 4 different roots, therefore
X Example 37. is equal to on putting n = 0, 1, 2, 3 in
(sin θ + i cos θ ) 5
2 nπ + π 2 nπ + π
(a) cos θ − i sin θ (b) cos 9 θ − i sin 9 θ cos + i sin and multiplying them,
4 4
(c) sin θ − i cos θ (d) sin 9 θ − i cos 9 θ π π 3π 3π
we get cos + i sin cos + i sin
4 4 4 4
(cos θ + i sin θ )4 (cos θ + i sin θ )4
Sol. (d) = cos 5 π + i sin 5 π cos 7 π + i sin 7 π
(sin θ + i cos θ )5
1
5
i 5 sin θ + cos θ 4 4 4 4
i
1 −1 1 −1 −1 1
=
1 1
(cos θ + i sin θ)4 (cos θ + i sin θ)4 + i + i + i −i
= = 2 2 2 2 2 2 2 2
i (cos θ − i sin θ)5 i (cos θ + i sin θ)− 5
1 1 −1 1
1 = − − − = (− 1)(− 1) = 1
= (cos θ + i sinθ)9 = sin 9θ − i cos 9θ 2 2 2 2
i
Complex Numbers
8 8 a ± x − + 2 i
1
b ± x − − 2 i
1
a 1 b −1 c i d −i x x
c ± x + + 2 i
d ± x + − 2 i
1 1
2 rπ 2 rπ
7 If zr = cos + i sin , r = 0, 1, 2, 3, 4, …, then x x
5 5
z1 z2 z3 z4 z5 is equal to 12 The minimum value of|1 + z| + |1 − z|, where z is
a −1 b 0 a complex number, is
c 1 d None of these 3
a 2 b
2
π π
8 If zn = cos + i sin , c 1 d 0
(2 n + 1)(2 n + 3) (2 n + 1)(2 n + 3)
π 2π
then lim ( z1 ⋅ z2 ⋅ z3 K zn ) is equal to 13 If arg( z + a) = and arg( z − a) = , a ∈ R + , then
n→ ∞ 6 3
π π π π a z is independent of a b | a| = | z + a|
a cos + i sin b cos + i sin
3 3 6 6 π π
c z = a, c is d z = a, c is
π π 6 3
c cos + i sin d None of these
12 12
14 Let z be a complex number satisfying the
9 If z1, z2 are two complex numbers and a, b are equation ( z 3 + 3)2 = − 16, then| z| has the value
two real numbers, then| az1 − bz2|2 + | bz1 + az2|2 equal to
is equal to a 51/ 2 b 51/ 3 c 5 2/ 3 d 5
a ( a + b )2[| z1|2 + | z2|2 ]
1− i 1− i 1+ i
b ( a + b )[| z1|2 + | z2|2 ] 15 For z1 = 6 , z2 = 6 , z3 = 6 ,
1+ i 3 3+i 3−i
c ( a 2 − b 2 )[| z1|2 + | z2|2 ]
which of the following holds good?
d ( a 2 + b 2 )[| z1|2 + | z2|2 ]
3
a Σ| z1|2 =
10 All real numbers x, which satisfy the inequality 2
b | z1|4 + | z2|4 = | z3|− 8
1 + 4i − 2 − x ≤ 5, where i = −1,x ∈ R are
c Σ| z1|3 + | z2|3 = | z3|− 6
a [ −2, ∞ ) b ( −∞, 2 ]
d | z1|4 + | z2|4 = | z3|8
c [0, ∞ ) d [−2, 0]
Roots of Unity
Cube Roots of Unity Important Identities
Let x= 1 3 (i) + x + 1 = ( x − ω )( x − ω 2 )
x2
⇒ x 3 −1 = 0 (ii) − x + 1 = ( x + ω )( x + ω 2 )
x2
(iii) + xy + y 2 = ( x − yω ) ( x − yω 2 )
x2
⇒ ( x − 1) ( x 2 + x + 1) = 0
(iv) − xy + y 2 = ( x + yω ) + ( x + yω 2 )
x2
−1 + i 3 −1 − i 3
Therefore, x =1, , (v) + y 2 = ( x + iy)( x − iy)
x2
2 2
(vi) + y 3 = ( x + y)( x + yω )( x + yω 2 )
x3
If second root is represented by ω, then third root
(vii) − y 3 = ( x − y) = ( x − yω )( x − yω 2 )
x3
will be ω 2 . Therefore, cube roots of unity are 1, ω, ω 2
and ω, ω 2 are called the imaginary cube roots of unity. (viii) + y 2 + z 2 − xy − yz − zx
x2
= ( x + yω + zω 2 )( x + yω 2 + zω )
Properties or ( xω + yω 2 + z )( xω 2 + yω + z )
0, if r is not a multiple of 3 or ( xω + y + zω 2 ) ( xω 2 + y + zω )
i. 1 + ωr + ω2 r =
3, if r is not a multiple of 3 (ix) x 3 + y 3 + z 3 − 3xyz
= ( x + y + z )( x + ωy + ω 2 y)( x + ωy 2 + ωz )
ii. ω 3 = 1 or ω 3 r = 1
(x) Two points P ( z1 ) and Q ( z 2 ) lie on the same
3r + 1 3r + 2
iii. ω = ω, ω =ω 2 side or opposite side of the line
az + az + b accordingly as az1 + az1 + b and
iv. It always forms an equilateral triangle. az 2 + az 2 + b have same sign or opposite sign.
121
4 X Example 40. If x 2 − x + 1 = 0, then the value of
5
1
2
nth Roots of Unity
Let z =11/ n . Then,
∑ x n + x n is
Objective Mathematics Vol. 1
n =1
z = (cos 0° + i sin 0° )1/ n
(a) 8 z = (cos 2rπ + i sin 2rπ )1/ n , r ∈ Z
2rπ 2rπ
(b) 10 ⇒ z = cos + i sin , r = 0, 1, 2, …, ( n −1)
(c) 12 n n
(d) None of the above [using De-Moivre’s theorem]
i 2rπ
1± 3i
Sol. (a) x2 − x + 1 = 0 ⇒ x= = − ω, − ω2 ⇒ z=e n , r = 0, 1, 2, …, ( n −1)
2
⇒ z = {e i 2π / n }r , r = 0, 1, 2, …, ( n −1)
5
1
+ 2
∴ ∑ x +
2n
n =1 x 2n i 2π
= x2 + 2 + 2 + x4 + 4 + 2 + x6 + 6 + 2
1 1 1 z =αr,α = e n , r = 0, 1, 2, …, ( n −1)
x x x
Thus, nth roots of unity are 1, α, α 2 ,…, α n − 1 , where
+ x + 8 + 2 + x + 10 + 2
8 1 10 1
x x i 2π
2π 2π
= (ω2 + ω4 + ω6 + ω8 + ω10 ) α=e n = cos + i sin
n n
+ 2 + 4 + 6 + 8 + 10 + 10
1 1 1 1 1
ω ω ω ω ω
[Q x = − ω or − ω2 ]
Properties of nth Roots of Unity
= − 1 − 1 + 10 = 8 i. nth roots of unity form a GP with common
100 i 2π
3 3 n
X Example 41. If 3 (x + iy) = + i 49
and ratio e .
2 2
ii. Sum of nth roots of unity is always zero.
x = ky, then k is
(a) −
1
(b) 3
iii. Sum of pth powers of nth roots of unity is
3 zero, if p is not a multiple of n.
1
(c) − 3 (d) − iv. Sum of pth powers of nth roots of unity is n, if
3
p is a multiple of n.
100 100
1 − i 3
Sol. (d) As 349 ( x + iy) = 3 + 3 i = i 3 v. Product of nth roots of unity is ( − 1) n − 1 .
2 2 2
⇒ 349 ( x + iy) = i 100 ⋅ 350 ⋅ (−ω)100 vi. nth roots of unity lie on the unit circle | z | =1
1 i 3
⇒ 3 ( x + iy) = 3 ⋅ ω = 3 ⋅ − +
49 50
50 and divide its circumference into n equal parts.
2 2
3 3 3 X Example 43. If z1 , z 2 , z 3 , …, z n are nth, roots
∴ x + iy = − + i
2 2 of unity, then for k =1, 2, …, n
1
⇒ x=− y (a) | z k | = k | z k + 1 | (b) | z k + 1 | = k | z k |
3
1 (c) | z k + 1 | = | z k | + | z k + 1 | (d) | z k | = | z k + 1 |
∴ k=−
3 Sol. (d) The nth roots of unity are given by
i 2 π ( k − 1)
−n
X Example 42. If z − z + 1 = 0, then z − z 2 n
, zk = e n , k = 1, 2, …, n
where n is a multiple of 3, is i 2 π ( k − 1)
(a) 2( − 1) n ∴ | zk| =
e
n
= 1, ∀ k = 1, 2, …, n
(b) 0
Complex Numbers
⇒ = 11/ n
z+1 (a) 4 (b) 2
z
⇒ is nth root of unity. (c) 1 (d) None of these
z+1
z | z|
Sol. (a)Qα 5 = 1
⇒ = 1 ⇒ =1
z + 1 | z + 1| ∴ 1 + α + α2 + α− 2 − α− 1 = 1 + α + α2 + α3 − α4
⇒ | z| = | z + 1| = 1 + α + α 2 + α 3 + α 4 − 2α 4
1
⇒ x+ =0 [taking z = x + iy] 1 − α5
− 2α 4 = 2α 4 = 2 α
4
2 = = 2 × 1= 2
−1 1− α
⇒ x= ⇒ Re( z) < 0
2 ∴ 22 = 4
6 If ( 3 − i )n = 2 n , n ∈ I, the set of integers, then n is 14 Let z be a complex number satisfying the equation
a multiple of z 6 + z 3 + 1 = 0. If this equation has a root re i θ with
a 6 b 10 c 9 d 12 90 ° < θ < 180 °, then the value of θ is
a 100° b 110° c 160° d 170°
7 If z is a complex number satisfying
z 4 + z 3 + 2 z 2 + z + 1 = 0, then| z| is equal to 15 If ω is an imaginary cube root of unity, then the
value of ( p + q )3 + ( pω + qω 2 )3 + ( pω 2 + qω )3 is
1 3
a b
2 4 a p3 + q 3
c 1 d None of these b 3 ( p3 + q 3 )
c 3 ( p3 + q 3 ) − pq ( p + q )
8 If z is a non-real root of 7 − 1, then
d 3 ( p3 + q 3 ) + pq ( p + q )
z 86 + z175 + z 289 is equal to
a 0 b −1 c 3 d 1 16 If z 2 − z + 1 = 0, then the value of
2 2 2
9 Non-real complex number z satisfying the 1 2 1 3 1
z + + z + 2 + z + 3
equation z 3 + 2 z 2 + 3 z + 2 = 0 are z z z
−1 ± −7 1 + 7i 1 − 7i 1
a b , + K + z 24 + 24 is equal to
2 2 2 z
−1 + 7 i −1 − 7 i a 24 b 32
c − i, , d None of these 123
2 2 c 48 d None of these
4 17 If p = a + bω + cω 2 q = b + cω + aω 2 and
r = c + aω + bω 2 , where a, b, c ≠ 0 and ω is the
complex cube root of unity, then
22 If α, β respectively are the fifth and fourth non-real
roots of unity, then the value of
(1 + α )(1 + β )(1 + α 2 )(1 + β 2 )(1 + β 3 )(1 + α 3 ) is
Objective Mathematics Vol. 1
a p+ q + r = a+ b + c a 0 b (1 + α + α 2 )(1 − β 2 )
b p2 + q 2 + r 2 = a 2 + b 2 + c 2 c (1 + α )(1 + β + β 2 ) d 1
c p2 + q 2 + r 2 = − 2( pq + qr + rp)
d None of the above 23 When the polynomial 5 x 3 + Mx + N is divided by
x 2 + x + 1, the remainder is 0. The value of
18 If a and b are imaginary cube roots of unity, then (M + N ) is equal to
α n + β n is equal to a −3 b 05 c −5 d 15
2nπ 2nπ
a 2 cos b cos 24 If z and w are two complex numbers
3 3
2nπ 2nπ simultaneously satisfying the equations,
c 2 i sin d i sin
3 3 z 3 + w 5 = 0 and z 2 ⋅ w 4 = 1, then
19 If the six solutions of x 6 = − 64 are written in the a z and w both are purely real
b z is purely real and w is purely imaginary
form a + bi , where a and b are real, then the
c w is purely real and z is purely imaginary
product of those solutions with a > 0 is d z and w both are imaginary
a 4 b 8 c 16 d 64
25 Number of ordered pairs (z, ω) of the complex
20 If cos θ + i sin θ is a root of the equation numbers z and ω satisfying the system of
n −1 n−2 equations, z 3 + ω 7 = 0 and z 5 ⋅ ω11 = 1 is
x + a1 x
n
+ a2 x + K + an − 1 x + an = 0, then
n a 7 b 5 c 3 d 2
the value of ∑ ar cos r θ is 26 If 1, z1, z2 , z3 , …, zn − 1 is the nth roots of unity
r =1
a 0
and w is a non-real complex cube root of unity,
n −1
b
c
1
−1
then the product of ∏ (ω − zr ) is cannot be
r =1
d None of the above
equal to
21 If ω is a complex nth root of unity, then a 0 b 1 c −1 d 1+ ω
n
∑ (ar + b)ω r −1
is equal to 27. If Zr , r = 1, 2, 3, …, 50 are the roots of the
50 50
r =1 1
a
n( n + 1) a
b
nb equation ∑ (Z )r = 0, then the value of ∑ Zr −1
r =0 r =1
2 1− n
na is
c d None of these
n−1 a − 85 b − 25 c 25 d 75
Complex Numbers
z1 , z 2 , z 3 such that z1 = 2 , where λ ∈R, then Sol. Clearly, the equation of a line is given by
λ +1 z( z1 − z2 ) − z( z1 − z2 ) + z1 z2 − z2 z1 = 0
the distance of A from the line BC is where, z1 = 1 + i and z2 = i − i
(a) λ On substituting the values of z1 and z2 , we get
λ z(1 − i − 1 − i ) − z(1 + i − 1 + i ) + (1 + i )(1 + i )
(b)
λ +1 − (1 − i )(1 − i ) = 0
(c) 1 ⇒ z( − 2 i ) − z (2 i ) + (1 − 1 + 2 i ) − (1 − 1 − 2 i ) = 0
(d) 0 ⇒ − 2 iz − 2 iz + 4 i = 0
⇒ z + z − 2 = 0, which is the required equation.
Sol. (d) As z1 = λz2 + z3
λ+1
Condition of Collinearity
which shows z1 divides z2 , z3 in the ratio of 1: λ.
Three points z1 , z 2 and z 3 are collinear, if
Thus, the points are collinear.
∴Distance of A from line BC is zero. z1 z1 1
z2 z2 1 = 0
X Example 48. Find the relation, if z1 , z 2 , z 3 , z 4
z3 z3 1
are the affixes of the vertices of a parallelogram
taken in order. X Example 50. If z1 , z 2 , z 3 are three complex
Sol. As the diagonals of a parallelogram bisect each other, numbers such that 5 z1 − 13 z 2 + 8 z 3 = 0, then prove
therefore affix of the mid-point of AC is same as the affix of that
the mid-point of BD. z1 z1 1
z1 + z3 z + z4
i.e. = 2
2 2 ` z 2 z 2 1 = 0.
⇒ z1 + z3 = z2 + z4 z3 z3 1
z − z1 Length of Perpendicular
⇒ must be real.
z 2 − z1 The length of perpendicular from a point z1 to
∴ Required equation is az + az + b = 0 is given by
z z 1 az1 + az1 + b
z − z1 z − z1 2a
= ⇒ z1 z1 1 = 0
z 2 − z1 z 2 − z1
z2 z2 1 X Example 51. The length of perpendicular from
⇒ z ( z1 − z 2) − z ( z1 − z 2 ) + z1 z 2 − z 2 z1 = 0 P (2 − 3i) to the line (3 + 4i) z + (3 − 4i) z + 9 = 0 is
equal to
General Equation of a Line 9
(a) 9 (b)
az + az + b = 0, represents a straight line, where b 4
is a real number and a is a complex number. 9
(c) (d) None of these
2
Parametric Equation of a Line
Sol. (c) Let PM be the required length, then
z = z1 + t ( z 2 − z1 ), where t is real parameter |(2 − 3i )(3 + 4i ) + (3 − 4i ) (2 + 3i ) + 9|
PM =
= (1 − t ) z1 + t z 2 , represents the complete line 2 |3 − 4i |
through z1 and z 2 . 45 9
= =
10 2 125
4 Slope of a Line
Slope of the Line Segment Joining Two Points
⇒
⇒
b ( z2 − z1 ) − b ( z2 − z1 ) = 0
b z2 − bz1 − bz2 + bz1 = 0
Adding Eqs. (i) and (ii), we get
…(ii)
Objective Mathematics Vol. 1
Complex Numbers
CA iα
through an angle in the clockwise direction, the = e
2 BA
new position of point is | z − z1 | iα
(a)1 + 2i (b) −1 − 2i = 3 e
| z 2 − z1 |
(c) 2 + i (d) −1 + 2i Y
Sol. (b) Here, z = 2 − i C (z 3 )
Let z1 be the required complex number.
Q z1 = ze − iπ / 2 B(z2)
π π
z1 = (2 − i ) cos − + i sin −
A(z1)
∴ Q (z3 – z1)
2 2
π π
= (2 − i ) cos – i sin α P (z2 – z1)
2 2
X
= (2 − i ) (0 − i ) O
= − (2 i − i 2 ) = – 2 i − 1
Q ∆OPQ and ∆ABC are congruent,
X Example 54. A particle P starts from the point OQ CA
∴ =
z 0 = 1 + 2i, where i = −1. It moves first horizontally OP BA
away from origin by 5 units and then vertically z − z1
away from origin by 3 units to reach a point z1 . or amp 3 =α
From z1 , the particle moves 2 units in the z 2 − z1
direction of the vector $i + $j and then it moves X Example 55. A man walks a distance of
through an angle π /2 in anti-clockwise direction on 3 units from the origin towards the North-East
a circle with centre at origin to reach a point z 2 . ( N 45° E ) direction. From there, he walks a
The point z 2 is given by distance of 4 units towards the North- West
(a) 6 + 7i (b) −7 + 6i ( N 45° W ) direction to reach a point P. Then, the
(c) 7 + 6i (d) −6 + 7i position of P in the argand plane is
Sol. (d) Imaginary axis
(a) 3e iπ / 4 + 4i (b) (3 − 4i) e iπ / 4
(c) ( 4 + 3i) e iπ / 4 (d) (3 + 4i) e iπ / 4
z2 z'2 (7, 6) Sol. (d) Let OA = 3 units, so that the complex number
1 associated with A is 3 e iπ / 4 . If z is the complex number
)
,2
90° 3 1
0
5 (6, 2)
z
Y
Real axis P
Complex Numbers
iz1 – z1 − iz1 z
=− 1
3 3 Sol. If z1, z2 and z3 form an equilateral triangle, then
D(–iz1) C(–z1) ⇒ z12 + z22 + z32 = z1 z2 + z2 z3 + z3 z1
⇒ z12 + z22 + 02 = z1 z2 + z2 ⋅ 0 + 0 ⋅ z1
⇒ z12 + z22 = z1 z2 ⇒ z12 + z22 − z1 z2 = 0
Hence proved.
O
X Example 63. Let z1 and z 2 be two complex
z z
numbers such that 1 + 2 =1, then
A(z1) B(iz1)
z 2 z1
(a) z1 , z 2 are collinear
X Example 61. Let P (e i θ 1 ), Q (e i θ 2 ) and R (e i θ 3 ) (b) z1 , z 2 and the origin form a right angled triangle
be the vertices of ∆PQR in the argand plane. Then, (c) z1 , z 2 and the origin form an equilateral
the orthocentre of the ∆PQR is triangle
2 (d) None of the above
(a) e i ( θ 1 + θ 2 + θ 3 ) (b) e i ( θ 1 + θ 2 + θ 3 )
3 Sol. (c) We have, z1 + z2 = 1 ⇒ z12 + z2 2 = z1 z2
(c) e i θ 1 + e i θ 2 + e i θ 3
z2 z1
(d) None of these
⇒ z12 + z22 + z32 = z1 z2 + z1 z3 + z2 z3 , where z3 = 0
Sol. (c) We have, |e i θ1| =|e i θ 2| = |e i θ 3| = 1 ⇒ z1, z2 and the origin form an equilateral triangle.
⇒ OP = OQ = OR = 1, where O is the origin.
⇒ Origin O is the circumcentre of ∆PQR. Circle
The affix of the centroid is
1 i θ1
(e + ei θ2 + ei θ3 ) Equation of a Circle
3 (i) The equation of a circle whose centre is at point
Let z be the affix of the orthocentre. Since, centroid having affix z 0 and radius r, is | z − z 0 | = r.
divides the segment joining circumcentre and
orthocentre in the ratio 1 : 2. P(z)
1 1⋅ z + 2 × 0
∴ (e i θ1 + e i θ 2 + e i θ 3 ) =
3 1+ 2 r
i θ1 i θ2 i θ3
⇒ z=e +e +e
C(z0 )
6. Equilateral Triangle
(i) The triangle whose vertices are the points
z1 , z 2 and z 3 on the argand plane, is an
equilateral triangle, if (ii) If the centre of the circle is at origin and radius r,
z12 + z 22 + z 32 = z1 z 2 + z 2 z 3 + z 3 z1 then its equation is | z | = r.
1 1 1 (iii) | z − z 0 | < r represents interior of a circle
or + + =0
z1 − z 2 z 2 − z 3 z 3 − z1 | z − z 0 | = r and | z − z 0 | > r represents exterior of
the circle | z − z 0 | = r.
(ii) If the complex numbers z1 , z 2 and z 3 are the
vertices of an equilateral triangle and z 0 is (iv) General equation of a circle The general
the circumcentre of the triangle, then equation of the circle is zz + az + az + b = 0,
z12 + z 22 + z 32 = 3 z 02 . where a is complex number and b ∈ R .
∴ Centre and radius are −a and | a | 2 − b,
7. Isosceles Triangle
(i) If z1 , z 2 and z 3 are the vertices of a right respectively.
angled isosceles triangle, then (v) Equation of circle in diametric form If end
( z1 − z 2 ) 2 = 2( z1 − z 3 ) ( z 3 − z 2 ) points of diameter represented by A ( z1 ) and B ( z 2 )
and P ( z ) is any point on the circle, then
(ii) If z1 , z 2 and z 3 are the vertices of an ( z − z1 )( z − z 2 ) + ( z − z 2 )( z − z1 ) = 0
isosceles triangle, right angled at z 2 , then
which is required equation of circle in diametric
z12 + z 22 + z 32 = 2 z 2 ( z1 + z 3 ) form.
129
4 X Example 64. A circle whose radius is r and
centre z 0 , then the equation of the circle is
(a) zz − zz 0 − zz 0 + z 0 z 0 = r 2
z − z1
(x) arg = 0 or π
z − z2
Objective Mathematics Vol. 1
(0, 5)
For circle to exist, we must have
25 − k > 0 ⇒ k < 25 X¢
O
X
Hence, the given equation will represent a circle if
k < 25. (0, –5)
If z is a variable point and z1 , z 2 are two fixed ∴ Perpendicular bisector of (0, 5) and (0, − 5) is X-axis.
points in the argand plane, then
(i) | z − z1 | = | z − z 2 | X Example 67. The equation
⇒ Locus of z is the perpendicular bisector of the | z − i | + | z + i | = k, k > 0
line segment joining z1 and z 2 . can represent an ellipse, if k 2 is
(ii) | z − z1 | + | z − z 2 | = k , if | k | > | z1 − z 2 | (a) <1 (b) < 2
⇒ Locus of z is an ellipse. (c) > 4 (d) None of these
(iii) | z − z1 | + | z − z 2 | = | z1 − z 2 | Sol. (c)| z − z1 | + | z – z2 | = k represents ellipse, if
⇒ Locus of z is the line segment joining z1 and z 2 | k | > | z1 − z2|
(iv) | z − z1 | − | z − z 2 | = | z1 − z 2 | Thus,| z − i | + | z − i | = k represents ellipse, if
| k | > |i + i| or | k | > |2 i|
⇒ Locus of z is a straight line joining z1 and z 2
∴ | k | > 2 or k 2 > 4
but z does not lie between z1 and z 2 .
(v) | z − z1 | – | z − z 2 | = k , where k < | z1 − z 2 | X Example 68. The equation | z + i | − | z − i | = k
⇒ Locus of z is a hyperbola.
represents a hyperbola if
(vi) | z − z1 | 2 + | z − z 2 | 2 = | z1 − z 2 | 2 (a) −2 < k < 2 (b) k >2
⇒ Locus of z is a circle with z1 and z 2 as the (c) 0 < k < 2 (d) None of these
extremities of diameter.
Sol. (a)| z − z1| − | z − z2| = k, represents hyperbola,
(vii) | z − z1 | = k | z − z 2 |, ( k ≠ 1) if| k | < |z1 − z2|
⇒ Locus of z is a circle.
Thus, | z + i| − | z − i| = k, represents hyperbola, if
z − z1 | k | < | i + i | or| k | < 2
(viii) arg = α (fixed) ⇒ −2 < k < 2
z − z2
⇒ Locus of z is a segment of circle. X Example 69. If z = 1 − t + i t 2 + t + 2, where t
z − z1
(ix) arg = ± π /2 is a real parameter. The locus of z in the argand
z − z2 plane is
⇒ Locus of z is a circle with z1 and z 2 as the (a) a hyperbola (b) an ellipse
130 vertices of diameter. (c) a straight line (d) None of these
Sol. (a) x + iy = 1 − t + i t 2 + t + 2
⇒ x = 1− t , y = t + t + 2
2
Sol. (c) z − 1 = 1⇒ | z − 1| = | z − i|
⇒
z−i
|( x − 1) + iy| = | x + i ( y − 1)|
4
Complex Numbers
Eliminating t, y2 = t 2 + t + 2
⇒ ( x − 1)2 + y 2 = x2 + ( y − 1)2
= (1 − x)2 + 1 − x + 2
2 ⇒ 2x = 2y
= x − +
3 7 or x− y=0
2 4 which is the equation of a straight line.
2
or y2 − x − =
3 7
2 4
X Example 74. If z = x + iy and
which is a hyperbola.
| z − 2 + i | = | z − 3 − i |, then locus of z is
(a) 2x + 4 y − 5 = 0 (b) 2x − 4 y − 5 = 0
X Example 70. Identify the locus of z, if (c) x + 2 y = 0 (d) x − 2 y + 5 = 0
r2 Sol. (a) | z − 2 + i| = | z − 3 − i|
z=a + , > 0.
z−a ⇒ | ( x − 2 ) + i ( y + 1)| = | ( x − 3) + i ( y − 1)|
2 2
Sol. z = a + r ⇒ z−a=
r ⇒ ( x − 2 )2 + ( y + 1)2 = ( x − 3)2 + ( y − 1)2
z−a z−a
⇒ x 2 + 4 − 4 x + y2 + 1 + 2 y = x 2 + 9 − 6 x + y2 + 1 − 2 y
⇒ ( z − a) ( z − a ) = r 2 ⇒ 2 x + 4y − 5 = 0
⇒ | z − a|2 = r 2
⇒ | z − a| = r X Example 75. If z = z 0 + A ( z − z 0 ), where A is
Hence, locus of z is circle having centre a and radius r. a constant, then prove that locus of z is a straight
line.
X Example 71. If the equation
| z − z1 | 2 + | z − z 2 | 2 = k represents the equation of a Sol. z = z0 + A ( z − z0 )
⇒ Az − z − Az0 + z0 = 0 …(i)
circle, where z1 = 2 + 3 i, z 2 = 4 + 3 i are the extremities
⇒ A z − z − A z0 + z0 = 0 …(ii)
of a diameter, then the value of k is
Adding Eqs. (i) and (ii), we get
1
(a) (b) 4 ( A − 1) z + ( A − 1) z − ( Az0 + Az0 ) + z0 + z0 = 0
4
This is of the form
(c) 2 (d) None of these
az + az + b = 0, where
Sol. (b) As z1 and z2 are the extremities of diameter. a = A − 1 and b = − ( Az0 + Az0 ) + z0 + z0 ∈R
⇒ | z − z1|2 + | z − z2|2 = | z1 − z2|2 Hence, locus of z is a straight line.
⇒ k = | z1 − z2|2 = |2 + 3i − 4 − 3i|2 = | − 2 |2 = 4
X Example 76. Plot the region represented by
Example 72. If | z + 1| = 2 | z – 1,| then the π z + 1 2π
X
≤ arg ≤ in the argand plane.
locus described by the point z in the argand 3 z −1 3
diagram is a Sol. Let us take
(a) straight line (b) circle z + 1 2 π
arg = , clearly z
(c) parabola (d) None of these z − 1 3
is π z + 1 2 π
Thus, ≤ arg ≤ represents the shaded region
(a) a circle (b) an ellipse 3 z − 1 3
(c) a straight line (d) a parabola excluding the points (1, 0) and (−1, 0).
131
4 Some Important Results
i. Four points z1 , z 2 , z 3 and z 4 in anti-clockwise
⇒
⇒
z − z1
arg 2 = π − arg
z3 − z1
α = π −β ⇒ α + β = π
z3
z2
Objective Mathematics Vol. 1
order will be concyclic, if and only if Hence, the points are concyclic.
z − z4 z2 − z3
θ = arg 2 = arg 1
z1 − z 4 z1 − z 3 ii. If z + = a, then the greatest and least
z
z − z4 z2 − z3 a + a2 + 4
⇒ arg 2 −arg = 2nπ , n ∈ I values of z are respectively
1
z − z 4 z1 − z 3 2
z − z 4 z1 − z 3 −a + a + 4 2
⇒ arg 2 = 2nπ and
z1 − z 4 z 2 − z 3 2
z − z 4 z1 − z 3 4
⇒ 2 is real and positive. X Example 79. If z + = a, then find the
z1 − z 4 z 2 − z 3 z
greatest and least values of | z | .
Ø Points z1, z 2, z3 and z4 (not necessarily in order) will be concyclic,
z 2 a z
z − z z − z Sol. + = . Now, put = w
if 2 4 1 3 is positive or negative. 2 z 2 2
z1 − z4 z 2 − z3 1 a
∴ w+ =
w 2
X Example 77. Show that the points 3 + 4i, 3 − 4i,
a a2
−4 + 3i, −4 − 3i are concyclic. + + 4
Now, greatest value of|w| = 2 4 and| z| = 2|w|
Sol. Let z1 = 3 + 4i , z2 = 3 − 4i , z3 = − 4 + 3i 2
z4 = − 4 − 3i a a2
and Greatest value of| z| = + + 4
Then, 2 4
z2 − z4 z1 − z3 (7 − i )(7 + i ) Similarly, we can find least value of
= a a2
1
z − z4 2z − z3 (7 + 7 i )(7 − 7 i ) | z| = − + + 4
50 25 2 4
= =
49 + 49 49
X Example 80. Let z1 and z 2 be two non-real
= a real number
Hence, the given points are concyclic. complex cube roots of unity and
2 2
z − z1 + z − z 2 = λ be the equation of a circle
X Example 78. If z1 , z 2 and z 3 are complex
with z1 , z 2 as ends of a diameter, then the value of
2 1 1 λ is
numbers, such that = + , then show that
z1 z 2 z 3 (a) 4 (b) 3 (c) 2 (d) 2
the points represented by z1 , z 2 and z 3 lie on a 2
circle passing through the origin. Sol. (b) z − ω 2 + z − ω2 − λ could be shows as given
z
Sol. below : z–ω z – ω2
R (z2) 2
⇒λ = ω−ω 2
S(0)
β − 1+ i 3 − 1− i 3
2
= −
2 2
O
α 2
ω – ω2
− 1+ i 3 + 1+ i 3
Q(z1) =
2
P(z3)
= |i 3|2 = 3
2 1 1 1 1 1 1
= + ⇒ − = −
z1 z2
z2 − z1 z1 − z3
z3 z1 z2
z2 − z1
z3
z2
z1
Logarithm of Complex Numbers
⇒ = ⇒ =−
z1 z2 z3 z1 z3 − z1 z3 Let z = α + iβ = re i ( θ + 2nπ )
⇒
z − z1
arg 2
z
= arg − 2 log z = log( re i ( θ + 2nπ ) ) = log r + i(θ + 2nπ )
3
z − z1 z3 = log | z | + i arg z + 2nπi
⇒
z − z1
arg 2
z
= π + arg 2
If we put n = 0, we get principal value of log z.
132 z3 − z1 z3 ∴ Principal value of log z = log| z | + i arg z.
4
− iz
Sol. (a) We know that, cos z = e + e
iz
X Example 81. The value of i i is
2
(a) e −π / 2 (b) e π / 2 2
log e ( 2 − 2
ei 3)
+ e −i log e ( 2 − 3)
(c) e π / 4
Complex Numbers
(d) None of these =
2
iπ / 2
Sol. (a) Let z = i , loge z = loge i = i loge i = i loge e
i i
elog e ( 2 − 3 ) −1
+ elog e ( 2 − 3 )
π π =
= i 2 loge e = − 2
2 2
(2 − 3 )−1 + (2 − 3 )
⇒ z = e −π / 2 =
2
1 1 1 2 + 3
Example 82. If z = i log e (2 − 3 ), then the = + 2 − 3 = + (2 − 3 )
2 2
X
− 3 2 4− 3
value of cos z is 1
= [2 + 3+2− 3]= 2
(a) 2 (b) −2 (c) 2i (d) −2i 2
5 5
triangle is equilateral, if a 5 b c − d −5
2 2
a α =β 2
b α =β 2
−2iθ
Therefore,
⇒
z2 = r1[cos (− θ 1 ) + i sin (− θ 1 )]
= r1 (cos θ 1 − i sin θ 1 ) = z1
z2 = (z1 ) = z1 ⇒ | z2 |2 = z1z2
Objective Mathematics Vol. 1
i log = i log(e ) = 2 θ
a + ib Hence, (b) is the correct answer.
a − ib
⇒ tan i log = tan 2θ Ex 8. If z is a complex number, then z 2 + z 2 = 2
a + ib
2 tan θ
represents
= (a) a circle (b) a straight line
1 − tan 2 θ
(c) a hyperbola (d) an ellipse
2b / a 2ab
= =
b2 a2 − b2 Sol. Let z = x + iy, then
1− 2 z2 + z 2 = 2
a
Hence, (b) is the correct answer. ⇒ (x + iy)2 + (x − iy)2 = 2
⇒ x 2 − y2 = 1
Ex 6. If z1 = a + ib and z 2 = c + id are complex
which represents a hyperbola.
numbers such that | z1 | = | z 2 | = 1 and Hence, (c) is the correct answer.
Re ( z1 z 2 ) = 0, then the pair of complex
numbers a + ic = w1 and b + id = w2 satisfies 1 − iα
Ex 9. If = A + iB , then A 2 + B 2 equals
(a) | w1 | ≠ 1 (b) | w 2 | ≠ 1 1 + iα
(c) Re ( w1 w 2 ) = 0 (d) None of these (a) 1 (b) α 2 (c) −1 (d) − α 2
Sol. z1 = a + ib, z2 = c + id 1 − iα 1 + iα
| z1 | = | z2 | = 1 Sol. A + iB = ⇒ A − iB =
1 + iα 1 − iα
⇒ a2 + b2 = c2 + d 2 = 1 (1 − iα )(1 + iα )
w1 = a + ic, w2 = b + id ⇒ ( A + iB ) ( A − iB ) = =1
(1 + iα )(1 − iα )
z1z2 = (a + ib) (c − id )
⇒ A2 + B2 = 1
= (ac + bd ) + i (bc − ad )
As Re (z1z2 ) = 0 Hence, (a) is the correct answer.
⇒ ac + bd = 0 ⇒ ac = − bd
w1w2 = (a + ic) (b − id )
Ex 10. If | z1 | = | z 2 | and arg ( z1 ) + arg ( z 2 ) = π / 2, then
= (ab + cd ) + i (bc − ad ) (a) z1 z 2 is purely real
We have, a2 + b2 = c2 + d 2 (b) z1 z 2 is purely imaginary
⇒ a2 − c2 = d 2 − b2 (c) ( z1 + z 2 ) 2 is purely real
π
⇒ a2 − c2 + 2i ac = d 2 − b2 − 2 ibd [Q as ac = − bd ] (d) arg ( z1−1 ) + arg ( z 2−1 ) =
2
⇒ (a + ic)2 = (d − ib)2
⇒ a + ic = (d − ib) or − d + ib Sol. Let | z1 | = | z2 | = r
⇒ a = d and c = − b or a = − d , b = c ⇒ z1 = r (cosθ + i sin θ )
⇒ c2 + d 2 = b2 + d 2 π π
and z2 = r cos − θ + i sin − θ
2 2
a2 + c2 = a2 + b2
⇒ a2 + c2 = 1, b2 + d 2 = 1 ⇒ z1z2 = r2i, which is purely imaginary.
⇒ | w1 | = | w2 | = 1 z1 + z2 = r [(cosθ + sin θ ) + i (cosθ + sin θ )]
Also, ab + cd = − cd + cd = 0 ⇒ (z1 + z2 )2 = 2r2 ⋅ (cosθ + sin θ )2 ⋅ i
⇒ Re (w1w2 ) = 0 which is purely imaginary.
Hence, (c) is the correct answer. π
Also, arg (z1−1 ) + arg (z2−1 ) = −
2
z1
Ex 7. If = 1 and arg ( z1 z 2 ) = 0, then Hence, (b) is the correct answer.
z2
(a) z1 = z 2 (b) | z 2 |2 = z1 z 2 Ex 11. The value of the expression
(c) z1 z 2 = 1 1 1 1 1
(d) None of these 2 1 + 1 + 2 + 3 2 + 2 + 2
ω ω ω ω
z1
Sol. Let z1 = r1 (cos θ 1 + i sin θ 1 ) , then =1 1 1
z2 + 4 3 + 3 + 2 +… + ( n + 1)
⇒ | z1 | = | z2 | ω ω
⇒ | z1 | = | z2 | = r1 1 1
arg (z1 , z2 ) = 0 n + n + 2 ,
Now, ω ω
⇒ arg(z1 ) + arg (z2 ) = 0
136 ⇒ arg (z2 ) = − θ 1 where ω is an imaginary cube root of unity, is
(a)
n( n 2 + 2)
3
n 2 ( n + 1) 2 + 4n
(b)
n( n 2 − 2)
3
Sol. If z1 is the new complex number, then
| z1 | = | z| + 2 = 2 2
z |z |
Also, 1 = 1 ⋅ ei 3π / 2
4
Complex Numbers
(c) (d) None of these z | z|
4
3π 3π
1 1 1 1 ⇒ z1 = z ⋅ 2 cos + i sin
Sol. tn = (n + 1) n + n + 2 n3 + n2 2 + + 1 2 2
ω ω ω ω
= 2(1 + i )(0 − i ) = − 2i + 2 = 2(1 − i )
1 1
+ n 1 + 2 + + 1 Hence, (d) is the correct answer.
ω ω
= n3 + n2 (ω + ω 2 + 1) + n(ω + ω 2 + 1) + 1 = n3 + 1 1 1
Ex 15. If 2 cos θ = x + and 2 cos φ = y + , then
n n
n2 (n + 1)2 x y
∴ Sn = ∑ tr = ∑ (r3 + 1) = +n x y
r=1 r=1
4 (a) + = 2cos (θ + φ )
y x
Hence, (c) is the correct answer.
1
(b) x m y n + m n = 2cos ( mθ + nφ )
Ex 12. If z1 and z 2 are two complex numbers x y
z + iz 2 z xm yn
satisfying the equation 1 = 1, then 1 (c) += 2cos ( mθ + nφ )
z1 − iz 2 z2 yn xm
is 1
(d) xy + = 2cos (θ − φ )
(a) purely real xy
(b) of unit modulus
1 1
(c) purely imaginary Sol. 2 cosθ = x + , 2 cos φ = y +
x y
(d) None of the above
⇒ x 2 − 2x cos θ + 1 = 0
Sol. (z1 + iz2 )(z1 − iz2 ) = (z1 − iz2 )(z1 + iz2 )
⇒ z1z2 = z1z2 2 cos θ ± 4 cos2 θ − 4
⇒ x=
z1 z1 2
⇒ =
z2 z2 ⇒ x = cosθ ± i sin θ = e± iθ
z
⇒ 1 is purely real. Similarly, y = e± iφ
z2 x y
⇒ + = 2cos (θ − φ )
Hence, (a) is the correct answer. y x
1
Ex 13. If z = − 2 + 2 3i, then z 2n + 2 2n z n + 2 4n may x m yn + m n = 2cos (mθ + nφ )
x y
be equal to xm yn
(a) 22n n
+ m = 2cos (mθ − nφ )
y x
(b) 0 1
(c) 3⋅ 4 2n , n is multiple of 3 xy + = 2cos (θ + φ )
xy
(d) None of the above
Hence, (b) is the correct answer.
Sol. z = − 2 + 2 3i = 4ω
∴z2n + 22n zn + 24n = 4 2nω 2n + 22n ⋅ 4 n ⋅ ω n + 24n Ex 16. The complex numbers z1 and z 2 are such that
= 4 2n[ω 2n + ω n + 1] z1 ≠ z 2 and | z1 | = | z 2 |. If z1 has positive real
part and z 2 has negative imaginary part, then
= 0, if n is not a multiple of 3.
z1 + z 2
= 3 ⋅ 4 2n, if n is a multiple of 3. may be
Hence, (c) is the correct answer.
z1 − z 2
(a) zero
Ex 14. The complex number z = 1 + i is rotated (b) real and positive
through an angle 3π / 2 in anti-clockwise (c) real and negative
direction about the origin and stretched by (d) purely imaginary
additional 2 units, then the new complex Sol. Given, | z1 | = | z2 |
number is Re (z1 ) > 0, Im (z2 ) < 0
(a) − 2 − 2 i z + z2 1 z1 + z2 z1 + z2
Re 1 = +
(b) 2 − 2 i z1 − z2 2 z1 − z2 z1 − z2
(c) 2 − 2 i 1 (z1 + z2 )(z1 − z2 ) + (z1 + z2 )(z1 − z2 )
=
(d) None of the above 2 (z1 − z2 )(z1 − z2 ) 137
4 z1z1 − z1z2 + z2z1 − z2z2 + z1z1 + z1z2
1 − z z − z2z2
= 21
2 | z1 − z2 |2
Sol. Here, z1 (z12 − 3z22 ) = 2
z2 (3z12 − z22 ) = 11
…(i)
…(ii)
Objective Mathematics Vol. 1
Complex Numbers
| z1 − z2 | Hence, (b) is the correct answer.
⇒ e ∈ 0,
| z1 | + | z2 |
Ex 25. Locus of z, if
Hence, (b) is the correct answer.
π 3π
Ex 22. If | z − 2 − i | = | z | sin − arg ( z ) , , when | z | ≤ | z − 2 |
then 4
4 arg[ z − (1 + i)] = , is
−π
locus of z is , when | z | > | z − 2 |
(a) a pair of straight lines 4
(b) a circle (a) straight line passing through (2, 0)
(c) a parabola (b) straight line passing through (2, 0), (1, 1)
(d) an ellipse (c) a line segment
(d) a set of two rays
Sol. We have, |(x − 2) + i ( y − 1)| = | z| sin θ
1 1
cosθ −
2 2 Sol. The given equation is written as
where, θ = arg (z) 3π
, when x ≤ 2
1 4
(x − 2) + ( y − 1) =
2
|x − y |
2
arg [ z − (1 + i )] =
2 − π , when x > 2
which is a parabola. 4
Hence, (c) is the correct answer. The locus is a set of two rays.
1 ≤ i < j ≤ 100
Re (z) = 1
− (α 10
1 + α 2 + α 3 + α 4 + α 5 + …)
10 10 10 10
=0−0=0
100, if r = 100k Hence, (d) is the correct answer.
Because (α 1r + α 2r + … + α 100
r
)=
0 , if r ≠ 100k π
Hence, (b) is the correct answer.
Ex 26. If A = z | arg ( z ) = and
4
Ex 24. The maximum area of the triangle formed by 2π
B = z | arg ( z − 3 − 3i) = , z ∈C . Then,
the complex coordinates z, z1 and z 2 , which 3
satisfy the relations | z − z1 | = | z − z 2 |, n( A ∩ B ) is equal to
z1 + z 2 (a) 1
z − ≤ r, where r >| z1 − z 2 |, is
2 (b) 2
(c) 3
1 1
(a) | z1 − z 2 | 2 (b) | z1 − z 2 | r (d) 0
2 2
1 1 Sol. We can observe that, 3 + 3i ∈ A but ∉ B.
(c) | z1 − z 2 |2 r 2 (d) | z1 − z 2 | r 2 B A
2 2 Y
Sol. A(z)
Y
(3, 3)
B(z1) r X
z 1 +z 2 O
2 C(z2)
O X
∴ n( A ∩ B ) = 0
Hence, (d) is the correct answer.
139
4 Ex 27. Dividing f ( z ) by z − i, we obtain the remainder
i and dividing it by z + i, we get the remainder
1 + i. The remainder upon the division of f ( z )
Sol. f (z) = g (z) (z − i )(z + i ) + az + b; where a, b ∈ C
f (i ) = i ⇒ ai + b = i
f (− i ) = 1 + i ⇒ a(− i ) + b = 1 + i
…(i)
…(ii)
Objective Mathematics Vol. 1
140 Y¢ Hence, (a), (c) and (d) are the correct answers.
Type 3. Assertion and Reason
Directions (Ex. Nos. 32-36) In the following 1
Sol. x + = 1 ⇒ x 2 − x + 1 = 0
4
Complex Numbers
examples, each example contains Statement I x
(Assertion) and Statement II (Reason). Each example ∴ x = − ω, − ω2
has 4 choices (a), (b), (c) and (d) out of which only one is 1 1
Now, for x = − ω , p = ω 4000 + =ω + = −1
correct. The choices are ω 4000
ω
(a) Statement I is true, Statement II is true; Statement II Similarly, for x = − ω 2 , p = − 1
is a correct explanation for Statement I For n > 1, 2n = 4 k
n
(b) Statement I is true,Statement II is true; Statement II is ∴ (2)2 = 24k = (16)k = a number with last = 6
not a correct explanation for Statement I ⇒ q = 6 + 1= 7
(c) Statement I is true, Statement II is false Hence, p + q = −1 + 7 = 6
Hence, (d) is the correct answer.
(d) Statement I is false, Statement II is true
Sol. ω 1 = ω 2 e 3
Complex Numbers
∴ z1 − (− 1) = 1875
Column I Column II ⇒ z1 lies on circle.
A. Locus of the point z satisfying the p. circle
equationRe ( z2 ) = Re( z + z), is a/an Ex. 47. If z1 , z 2 , z 3 , z 4 are the roots of the equation
B. Locus of the point z satisfying the q. straight line z 4 + z 3 + z 2 + z + 1 = 0, then
equation| z − z1| + | z − z2| = λ,
λ ∈ R + and λ </ | z1 − z2|, is a/an Column I Column II
4 p. 0
∑
+
C. Locus of the point satisfying the r. ellipse and m ∈ R A. zi4 is equal to
2z − i i =1
equation = m, where
z+1 4
q. 4
∑ zi
5
is equal to
i = −1, is a/an B.
i =1
⇒ 2 =
m ⇒ ∑ zi5 = 4
z+1 2 i=1
C. z4 + z3 + z2 + z + 1
For m = 2, = (z − z1 ) (z − z2 ) (z − z3 ) (z − z4 )
1
z− Putting z = − 2 on both the sides, we get
⇒ 2 =1 4
z+1 ∏ (zi + 2) = 11
i=1
i D. | z1 + z2 | = 2 + 2 cos144 ° for minimum
⇒ z − = | z + 1|, i.e. straight line
2
5 −1
D. Given, z = 25 = 2 cos 72° =
2
Let z1 = − 1 + 75 z whose greatest integer is 0.
∴ 75 z = z1 + 1 or 75 z = z1 + 1
A → r; B → q; C → s; D → p
incircle, then AP + BP + CP
2 2 2
is equal to r
_______ . B C
D 143
4 2 3 1
2
i 2rπ 2rπ
B (z2 ) = − i =1− = 1 − cos − i sin
3 2 2 3 n n
2 2
2rπ 2rπ 2rπ
Objective Mathematics Vol. 1
144
Target Exercises
Type 1. Only One Correct Option
i 592 + i 590 + i 588 + i 586 + i 584 1 + 2i
1. The value of − 1 is 11. The complex number lies in the
i 582
+i 580
+i 578
+i 576
+i 574 1− i
(a) −1 (b) −2 (a) I quadrant (b) II quadrant
(c) −3 (d) −4 (c) III quadrant (d) IV quadrant
1 (1 − i ) 3
2. i 57 + , when simplified has the value 12. The value of is equal to
i 125
1− i3
(a) 0 (b) 2i (a) i (b) − 1 (c) 1 (d) − 2
(c) − 2i (d) 2
2 2
1 + i 1 − i
3. i n + i n + 1 + i n + 2 + i n + 3 is equal to 13. + is equal to
1 − i 1 + i
(a) 1 (b) − 1
(c) 0 (d) None of these (a) 2i (b) − 2i
(c) − 2 (d) 2
4. 1 + i 2 + i 4 + i 6 + K + i 2n is
(1 + i ) 2
(a) positive (b) negative 14. The value of Re is equal to
Targ e t E x e rc is e s
(c) 0 (d) Can’t be determined 3 − i
2 1 1 1 1
1
25 (a) − (b) (c) (d) −
5. The value of i19 + is 5 5 10 10
i
(1+ b + ia )
(b) − 4 (d) − 2
15. If a 2 + b 2 = 1, then is equal to
(a) 4 (c) 2 (1 + b − ia )
6. If n is any positive integer, then the value of (a) 1 (b) 2
i 4n + 1 − i 4n − 1 (c) b + ia (d) a + ib
equals 1 + iz
2 16. If b + ic = (1 + a ) z and a 2 + b 2 + c 2 = 1, then
(a) 1 (b) −1 (c) i (d) −i 1 − iz
equals
7. For a positive integer n, the expression a − ib a − ib a + ib a + ib
n (a) (b) (c) (d)
1 1− c 1+ c 1− c 1+ c
(1 − i ) 1 − equals
n
i
6i −3i 1
(a) 0 (b) 2i n (c) 2n (d) 4 n
17. If 4 3i −1 = x + iy, then
(1 − i ) n 20 3 i
8. If the number is real and positive, then n is
(1 + i ) n − 2 (a) x = 3, y = 1 (b) x = 1, y = 3
(c) x = 0, y = 3 (d) x = 0, y = 0
(a) any integer (b) 2λ
(c) 4 λ + 1 (d) None of these 18. 2i equals
(a) 1 + i (b) 1 − i
9. The smallest positive integer n for which (c) − 2i (d) None of these
n
1 + i
= − 1 is 19. If z is a complex number such that | z | ≠ 0 and
1 − i
Re ( z ) = 0, then
(a) 1 (b) 2 (a) Re (z2 ) = 0 (b) Im (z2 ) = 0
(c) 3 (d) 4
(c) Re (z2 ) = Im (z2 ) (d) None of these
10. The smallest positive number n for which x y
20. If ( x + iy )1/ 3 = a + ib, then + is equal to
(1 + i ) 2n = (1 − i ) 2n is a b
(a) 4 (b) 8 (a) 2 (a2 − b2 ) (b) 4 (a2 − b2 )
(c) 2 (d) 12 (c) 8 (a2 − b2 ) (d) None of these 145
4 21. If 8iz 3 + 12z 2 − 18z + 27i = 0, then
(a) | z | =
3
(b) | z | =
2
(c) | z | = 1 (d) | z | =
3
32. If x + iy =
u + iv
u − iv
, then x 2 + y 2 is equal to
(b) −1
Objective Mathematics Vol. 1
2 3 4 (a) 1
(c) 0 (d) None of these
22. If z = 1 + i, then the multiplicative inverse of z is 2
i i
33. If (1 + i ) (1 + 2i ) (1 + 3i )... (1 + ni ) = α + iβ, then
(a) 1 − i (b) (c) − (d) 2i 2⋅ 5⋅ 10 ... (1 + n 2 ) is equal to
2 2
(a) α − iβ (b) α 2 − β 2
3 3
1 + i 1 − i (c) α 2 + β 2 (d) None of these
23. If − = x + iy, then ( x, y ) is equal to
1 − i 1 + i
34. The principal argument of the complex number
(a) (0, 2) (b) (− 2, 0) (1 + i ) 5 (1 + 3i ) 2
(c) (0, −2) (d) None of these is
−2i ( − 3 + i )
24. The multiplicative inverse of ( 6 + 5i ) 2 is 19π 7π 5π 5π
11 60 11 60 (a) (b) − (c) − (d)
(a) − i (b) − i 12 12 12 12
60 61 61 61
9 60 35. The complex number i + 3 in polar form can be
(c) − i (d) None of these
61 61 written as
1 π π π π
3 + 4i (a) sin + i cos (b) 2 cos + i sin
25. The multiplicative inverse of is 2 6 6 6 6
4 − 5i 1 π π π π
(c) sin + i cos (d) 4 cos + i cos
(a) −
8
+
31
i (b)
8
−
31
i 2 6 6 6 6
25 25 25 25
8 31 36. If z is a complex number, then
(c) − − i (d) None of these
25 25 (a) | z2 | > | z |2 (b) | z2 | = | z |2 (c) | z2 | < | z |2 (d) | z2 | ≥ | z |2
Ta rg e t E x e rc is e s
z
26. If z = x + iy lies in III quadrant, then also lies in 37. If z = x + iy, x and y are real, then | x | + | y | ≤ k | z | ,
z where k is equal to
III quadrant, if (a) 1 (b) 2
(a) x > y > 0 (b) x < y < 0 (c) 3 (d) None of these
(c) y < x < 0 (d) y > x > 0
38. If z is any complex number such that | z + 4 | ≤ 3, then
2− i the least value and greatest value of | z + 1| are
27. The conjugate complex number of is
(1 − 2i ) 2 (a) 1, 6 (b) 0, 6
2 11 2 11 (c) 2, 8 (d) None of these
(a) + i (b) − i
25 25 25 25 39. If z satisfies | z + 1| < | z − 2|, then w = 3z + 2 + i
2 11 2 11 satisfies
(c) − + i (d) − − i
25 25 25 25 (a) | w + 1| < | w − 8| (b) | w + 1| < | w − 7|
(c) | w + w | > 7 (d) | w + 5| < | w − 4 |
2 + i
28. (1 + i ) is equal to 40. For any complex number z, the minimum value of
3 + i
| z | + | z − 1| is
1 1 1 3
(a) − (b) (c) 1 (d) − 1 (a) 1 (b) 0 (c) (d)
2 2 2 2
29. The value of | 2i − − 2i | is 41. The greatest positive argument of complex number
(a) 2 (b) 2 (c) 0 (d) 2 2 satisfying | z − 4| = Re ( z ), is
π 2π
1 − ix (a) (b)
30. If = a − ib and a 2 + b 2 = 1, where a and b are 3 3
1 + ix π π
(c) (d)
real, then x is equal to 2 4
2a 2b
(a) (b) 42. The square roots of −2 + 2 3 i are
(1 + a)2 + b2 (1 + a)2 + b2
(a) ± (1 + 3 i ) (b) ± (1 − 3 i )
2a 2b
(c) (d) (c) ± (− 1 + 3 i ) (d) None of these
(1 + b)2 + a2 (1 + b)2 + a2
43. If z = a + ib, where a > 0, b > 0, then
( 3 + 2i ) 2
31. The modulus of is (a) | z | ≥
1
(a − b) (b) | z | ≥
1
(a + b)
( 4 − 3i ) 2 2
13 11 9 7 1
(a) (b) (c) (d) (c) | z | < (a + b) (d) None of these
146 5 5 5 5 2
44. If for
2
the complex
2
numbers
2
z1
|1 − z1 z 2 | − | z1 − z 2 | = k (1 − | z1 | ) (1 − | z 2 | ),
and
2
z2, 52. If z is any complex number satisfying | z − 1| = 1, then
which of the following is correct?
(a) arg (z − 1) = 2 arg (z)
4
Complex Numbers
then k is equal to (b) 2 arg (z) = 2/ 3 arg (z2 − z)
(a) 1 (b) −1 (c) 2 (d) 4 (c) arg (z − 1) = arg (z + 1)
(d) arg (z) = 2 arg (z + 1)
45. The range of real number α for which the equation
z + α| z − 1| + 2i = 0 has a solution, is 53. If z = − 1, then the principal value of arg ( z 2/ 3 ) is
equal to
5 5 3 3 π 2π 10π
(a) − , (b) − ,
2 2 2 2 (a)
3
(b)
3
or 2π or
3
5 5 5 5π
(c) 0, (d) −∞ , − ∪ , ∞ (c) (d) π
2 2 3
2
z − z1 π
46. If | z | = 2 and locus of 5z − 1 is the circle having 54. If z1 = 8 + 4i, z 2 = 6 + 4i and arg = , then
z − z2 4
radius a and z12 + z 22 − 2z1 z 2 cos θ = 0, then | z1 |: | z 2 |
z satisfies
is equal to
(a) | z − 7 − 4 i | = 1 (b) | z − 7 − 5i | = 2
(a) a : 1 (b) 2a : 1
(c) a : 10 (d) None of these (c) | z − 4 i | = 8 (d) | z − 7i | = 18
47. The maximum value of | z | when z satisfies the 55. If arg ( z ) < 0, then arg ( − z ) − arg (z) is equal to
2 π π
condition z + = 2 is (a) π (b) − π (c) − (d)
z 2 2
(a) 3 − 1 (b) 3 + 1 56. If z is a point on the argand plane such that | z − 1| = 1
(c) 3 (d) 2 + 3 z−2
, then is equal to
Targ e t E x e rc is e s
1 1 z
48. If z1 ≠ z 2 and | z1 + z 2 | = + , then (a) tan (arg z) (b) cot (arg z)
z1 z 2 (c) i tan (arg z) (d) None of these
(a) atleast one of z1 , z2 is unimodular 1 + C + iS
(b) z1 ⋅ z2 is unimodular 57. If C 2 + S 2 = 1, then is equal to
(c) z1 ⋅ z2 is non-unimodular 1 + C − iS
(d) None of the above (a) C + iS (b) C − iS (c) S + iC (d) S − iC
n−1
49. If 1, ω , ω , K , ω
2
are the n, nth roots of unity and 58. The imaginary part of ( z − 1)
z1 , z 2 are any two complex numbers, then (cos α − i sin α) + ( z − 1) −1 × (cos α + i sin α ) is zero,
n −1 if
∑ | z1 + ω k z 2 |2 is equal to (a) | z − 1| = 2 (b) arg (z − 1) = 2α
k =0 (c) arg (z − 1) = α (d) | z | = 1
8
(a) n[| z1 |2 + | z2 |2 ] (b) (n − 1) [| z1 |2 + | z2 |2 ] π π
sin + i cos
(c) (n + 1) [| z1 |2 + | z2 |2 ] (d) None of these 8 8
59. The value of 8
is
50. If z satisfies the equation | z | − z = 1 + 2i, then z is π π
sin − i cos
8 8
equal to
3 3 (a) −1 (b) 0 (c) 1 (d) 2i
(a) + 2i (b) − 2i
2 2 3n
4π 4π 1+ a
3
(c) 2 − i
3
(d) 2 + i 60. If a = cos + i sin , then the value of is
2 2 3 3 2
(−1)n 1
−1 b d (a) (−1)n (b) (c) (d) (−1)n + 1
51. If 3 + i = ( a + ib ) ( c + id ), then tan + tan −1 23n 23n
a c
8 8
is equal to 1 + i 1 − i
π
61. The value of + is equal to
(a) + 2nπ , for some integer n 2 2
2
π (a) 4 (b) 6 (c) 8 (d) 2
(b) − + nπ , for some integer n
3 10
2πk 2πk
π
(c) + nπ , for some integer n
62. The value of ∑ sin
11
− i cos is
11
6 k =1
π (a) 1 (b) −1
(d) − + 2nπ , for some integer n
6 (c) i (d) − i 147
4 63. The value of
10
4 (cos 75° + i sin 75° )
0.4 (cos 30° + i sin 30° )
10
is 72. If ω ( ≠ 1) is cube root of unity satisfying
1
+
a+ω b+ω c+ω
1
+
1
= 2ω 2 and
Objective Mathematics Vol. 1
(a) (1 + i ) (b) (1 − i )
2 2 1 1 1
5 + + = 2 ω, then the value of
(c) (1 + i ) (d) None of these a + ω2 b + ω2 c + ω2
2 1 1 1
+ + is equal to
64. The value of a+1 b+1 c+1
(a) 2 (b) − 2
(cos 2θ − i sin 2θ ) 7 (cos 3θ + i sin 3θ ) −5 (c) − 1 + ω 2 (d) None of these
is
(cos 4θ + i sin 4θ )12 (cos 5θ + i sin 5θ ) −6
(a) cos 33θ + i sin 33θ (b) cos 33θ − i sin 33θ
73. If α and β are the roots of the equation x 2 − 2x + 4 = 0,
(c) cos 47θ + i sin 47θ (d) cos 47θ − i sin 47θ then the value of α 6 + β 6 is
65. (cos 2θ + i sin 2θ ) −5 (cos 3θ − i sin 3θ ) 6 (a) 64 (b) 128
(c) 256 (d) None of these
(sin θ − i cos θ ) 3 is equal to
1
(a) cos 25θ + i sin 25θ 74. If z is any complex number such that z + = 1, then
(b) cos 25θ − i sin 25θ z
(c) sin 25θ + i cos 25θ 1
the value of z 99 + is
(d) sin 25 θ − i cos 25θ z 99
66. The principal value of the arg ( z ) and | z | of the (a) 1 (b) −1
(c) 2 (d) − 2
(1 + cos θ + i sin θ) 5
complex number z = are 75. The value of ( − 1 + −3 ) 62 + ( − 1 − − 3 ) 62 is
(cos θ + i sin θ ) 3
θ θ θ θ (a) 262 (b) 264
(a) − , 32 cos5 (b) , 32 cos5 (c) − 2 62 (d) 0
Ta rg e t E x e rc is e s
2 2 2 2
θ 4 θ
(c) − , 16 cos (d) None of these 76. If ω is a cube root of unity, then
2 2
( 3 + 5ω + 3ω 2 ) 2 ( 3 + 3 ω + 5 ω 2 ) 2 is equal to
67. If z = cos θ + i sin θ, then (a) 4 (b) 0
1 1 (c) − 4 (d) None of these
(a) z + n = 2cos nθ
n
(b) z + n = 2n cos nθ
n
z z 6 6
1 1 1 + i 3 1 − i 3
(c) zn − n = 2n i sin nθ (d) zn − n = (2i )n sin nθ 77. The value of + is
z z 1− i 3 1+ i 3
z 2n − 1 (a) 2 (b) −2 (c) 1 (d) 0
68. If z = cos θ + i sin θ, then , where n is an
z 2n + 1 78. If z1 = 3 + i 3 and z 2 = 3 + i , then the complex
50
integer, is equal to z
number 1 lies in the quadrant number
(a) i cot nθ (b) i tan nθ (c) tan nθ (d) cot nθ z2
(a) I (b) II (c) III (d) IV
69. If a = cos 2α + i sin 2α , b = cos 2β + i sin 2β ,
c = cos 2γ + i sin 2γ and d = cos 2δ + i sin 2δ, then 79. If x = a + b, y = aω + bω 2 , z = aω 2 + bω, then xyz is
1 equal to
abcd + is equal to
abcd (a) (a + b)3 (b) a3 + b3
(a) 2 cos (α + β + γ + δ ) (b) 2cos (α + β + γ + δ) (c) a3 − b3 (d) (a + b)3 + 3ab(a + b)
(c) cos (α + β + γ + δ ) (d) None of these
m
80. If 1, ω and ω 2 are the cube roots of unity, then the
−1 pi + 1 value of (1 + ω ) 3 − (1 + ω 2 ) 3 is
70. e 2mi cot p
⋅ is equal to
pi − 1 (a) 2ω (b) 2 (c) −2 (d) 0
(a) 0 (b) 1 81. If 1, ω and ω 2 are the three cube roots of unity and
(c) − 1 (d) None of these
α , β and γ are the roots of p, p < 0, then for any x, y
8π 8π xα + yβ + zγ
71. If α = cos + i sin , then and z, the expression equals
11 11 xβ + yγ + zα
Re (α + α 2 + α 3 + α 4 + α 5 ) is equal to (a) 1
1 1 (b) ω
(a) (b) −
2 2 (c) ω 2
148 (c) 0 (d) None of these (d) None of the above
82. The value of the expression
1 ( 2 − ω ) ( 2 − ω 2 ) + 2( 3 − ω ) ( 3 − ω 2 ) + .... + ( n − 1)
( n − ω ) ( 2 − ω 2 ), where ω is an imaginary cube root
91. If 1, α , α 2 , K , α n − 1 are the n, nth roots of unity, then
n−1
1
∑ 2 − α i is equal to
4
Complex Numbers
i=1
of unity, is
(n − 2)2n − 1 + 1
n(n + 1)
2
n(n + 1)
2 (a) (b) (n − 2) ⋅ 2n
(a) (b) −n 2n − 1
2 2
2 (n − 2) ⋅ 2n − 1
n(n + 1) (c) (d) None of these
(c) +n (d) None of these 2n − 1
2
1+ i
83. If α and β are the complex cube roots of unity, then 92. The triangle formed by the points 1, and i as
2
α 3 + β 3 + α −2 β −2 is equal to vertices in the argand diagram is a/an
(a) 0 (b) 3 (a) scalene (b) equilateral
(c) − 3 (d) None of these (c) isosceles (d) right angled
84. If ω is a complex cube root of unity, then 93. If the points represented by complex numbers
z1 = a + ib, z 2 = a′ + ib′ and z1 − z 2 are collinear,
(1 − ω + ω 2 ) (1 − ω 2 + ω 4 ) (1 − ω 4 + ω 8 )
then
(1 − ω 8 + ω 16 ) is equal to (a) ab′ + a′ b = 0 (b) ab′ − a′ b = 0
(a) 12 (b) 14 (c) ab + a′ b′ = 0 (d) ab − a′ b′ = 0
(c) 16 (d) None of these
94. If α + iβ = tan −1 z , z = x + iy and α is constant, then
85. If x = ω − ω 2 − 2, then the value of
the locus of z is
x 4 + 3x 3 + 2x 2 − 11 x − 6 is (a) x 2 + y2 + 2x cot 2α = 1 (b) (x 2 + y2 ) cot 2α = 1 + x
(a) 1 (b) − 1 (c) x 2 + y2 + 2 y tan 2α = 1 (d) x 2 + y2 + 2x sin 2α = 1
Targ e t E x e rc is e s
(c) 2 (d) None of these
95. The equation | z + 1 − i | = | z + i − 1| represents
86. If 1, ω and ω 2 are the three cube roots of unity, then
(a) a straight line (b) a circle
(1 + ω ) (1 + ω 2 ) (1 + ω 4 ) (1 + ω 8 ) … to 2n factors is (c) a parabola (d) a hyperbola
equal to
96. If the roots of ( z − 1) n = i ( z + 1) n are plotted in the
(a) 1 (b) − 1
(c) 0 (d) None of these argand plane, they as
(a) on a parabola (b) concyclic
87. If x = a + b + c, y = aα + bβ + c and z = aβ + bα + c (c) collinear (d) the vertices of a triangle
where, α and β are complex cube roots of unity, then
xyz is equal to 97. Locus of the point z satisfying the equation
| iz − 1| + | z − i | = 2 is
(a) 2 (a + b + c )
3 3 3
(b) 2 (a − b − c )
3 3 3
(a) a straight line (b) a circle
(c) a3 + b3 + c3 − 3abc (d) a3 − b3 − c3 (c) an ellipse (d) a pair of straight lines
88. The common roots of the equations 98. For x1 , x 2 , y1 , y 2 , ∈ R , if 0 < x1 , < x 2 , y1 = y 2 and
z 3 + 2z 2 + 2z + 1 = 0 and z 1985 + z 100 + 1 = 0 are 1
z1 = x1 + iy1 , z 2 = x 2 + iy 2 and z 3 = ( z1 + z 2 ),
(a) −1, ω 2
(b) −1, ω 2 then z1 , z 2 , z 3 satisfy
(c) ω , ω 2 (a) | z1 | = | z2 | = | z3 | (b) | z1 | < | z2 | < | z3 |
(c) | z1 | > | z2 | > | z3 | (d) | z1 | < | z3 | < | z2 |
(d) None of the above
99. The equation not representing a circle is given by
89. The values of (16)1/ 4 are
1 + z
(a) ± 2, ± 2i (a) Re =0
1 − z
(b) ± 4 , ± 4 i
(b) zz + iz − iz + 1 = 0
(c) ± 1, ± i z − 1 π
(d) None of the above (c) arg =
z + 1 2
90. If p, q and r are positive integers and ω is an z −1
imaginary cube root of unity and (d) =1
z+1
f ( x ) = x 3 p + x 3q + 1 + x 3r + 2 , then f (ω ) is equal to
(a) ω 100. If z1 , z 2 and z 3 are three complex numbers in AP,
(b) −ω 2 then they lie on
(c) 0 (a) a circle (b) a straight line
(d) None of the above (c) a parabola (d) an ellipse 149
4 101. If the area of the triangle on the argand plane formed
by the complex numbers − z , iz , z − iz is 600 sq units,
then | z | is equal to
110. The locus of the complex number z in an argand
plane satisfying the inequality
| z − 1| + 4 2
Objective Mathematics Vol. 1
1 1
satisfying | z − 4i| + | z + 4i| = 10 lie on (c) z − =
1− a |1 − a |
(a) a straight line (b) a circle
(c) an ellipse (d) a parabola (d) None of these
106. If z = x + iy and a is a real number such that 113. If z1 , z 2 , z 3 and z 4 are the four complex numbers
| z − ai| = | z + ai|, then locus of z is represented by the vertices of a quadrilateral taken in
(a) X -axis order such that z1 − z 4 = z 2 − z 3 and
(b) Y-axis z 4 − z1 π
(c) x = y amp = , then the quadrilateral is a
(d) x 2 + y2 = 1 z 2 − z1 2
(a) square
107. If P represents z = x + iy in the argand plane and (b) rhombus
(c) cyclic quadrilateral
| z − 1|2 + | z + 1|2 = 4, then the locus of P is
(d) None of the above
(a) x 2 + y2 = 2
(b) x 2 + y2 = 1 114. The locus of z satisfying Im ( z 2 ) = 4 is
(c) x 2 + y2 = 4 (a) a circle
(b) a rectangular hyperbola
(d) x + y = 2
(c) a pair of straight lines
108. All the roots of the equation (d) None of the above
a1 z 3 + a 2 z 2 + a 3 z + a 4 = 3, where | a i | ≤ 1, 115. The curve represented by Re ( z 2 ) = 4 is
i = 1, 2, 3, 4, lie outside the circle with centre origin (a) a parabola
and radius (b) an ellipse
(a) 1 (c) a circle
1 (d) a rectangular hyperbola
(b)
3
2 116. A point z is equidistant from three distinct points
(c)
3 z1 , z 2 , z 3 in argand plane. If z , z1 and z 2 are
(d) None of the above z − z1
collinear, then arg 3 will be (z1 , z 2 , z 3 in
109. The region of argand diagram defined by z3 − z2
| z − 1| + | z + 1| ≤ 4 is anti-clockwise sense)
(a) interior of an ellipse π π
(a) (b)
(b) exterior of a circle 2 4
(c) interior and boundary of an ellipse π 2π
150 (c) (d)
(d) None of the above 6 3
Type 2. More than One Correct Option
117. If z1 , z 2 , z 3 and z 4 are roots of the equation 126. Let complex number z of the form x + iy satisfy
4
Complex Numbers
a 0 z 4 + a1 z 3 + a 2 z 2 + a 3 z + a 4 = 0 3z − 6 − 3i π
arg = and | z − 3 + i| = 3. Then, the
where, a 0 , a1 , a 2 , a 3 and a 4 are real, then 2z − 8 − 6i 4
(a) z1 , z2 , z3 , z4 are also roots of equation ordered pairs ( x, y ) are
(b) z1 is equal to atleast one of z1 , z2 , z3 , z4 4 2 4 2
(c) − z1 , − z2 , − z3 , − z4 are also roots of equation (a) 4 − ,1+ (b) 4 + ,1−
5 5 5 5
(d) None of the above
(c) (6, − 1) (d) (0, − 1)
118. If z 3 + ( 3 + 2i ) z + ( − 1 + ia ) = 0 has one real root, 127. If z = ω , ω 2 , where ω is a non-real complex cube root
then the value of a lies in the interval ( a ∈ R ) of unity, are two vertices of an equilateral triangle in
(a) (− 2, 1) (b) (−1, 0) the argand plane, then the third vertex may be
(c) (0, 1) (d) (−2, 3)
represented by
119. The real value of θ for which the expression (a) z = 1 (b) z = 0
i + i cos θ (c) z = − 2 (d) z = − 1
is a real number, is
1 − 2i cos θ 128. If amp ( z1 z 2 ) = 0 and | z1 | = | z 2 | = 1, then
π π (a) z1 + z2 = 0 (b) z1z2 = 1
(a) 2nπ + , n ∈ I (b) 2nπ − , n ∈ I
2 2 (c) z1 = z2 (d) None of these
π π
(c) 2nπ ± , n ∈ I (d) 2nπ ± , n ∈ I
2 4 129. If z is complex number satisfying z + z −1 = 1, then
z n + z − n , n ∈ N has the value
120. If α is a complex constant such that αz + z + a = 0has
(a) 2(−1)n, when n is a multiple of 3
a real root, then
(b) (−1)n − 1, when n is not a multiple of 3
Targ e t E x e rc is e s
(a) α + α = 1
(b) α + α = 0 (c) (−1)n + 1 , when n is a multiple of 3
(c) α + α = − 1 (d) 0, when n is not a multiple of 3
(d) the absolute value of the real root is 1
130. Let z1 , z 2 be two complex numbers represented by
121. If | z1 | = | z 2 | = 1 and arg z1 + arg z 2 = 0, then points on the circle | z | = 1 and | z | = 2 respectively,
(a) z1z2 = 1 then
(b) z1 + z2 = 0
(a) max |2z1 + z2 | = 4 (b) min | z1 − z2 | = 1
(c) z1 = z2
(d) None of the above 1
(c) z2 + ≤3 (d) None of these
z1
122. If | z1 | = 15 and | z 2 − 3 − 4i| = 5, then
(a) | z1 − z2 |min = 5 (b) | z1 − z2 |min = 10 131. ABCD is a square, vertices being taken in the
(c) | z1 − z2 |max = 20 (d) | z1 − z2 |max = 25 anti-clockwise sense. If A represents the complex
123. If | z − (1/ z )| = 1, then number z and the intersection of the diagonals is the
origin, then
1+ 5 5 −1
(a) | z|max = (b) | z|min = (a) B represents the complex number iz
2 2 (b) D represents the complex number iz
5−2 5 −1 (c) B represents the complex number iz
(c) | z|max = (d) | z|min =
2 2 (d) D represents the complex number − iz
124. If z1 and z 2 are two complex numbers ( z1 ≠ z 2 ) 132. If z 0 , z1 represent point P , Q on the locus | z − 1| = 1
π
satisfying | z12 − z 22 | = | z12 + z 22 − 2z1 z 2 | , then and the line segment PQ subtend an angle at the
z z
2
(a) 1 is purely imaginary (b) 1 is purely real point z = 1, then z1 is equal to
z2 z2
i
π (a) 1 + i (z0 − 1) (b)
(c) | arg z1 − arg z2 | = π (d) | arg z1 − arg z2 | = z0 − 1
2
(c) 1 − i (z0 − 1) (d) i (z0 − 1)
125. If | z − 1| = 1, then
133. If | z1 | = | z 2 | = | z 3 | = 1 and z1 , z 2 and z 3 are
(a) arg {(z − 1 − i )/ z} can be equal to − π /4
(b) (z − 2)/ z is purely imaginary number represented by the vertices of an equilateral triangle,
(c) (z − 2)/ z is purely real number then
(d) If arg (z) = θ, where z ≠ 0 and θ is acute, then (a) z1 + z2 + z3 = 0 (b) z1z2z3 = 1
1 − 2 / z = i tan θ (c) z1z2 + z2z3 + z3z1 = 0 (d) None of these
151
4 Type 3. Assertion and Reason
Direction (Q. Nos. 134-144) In the following 139. Statement I If cos (1− i ) = a + ib, where a, b ∈ R and
Objective Mathematics Vol. 1
z | z1 | + | z 2 | | z1 | + | z 2 |
such that | z1 | = | z 2 | + | z1 − z 2 |, then Im 1 = 0.
z2 Statement II If z 0 is the point interior to curve
Statement II arg ( z ) = 0 ⇒ z is purely real. | z − z1 | + | z − z 2 | = λ
| z 0 − z1 | + | z 0 − z 2 | < λ
1
137. Statement I If z + = 1 ( z ≠ 0 is a complex
z 143. Statement I The equation | z − i| + | z + i| = k , k > 0,
5 +1 can represent an ellipse, if k > 2i.
number), then the maximum value of | z | is .
2
1 Statement II | z − z1 | + | z − z 2 | = k , represents an
Statement II On the locus z + = 1, the farthest
z ellipse, if | k | > | z1 − z 2 |.
5 +1
distance from origin is .
2 144. Statement I The equation zz + az + az + λ = 0 ,
where a is a complex number represents a circle in
138. Statement I The number of complex numbers z
satisfying | z |2 + a | z | + b = 0 ( a, b ∈ R ) is atmost 2. argand plane, if λ is real.
Statement II A quadratic equation in which all the Statement II The radius of the circle
coefficients are non-zero can have atmost two roots. zz + az + az + λ = 0 is aa − λ .
Complex Numbers
2 9 9 4
150. Maximum value of arg ( z ), for which | z − i| is 151. Angle between AC and DE is equal to
π π π π
maximum, is (a) (b) (c) (d)
3 6 4 2
4 9
(a) π − tan −1 (b) π − tan −1
9 4 152. The length of DE is
1 4 3
(c) π − tan −1 (d) π − tan −1 (a) (b) 3 (c) 2 (d) 6
9 5 2
Passage III (Q. Nos. 151-153) On the sides AB and 153. The length of AE is
BC of a ∆ABC, squares are drawn with centres D and E 3− 3 3+ 3
such that points C and D lies on the same side of line AB (a) (b) (c) 3 − 3 (d) 3 + 3
2 2
Targ e t E x e rc is e s
D. i z4 − 1 = 0 s. z = cos 0 + i sin 0
C. z2 + k1 = i | z1|2 + k 2; k1 ≠ k 2 ∈ R − { 0} r. Pair of open
rays
157. Match the following:
D. z − 1 − sin−1 1 + z + cos −1 1 − π = 1 s. line segment
3 3 2 Column I ColumnI
A. −1 − −1 − ... ∞ is p. 0
155. For the equation z − 6z + 20 = 0, match the items of
6
B. If zi, i = 1, 2, ..., 6 are the vertices of the q. n
Column I with that of Column II. six sided regular polygon inscribed in a ω−1
6
circle| z| = 2, then ∑ zi
2
Column I Column II is equal to
i =1
A. The number of the roots in the first p. 1 C. If ω k, k ∈ I; 0 ≤ k ≤ n − 1 are the nth r. ω
quadrant can be
roots of unity, then the maximum value
B. The number of the roots in the second q. 2 of ( n!)1/ n ω( n−1)/ 2 is
quadrant can be D. s. ω2
If z1, z2, z3 are the affixes points and A,
C. The number of the roots in the third r. 3 B and C are lying on circle centred at
quadrant can be origin. If the altitude is drawn from
vertex A to base BC, such that it meets
D. The number of the roots in the fourth s. 4 the circumcircle at P( z), then
quadrant can be zz1 + z2 z3 is
Complex Numbers
| z | = 1. Suppose z1 and z 2 are complex numbers such z
z1 − 2 z 2 equal to [2009]
that is unimodular and z 2 is not (a) 3 + 1 (b) 5 + 1 (d) 2 +
2 − z1 z 2 (c) 2 2
unimodular. Then, the point z1 lies on a [2015] 1
20. The conjugate of a complex number is . Then,
(a) straight line parallel to X -axis i−1
(b) straight line parallel to Y-axis
that complex number is [2008]
(c) circle of radius 2
1 1 1 1
(d) circle of radius 2. (a) − (b) (c) − (d)
i −1 i+1 i+1 i −1
12. If z is a complex number such that z ≥ 2, then the
21. If z + 4 ≤ 3, then the maximum value of z + 1 is
1
minimum value of z + [2014] [2007]
2 (a) 4 (b) 10 (c) 6 (d) 0
5
(a) is equal to 10
2kπ 2kπ
2
(b) lies in the interval (1, 2)
22. The value of ∑ sin 11
+ i cos is
11
[2006]
k =1
5
(c) is strictly greater than (a) 1 (b) − 1 (c) − i (d) i
2
3
(d) is strictly greater than but less than
5 23. If z + z + 1 = 0, where z is complex number, then
2
2 2 2 2 2
1 1
the value of z + + z 2 + 2 + z 3 + 3
1
13. If z is a complex number of unit modulus and z z z
1 + z 2
argument θ, then arg equals 1
Targ e t E x e rc is e s
[2013]
1 + z + ... + z 6 + 6 is [2006]
z
π
(a) − θ (b) −θ (c) θ (d) π − θ (a) 54 (b) 6 (c) 12 (d) 18
2
2
24. If the cube roots of unity are 1, ω, ω , then the roots
z2
14. If z ≠ 1and is real, then the point represented by of the equation ( x − 1) 3 + 8 = 0, are [2005]
z −1
2 2
(a) − 1, 1 + 2ω, 1 + 2ω (b) −1, 1 − 2ω, 1 − 2ω
the complex number z lies [2012]
(a) either on the real axis or on a circle passing through the (c) −1, − 1, − 1 (d) −1, − 1 + 2ω , − 1 − 2ω 2
origin
25. If z1 and z 2 are two non-zero complex numbers such
(b) on a circle with centre at the origin
(c) either on the real axis or on a circle not passing through that z1 + z 2 = z1 + z 2 , then arg ( z1 ) − arg ( z 2 ) is
the origin equal to [2005]
(d) on the imaginary axis π π
(a) − (b) 0 (c) − π (d)
2 2
15. Let α and β be real and z be a complex number. If
z
z 2 + α z + β = 0 has two distinct roots on the line 26. If w = and w = 1, then z lies on [2005]
i
Re ( z ) = 1, then it is necessary that [2012] z−
(a) β ∈ (− 1, 0) (b) β = 1 3
(c) β ∈ (1, ∞ ) (d) β ∈ (0, 1) (a) a parabola (b) a straight line
(c) a circle (d) an ellipse
16. If ω (≠ 1) is a cube root of unity and
27. Let z and w be two complex numbers such that
(1 + ω ) 7 = A + Bω. Then, (A , B) equals [2011]
z + iw = 0 and arg ( zw ) = π. Then, arg ( z ) equals
(a) (1, 1) (b) (1, 0)
(c) (−1, 1) (d) (0, 1) [2004]
π π
17. The number of complex numbers z such that (a) (b)
4 2
z − 1 = | z + 1| = z − i equals [2010] 3π 5π
(c) (d)
(a) 0 (b) 1 4 4
(c) 2 (d) ∞
28. If z = x − iy and z 1/ 3 = p + iq, then
18. If α and β are the roots of the equation x 2 − x + 1 = 0,
x y
+ / ( p + q ) is equal to
2 2
then α 2009 + β 2009 is equal to [2010] [2004]
p q
(a) − 2 (b) − 1
(c) 1 (d) 2 (a) 1 (b) − 1 (c) 2 (d) − 2 155
4 29. If | z 2 − 1| = | z |2 + 1, then z lies on
(a) the real axis
(c) a circle
(b) the imaginary axis
(d) an ellipse
[2004] 1 + i
32. If
1 − i
x
= 1, then [2003]
Objective Mathematics Vol. 1
z − 3i
(a) 8 (b) 2 (c) 5 equation = 1, lie on [BITSAT 2014]
(d) 4 (e) 10 z + 3i
36. Let w ≠ ± 1 be complex number. If w = 1 and (a) the X -axis
(b) the straight line y = 3
w−1
z= , then Re ( z ) is equal to [Kerala CEE 2014] (c) a circle passing through the origin
w+1 (d) None of the above
1
(a) 1 (b) (c) Re (w) (d) 0 43. If the complex numbers z1 , z 2 and z 3 denote the
w+1
vertices of an isosceles triangle, right angled at z1 ,
(e) w + w
2 2 2
then ( z1 − z 2 ) 2 + ( z1 − z 3 ) 2 is equal to
37. The value of z + z−3 + z−i is minimum, [Kerala CEE 2014]
when z equals [WB JEE 2014] (a) 0 (b) (z2 + z3 )2 (c) 2
2 (e) (z2 − z3 )2
(a) 2 − i (b) 45 + 3i (d) 3
3
i i 44. Let z1 and z 2 be two fixed complex numbers in the
(c) 1 + (d) 1 −
3 3 argand plane and z be an arbitrary point satisfying
π π z − z1 + z − z 2 = 2 z1 − z 2 . Then, the locus of z
38. Convert ( i + 1) / cos − i sin in polar form.
4 4 [J&K CET 2014]
will be [WB JEE 2014]
(a) an ellipse
(a) cos (π /4) + i sin (π / 4 )
(b) a straight line joining z1 and z2
(b) cos (π / 2) − i sin (π / 2)
(c) a parabola
(c) 2 [cos (π /4) + i sin (π /4 )] (d) a bisector of the line segment joining z1 and z2
(d) 2 [cos (π / 2) + i sin (π / 2)]
45. Let z1 be a fixed point on the circle of radius 1
39. Let z1 ≠ z 2 and z1 = z 2 . If z1 has positive real part
z + z1 centred at the origin in the argand plane and z1 ≠ ± 1.
and z 2 has negative imaginary part. Then, 2 Consider an equilateral triangle inscribed in the
z1 − z 2
may be [Manipal 2014] circle with z1 , z 2 and z 3 as the vertices taken in the
(a) 0 (b) real and positive counter clockwise direction. Then, z1 z 2 z 3 is equal
(c) real and negative (d) None of these to [WB JEE 2014]
40. If z = e 2π / 3 , then 1 + z + 3z 2 + 2z 3 + 2z 4 + 3z 5 is (a) z12
equal to [Kerala CEE 2014] (b) z13
(a) − 3eπ i / 3 (b) 3eπ i / 3 (c) 3e2π i / 3 (c) z14
156 (d) − 3e2π i / 3 (e) 0 (d) z1
46. Suppose that z1 , z 2 and z 3 are three vertices of an
equilateral triangle in the argand plane. Let
1
56. If z1 and z 2 are two complex numbers such that
z1 = z 2 + z1 − z 2 , then
z
[Manipal 2012]
z
4
Complex Numbers
α = ( 3 − i ) and β be a non-zero complex (a) Im 1 = 0 (b) Re 1 = 0
2 z2 z2
numbers. The points αz1 + β, αz 2 + β , αz 3 + β will be z z
[WB JEE 2014] (c) Re 1 = Im 1 (d) None of these
z2 z2
(a) the vertices of an equilateral triangle
(b) the vertices of an isosceles triangle
57. If the conjugate of ( x + iy ) (1 − 2i ) is 1 + i, then
(c) collinear
(d) the vertices of a scalene triangle [Karnataka CET 2012]
1− i 1− i
(a) x − iy = (b) x + iy =
47. In the argand plane, the distinct roots of 1 − 2i 1 − 2i
1 + z + z 3 + z 4 = 0 (z is a complex number) 1 1
(c) x = (d) x = −
represent vertices of [WB JEE 2014] 5 5
(a) a square 50
(b) an equilateral triangle 3 3
58. If + i = 3 ( x + iy ), where x and y are real,
25
(c) a rhombus 2 2
(d) a rectangle
then the ordered pair ( x, y ) is [WB JEE 2012]
48. If z1 = 2 2 (1 + i ) and z 2 =1 + i 3, then z12 z 23 is (a) (− 3, 0) (b) (0, 3)
equal to [Kerala CEE 2013] 1 3
(c) (0, − 3) (d) ,
(a) 128i (b) 64i (c) − 64i 2 2
(d) −128i (e) 256
59. If z − z + z + z = 2, then z lies on [AMU 2012]
49.The value of (1 + i ) 3 + (1 − i ) 3 is equal to [J&K CET 2013]
(a) 1 (b) − 2 (c) 0 (d) − 4 (a) a circle (b) a square (c) an ellipse (d) a line
60. If 2x = 3 + 5i, then the value of 2x 3 + 2x 2 − 7x + 72 is
Targ e t E x e rc is e s
50. If z ( 2 − i2 3 ) 2 = i( 3 + i ) 4 , then amplitude of z is
[UP SEE 2013] [MP PET 2011]
−π π (a) 4 (b) − 4
(a) (b) (c) 8 (d) − 8
6 4
π 2 2 2 z1
(c) (d) None of these 61. If z1 + z 2 = z1 + z 2 , then is [MP PET 2011]
6 z2
51. If z1 , z 2 and z 3 are complex numbers such that (a) purely real
(b) purely imaginary
1 1 1
z1 = z 2 = z 3 = + + = 1, then (c) zero of purely imaginary
z1 z 2 z 3 (d) neither real nor imaginary
z1 + z 2 + z 3 is [AMU 2013] 1+ i 3
62. The value of 2
is [Karnataka CET 2011]
(a) 3 (b) 1 1
(c) greater than 3 (d) less than 1 1 +
i + 1
52. If ( 3 i + 1)100 = 299 ( a + ib ), then a 2 + b 2 is equal (a) 20 (b) 9
to [RPET 2013] 5 4
(c) (d)
(a) 4 (b) 3 4 5
(c) 2 (d) 0
63. If z1 and z 2 are two non-zero complex numbers such
53. The value of (1 + 3i ) 4 + (1 − 3i ) 4 is [RPET 2013] z
(a) − 16 (b) 16
that z1 + z 2 = z1 + z 2 , then arg 1 is
z2
(c) 14 (d) − 14
[Kerala CEE 2011]
54. If the fourth roots of unity are z1 , z 2 , z 3 and z 4 , then π
(a) 0 (b) − π (c) −
z12 + z 22 + z 32 + z 42 is equal to [Karnataka CET 2013] 2
π
(a) 0 (b) 2 (d) (e) π
(c) 3 (d) None of these 2
55. Among the complex number z satisfying condition 64. If ω ≠ 1 is a cube root of unity, then the sum of the
z + 1 − i ≤ 1, the number having the least positive series S = 1 + 2ω + 3ω 2 + ... + 3 nω 3n − 1 is
argument is [OJEE 2013] [WB JEE 2011]
3n
(a) 1 − i (a) (b) 3n (ω − 1)
(b) 1 + i ω −1
(c) − i ω− 1
(c) (d) 0
(d) None of the above 3n 157
4 θ
1 + cos 2 − i sin
65.
θ
2
4n
is equal to
70. If
π
π
π
z1 = 2 cos + i sin
4
π
4
and
(c) π /2
z1 = z 2 = ... = z n = 1, then z 2 + z 2 + ... + z n is (d) − π / 2
equal to [Kerala CEE 2010]
cos 30° + i sin 30°
(a) z1z2z3... zn (b) z1 + z2 + ... + zn 74. The value of is equal to
cos 60° − i sin 60° [VITEEE 2010]
1 1 1
(c) + + ... + (d) n (a) i (b) − i
z1 z2 zn 1+ 3i 1 − 3i
(c) (d)
(e) n 2 2
158
Answers
Work Book Exercise 4.1
1. (b) 2. (a) 3. (c) 4. (b) 5. (a) 6. (d) 7. (b) 8. (d) 9. (a) 10. (c)
11. (d) 12. (d) 13. (c) 14. (c)
Target Exercises
1. (b) 2. (a) 3. (c) 4. (d) 5. (b) 6. (c) 7. (c) 8. (c) 9. (b) 10. (c)
11. (b) 12. (d) 13. (c) 14. (a) 15. (c) 16. (d) 17. (d) 18. (a) 19. (b) 20. (b)
21. (a) 22. (c) 23. (c) 24. (d) 25. (c) 26. (c) 27. (d) 28. (c) 29. (a) 30. (b)
Targ e t E x e rc is e s
31. (a) 32. (a) 33. (c) 34. (c) 35. (b) 36. (b) 37. (b) 38. (b) 39. (a) 40. (a)
41. (d) 42. (a) 43. (b) 44. (a) 45. (a) 46. (c) 47. (b) 48. (b) 49. (a) 50. (b)
51. (c) 52. (a) 53. (b) 54. (b) 55. (a) 56. (c) 57. (a) 58. (c) 59. (c) 60. (b)
61. (d) 62. (c) 63. (a) 64. (d) 65. (c) 66. (a) 67. (a) 68. (b) 69. (b) 70. (b)
71. (b) 72. (a) 73. (b) 74. (d) 75. (c) 76. (c) 77. (a) 78. (a) 79. (b) 80. (d)
81. (c) 82. (b) 83. (b) 84. (c) 85. (a) 86. (a) 87. (c) 88. (c) 89. (a) 90. (c)
91. (a) 92. (c) 93. (b) 94. (a) 95. (a) 96. (c) 97. (a) 98. (d) 99. (d) 100. (b)
101. (b) 102. (d) 103. (a) 104. (c) 105. (c) 106. (a) 107. (b) 108. (c) 109. (c) 110. (c)
111. (b) 112. (c) 113. (c) 114. (b) 115. (d) 116. (a) 117. (a,b) 118. (a,b,d) 119. (a,b,c) 120. (a,c,d)
121. (a,c) 122. (a,d) 123. (a,b) 124. (a,d) 125. (a,b,d) 126. (a,b) 127. (a,c) 128. (b,c) 129. (a,b) 130. (a,b,c)
131. (a,d) 132. (a,c) 133. (a,b) 134. (b) 135. (d) 136. (a) 137. (a) 138. (d) 139. (a) 140. (b)
141. (d) 142. (d) 143. (d) 144. (a) 145. (b) 146. (b) 147. (c) 148. (c) 149. (d) 150. (a)
151. (c) 152. (a) 153. (b) 154. (*) 155. (**) 156. (***) 157. (****) 158. (3) 159. (6) 160. (8)
161. (1) 162. (4)
* A → r; B → p; C → q; D → s
** A → p, q; B → p, q; C → p, q; D → p, q
*** A → s; B → r; C → p; D → q
**** A → r,s; B → p; C → q; D → p
Entrances Gallery
1. (c) 2. (c) 3. (c,d) 4. (b) 5. (c) 6. (d) 7. (5) 8. (3) 9. (a,c,d) 10. (*)
11. (c) 12. (b) 13. (c) 14. (a) 15. (c) 16. (a) 17. (b) 18. (c) 19. (b) 20. (c)
21. (c) 22. (c) 23. (c) 24. (b) 25. (b) 26. (b) 27. (c) 28. (d) 29. (b) 30. (c)
31. (d) 32. (a) 33. (d) 34. (d) 35. (b) 36. (d) 37. (c) 38. (d) 39. (a) 40. (a)
41. (b) 42. (a) 43. (a) 44. (a) 45. (b) 46. (a) 47. (b) 48. (d) 49. (d) 50. (a)
51. (b) 52. (a) 53. (a) 54. (a) 55. (d) 56. (a) 57. (b) 58. (d) 59. (a) 60. (a)
61. (b) 62. (d) 63. (a) 64. (a) 65. (c) 66. (c) 67. (c) 68. (e) 69. (c) 70. (c)
71. (b) 72. (d) 73. (a) 74. (a)
* A → q; B → p, t; C → p; D → s,q
159
Explanations
Target Exercises
i 584 (i 8 + i 6 + i 4 + i 2 + 1) i 584 1+ i
2
1− i
2
1. − 1 = 574 − 1 13. We have, +
i (i + i + i + i + 1)
574 8 6 4 2
i 1− i 1+ i
= i 10 − 1 = − 1 − 1 (1 + i )2 (1 − i )2 2i − 2i
= −2 = + = +
(1 − i )2 (1 + i )2 − 2 i 2i
1 1 1
2. i 57 + 125 = (i 4 )14 i + 4 31 = i + = i − i = 0 Q (1 + i )2 = 1 + i 2 + 2 i = 2 i
i (i ) i i
and (1 − i ) = 1 + i − 2 i = − 2 i
2 2
3. We have, i n + i n + 1 + i n + 2 + i n + 3
= −1− 1= −2
= i n (1 + i + i 2 + i 3 )
= i n (1 + i − 1 − i ) [Q i 3 = i 2 ⋅ i = (− 1)⋅ i = − i ] (1 + i )2 2 i 3 + i
14. Re = Re
3 − i 3 + i
= i (0 ) = 0
n
3− i
6i − 2
4. Given expression = 1 + i 2 + i 4 + i 6 + ... + i 2 n = Re
= 1 − 1 + 1 − 1 + ... + (− 1)n 9+ 1
2 6 1
which cannot be determined unless n is known. = Re − + i =−
10 10 5
25 2 2
1
5. We have, i 19 + = i 16 ⋅ i 3 + 24
1 15. Given that, a2 + b2 = 1
i i ⋅i 1 + b + ia (1 + b + ia)(1 + b + ia)
∴ =
1
2 1 + b − ia (1 + b − ia) (1 + b + ia)
= i2 ⋅ i + = (− i − i )2
i (1 + b)2 − a2 + 2 ia (1 + b)
=
Ta rg e t E x e rc is e s
= (− 2 i )2 = 4i 2 = − 4 1 + b2 + 2 b + a2
i 4n + 1 − i 4n − 1 (1 − a2 ) + 2 b + b2 2 ia (1 + b)
6. We have, =
2 2 (1 + b)
i−
1 2 b2 + 2 b + 2 ia (1 + b)
4n − 1
i ⋅i −i ⋅i
4n =
= = i [Q i 4 n = (i 4 )n = (1)n = 1] 2 (1 + b)
2 2 = b + ia
i2 − 1 − 1− 1 − 2 1
= = = = =i 16. We have, b + ic = (1 + a) z
2i 2i 2i −i
b + ic ib − c
n ∴ z= ⇒ iz =
7. (1 − i ) 1 − = (1 − i ) n (1 + i ) n
n 1 1+ a 1+ a
i 1 + iz 1 + a − c + ib
= (1 + 1) n = 2 n ⇒ =
1 − iz 1 + a + c − ib
(1 − i ) n
(1 − i ) (1 − i )
n n−2 (1 + a − c ) + ib (1 + a + c ) + ib
8. = × = ×
(1 + i ) n−2
(1 + i ) n−2
(1 − i ) n − 2 (1 + a + c ) − ib (1 + a + c ) + ib
n −1
a2 + a + iab + ib
= 2 (− i ) n − 1 = 2 (− 1) 2 =
1 + a + ac + c
n −1
This is positive and real, if is even. (a + 1) (a + ib) a + ib
2 = =
n −1 (a + 1) (1 + c ) 1 + c
Let = 2λ
2 17. x + iy = 6 i (3 i 2 + 3) + 3 i (4 i + 20 ) + 1(12 − 60 i )
∴ n = 4λ + 1 = 0 − 12 + 60 i + 12 − 60 i = 0 + 0 i
n n n
1+ i 1+ i 1+ i 1 − 1 + 2i ∴ x = 0, y = 0
9. = × =
1− i 1− i 1+ i 1+ 1 18. 2 i = 1 + i 2 + 2 i = (1 + i )2 = 1 + i
=i n
= − 1, if n = 2
19. Let z = x + iy, where x, y ∈ R
10. (1 + i ) = (1 − i )2 n ⇒ 1 = (− 1)n
2n
∴ x 2 + y 2 ≠ 0 and x = 0
∴The smallest value of n is 2. ∴ z = 0 + iy = iy, y ≠ 0
1 + 2i 1 + 2i 1 + i 1 + 3 i − 2 1 3 ⇒ z2 = − y2
11. = × = =− + i
1− i 1− i 1+ i 2 2 2 ⇒ Im ( z 2 ) = 0
1 + 2i
∴ lies in II quadrant 20. We have, ( x + iy )1/ 3 = a + ib
1− i
On cubing both sides, we get
(1 − i )3 1 − 3 i + 3 i 2 − i 3 − 2 − 2 i x + iy = (a + ib)3
160 12. = = = −2
1− i3 1+ i 1+ i = a3 + 3 a2 (ib) + 3 a (ib)2 + (ib)3
= a3 + 3 a2 bi + 3 ab2 i 2 + i 3 b3
= a3 + 3 a2 bi − 3 ab2 − ib3 [Q i 3 = i 2 ⋅ i = − i ]
= a (a2 − 3 b2 ) + ib (3 a2 − b2 )
∴ Multiplicative inverse of
z= 2 =
z
−
8 31
41
− i
41 = − 8 − 31 i
4
Complex Numbers
z 25 25
∴ x = a (a2 − 3 b2 ) 41
and y = b(3 a2 − b2 ) 8 31
=− − i
x y 25 25
⇒ = a2 − 3 b2 and = 3 a2 − b2
a b 26. Let z = x + iy, where x < 0, y < 0
x y
∴ + = 4 (a2 − b2 ) z x − iy ( x − iy )2 x 2 − y 2 2 xy
a b ∴ = = 2 = − i
z x + iy ( x + y 2 ) x 2 + y 2 x 2 + y 2
21. We have,
z
8 iz 3 + 12 z 2 − 18 z + 27 i = 0 lies in III quadrant, if x 2 − y 2 < 0 and − 2 xy < 0
z
⇒ 4 z (2 iz + 3) + 9 i (2 iz + 3) = 0
2
x < 0, y < 0
⇒ (2 iz + 3) (4 z 2 + 9 i ) = 0 ⇒ − 2 xy < 0
⇒ 2 iz + 3 = 0 or 4z2 + 9 i = 0 Also, x 2 − y 2 < 0, if ( x + y ) ( x − y ) < 0
∴ z =
3 If x − y > 0, if x > y [Q x, y < 0 ⇒ x + y < 0]
2 z
∴ lies in III quadrant, if y < x < 0.
22. Multiplicative inverse of z 2 z
1 1 1 i 2−i
= = = =− 27. Let z =
z 2
(1 + i )2
2 i 2 (1 − 2 i )2
2−i − 2 + i 3 − 4i
1+ i 1− i ∴ z= = ×
23. Since, = i and =−i − 3 − 4i 3 + 4i 3 − 4i
1− i 1+ i
2 11
1+ i
3
1− i
3 =− + i
∴ − = x + iy 25 25
1− i 1+ i ∴ z=−
2 11
− i
Targ e t E x e rc is e s
⇒ i 3 − (− i )3 = x + iy 25 25
⇒ − i + i 3 = x + iy 2 + i 1+ i × 2 + i
28. (1 + i ) =
⇒ − i − i = x + iy 3 + i 3+ i
x + iy = 0 − 2 i 2× 5
Hence, ( x, y ) = (0, − 2 ). = =1
10
24. Let z = (6 + 5i )2 = 36 + 2(6)(5 i ) + 25 i 2
29. 2 i − − 2 i = (1 + i )2 − (1 − i )2
= 36 + 60 i − 25 = 11 + 60 i
= (1 + i ) − (1 − i ) = 2 i
Then, z = 11 − 60 i
∴ 2i − − 2i = 2i = 0 + 4 = 2
and z = (11)2 + (60 )2
= 121 + 3600 1 − ix
30. = a − ib
= 3721 = 61 1 + ix
(1 − ix ) (1 − ix )
Multiplicative inverse of ⇒ = a − ib
z 11 − 60 i 11 60 (1 + ix ) (1 − ix )
z= 2 = = − i
z (61)2
(61)2
(61)2 1 − x 2 − 2 ix a − ib
⇒ =
3 + 4i 3 + 4i 4 + 5i 1 + x2 1
25. Let z = = × 1 − x2 2x
4 − 5i 4 − 5i 4 +5 i ⇒ = a and =b
12 + 15 i + 16 i + 20 i 2 1 + x2 1 + x2
=
16 − 25 i 2 Now, x can be written as
12 + 31 i − 20 2x 2x
= 1 + x2 1 + x2
16 + 25 x= =
8 31 2 1 − x2
= + i +1
41 41 1+ x 2
1 + x2
8 31 b 2b
Then, z=− − i = =
41 41 1 + a 1 + 1 + 2a
2 2 2b 2b
8 31 = =
and z = − + − 1 + (a + b ) + 2 a (1 + a)2 + b2
2 2
41 41
64 + 961 (3 + 2 i )2 3 + 2i
2
= 31. =
(41)2 (4 − 3 i ) 4 − 3i
1025 25 × 41 5 ( 9 + 4 )2 13
= = = = =
(41)2 (41)2 41 ( 16 + 9 ) 5 161
4 32. We have, x + iy =
u + iv
u − iv
We know that, when two complex numbers are equal
…(i) 41.
⇒
Now, z − 4 = Re ( z )
( x − 4) + y 2 = x
2
Objective Mathematics Vol. 1
⇒ y 2 = 8 ( x − 2)
33. Taking modulus and squaring on both sides, we get
2 2 2 2 2 The given relation represents the part of parabola with
1 + i ⋅ 1 + 2 i ⋅ 1 + 3 i .... 1 + ni = α + i β
focus (4, 0) lying above X-axis and the imaginary axis
⇒ (1 + 1)⋅ (1 + 4)⋅ (1 + 9) ... (1 + n 2 ) = α 2 + β 2 as the directrix. The two tangents from directrix are at
⇒ 2 ⋅ 5 ⋅ 10 ... (1 + n 2 ) = α 2 + β 2 right angle. Hence, the greatest positive argument
π
(1 + i )5 (1 + 3 i )2 of z is .
34. 4
− 2 i (− 3 + i )
2 42. Let a + bi be a square root of − 2 + 2 3 i.
1 2 1 3
5
1 ∴ (a + bi )2 = − 2 + 2 3 i
( 2 )5 + 2 +i
2 2 2 2
= ⇒ a + 2 abi + i 2 b2 = − 2 + 2 3 i
2
3 i
2i 2 − ⇒ (a2 − b2 ) + 2 abi = − 2 + 2 3 i
Ta rg e t E x e rc is e s
2 2 ∴ a2 − b2 = − 2 …(i)
5π 2 π π π 9π
⇒ Argument = + − + = and 2 ab = 2 3 …(ii)
4 3 2 6 12 Now, (a2 + b2 )2 = (a2 − b2 )2 + 4 a2 b2
5π
Therefore, the principal argument is − . = (− 2 )2 + (2 3 )2
12
= 4 + 12 = 16
3 i π π
35. i + 3 = 2 + = 2 cos + i sin ∴ a2 + b2 = 16 = 4 …(iii)
2 2 6 6
On solving Eqs. (i) and (iii), we get
2
36. z 2 = z z = z z = z 2 a2 = 2 or a2 = 1
∴ a=±1
37. For every a ∈ R, a = a2 ⇒ 2 b2 = 6 or b2 = 3
2
∴ a = a2 ∴ b = ± 3.
Now, ( x − y )2 ≥ 0 From Eq. (ii), ab = 3, which is positive.
2 2 Either a = 1, b = 3 or a = − 1, b = − 3
⇒ x + y −2x y ≥ 0
Hence, the two square roots are 1 + 3 i and − 1 − 3 i
⇒ 2x y ≤ x + y
2 2 i.e. ± (1 + 3 i ).
2 2 2 2
⇒ x + y + 2x y ≤2 x + 2y Aliter
z +a z − a
⇒ ( x + y )2 ≤ 2 ( x 2 + y 2 ) z = ± +i
2 2
2
⇒ ( x + y )2 ≤ 2 z 4−2 4 + 2
=± +i = ± (1 + i 3 )
∴ x + y ≤ 2z 2 2
38. z + 1 = ( z + 4) − 3 ≤ z + 4 + − 3 ≤ 3 + 3 = 6 43. As,(a − b)2 ≥ 0, a2 + b2 ≥ 2 ab .... (i)
∴ Greatest value of z + 1 = 6 But z = a +b 2 2
Also, z + 1 ≥ z + 4 − − 3 ≥ 0
∴ 0≤ z+1 ≤6 From Eq. (i), we get| z 2| ≥ 2 ab
∴ | z|2 + a2 + b2 ≥ a2 + b2 + 2 ab
39. z + 1 < z − 2 2 2
⇒ z + z ≥ (a + b)2
⇒ 3z + 3 < 3z − 6 2
⇒ w + 1− i < w − 8 − i ⇒ 2 z ≥ (a + b)2
⇒ w+1< w−8 ⇒ 2 z ≥ a + b, as z is positive
1
40. z + z − 1 ≥ z − z + 1 ≥ 1 ∴ z≥ ( a + b)
162 2
44. We have, 1 − z1 z2 2 − z1 − z2 2
=(1 − z1 z2 ) (1 − z1 z2 ) − ( z1 − z2 ) ( z1 − z2 )
= (1 − z1 z2 ) (1 − z1 z2 ) − ( z1 − z2 ) ( z1 − z2 )
2
[Q z z = z ]
49. Since, 1, ω, ω 2 , ..., ω n − 1 are the nth roots of unity.
∴
n −1
∑ ω k = 0 and
n −1
∑ (ω)k = 0
4
Complex Numbers
k=0 k=0
n −1 n −1
[Q z1 − z2 = z1 − z2 and 1 = 1] 2
=(1 − z1 z2 ) (1 − z1 z2 ) − ( z1 − z2 ) ( z1 − z2 ) [Q ( z1 ) = z1 ]
Now, ∑ z1 + ω z2 =
k
∑ ( z1 + ω k z2 ) { z1 + (ω)k z2 }
k=0 k=0
= 1 − z1 z2 − z1 z2 + z1 z1 z2 z2 − z1 z1 + z1 z2 + z1 z2 − z2 z2 n −1
= 1 + z1
2 2 2 2 2
z2 − z1 − z2 = (1 − z1 ) (1 − z2 )
2 = ∑ [ z1 z1 + z1 z2 (ω )k + z1 z2ω k + z2 z2 (ω )k (ω )k ]
k=0
∴ k =1 n −1 n −1 n −1 n −1
∑ ∑ z1 z2 (ω )k + ∑ z1 z2ω k + ∑
2 2
45. Let z = x + iy = z1 + z2
k=0 k=0 k=0 k=0
We have, z + α z − 1 + 2i = 0 2 2 2 2
= n z1 + 0 + 0 + n z2 = n ( z1 + z2 )
⇒ x + i ( y + 2 ) + α ( x − 1)2 + y 2 = 0
50. Let z = x + iy
On equating real and imaginary parts
∴ z − z = 1 + 2i
y + 2 = 0 ⇒ y = −2
⇒ x 2 + y 2 − ( x + iy ) = 1 + 2 i
and x + α ( x − 1)2 + 4 = 0
⇒ ( x 2 + y 2 − x ) + i (− y ) = 1 + 2 i
∴ x 2 = α 2 ( x 2 − 2 x + 5)
⇒ x2 + y2 − x = 1
or (1 − α 2 )x 2 + 2α 2 x − 5 α 2 = 0
and y = −2
Since, x is real.
∴ D = B 2 − 4 AC ≥ 0 If y = − 2, x2 + 4 − x = 1
⇒ 4 α + 20 α 2 (1 + α 2 ) ≥ 0
4 ⇒ x + 4 = (1 + x )2
2
3
⇒ − 4 α 4 + 5α 2 ≥ 0 ⇒ 2 x = 3 or x =
5 2
⇒ 4 α 2 α 2 − ≤ 0 3
4 ∴ z = x + iy = − 2i
Targ e t E x e rc is e s
2
− 5 5
∴ ≤α ≤ 51. ( 3 + i ) = (a + ib) (c + id )
2 2
On taking argument both sides, we get
46. Given, z = 2 1 b d
tan − 1 = tan − 1 + tan − 1
Let α = 5 z − 1 ⇒ α + 1 = 5 z = 5 (2 ) = 10 3 a c
⇒ α + 1 = 10 −1 b −1 d π
⇒ tan + tan = nπ + , n ∈ Z
∴Locus of α, i.e. 5 z − 1 is the circle having centre at − 1 a c 6
and radius 10. 52. Let z − 1 = e iθ [Q z − 1 = 1]
∴ a = 10
⇒ z = 1 + cos θ + i sin θ
Again, z12 + z22 − 2 z1 z2 cos θ = 0 θ θ θ
2 = 2 cos 2 + 2 i sin cos
z1 z 2 2 2
⇒ − 2 1 cos θ + 1 = 0
z2 z2 θ θ θ
= 2 cos cos + i sin
2 2 2
z1 2 cos θ ± 4 cos θ − 4
2
⇒ = = cos θ ± i sin θ θ 1
z2 2 ∴ arg ( z ) = = arg ( z − 1) or arg ( z − 1) = 2 arg ( z )
2 2
z1 a
⇒ = cos θ ± i sin θ = 1 = 2
53. arg ( z 2 / 3 ) = arg (− 1)
z2 10 3
∴ z1 : z2 = a : 10 2 2 2 2π 10 π
= π , ⋅ 3π , ⋅ 5π = , 2 π,
2 2 2 2 3 3 3 3 3
47. We have, z = z + − ≤ z+ +
z z z z z − z1 ( x + iy ) − (8 + 4i ) ( x − 8) + i ( y − 4)
54. = =
2 2 z − z2 ( x + iy ) − (6 + 4i ) ( x − 6) + i ( y − 4)
⇒ z ≤2 + ⇒ z ≤2 z + 2
z z − z1 π
2 We have, arg =
⇒ z − 2 z + 1≤ 1+ 2 z − z2 4
⇒ ( z − 1)2 ≤ 3 ⇒ − 3 ≤ z − 1 ≤ 3 π
⇒ arg ( z − z1 ) − arg ( z − z2 ) =
⇒ 1− 3 ≤ z ≤ 1+ 3 4
−1 y − 4 −1 y − 4 π
So, the maximum value of z is 1 + 3. ⇒ tan − tan =
x−8 x−6 4
1 1 z + z2 2( y − 4)
48. We have, z1 + z2 = + = 1 ⇒ =1
z1 z2 z1 z2 x + y − 14 x − 8 y + 64
2 2
1 ⇒ x 2 + y 2 − 14 x − 10 y + 72 = 0
⇒ z1 + z2 1 − =0
z1 z2 ⇒ ( x −7 )2 + ( y − 5)2 = ( 2 )2
∴ z − (7 + 5 i ) = 2 163
⇒ z1 z2 = 1 [Q z1 ≠ − z2 ]
4 55. arg (− z ) = π − θ = π + (− θ ) = π + arg ( z ) 8 8
1+ i 1− i
61. We have, +
∴ arg (− z ) − arg ( z ) = π 2 2
8 8
56. Since, z − 1 = 1 π π π π
Objective Mathematics Vol. 1
2 2 2 k =1 k =1
10 i 2 πk
From Eqs. (i) and (ii), we get = − i ∑ e 11 − 1
z −2 θ θ k = 1
= i tan = i tan (arg z ) Q arg z = , from Eq. (ii)
z 2 2
= − i (Sum of 11th roots of unity − 1)
57. We have, C 2 + S 2 = 1 = − i (0 − 1) = i
Let C = cos θ, S = sin θ 4 (cos 75° + i sin 75° )
63. We have,
1 + C + iS 1 + cos θ + i sin θ 0.4 (cos 30 ° + i sin 30 ° )
∴ =
1 + C − iS 1 + cos θ − i sin θ 10 {cos (75° − 30 ° ) + i sin (75° − 30 ° )}
=
θ θ θ cos 2 30 ° + sin 2 30 °
cos cos + i sin
2 2 2 10
= = 10 (cos 45° + i sin 45° ) = (1 + i )
θ θ θ 2
cos cos − i sin
Ta rg e t E x e rc is e s
1
+
a+ω b+ω c +ω
+
1
1
+
+
1
1
= 2ω 2 =
= 2ω =
2
ω
2
4
Complex Numbers
and
∴ z n = (cos θ + i sin θ )n = cos nθ + i sin nθ , a+ω 2
b+ω 2
c +ω 2
ω
1
and = (cos θ − i sin θ )n = cos nθ − i sin nθ ∴ ω and ω 2 are roots of the equation
zn 1 1 1 2
1 1 + + = .
Hence, z n + n = 2 cos nθ and z n − n = 2 i sin nθ a+ x b+ x c + x x
z z
When x = 1,
68. We have, 1 1 1 2
+ + = =2
z 2 n − 1 (cos θ + i sin θ)2 n − 1 a+1 b+1 c +1 1
=
z 2 n + 1 (cos θ + i sin θ)2 n + 1 1 3
cos 2 nθ + i sin 2 nθ − 1 73. x 2 − 2 x + 4 = 0 ⇒ x = 1 + 3 i = 2 ± i
= 2 2
cos 2 nθ + i sin 2 nθ + 1 = − 2ω − 2ω 2 ⇒ α 6 + β 6 = 128
[using De-Moivre’s theorem] 1
(1 − 2 sin 2 nθ) + 2 i sin nθ cos nθ − 1 74. z + =1
= z
(2 cos 2 nθ − 1) + 2 i sin nθ cos nθ + 1 ⇒ z = −ω or − ω 2
i sin nθ cos nθ + i 2 sin 2 nθ 1 1
= [Q i 2 = − 1] ∴ z 99 + 99 = (− 1) + = −2
cos 2 nθ + i sin nθ cos nθ z (− 1)
i sin nθ (cos nθ + i sin nθ ) 75. (− 1 + − 3 )62 + (− 1 − − 3 )62
= = i tan nθ
cos nθ (cos nθ + i sin nθ ) = 2 62 ω 62 + 2 62 (ω 2 )62
69. We have, abcd = cos (2α + 2β + 2 γ + 2δ ) = 2 62 [(ω 3 )20 ω 2 + (ω 3 )41ω]
+ i sin (2α + 2β + 2 γ + 2δ ) = 2 62 [(ω 2 + ω] = − 2 62
∴ abcd = [cos (2α + 2β + 2 γ + 2δ ) 76. Given expression
Targ e t E x e rc is e s
+ i sin (2α + 2β + 2 γ + 2δ )]1/ 2 = { 3 (1 + ω 2 ) + 5 ω} 2 + { 3 (1 + ω ) + 5 ω 2 } 2
or abcd = cos (α + β + γ + δ ) = (− 3 ω + 5 ω)2 + (− 3 ω 2 + 5 ω 2 )2
+ i sin (α + β + γ + δ ) …(i) = 4ω2 + 4ω = − 4
[using De-Moivre’s theorem] 6
1 ω2 ω
6
− 1+ i 3
∴ = cos (α + β + γ + δ) 77. + 2 = 2, using ω= and
abcd ω ω 2
− i sin (α + β + γ + δ) …(ii) − 1− i 3
On adding Eqs. (i) and (ii), we get ω2 =
1 2
abcd + = 2 cos (α + β + γ + δ) 2
abcd z1 − 3i ω
78. Here, =
70. Let cot − 1 p = θ, then p = cot θ z2 2
25
pi + 1
m
i cot θ + 1
m
z
50 z 2 − 3 iω
25
3
25
2 mi cot −1 p 2 mi θ
∴ e ⋅ =e ⋅ ⇒ 1 = 1 = = − iω
pi − 1 i cot θ − 1 z2 z2 2 2
m m
i (cot θ − i ) cot θ − i 3 3 i
25
= e 2 miθ. = e 2 miθ ⋅ = +
i (cot θ + i ) cot θ + i 2 2 2
m m
cos θ − i sin θ e − iθ z
50
= e 2 miθ ⋅ = e 2 miθ ⋅ iθ ∴ 1 lies in I quadrant.
cos θ + i sin θ e z2
= e 2 miθ (e − 2 iθ )m = e 0 = 1 79. Q xyz = (a + b) (aω + bω 2 ) (aω 2 + bω)
8π
8π 8π = (a + b) (a2 − ab + b2 ) = a3 + b3
71. We have, α = cos + i sin
i
= e 11
11 11
80. (1 + ω )3 − (1 + ω 2 )3 = (− ω 2 )3 − (− ω)3
Re (α + α 2 + α 3 + α 4 + α 5 ) = − ω6 + ω3 = − 1 + 1 = 0
α + α2 + α3 + α4 + α5 + α + α2 + α3 + α4 + α5
= 81. p1/ 3 = (− p)1/ 3 (− 1)1/ 3
2
− 1 + (1 + α + α 2 + α 3 + α 4 + α 5 = − (− p)1/ 3 , − (− p)1/ 3 ω, − (− p)1/ 3 ω 2
= − q, − qω, − qω 2, where q = (− p)1/ 3
+ α + α 2 + α 3 + α 4 + α 5 )
= Let α = − q, β = − qω and γ = − qω 2
2
− 1+ 0 xα + yβ + z γ − q ( x + yω + zω 2 )
= [sum of 11 and 11th roots of unity] ∴ =
2 xβ + yγ + zα − q ( x ω + yω 2 + z )
1 xω 3 + yω 4 + zω 2
=− = = ω2
2 x ω + yω 2 + z 165
4 82. Given expression
=
n
∑ (k − 1)(k − ω ) (k − ω 2 )
88. We have,
⇒
z3 + 2 z2 + 2 z + 1 = 0
( z + 1) ( z 2 + z + 1) = 0
Its roots are − 1, ω and ω 2 . The root z = − 1 does not
Objective Mathematics Vol. 1
k=2
n n satisfy the equation, z1985 + z100 + 1 = 0 but z = ω and
= ∑ (k − 1) (k 2 + k + 1) = ∑ (k 3 − 1) z = ω 2 satisfy it.
k=2 k=2
Hence, ω and ω 2 are the common roots.
= (2 3 + 33 + ... + n 3 ) − (n − 1)
= (Σ n 3 − 13 ) − n + 1 89. We have, (16)1/ 4 = (2 4 )1/ 4 = 2(1)1/ 4
2 = 2 (cos 0 + i sin 0 )1/ 4
n (n + 1)
= −n 1 1
2 = 2 cos (2 kπ + 0 ) + i sin (2 kπ + 0 ), k = 0, 1, 2, 3
4 4
83. Let α = ω and β = ω 2 = 2 × 1, 2 × i , 2 × − 1, 2 × − i , = ± 2, ± 2 i
1 1
Now, α 3 + β 3 + α − 2β − 2 = ω 3 + ω 6 + ⋅ 90. We have, f (ω ) = ω 3 p + ω 3 q + 1 + ω 3 r + 2
ω2 ω4
1 1 = ω 3p + ω 3q ⋅ ω + ω 3r ⋅ ω 2
= ω 3 + (ω 3 )2 + 3 2 = 1 + (1)2 + 2 = 3 [Qω 3 = 1]
(ω ) (1) = (ω 3 ) p + (ω 3 )q ⋅ ω + (ω 3 ) r ⋅ ω 2
=
( x + 2 )2 + y 2
( x 2 + y 2 + 2 x + 2 y ) + i (2 x + 2 y + 4)
4
Complex Numbers
n n
∴ z −1 = i z + 1
n n
( x + 2 )2 + y 2
⇒ z −1 = z + 1 z + 2i
⇒ z −1 = z + 1 Since, Im =0 ⇒ x+ y+2=0
2 2
z + 2
⇒ z −1 = z + 1
which represents a straight line.
⇒ ( x − 1)2 + y 2 = ( x + 1)2 + y 2
105. We have,
⇒ 4x = 0 ⇒ x = 0
z − 4 i + z + 4 i = 10
∴The roots lies on the Y-axis.
⇒ z − (0 + 4 i ) + z − (0 − 4 i ) = 10
97. Let z = x + iy, where x, y ∈ R This represents an ellipse.
We have, iz − 1 + z − i = 2 4 i + 4 i < 10 i.e. 10 > 8
⇒ ix − y − 1 + x + iy − i = 2
106. We have, z − a i = z + a i
⇒ (− y − 1)2 + x 2 + x 2 + ( y − 1)2 = 2 2 2
⇒ x + i ( y − a) = x + i ( y + a)
⇒ x 2 = 0 or x = 0 ⇒ x 2 + ( y − a)2 = x 2 + ( y + a)2
∴The locus of z is a straight line. ⇒ 4ay = 0; y = 0, which is X-axis.
98. Clearly, z1 < z3 < z2 , as z3 is mid-point of z1 and z2 . 107. We have, z − 1 2
+ z+1
2
=4
1 + z 1 + z π ⇒
2
( x − 1) + iy + ( x + 1) + iy = 4
2
99. (a) Re = 0 ⇒ arg =
1 − z 1 − z 2 ⇒ ( x − 1)2 + y 2 + ( x + 1)2 + y 2 = 4
This represents a circle. ⇒ 2 ( x 2 + 1) + 2 y 2 = 4
(b) z z + iz − iz + 1 = 0 represent a circle. ∴The locus of P is x + y 2 = 1.
2
z − 1 π 108. We have, a1 z 3 + a2 z 2 + a3 z + a4 = 3
(c) arg =
Targ e t E x e rc is e s
z + 1 2 ⇒ 3 = a1 z 3 + a2 z 2 + a3 z + a4
This represents a circle. ⇒ 3 ≤ a1 z 3 + a2 z 2 + a3 z + a4
z −1
(d) = 1⇒ z − 1 = z + 1 ⇒ 3 ≤ a1 z 3 + a2 z 2 + a3 z + a4
z+1 3 2
⇒ 3≤ z + z + z + 1 [Q ai ≤ 1]
This represents a straight line.
2 3 2 3
z + z3 ⇒ 3 ≤ 1 + z + z + z < 1 + z + z + z + ... ∞
100. We have, z2 = 1 2 3
2 ⇒ 3 < 1 + z + z + z + ... ∞
The point representing z2 divided the line segment 1 1
joining points representing z1 and z3 in the ratio 1 : 1. ⇒ 3< ⇒ 1− z <
1− z 3
∴The points lies on a line. 2
⇒ − z <0
101. Area of the triangle on the argand plane formed by 3
3 2 2
complex numbers − z, iz, z − iz is z . ∴ z >
2 3
3 2
∴ z = 600 ⇒ z = 20 109. We have, z − 1 + z + 1 ≤ 4
2
⇒ ( x − 1)2 + y 2 + ( x + 1)2 + y 2 ≤ 4
102. Let z1 = 1 − 3 i , z2 = 4 + 3 i and z3 = 3 + i . Then, z3
divides the line segment joining z1 and z2 in the ratio 2 : 1 where, z = x + iy
internally. So, the points z1, z2 and z3 are collinear. ⇒ = A+ B≤4 …(i)
103. Let z = x + iy where, A = ( x − 1)2 + y 2
z + 2 i x + iy + 2 i x + i ( y + 2 ) and B = ( x + 1)2 + y 2
Then, = =
z+4 x + iy + 4 ( x + 4) + iy But [( x − 1) + y 2 ] − [( x + 1)2 + y 2 ] = − 4 x
2
[ x + i ( y + 2 )][( x + 4) − iy ] A2 − B 2 = − 4 x
= i.e. …(ii)
( x + 4)2 + y 2 On dividing Eq. (ii) by Eq. (i), we get
( x 2 + 4 x + y 2 + 2 y ) + i (2 x + 4 y + 8)
= ( x − 1)2 + y 2 − ( x + 1)2 + y 2 ≤ − x
( x + 4)2 + y 2
⇒ 2 ( x − 1)2 + y 2 ≤ 4 − x
z + 2i
= 0 ⇒ x + y + 4 x + 2 y = 0,
2 2
Since, Re ⇒ 3 x 2 + 4 y 2 ≤ 12
z + 4
which represents a circle with centre (− 2, − 1). [squaring and simplifying]
x2 y2
104. Let z = x + iy or + ≤1
4 3
z + 2 i x + iy + 2 i x + ( y + 2 )i
Then, = = which represents the interior and boundary of an 167
z+2 x + iy + 2 ( x + 2 ) + iy ellipse.
4 110. We have, log1/ 2
z −1 + 4
3 z − 1 − 2
z−1 + 4 1
1
> 1 = log1/ 2
2
118. Let z = α be a real root. Then,
α 3 + (3 + 2 i )α + (− 1 + ia) = 0
⇒ (α 3 + 3 α − 1) − i (a + 2 α ) = 0
Objective Mathematics Vol. 1
⇒ < <1 ⇒ α 3 + 3α − 1 = 0
3 z −1 −2 2
and α = − a / 2
[Qlog a x is a decreasing function, if a < 1] a3 3a
⇒ z −1 + 4< 3 z −1 −2 ⇒ − − − 1= 0
8 2
⇒ 2 z −1 > 6 ⇒ z −1 > 3 ⇒ a + 12 a + 8 = 0
3
2 2 ⇒ pc 2 + c + p = 0
diagonals bisect each other. and qc 2 − q = 0
∴It is a parallelogram.
z − z1 π ⇒ c =±1 [Qq ≠ 0]
Also, amp 4 = From Eq. (i), we get α ± 1 + α = 0
z2 − z1 2 Also, c = 1
⇒ Angle at z1 is a right angle.
121. Let z2 = r2 (cos θ 2 + i sin θ 2 )
∴ It is a rectangle and hence, a cyclic quadrilateral.
⇒ z2 = r2
114. We have, Im ( z 2 ) = 4 Also, arg ( z1 ) + arg ( z2 ) = 0
⇒ Im [( x 2 − y 2 ) + 2 ixy ] = 4 [putting z = x + iy ] ⇒ arg ( z1 ) = − arg ( z2 ) = − θ 2
⇒ 2 xy = 4 or xy = 2, which is a rectangular hyperbola. ∴ z1 = r2 [cos (− θ 2 ) + i sin (− θ 2 )]
115. We have, Re ( z 2 ) = 4 = r2 [cos θ 2 − i sin θ 2 ]
⇒ Re [( x 2 − y 2 ) + 2 ixy ] = 4 [putting z = x + iy ] ⇒ z1 = z2
⇒ x2 − y2 = 4 1
⇒ z1 =
which is a rectangular hyperbola. z2
116. z − z1 = z − z2 = z − z3 ∴ z1 z2 = 1
1 1
126. Given, z = x + iy
Now,
3 z − 6 − 3 i 3( x + iy ) − 6 − 3 i
=
2 z − 8 − 6 i 2( x + iy ) − 8 − 6 i
4
Complex Numbers
⇒ 1≥ z − ⇒ − 1≤ z − ≤1
z z [3 x − 6 + i (3 y − 3)][(2 x − 8) − i (2 y − 6)]
=
⇒
2
− z ≤ z − 1≤ z [(2 x − 8) + i (2 y − 6)][(2 x − 8) − i (2 y − 6)]
2 6 x 2 − 36 x + 48 + 6 y 2 − 24 y + 18 + i [6 xy
From z − 1 ≥ z , we get
− 6 x − 24 y + 24 − 6 xy + 12 y + 18 x − 36
2
z + z − 1≥ 0 =
(2 x − 8)2 + (2 y − 6)2
− 1+ 5
⇒ z ≥ …(i) 6 x 2 + 6 y 2 − 36 x − 24 y + 66
2 =
2 (2 x − 8)2 + (2 y − 6)2
From z − 1 ≤ z , we get
(12 x − 12 y − 12 )
2
z − z − 1≤ 0 + = a + ib [say]
(2 x − 8)2 + (2 y − 6)2
1− 5 1+ 5 π
⇒ ≤ z ≤ …(ii) Since, arg (a + ib) =
2 2 4
From Eqs. (i) and (ii), we get π b
− 1+ 5 1+ 5 ∴ tan = ⇒ a=b
⇒ ≤ z ≤ 4 a
2 2 ⇒ 6 x + 6 y − 36 x − 24 y + 66 = 12 x − 12 y − 12
2 2
5 −1 1+ 5 ⇒ 6 x 2 + 6 y 2 − 48 x − 12 y + 78 = 8
⇒ z min = , z max =
2 2 ⇒ x 2 + y 2 − 8 x − 2 y + 13 = 0 …(i)
124. z12 − z22 = z12 − z22 − 2 z1 z2 Again, z − 3 − i = 3 ⇒ x + iy − 3 + i = 3
⇒ z1 − z2 z1 + z2 = z1 − z2
2
⇒ ( x − 3)2 + ( y + 1)2 = 9
⇒ z1 + z2 = z1 + z2 ⇒ x 2 + y 2 − 6x + 2 y + 1 = 0 …(ii)
z z On subtracting Eq. (ii) from Eq. (i), W get
z1 + z2 = z1 − z2 ⇒ 1 + 1 − 1 − 1
Targ e t E x e rc is e s
z2 z2 − 2 x − 4 y + 12 = 0
z1 ⇒ x = − 2y + 6 …(iii)
⇒ lies on ⊥ bisector of 1 and − 1. Putting the value of x in Eq. (ii), we get
z2
z1 (− 2 y + 6)2 + y 2 − 6 (− 2 y + 6) + 2 y + 1= 0
⇒ lies on imaginary axis.
z2 ⇒ 5 y 2 − 10 y + 1 = 0
z1 10 ± 4 5
⇒ is purely is imaginary. ∴ y=
z2 10
2
z π = 1±
⇒ arg 1 = ± 5
z2 2 4
π ∴ x = − 2y + 6 = 4 m
∴ arg ( z1 ) − arg( z2 ) = 5
2 4 2
∴ z = x + iy = 4 m + i 1 ±
125. Since, arg (( z − 1 − i ) / z ) is the angle subtended by the 5 5
chord joining the points O and 1 + i at the circumference
Thus, the order pairs ( x, y ) satisfying the given
of the circle z − 1 = 1, so it is equal to − π /4. The line
4 2
joining the points z = 0 and z = 2 + 0 i is the diameter. equations such that x = x + iy and 4 − ,1+
5 5
Y
4 2
P(z) and 4 + ,1− .
5 5
127. Clearly, we have to find it for real z. Let z = x.
θ 2 X
O 1 A Then, x − w = x − w2 = w − w2
2 2
1 3 − 1+ 3 i − 1− 3 i
⇒ x + + = − =3
2 4 2 2
1 3
⇒ x+ =±
z −2 π z −2 2 2
∴ arg =± ⇒ is purely imaginary.
z 2 z−0 ⇒ x = 1, − 2
π 128. amp ( z1 z2 ) = 0 ⇒ amp ( z1 ) + amp ( z2 ) = 0
We have, ∠POA =
2 ∴ amp ( z1 ) = − amp ( z2 ) = amp ( z2 )
2 − z π z − 2 AP z1 = z2 , we get z1 = z2 .
⇒ arg = ⇒ = i Q
0 − z 2 2 OP So, z1 = z2
AP 2
z1 z2 = z2 z2 = z2 = 1, because z2 = 1
Now, in ∆OAP, tan θ = Thus, z − 2 = 0 Also, 169
OP
4 129. z + z − 1 = 1⇒ z 2 − z + 1 = 0
∴ z=
1±
2
3i
= − ω, − ω 2
132. Q z1 − 1 = 1, z0 − 1 = 1
Y z –1 = 1
Objective Mathematics Vol. 1
P (z0)
−n
∴z + zn
= (− ω ) n + (− ω)− n or (− ω 2 ) n + (− ω 2 )− n
1
= (− 1) n ω n + (− 1)− n ⋅ n 1
X
ω C
1
or = (− 1) n ω 2 n + (− 1)− n . 2 n
ω Q (z1)
1
= (− 1) n ω n + n
ω
1 z1 − 1
or = (− 1)n ω 2 n + 2 n ∴ =1
ω z0 − 1
1 π
= (− 1) n ω n + n , because ω 3 n = 1 ∠QCP =
ω 2
= (− 1) n ⋅ (ω n + ω 2 n ) z1 − 1 π π
⇒ amp = ,−
= (− 1) n ⋅ (1 + 1) or (− 1) n ⋅ (− 1) z0 − 1 2 2
Dependening on whether n is a multiple of 3 or not. z1 − 1 ±π ± π
∴ = 1⋅ cos + i sin = i, − i
z0 − 1 2 2
130. 2 z1 + z2 ≤ 2 z1 + z2
∴ z1 − 1 = ( z0 − 1) i , z1 − 1 = − ( z0 − 1) i
= 2 z1 + z2 = 2 × 1 + 2 = 4
133. Given, z1 = z2 = z3
From the figure, z1 − z2 is the least, when 0, z1, z2 are
collinear. A(z1)
z1 – z2 z2
z1
Ta rg e t E x e rc is e s
A
O B
1 1
1 O 1
z =1
B(z2) C(z3)
Complex Numbers
⇒ a > b does not hold true in complex numbers, where, r = 0, 1, 2, 3, 4
therefore Statement II is true. 2 πr + 3 θ
i
136. Given that, arg ( z ) = 0 =e , r = 0, 1, 2, 3, 4
5
∴ ( z2 − z1 ) = ( z1 − z2 )
2 2 = e i 3 θ + 4 πi = e 4 iπ e i 3 θ
2 2 = cos 3 θ + i sin 3 θ
⇒ = z1 + z2 − 2 z1 z2 cos (θ1 − θ 2 )
2 2
Also, product of roots of the equation x 5 − 1 = 0 is 1.
= z1 + z2 − 2 z1 z2 Hence, Statement II is true, but it is not a correct
⇒ cos(θ1 − θ 2 ) = 1 ⇒ θ1 − θ 2 = 0 explanation of Statement I.
⇒ arg( z1 ) − arg ( z2 ) = 0 141. Let A( z1 ) and B( z1 ) be the centres of the given circles and
z z1
⇒ arg 1 = 0 ⇒ is purely real. P be the centre of the variable circle, which touches
z2 z2 given circles externally, then
z AP = a + r and BP = b + r
⇒ Im 1 = 0
z2 where, r is the radius of the variable circle.
Hence, Statement I and Statement II are true and On subtraction, we get
Statement II is correct explanation of Statement I. AP − BP = a − b
137. We will show that Statement I is true and follows from ⇒ AP − BP = | a − b is a constant.
Statement II. Hence, locus of P is
Indeed (i) a right bisector of AB, if a = b
Targ e t E x e rc is e s
1 1 1 1 1
z = z+ − ≤ z+ + ≤ 1+ (ii) a hyperbola if a − b < AB = z2 − z1
z z z z z
2 (iii) an empty set, if a − b > AB = z2 − z1
⇒ z − z − 1≤ 0 (iv) set of all points on line AB except those which lie
1 − 5 1 + 5 between A and B, if a − b = AB ≠ 0
⇒ z ∈ ,
2 2 Thus, Statement I is false and Statement II is true.
1 + 5 142. If P( z ) is any point on the ellipse, then equation of the
But as z > 0, we have z ∈ 0,
2 ellipse is
z1 − z2
1+ 5 z − z1 + z − z2 = …(i)
⇒ Maximum value of z is . e
2
For P( z )to lie in ellipse, we have
−a±
a2 − 4 b z1 − z2
138. Statement I is false, since z = , if a2 > 4b z − z1 + z − z2 <
2 e
and z is a positive number c, then z = c
It is given that origin is an interior point of the ellipse.
⇒ z = c (cos θ + i sin θ ) z − z2
⇒ Infinite complex numbers satisfy the given equation. ⇒ 0 − z1 + 0 − z2 < 1
e
Statement II is true. z − z2
A quadratic can have more than two roots, if all ∴ e ∈ 0, 1
z1 + z2
coefficients are zero.
Hence, Statement I is false and Statement II is true.
139. Q e iθ = cos θ + i sin θ
⇒ e − iθ = cos θ − i sin θ 143. As, we know z − z1 + z − z2 = k represents an ellipse,
e iθ + e − iθ if k > z1 − z2 . Thus, z − i + z + i = k represents an
∴ cos θ = ellipse, if k > i + i or k > 2.
2
− (1 + i )
e i(1 − i) + e − i(1− i) e (1 + i) + e ∴ Statement I is false and Statement II is true.
Now, cos (1 − i ) = =
2 2 144. The equation can be rewritten as
e (e i ) + e − 1(e − i ) zz + az + az + aa = aa − λ
=
2 ⇒ ( z + a) ( z + a) = aa − λ
e (cos 1 + i sin 1) + e − 1 (cos 1 − i sin 1) ⇒ z + a = aa − λ
=
2 Since, aa is real, 1 should be real.
1 1 i 1
= e + cos 1 + e − sin 1 aa − λ represents radius of the circle.
2 e 2 e
1 1 1 1 Hence, Statement I and Statement II both are true and
∴ a = e + cos 1, b = e − sin 1
2 e 2 e Statement II is the correct explanation for Statement I.
171
4 Solutions (Q. Nos. 145-147)
Given that,
| z1 + z2|2 = | z1| + | z2|
2 2
152. DE =
( zA − zC )i
1− i
=
1 − ω2
2
=
2
3
Objective Mathematics Vol. 1
⇒| z1| + | z2| + z1 z2 + z1 z2
2 2
= | z1|2 + | z2|2 zB − zC i ω − ω 2 i
153. zE = =
⇒ z1 z2 + z1 z2 =0 …(i) 1− i 1− i
z1 z (ω + ω 2 ) + i (ω − ω 2 ) − 1 − 3
⇒ + 1 =0 [dividing by z2 z2 ] = =
z2 z2 2 2
z1 z1 1+ 3 3 + 3
⇒ + =0 …(ii) ∴ AE = 1 + =
z2 z2 2 2
z 2 − 1
145. From Eq. (i),z2 z2 is purely imaginary. 154. A. arg = 0;z ≠ ± i
z 2 + 1
146. From Eq. (ii), z1 / z2 is purely imaginary z2 − 1 z 2 − 1
= =
147. Also, i ( z1 / z2 ) is purely real. Hence, its possible z2 + 1 z 2 + 1
arguments are 0 and π. ⇒ z − z = 0, z + z = 0, y = 0, x = 0
148. Clearly, according to the least possibility Locus of z is portion of pair of lines xy = 0
α 2 − 7α + 11 ≤ 1 ⇒ α ∈[2, 5] z 2 − 1
Q 2 > 0
149. ( z − i ) − (α 2 − 7α + 11 ) = 1 z + 1
B. Given,
∴ ( z − i ) − (α 2 − 7α + 11) ≥ z − i − α 2 − 7α + 11
z − cos − 1 cos 12 − z − sin − 1 sin 12| = 8 (π − 3)
[using z1 − z2 ≥ z1 − z2 ]
Since, cos − 1 cos 12 − sin − 1 sin 12 = 8 (π − 3)
⇒ α 2 − 7α + 11 + 1 ≥ z − i ∴ Locus of z is portion of a line joining z1 and z2
[since, α 2 − 7α + 11 ≥ − 5/ 4] except the segment between z1 and z2 .
2
∴ z − i ≤ 1 + 5/ 4 or z − i ≤ 9/ 4 C. z 2 − i z1 = k2 − k1
Ta rg e t E x e rc is e s
Y ∴ x 2 − y 2 + 2 ixy − iλ 1 = λ 2
λ1
⇒ x2 − y2 = λ 2 and xy =
2
∴ Locus of z is point of intersection of hyperbola.
1 1 π
D. Given, z − 1 − sin − 1 + z + cos − 1 − =1
3 3 2
X 1 1 π
since, 1 + sin − 1 + cos − 1 − =1
3 3 2
150. AB =
9
and arg ( z ) = π − tan −1 4 ∴ z − z1 + z − z2 = z1 + z2
4 9 ⇒ Locus of z is the segment joining z1 and z2 .
Y
155. There are no real roots of the equation z 6 − 6 z + 20 = 0.
If x + iy is a root, then x − iy is also a root.
Let the roots be x1 ± iy1, x2 ± iy2 , x3 ± iy3
B O A (0, 1) Sum of the roots = 2 ( x1 + x2 + x3 ) = 0
– 9 ,1 – 5 ,1 ⇒ x1 + x2 + x3 = 0
4 4 X ⇒ One of x1, x2 , x3 is negative and other two are
positive or vice-versa.
zB − zA i z − zC i ⇒ The number of roots in each of the quadrant is either
151. zD = , zE = B
1− i 1− i 1 or 2.
A 156. A. z 4 − 1 = 0 ⇒ z 4 = 1 = cos 0 + i sin 0
⇒ z = (cos 0 + i sin 0 )1/ 4
D = cos 0 + i sin 0
B C B. z 4 + 1 = 0 ⇒ z 4 = − 1 = cos π + i sin π
⇒ z = (cos π + i sin π)1/ 4
π π
E = cos + i sin
4 4
π π
C. iz + 1 = 0 ⇒ z = i = cos + i sin
4 4
2 2
1/ 4
π π
∴Angle between AC and DE ⇒ z = cos + i sin
2 2
z − zA z − zA 1 − i π
= arg C − arg C = π π
zE − zD zA − zC i 4 = cos + i sin
172 8 8
D. iz 4 − 1 = 0
⇒
π
z 4 = − i = cos − i sin π /2
2
⇒
⇒
9 (36 + y 2 ) = 25 [36 + ( y − 8)2 ]
y = 17, 8
Thus, the required numbers are z = 6 + 17 i , 6 + 8 i.
4
Complex Numbers
1/ 4
π Hence, the value of Re ( z ) is 6.
⇒ z = cos − i sin π /2
2 1 1 1 1
π π 160. z + ≥ z − = z − = z − as z ≥ 3
= cos − i sin z −z z z
8 8
1 1
157. A. Let z = 1 − z ⇒ z 2 + z + 1 = 0 Let f ( x ) = x − for x ≥ 3,f ' ( x ) = 1 + 2 > 0
x x
⇒ z = ω , ω2 ⇒ f ( x ) is increasing function, so f ( x )min at x = 3 is
B. Here, z1 + z2 + z3 + .... + z6 = 0 ... (i) 1 1 8
z+ = z − =
z2 = z1 e ( i2 π )/ n, if e ( i2π )/ n = α ⇒ z2 = z1 α z min z 3
z =3
Similarly, z3 = z1α 2 , z4 = z2 α 3 , z5 = z2 α 4 , z6 = z1α 5
Hence, λ is equal to 8.
On squaring and adding and then using Eq. (i), we
get 161. Consider
z12 + z22 + z32 + z42 + z52 + z62 = 0 z4 + z3 + 2 z2 + z + 1 = 0
⇒ z + z3 + z2 + z2 + z + 1 = 0
4
n( n + 1) 1/ n
1 + 2 ω + 3 ω 2 + 4 ω 3 + ... + nω n − 1 ⇒ z ( z 2 + z + 1) + ( z 2 + z + 1) = 0
2
C. ≥ n ! ω 2
n
⇒ ( z 2 + z + 1) ( z 2 + 1) = 0
[Q AM ≥ GM] ∴ z = i, − i, ω, ω 2, for each z = 1
Now,
162. Let A be ( x, y ).
E = 1 + 2 ω + 3 ω 2 + 4 ω 3 + ... + nω n − 1 + ....
D(1,1)
ω + 2 ω 2 + 3 ω 3 + ... + (n − 1)ω n − 1 + n ω n
ωE =
(1 − ω)E = 1 + ω + ω 2 + ... + ω n − 1 − n ω n
Targ e t E x e rc is e s
0 − n(1)
⇒ E=
1− ω A M (2, –1) C
n (x, y)
∴ E=
ω −1
D. Let x 2 + y 2 = 1
where, z1 − i , z2 = 1, z3 = − 1 B
∴ z=−i
It is given that, BD = 2 AC
⇒ zz1 + z2 z3 = 1 − 1 = 0
⇒ MD = 2 AM
158. Consider, Also, DM is perpendicular to AM.
x 3 2 + 11 i 3 − 4 i 50 + 25 i
x= = × = ⇒ (1 − 2 )2 + (1 + 1)2 = 4 [( x − 2 )2 + ( y + 1)2 ] …(i)
x2 3 + 4i 3 − 4i 25
y + 1 1+ 1
=2 + i and ⋅ = −1
x − 2 1− 2
∴ a + b = 2 + 1= 3
⇒ 2 ( y + 1) = x − 2
z−4 x − 4 + iy
159. Here, =1 ⇒ =1 With x − 2 = 2( y + 1) , Eq. (i) can be written as
z−8 x − 8 + iy 1
( y + 1)2 =
⇒ ( x − 4)2 + y 2 = ( x − 8)2 + y 2 4
⇒ x=6 1 3
⇒ y =− ,−
z − 12 5 2 2
With x = 6, =
z − 8i 3 ⇒ x = 3, 1
⇒ y 2 − 25 y + 136 = 0 ∴ λ1 + λ 2 = 4
173
4 Entrances Gallery
1. A. zk is 10th root of unity ⇒ zk will also be 10th root of 4. Area of
Objective Mathematics Vol. 1
unity. Take z j as zk . S = S1 ∩ S 2 ∩ S 3 y + √3 x = 0 Y
z
B. z1 ≠ 0, take z = k , we can always find z. π × 42 42 × π
z1 = +
4 6 60°
C. z10 − 1 = ( z − 1)( z − z1 ) K ( z − z9 ) 2 1 1 X′ X
=4 π + 60°
⇒ ( z − z1 )( z − z2 ) K ( z − sz9 ) = 1 4 6 x2 + y2 < 16
+ z + z 2 + K + z 9 , ∀ z ∈ complex number 20 π
=
Put z = 1 3 Y′
(1 − z1 )(1 − z2 ) K (1 − z9 ) = 10 5. Distance of (1,
D. 1 + z1 + z2 + K + z9 = 0 − 3) from y + 3x = 0
⇒ Re (1) + Re ( z1 ) + K + Re ( z9 ) = 0 −3+ 3 ×1 3− 3
⇒ Re (z1) + Re (z2 )|+ K + Re (z9 ) = − 1 > >
2 2
9
2 kπ
∴ 1 − ∑ cos =2 6. Given, is z 2 + z + 1 − a = 0
k =1
10
C(1/α) Clearly, this equation do not have real roots, if
2. OB =|α| Y D<0
B (α) 2r
OC =
1
=
1 ⇒ 1 − 4 (1 − a) < 0
|α| |α| r
⇒ 4a < 3
3
In ∆OBD, ∴ a<
A D 4
| z |2 + |α|2 − r 2
cos θ = 0
2| z0||α | θz 5
0 7. Length AB =
2
In ∆OCD,
Ta rg e t E x e rc is e s
1 Y
| z0|2 + − 4r 2 O X
|α|2
cos θ =
1
2| z0| C (3, 2)
|α|
1
| z0|2 + − 4r 2 X¢ X
| z0|2 + |α|2 − r 2 |α | 2 (0, 0) O B (3, 0)
⇒ =
2| z0||α | 2| z0|
1 A(3, –5/2)
|α |
1
⇒ |α | =
7 Y¢
iπ
3+i ∴ Minimum value = 5
3. w = =e 6
2 8. The expression may not attain integral value for all a, b,c.
If we consider a = b = c , then
B1 A3 x = 3a
y = a (1 + ω + ω 2 ) = 0
B2 π/6 A2 z = a (1 + ω 2 + ω ) = 0
O ∴ | x|2 + | y|2 + | z|2 = 9| a|2
B3 A1
| x|2 + | y|2 + | z|2 9
∴ = =3
x = –1/2 x = 1/2 | a|2 + | b|2 + |c|2 3
2 2 2
nπ
i
As, x + y + z
6
So, wn = e = (a + b + c )(a + b + c ) + (a + b ω + cω 2 )
nπ 1 (a + b ω 2 + c ω ) + (a + bω 2 + cω )(a + b ω + c ω 2 )
Now, for z1, cos >
6 2
nπ 1 = 3 (| a|2 +| b|2 +|c |2 ) + ab (1 + ω + ω 2 ) + ab (1 + ω + ω 2 )
and for z2 , cos <− + bc (1 + ω + ω 2 ) + b c (1 + ω + ω 2 ) + ac (1 + ω + ω 2 )
6 2
Possible position of z1 are A1, A2 , A3 , whereas of z2 are + ac (1 + ω + ω 2 )
B1, B2 , B3 (as shown in the figure). = 3 (| a|2 +| b|2 +|c |2 ) [using 1 + ω + ω 2 = 0 ]
So, possible value of ∠z1Oz2 according to the given | x| +| y| +| z|
2 2 2
2π 5π ∴ =3
options is or . | a|2 +| b|2 +|c |2
3 6
174
9. Given, z = (1 − t )z1 + tz2
⇒
z − z1
z2 − z1
=t
⇒ (| z2|2 − 1)(| z1|2 − 4) = 0
Q
∴
| z2| ≠ 1
| z1| = 2
4
Complex Numbers
Let z1 = x + iy ⇒ x 2 + y 2 = (2 )2
z − z1
⇒ arg =0 ...(i) ∴ Point z1 lies on a circle of radius 2.
z2 − z1
⇒ arg ( z − z1) = arg ( z2 − z1 ) 12. Q | z| ≥ 2
z − z1 z − z1 1 1 1 3
⇒ = ∴ z+
≥ | z| − ≥2− ≥
z2 − z1 z2 − z1 2 2 2 2
z − z1 z − z1 1 3
⇒ =0 Hence, minimum distance between z and − , 0 is .
z2 − z1 z2 − z1 2 2
P(z) 13. Given,| z| = 1, arg z = θ
A(z1) B(z2) ∴ z = e ie
1
AP + PB = AB But z=
z
⇒ | z − z1| + | z − z2| = | z1 − z2|
1+ z
z z ∴ arg = arg( z ) = θ
10. A. −i = + i, z ≠ 0
| z| | z| 1 + 1
z
z
is unimodular complex number
| z| z2
14. Given, a complex number ( z ≠ 1) is purely real.
and lies on perpendicular bisector of i and − i z −1
z
⇒ = ± 1⇒ z = ± 1| z| ⇒ a is real number To find the locus of the complex number z.
| z| z2
Since, ( z ≠ 1) is purely real.
⇒ Im(z) = 0 z −1
B. | z + 4| + | z − 4| = 10
Targ e t E x e rc is e s
z2 z2
z lies on an ellipse, whose focus are (4, 0) and ∴ =
z −1 z −1
(− 4, 0) and length of major axis is 10.
⇒ 2 ae = 8 and 2 a = 10 ⇒ z 2 ( z − 1) = z 2 ( z − 1)
⇒ e = 4/ 5 ⇒ z2 z − z2 = z 2 z − z 2
|Re( z )| ≤ 5. ⇒ zzz − z 2 = zzz − z 2
C. ∴|ω| = 2 ⇒ w = 2(cos θ + i sin θ ) ⇒ z| z|2 − z 2 = z| z|2 − z 2
1
x + iy = 2(cos θ + i sin θ ) − (cos θ − i sin θ ) On rearranging the terms, we get
2
3 5 z| z|2 − z| z|2 = z 2 − z 2
= cos θ + i sin θ ⇒ | z|2 ( z − z ) = ( z − z )( z + z )
2 2
x2 y2 ⇒ | z| ( z − z ) − ( z − z )( z + z ) = 0
2
⇒ + =1
(3 / 2 )2
(5 / 2 )2 ⇒ ( z − z )(| z|2 − ( z + z )) = 0
e2 = 1−
9/ 4 Either ( z − z ) = 0
25/ 4 or [| z|2 − ( z + z )] = 0
9 16
= 1− = Now, z = z
25 25
4 ⇒ Locus of z is real axis and
⇒ e= (| z|2 − ( z + z )) = 0 ⇒ zz − ( z + z ) = 0
5
D. |ω| = 1 Locus of z is a circle passing through the origin.
⇒ x + iy = cos + i sin θ + cos θ − i sin θ Aliter
x + iy = 2 cos θ Put z = x + iy, then
|Re( z )| ≤ 1,|Im( z )| = 0 z2 ( x + iy )2 ( x 2 − y 2 ) + i (2 xy )
= =
11. Given, z2 is not unimodular i.e.| z2| ≠ 1 z − 1 ( x + iy ) − 1 ( x − 1) + iy
z1 − 2 z2 ( x 2 − y 2 ) + i (2 xy ) ( x − 1) − iy
and is unimodular. = ×
2 − z1 z2 ( x − 1) + iy ( x − 1) − iy
z1 − 2 z2 z2
⇒ = 1 ⇒ | z1 − 2 z2|2 = |2 − z1 z2|2 Since, ( z ≠ 1) is purely real, hence its imaginary
2 − z1 z2 z −1
part should be equal to zero.
⇒ ( z1 − 2 z2 )( z1 − 2 z2 ) = (2 − z1 z2 )(2 − z1 z2 )
⇒ ( x 2 − y 2 )(− y ) + (2 xy )( x − 1) = 0
[Q zz = | z|2 ]
⇒ y ( x2 − y2 + 2 x − 2 x2 ) = 0
⇒ | z1|2 + 4| z2|2 − 2 z1 z2 − 2 z1 z2
⇒ y( x 2 + y 2 − 2 x ) = 0
= 4 + | z1|2 | z2|2 − 2 z1 z2 − 2 z1 z2 175
Either y = 0 or x + y 2 − 2 x = 0
2
4 Now, y = 0, locus of z is real axis, and
x 2 + y 2 − 2 x = 0, locus of z is a circle passing through
the origin.
Ø For minimum value of | z |, we take
4 4
z z
z−
− ≤ z −
4 4
+
z z
Objective Mathematics Vol. 1
∴ 1 + ω = − ω2 | z + 1| = | z + 4 − 3|
≤ | z + 4| + |− 3| ≤ 6
⇒ (− ω 2 )7 = A + Bω
Thus, maximum value Y¢
⇒ − ω14 = A + Bω [Q ω14 = ω12 ⋅ ω 2 = ω 2 ]
of| z + 1| is 6.
⇒ − ω 2 = A + Bω 10
2 kπ 2 kπ
⇒
On comparing
1 + ω = A + Bω 22. ∑ sin 11
+ i cos
11
k =1
A = 1, B = 1 10
2 kπ 2 kπ
= i ∑ cos − i sin
17. We have,| z − 1| = | z + 1| = | z − i| 11 11
k =1
10 2 kπ
(0, 1)
= i ∑ e 11
Ta rg e t E x e rc is e s
k = 1
(–1, 0) (1, 0) 10 − 2 kπ
= i ∑ e 11 − 1 = − i
O
k = 0
23. Given, equation is z 2 + z + 1 = 0
z+i ⇒ z = ω, ω 2
2 2 2
1 1 1
Clearly, z is the circumcentre of the triangle formed by Now, z + + z 2 + 2 + z 3 + 3
z z z
the vertices (1, 0), (0, 1) and (− 1, 0), which is unique.
2 2 2
Hence, the number of complex number z is one. 1 1 1
+ z4 + 4 + z5 + 5 + z6 + 6
z z z
18. Since, α and β are roots of the equation x 2 − x + 1 = 0.
−3 2
1± 3i = (ω + ω ) + (ω + ω ) + (ω + ω )
2 2 2 2 3
⇒ α + β = 1, αβ = 1 ⇒ x=
2 + (ω + ω 2 )2 + (ω 2 + ω )2 + (ω 6 + ω −6 )2
1+ 3i 1 − 3i = (− 1) + (− 1) + (1 + 1)2 + (− 1)2 + (− 1)2 + (1 + 1)2
2 2
⇒ x= or
2 2 = 1 + 1 + 4 + 1 + 1 + 4 = 12
⇒ x = −ω or − ω2
24. Given that, ( x − 1)3 + 8 = 0
Thus, α = − ω 2, then β = − ω
⇒ ( x − 1)3 = (− 2 )3
or α = − ω , then β = − ω 2 [where, ω 3 = 1] 3
Hence, α 2009
+ β 2009 = (− ω )2009 + (− ω 2 )2009 x − 1
⇒ =1
−2
= − [(ω 3 )669 ⋅ ω 2 + (ω 3 )1337 ⋅ ω ]
x − 1
= − [ω 2 + ω ] = − (− 1) = 1 ⇒ = (1)
1/ 3
−2
19. | z| = z − +
4 4 x − 1
are 1, ω, ω .
2
Cube roots of
z z −2
4 4 Cube roots of ( x − 1) are − 2, − 2ω and − 2ω 2 .
⇒ | z| ≤ z − +
z | z| ∴Cube roots of x are − 1, 1 − 2ω and 1 − 2ω 2 .
4
⇒ | z| ≤ 2 + 25. Let z1 = x1 + iy1 and z2 = x2 + iy2
| z|
⇒ | z| − 2| z| − 4 ≤ 0
2 Given,| z1 + z2| = | z1| + | z2|
⇒ | z| ≤ 5 + 1 ∴ ( x1 + x2 )2 + ( y1 + y2 )2
176 ∴Maximum value of| z| is 5 + 1 . = x12 + y12 + x22 + y22
On squaring both sides,
= x12 + x22 + 2 x1 x2 + y12 + y22 + 2 y1 y2
= x12 + y12 + x22 + y22 +2 ( x12 + y12 )( x22 + y22 )
and
∴
x
y
q
y
= − 3 p2 + q 2
+ = − 2 p2 − 2q 2
4
Complex Numbers
p q
⇒ x1 x2 + y1 y2 = ( x12 + y12 )( x22 + y22 ) 1 x y
⇒ + = −2
( p2 + q 2 ) p q
Again, squaring both sides, we get
⇒ = x12 x22 + y12 y22 + 2 x1 x2 y1 y2 29. Using the relation, if
= x12 x22 + y12 y22 + x12 y22 + y12 x22 | z1 + z2| = | z1| + | z2|
Then, arg( z1 ) = arg( z2 )
⇒ ( x1 y2 − y1 x2 )2 = 0
Since, | z + (− 1)| = | z 2| + |− 1|
2
y1 y2
⇒ = Then, arg( z 2 ) = arg(− 1)
x1 x2
⇒ 2 arg( z ) = π [Q arg(− 1) = π]
y y π
⇒ tan −1 1 = tan −1 2 ⇒ arg( z ) =
x1 x2 2
⇒ arg ( z1 ) = arg( z2 ) ⇒ z lies on Y-axis (imaginary axis).
∴ arg( z1 ) − arg( z2 ) = 0 30. Since, origin, z1 and z2 are the vertices of an equilateral
Aliter triangle, then
Given, | z1 + z2| = | z1| + | z2| z12 + z22 = z1 z2
= | z1|2 + | z2|2 + 2 Re( z1 z2 ) ⇒ ( z1 + z2 )2 = 3 z1 z2 ...(i)
[squaring both sides] Again, z1, z2 are the roots of the equation
= | z1|2 + | z2|2 + 2| z1|| z2| z 2 + az + b = 0
⇒ Re ( z1 z2 ) = | z1|| z2| Then, z1 + z2 = − a and z1 z2 = b
⇒ | z1|| z2|cos(θ1 − θ 2 ) = | z1|| z2|
On putting these values in Eq. (i), we get
⇒ θ1 − θ 2 = 0 (− a)2 = 3b ⇒ a2 = 3b
Targ e t E x e rc is e s
∴ arg ( z1 ) − arg( z2 ) = 0
z 31. Let z = r1 e iθ ⇒ w = r2 e iφ ⇒ z = r1 e iθ
26. Given, w = and| w| = 1
i Given, | zw| = 1
z−
3 ⇒ | r1 e iθ ⋅ r2 e iφ| = 1
⇒ r1r2 = 1 ...(i)
z i π
⇒ = 1 ⇒ | z| = z − and arg( z ) − arg(w ) =
i 3 2
z−
3 π
⇒ θ−φ= ...(ii)
1 2
⇒ z lies on perpendicular bisector of (0, 0) and 0, .
3 Now, zw = r1 e − i θ ⋅ r2 e i φ
Hence, z lies on a straight line. = r1r2 e − i( θ − φ )
27. Given, z + i w = 0 = 1⋅ e iπ / 2 [from Eqs. (i) and (ii)]
π π
⇒ z = − iw = cos − i sin
⇒ z = iw 2 2
⇒ w = − iz ∴ zw = − i
and arg( zw ) = π 1+ i
x
(1 + i )(1 + i )
x
∴
β −α
=
β −α
1 − αβ ββ − αβ
[Q1 = ββ]
39. Let z1 = x + iy and z2 = p − iq, where x, q > 0
Given,| z1| = | z2|
⇒ x 2 + y 2 = p2 + q 2
Objective Mathematics Vol. 1
...(i)
z1 + z2 ( x + p) + i ( y − q )
1 β −α 1 ∴ =
= = × 1= 1 [Q| z| = | z|] z1 − z2 ( x − p) + i ( y + q )
|β| β − α (1)
− 2 i ( xq + yp)
= ...(ii)
( 3 + i )3 (3 i + 4)2 ( x − p)2 + ( y + q )2
35. Given, z =
(8 + 6 i )2 If xq + yp ≠ 0, then it is purely imaginary and if
( 3 + i 3 )(3 i + 4)2 x y
∴ | z| = xq + yp = 0 or =− =λ [say]
(8 + 6 i )2 p q
⇒ x = pλ, y = − qλ
|( 3 + i 3 )||(3 i + 4)2| | z1| | z1|
= Q | z | = | z | From Eq. (i), we get
|8 + 6 i|2 2 2 p2 + q 2 = λ2 ( p2 + q 2 )
| 3 + i 3||3 i + 4|2 ⇒ λ2 = 1
= [Q| z n| = | z|n ]
|8 + 6 i|2 ⇒ λ=±1
( 3 + 13 )( 9 + 16 )2 (2 )3 (5)2 10 2 ⋅ 2 For λ = − 1 and z1 ≠ z2 , but| z1| = | z2|
= = = =2 In this case, Eq. (ii) is zero.
( 64 + 36 )2 (10 )2 (10 )2
w −1 40. Given, z = e 2 π / 3
36. Given,|w | = 1and z = ∴ 1 + z + 3z2 + 2 z3 + 2 z4 + 2 z4 + 3z5
w+1
⇒ z(w + 1) = w − 1 ⇒ w( z − 1) = − 1 − z = 1 + e 2 π / 3 + 3 (e 2 π / 3 )2 + 2(e 2 π / 3 )3
1+ z 1+ z + 2(e 2 π / 3 )4 + 3 (e 2 π / 3 )5
⇒ w= ⇒|w | =
1− z 1− z 2π 4π
= 1 + cos + i sin
|1 + z| 3 3
⇒ 1= ⇒ |1 − z| = |1 + z|
Ta rg e t E x e rc is e s
|1 − z| 4π 4π
+ 3 cos + i sin
On squaring both sides, we get 3 3
12 + | z|2 − 2 Re ( z ) = 12 + | z|2 − 2 Re ( z ) 8π 8π
+ 2[cos 2 π + i sin 2 π ] + 2 cos + i sin
3 3
⇒ 4 Re ( z ) = 0
∴ Re ( z ) = 0 10 π 10 π
+ 3 cos + i sin
3 3
37. Let z = x + iy
∴ | z|2 + | z − 3|2 + | z − i|2 = 1 + [cos 120 ° + i sin 120 ° ] + 3 [cos 240 °
+ i sin 240 ° ] + 2[cos 360 ° + i sin 360 ° ]
= | x + iy|2 + |( x − 3) + iy|2 + | x + i ( y − 1)|2
+ 2[cos 480 ° + i sin 480 ° ] + 3 [cos 600 ° + i sin 600 ° ]
= x 2 + y 2 + ( x − 3)2 + y 2 + x 2 + ( y − 1)2 1 3 1 3
= x 2 + y 2 + x 2 − 6x + 9 + y 2 + x 2 + y 2 + 1 − 2 y = 1 + − + i + 3 − − i
2 2 2 2
= 3 x 2 + 3 y 2 − 6 x − 2 y + 10
+ 2[1 + 0 ] + 2[cos 120 ° + i sin 120 ° ]
2 1 1
= 3 ( x 2 − 2 x + 1) + 3 y 2 − y + + 10 − 3 − + 3 [cos 120 ° − i sin 120 ° ]
3 9 3
2 1 3 1 3
1 20 = 3 − 2 − 2 + 2 − + i + 3 − − i
= 3 ( x − 1)2 + 3 y − + 2 2 2 2
3 3
1 −5 3 3 3 3
It is minimum, when x − 1 = 0 and y − =0 = 1 − 3i + − i=− − i
3 2 2 2 2
1 1 3
∴ x = 1 and y = = − 3 + i = − 3 e πi / 3
3
2 2
1
∴ z = 1+ i
3 41. Given, ( x − 1)3 = − 5
1 i ( x − 1) = − 5, − 5ω, − 5 ω 2
2 +
1+ i 2 2 ⇒ x = 1 − 5, 1 − 5 ω, 1 − 5 ω 2
38. =
π π e − iπ / 4 ⇒ x = − 4, 1 − 5 ω, 1 − 5 ω 2
cos − i sin
4 4
z − 3i
π π 42. Given, =1
2 cos + i sin z + 3i
4 4
= ⇒ | z − 3 i| = | z + 3 i|
e − iπ / 4
[if| z − z1| = | z − z2|, then it is perpendicular
= 2e iπ / 4 + iπ / 4 = 2e 2 iπ / 4 = 2e iπ / 2
bisector of z1 and z2 ]
π π
= 2 cos + i sin Hence, perpendicular bisector of (0, 3) and (0, − 3) is
178 2 2 X-axis.
43. ( z3 − z1 ) = ( z2 − z1 )(cos 90 ° + i sin 90 ° )
⇒
⇒
( z3 − z1 ) = i ( z2 − z1 )
( z3 − z1 )2 = − ( z2 − z1 )2
= 8 (1 − 1 + 2 i ) [1 − 3 3 i + 3 3 i (1 + i 3 )]
= 8 (2 i )[1 − 9]
= 16 i (− 8) = − 128 i
4
Complex Numbers
⇒ ( z3 − z1 )2 + ( z2 − z1 )2 = 0 49. 1 + i 3 + 3 i (1 + i ) + 1 − i 3 − 3 i (1 − i )
= 2 + 3i + 3i2 − 3i + 3i2
Aliter
Let z1 = 0, z2 = 1 − i and z3 = 1 + i = 2 + 6i2
Now, ( z1 − z2 )2 + ( z1 − z3 )2 = [0 − (1 − i )]2 + [0 − (1 + i )]2 =2 − 6 = − 4
= (1 − i )2 + (1 + i )2 i ( 3 + i )4 i (2 + 2 3 i )2 i (− 2 + 2 3 i )
50. z = = . =
= 12 + i 2 − 2 i + 12 + i 2 + 2 i 4(1 − 3 i ) 2
4 −2 −2 3i 2(− 1 − 1 3 i )
= 1 − 1 + 1− 1 = 0 i (− 2 + 3 i ) (− 1 + i 3 )
= ×
44. We know that, (− 1 − 3 i ) (− 1 + i 3 )
| z − z1| + | z − z2| = k will represent an ellipse, if i (− 2 − 2 i 3 ) 3 1
| z1 − z2| < k. = = −i
Hence, the equation | z − z1| + | z − z2| = 2| z1 − z2|, 4 2 2
represents an ellipse. π
∴ Amplitude = −
45. Given, z1 ≠ ± 1 6
Since, z2 and z3 can be obtained by rotating vector 51. Q| z1| = | z2| = | z3| = 1
2π 4π ⇒ | z1|2 = | z2|2 = | z3|2 = 1
representing through and , respectively.
3 3
∴ z1 z1 = z2 z2 = z3 z3 = 1
∴ z2 = z1ω 1 1
and z3 = z1ω 2 ⇒ z1 = , z2 =
z1 z2
∴ z1 z2 z3 = z1 × z1ω × z1ω 2 1
and z3 =
= z13ω 3 = z13 [Qω 3 = 1] z3
Targ e t E x e rc is e s
46. Since, z1, z2 and z3 are the vertices of an equilateral 1 1 1
∴ | z1 + z2 + z3| = + +
triangle, therefore z1 z2 z3
| z1 − z2| = | z2 − z3| = 1 =1
= | z3 − z1| = k [say]
1 52. Given, ( 3 i + 1) 100
= 2 99 (a + ib)
Also, α = ( 3 + i) 100
2 3 1 − 1− 3 i
1 1 ∴ 2100 i+ = 2 99 (a + ib) Q ω =
2
⇒ |α| = 3 + 1= × 2 = 1 2 2 2
2 2
⇒ 2(− ω 2 )100 = a + ib
Let A = αz1 + β, B = αz2 + β
and C = αz3 + β ⇒ 2 × ω 200 = a + ib
Now, | AB| = |αz2 + β − (αz1 + β )| ⇒ 2 × (ω 3 )66 × ω 2 = a + ib
= |α ( z2 − z1 )| − 1− 3 i
= |α|| z2 − z1| ⇒ 2 × (1)66 × = a + ib
2
= |1|| z2 − z1| = 1| z2 − z1|
= | z2 − z1| = k ⇒ − 1 − 3i = a + ib
Similarly, BC = CA = k ∴ a2 + b2 = 4
Hence, the points αz1 + β, αz2 + β and αz3 + β are the 53. (1 + 3 i )4 + (1 − 3 i )4 = (− 2ω 2 )4 + (− 2ω )4
vertices of an equilateral triangle.
− 1+ 3i − 1− 3i
47. Given, equation is Q ω = and ω 2 =
2 2
1 + z + z 3 + z 4 = 0.
= 16 ω 8 + 16 ω 4
⇒ (1 + z ) + z 3 (1 + z ) = 0
⇒ (1 + z )(1 + z 3 ) = 1 = 16 (ω 3 )2 ω 2 + 16 (ω 3 )ω
⇒ z = − 1, z 3 = − 1 ⇒ z = − 1 = 16 (ω 2 + ω ) = 16 (− 1) = − 16 [Q 1 + ω + ω 2 = 0]
∴ z = − 1, − ω, − ω 2 54. Q11/ 4 = (cos θ + i sin θ )1/ 4
Hence, roots are in cubic roots of unity. = (cos 2 πr + i sin 2 πr )1/ 4
Hence, these roots are the vertices of an equilateral πr πr
= cos + i sin
triangle. 2 2
where, r = 0, 1, 2, 3
48. Given, z1 = 2 2 (1 + i )
∴ 11/ 4 = 1, i , − 1, − i
and z2 = 1 + i 3
∴Required value = 12 + i 2 + (− 1)2 + (− i )2
∴ z12 z23 = [2 2 (1 + i )]2 [1 + i 3 ]3
= 1− 1+ 1− 1
= 8 (12 + i 2 + 2 i ) [13 + (i 3 )3 ] + 3 ⋅ 1⋅ i 3(1 + i 3 ) =0 179
4 55. From figure, it is clear that argument ≥ 90 °.
Y
59. Locus of z is a circle passing through origin.
60. Given, 2 x = 3 + 5 i
Objective Mathematics Vol. 1
P1 ⇒ 8 x 3 = 27 − 125 i + 27 + 5i − 25 × 9
− 198 + 10 i
⇒ 2 x3 = ...(i)
G 4
P(0, 1) Also, 4 x = 9 − 25 + 30 i
2
(–1,1)
− 16 + 30 i
X' X ⇒ 2 x2 = = − 8 + 15 i ...(ii)
Q 2
P1
∴ 2 x 3 + 2 x 2 − 7 x + 72
Y' − 198 + 10 i
= + (− 8 + 15 i ) − x + 172
4
The given equation | z − (− 1 + i ) ≤ 1| represents the
[form Eqs. (i) and (ii)]
points inside and on the boundary of the circle, centred
at (− 1, 1) and whose radius is 1. It lies in 2nd quadrant. 58 + 70 i − 28 x
=
The point (0, 1,) i.e. i lies on it such that, it has least 4
argument. 58 + 70 i − 14 (3 + 5 i )
∴The required complex number is i. =
4
56. (| z1| − | z2|)2 = | z1 − z2|2 16
= =4
⇒ | z1|2 + | z2|2 − 2| z1|| z2| = | z1|2 + | z2|2 4
− 2| z1|| z2|cos(θ1 − θ 2 ) 61. We have,| z1 + z2|2 = | z1|2 + | z2|2
⇒ cos(θ1 − θ 2 ) = 1 ⇒| z1|2 + | z2|2 + 2Re ( z1 z2 ) = | z1|2 + | z2|2
⇒ θ1 = 2 nπ + θ 2
⇒ Re ( z1 z2 ) = 0
Thus, if z1 = r1(cos θ1 + i sin θ1 )
and z2 = r2 (cos θ1 + i sin θ 2 ) ⇒ z1 z2 + z2 z1 = 0
⇒ z1 = r1(cos θ 2 + i sin θ 2 ) z1 z
⇒ =− 1
Ta rg e t E x e rc is e s
Complex Numbers
x = − 3, y = 0
4 4 4
∴ z=−3
4n
θ θ ⇒ | z| = |− 3| = 3
cos 4 − i sin 4
= 69. Given,| z1| = | z2| = K = | zn| = 1
cos θ + i sin θ ⇒ | z1|2 = | z2|2 = K| zn|2 = 1
4 4
⇒ z1 z1 = z2 z2 = K = zn zn = 1
cos nθ − i sin nθ (cos θ + i sin θ )− n 1 1 1
= = ⇒ z1 = , z2 = ,..., zn = ...(i)
cos nθ + i sin nθ (cos θ + i sin θ )n z1 z2 zn
= (cos θ + i sin θ )−2 n = cos 2 nθ − i sin 2 nθ Now, = | z1 + z2 + K + zn|
− 3+ i 3 = | z1 + z2 + K + zn| = | z1 + z2 + K + zn|
66. Given, x =
2 1 1 1
= + +K+ [from Eq. (i)]
− 1+ i 3 z1 z2 zn
⇒ x= − 1= ω − 1
2
∴ ( x 2 + 3 x )2 ( x 2 + 3 x + 1) 70. Q| z1| = 2 and| z2 | = 3
= [(ω − 1)2 + 3 (ω − 1)]2 [(ω − 1)2 + 3 (ω − 1) + 1] ∴ | z1 z2| = | z1|| z2| = 6
iθ
= (ω 2 + ω − 2 )2 (ω 2 + ω − 1) z z re re − i θ
71. + = −i θ + = e i2 θ + e − i2 θ = 2 cos 2 θ
= (− 1 − 2 )2 (− 1 − 1) = − 18 [Q1 + ω + ω 2 = 0] z z re re i θ
4 (1 + i ) 4
67. Given, ( x + iy )1/ 3 = 2 + 3 i 72. z = = 2(1 + i ) =
2 1+ i
⇒ x + iy = (2 + 3 i )3
4
= 8 + 36 i + 54 i 2 + 27 i 3 ∴ z=
1− i
Targ e t E x e rc is e s
= − 46 + 9 i
On equating real and imaginary parts from both sides, 73. If arg ( z ) = − π + θ
we get ⇒ arg ( z ) = π − θ
x = − 46, y = 9 arg (− z ) = − θ
∴ 3 x + 2 y = − 138 + 18 = − 120
∴ arg ( z ) − arg (− z ) = π − θ − (− θ )
68. Let z = x + iy = π −θ + θ = π
∴ | z + 3 − i| = |( x + 3) + i ( y − 1)| = 1 cos 30 ° + i sin 30 °
74.
⇒ ( x + 3) + ( y − 1)2 = 1
2
...(i) cos 60 ° − i sin 60 °
−1 y = (cos 30 ° + i sin 30 ° )(cos 60 ° + i sin 60 ° )
Q arg z = π ⇒ tan =π
x = cos 90 ° + i sin 90 ° = i
181
5
Inequalities and
Quadratic Equation
Inequality
An equation having signs >, <, ≥ or ≤ at the place of sign of equality ( =) is known as Chapter Snapshot
inequality or inequation. ● Inequality
or
Let a and b be two real numbers. If a − b is negative, we say that a is less than b ( a < b)
● Generalised Method of
Intervals for Solving
and if a − b is positive, then a is greater than b ( a > b).
Inequalities by Wavy Curve
Method (Line Rule)
Properties of Inequalities ● Absolute Value of a Real
We shall learn about some elementary properties of inequalities which will be used in Number
the subsequent discussion. ● Logarithms
i. If a > b and b > c, then a > c. Generally, if a1 > a 2 , a 2 > a 3 ,...,a n − 1 > a n , then ● Arithmetico-Geometric Mean
Inequality
a1 > a n
● Quadratic Equation with Real
ii. If a > b, then a ± c > b ± c, ∀c ∈ R Coefficients
a b b a ● Formation of a Polynomial
iii. If a > b, then for m > 0, am > bm, > and for m < 0, bm > am, > Equation from Given Roots
m m m m
● Symmetric Function of the
iv. If a > b > 0, then Roots
1 1 ● Transformation of Equations
(a) a 2 > b 2 (b) | a| > | b | (c) < Common Roots
a b ●
xiii. If a and b are positive real numbers such that X Example 3. The value of x for which
a < b and if n is any positive rational number, x −3 x −1 x − 2
then −x< − , 2 − x > 2x − 8
4 2 3
(a) a n < b n (b) a − n > b − n 10 10
(c) a 1/ n < b1/ n (a) −1, (b) −1,
3 3
(c) R (d) None of these
xiv. If a >1 and n is any positive rational number,
then Sol. (b) We have, x − 3 − x < x − 1 − x − 2
4 2 3
(a) a n >1 (b) 0 < a − n < 1
⇒ 3 x − 9 − 12 x < 6 x − 6 − 4 x + 8
⇒ −11x < 11 ⇒ − x < 1
xv. If 0 < a < 1 and m, n are positive rational
⇒ x> −1 …(i)
numbers, then and 2 − x> 2x − 8
(a) m > n ⇒ a m < a n ⇒ −3 x > − 10
(b) m < n ⇒ a m > a n ⇒ x<
10
…(ii)
3
xvi. If a >1 and m, n are positive rational numbers, From Eqs. (i) and (ii), the solution of the given system
of inequalities is given by x ∈ −1, .
10
then 3
(a) m > n ⇒ a m > a n
(b) m < n ⇒ a m < a n
Generalised Method of Intervals
X Example 1. If a, b and c are positive real for Solving Inequalities by Wavy
numbers such that a < b < c, then show that
a 2 a 2 + b2 + c2 c2
Curve Method
< < .
c a +b+c a (Line Rule)
Sol. We have, c > b> a> 0 Let F ( x ) = ( x − a1 ) k 1 ( x − a 2 ) k 2 K ( x − a n − 1 ) k n−1
⇒ c >b >a >0
2 2 2
(x − a n ) k n
Now, a< b<c
⇒ 3 a < a + b + c < 3c where, k1 , k 2 , …, k n ∈Z and a1 , a 2 , …, a n are
⇒
1
<
1
<
1
…(i)
fixed real numbers satisfying the condition
3c a + b + c 3 a a1 < a 2 < a 3 < K < a n − 1 < a n 183
For solving F ( x ) > 0 or F ( x ) < 0, consider the following
5 algorithm:
■ We mark the numbers a1 , a 2 ,…, a n on the number
X Example 4. Solve (x − 1)(x − 2)(1 − 2x ) > 0.
Sol. We have, ( x − 1)( x − 2 )(1 − 2 x) > 0
Objective Mathematics Vol. 1
axis and put the plus sign in the interval on the right ⇒ − ( x − 1)( x − 2 )(2 x − 1) > 0
of the largest of these numbers, i.e. on the right of a n . ⇒ ( x − 1)( x − 2 )(2 x − 1) < 0
1
■ Then, we put the plus sign in the interval on the left of On number line mark x = , 1, 2
2
a n , if k n is an even number and the minus sign, if k n is
– + – +
an odd number. In the next interval, we put a sign 1/2 1 2
according to the following rule:
When x > 2, all factors ( x − 1,) (2 x − 1) and ( x − 2 ) are
■ When passing through the point a n − 1 the polynomial positive.
F ( x ) changes sign, if k n − 1 is an odd number.Then, Hence, ( x − 1)( x − 2 )(2 x − 1) > 0 for x > 2.
we consider the next interval and put a sign in it using Now, put positive and negative sign alternatively as
the same rule. shown in figure.
■ Thus, we consider all the intervals. The solution of Hence, solution set of ( x − 1)( x − 2 )(1 − 2 x) > 0 or
the inequality F ( x ) > 0 is the union of all intervals in ( x − 1)( x − 2 ) (2 x − 1) < 0 is −∞, ∪ (1, 2 ).
1
which we have put the plus sign and the solution of 2
the inequality F ( x ) < 0 is the union of all intervals in
2x − 3
which we have put the minus sign. X Example 5. Solve ≥ 3.
3x − 5
Solution of Rational Algebraic Inequation
Sol. 2 x − 3 ≥ 3
If P ( x ) and Q ( x ) are polynomial in x, then the 3x − 5
inequation 2x − 3
⇒ − 3≥ 0
P (x ) P (x ) P (x ) 3x − 5
> 0, < 0, ≥0
Q (x ) Q (x ) Q (x ) 2 x − 3 − 9 x + 15
⇒ ≥0
3x − 5
P (x )
and ≤0 ⇒
−7 x + 12
≥0
Q (x ) 3x − 5
are known as rational algebraic inequations. 7 x − 12
⇒ ≤0
3x − 5
To solve these inequations, we use the sign method
⇒ (7 x − 12 )(3 x − 5) ≤ 0
as explained in the following algorithm :
Sign scheme of (7 x − 12) (3 x − 5) is as follows :
Algorithm + – +
5/3 12/7
Step I Obtain P ( x ) and Q ( x ).
x ∈ ,
5 12
⇒
Step II Factorise P ( x ) and Q ( x ) into linear 3 7
factors.
5 5
Ø x= is not included in the solutions as at x = denominator
Step III Make the coefficient of x positive in all 3 3
factors. becomes zero.
Step IV Obtain critical points by equating all X Example 6. The value of x for which
factors to zero. ( x − 2) 3 ( x − 3) < 0, is
Step V Plot the critical points on the number line. (a) (2, 3) (b) [2, 3) (c) (0, 3) (d) (2, 3]
If there are n critical points, then they
divide the number line into ( n +1) regions. Sol. (a) ( x − 2 )3 ( x − 3) < 0
⇒ ( x − 2 )( x − 3) < 0
Step VI In the right most region the expression
[as ( x − 2 )2 is positive for all real values of x ≠ 2]
P (x )
bears positive sign and in other –∞ + – + ∞
Q (x ) 2 3
regions the expression bears positive and Here, interval is open as x = 2, 3 do not satisfy
negative signs depending on the inequality.
exponents of the factors. i.e. 2 < x < 3 or x ∈(2, 3)
184
Work Book Exercise 5.1 5
185
5 X Example 7. The solution set of |3 − 4x| ≥ 9 is
3
(a) −∞, ∪ [3, ∞ )
X Example 9. Solve the inequation
1 − | x|
+
≥ 1.
Objective Mathematics Vol. 1
2 1 | x| 2
3 Sol. The given inequation is equivalent to the collection of
(b) −∞, − ∪ [3, ∞ )
2 systems.
x 1
(c) ( −∞, 2) ∪ [2, ∞ ) 1 − ≥ , if x ≥ 0 1 ≥ 1 , if x ≥ 0
1 + x 2 |1 + x| 2
(d) None of the above ⇒ ⇒
1 + x ≥ 1 , if x < 0 1 ≥ 1 , if x < 0
Sol. (b) We have, |1 − x| 2
|3 − 4 x| ≥ 9 1 − x 2
⇒ 3 − 4 x ≤ − 9 or 3 − 4 x ≥ 9 1 ≥ 1 , if x ≥ 0
1 + x 2
[since,| x| ≥ a ⇒ x ≤ − a or x ≥ a] ⇒ 1 1
⇒ −4 x ≤ − 12 or −4 x ≥ 6 ≥ , if x < 0
1 − x 2
−3
⇒ x ≥ 3 or x ≤ [dividing both sides by −4] 1 − x ≥ 0, if x ≥ 0 x − 1 ≤ 0, if x ≥ 0
2 1 + x x + 1
−3 ⇒ ⇒
⇒ x ∈ −∞, ∪ [3, ∞ )
2 1 + x ≥ 0, if x < 0 x + 1 ≤ 0, if x < 0
1 − x x − 1
| x + 3| + x x−1
X Example 8. The solution set of > 1 is For ≤ 0, if x ≥ 0, then
x +2 x+1
0≤ x≤ 1 ...(i)
(a) [ −5, − 2] ∪ [ −1, ∞ ) (b) [ −5, − 2) ∪ [ −1, ∞ )
(c) ( −5, − 2) ∪ ( −1, ∞ ) (d) None of these + +
–
Sol. (c) We have, | x + 3| + x > 1
–1 1
x+2 x+1
For ≤ 0, if x < 0
| x + 3| + x x−1
⇒ − 1> 0
x+2 ∴ −1 ≤ x < 0 …(ii)
x+ 3 −2
⇒ >0
x+2 + +
–1 – 1
Case I When x + 3 ≥ 0, i.e. x ≥ − 3
| x + 3| − 2
∴ >0 From Eqs. (i) and (ii), the solution of the given equation
x+2
is x ∈ [−1, 1.]
x+ 3−2
⇒ >0
x+2 X Example 10. The value of x, | x + 3| > |2x − 1| is
x+1 −2 2
⇒ >0
x+2 (a) , 4 (b) − , ∞
3 3
⇒ {x + 1 > 0 and x + 2 > 0} or {x + 1 < 0 and x + 2 < 0}
(c) (0, 1) (d) None of these
⇒ {x > − 1 and x > − 2} or {x < − 1 and x < − 2}
⇒ x > − 1 or x< −2 Sol. (a) Given,| x + 3| > |2 x − 1|
⇒ x ∈ (−1, ∞ ) or x ∈ (−∞, − 2 ) On squaring both sides, we get
vii. For x > 0, a > 0, ≠1 X Example 12. The value of x, log 1/ 2 x ≥ log 1/ 3 x
1 is
(a) log a n (x ) = log a x (a) (0, 1] (b) (0, 1)
n
(c) [0, 1) (d) None of these
m
(b) log a n ( x m ) = log a x Sol. (a) Case I When x ≠ 1and x > 0
n
log1/ 2 x ≥ log1/ 3 x
viii. (a) log a x > 0, iff x >1, a >1 or 0 < x < 1, 0 < a < 1 ⇒ log x 2 ≥ log x 3, when x ≠ 1
(b) log a x < 0, iff x >1, 0 < a < 1 or 0 < x < 1, a >1 which is possible, only if 0 < x < 1.
Case II When x = 1
ix. For x > y > 0, log1/ 2 x = log1/ 3 x, i.e. equality holds.
(a) log a x > log a y, if a >1 Combining the above cases,
(b) log a x < log a y, if 0 < a < 1 0 < x ≤ 1 or x ∈(0, 1]
9 log x ( x + 7 ) < 0
4 log 4 x > 1
( 0, 1) ( −∞, 1) ( −1, 0) ( −1, 1)
( 0, ∞ ) ( 4, ∞ ) ( −4, ∞ ) ( −∞, 4)
x +6
2
5 log 0. 2 ( x + 5) > 0 10 ≥1
5x
( −5, − 4) ( −5, 4) ( 0, 4) ( 0, 5)
( −∞, − 3)
6 log x 0.5 > 2 ( −∞, − 3) ∪ ( 3, ∞ )
1 R
, 1 ( −∞, 1) ( −1, 0) ( −1, 1)
2 ( −∞, − 3] ∪ [−2, 0) ∪ ( 0, 2 ] ∪ [3, ∞ ) 187
5 Arithmetico-Geometric
Inequality
Mean X Example 15. If the equation
x 4 − 4x 3 + ax 2 + bx + 1 = 0 has four positive roots,
then a, b are
Objective Mathematics Vol. 1
1 1 1 (a) > ,
(c) ( a + b + c) + + ≥ 9 n n
a b c
if m < 0 or m >1
1 1 1
(d) ( a + b + c) + + ≤ 9 a1m + a 2m + ... + a nm a1 + a 2 + K + a n
m
a b c (b) <
n n
Sol. (a) We have, AM > GM
if 0 < m < 1.
1 1 1
+ + 1/ 3 i.e. the arithmetic mean of the mth power
a+ b+c a b c > 1
∴ > (abc ) and
1/ 3
of n positive quantities is greater than mth
3 3 abc
1 1 1 3 power of their arithmetic mean except
⇒ a + b + c > 3 (abc ) and + + >
1/ 3
a b c (abc )1/ 3 when m is a positive proper fraction known
as mth power mean.
(a + b + c ) + + > 9
1 1 1
⇒
a b c (c) If a1 , a 2 , K, a n and b1 , b2 , K, bn are
rational numbers and m is a rational
Weighted AM and GM Inequalities number, then
If a1 , a 2 , K , a n are n positive real numbers and m1 , b1 a1m + b2 a 2m + K + bn a nm
m2 , …, mn are n positive rational numbers, then b1 + b2 + K + bn
m1 a1 + m2 a 2 + K + mn a n m
b a + b2 a 2 + ... + bn a n
m1 + m2 +... + mn > 1 1 ,
b1 + b2 + K + bn
1
m1 m2 mn m1 + m2 + K + mn if m < 0 or m >1 and
> ( a1 ⋅ a 2 K a n )
b1 a1m + b2 a 2m + K + bn a nm
i.e. weighted AM > weighted GM b1 + b2 +... + bn
m
X Example 14. If a, b and c are distinct positive b a + b2 a2 + K + bn an
integers, then ax b − c + bx c − a + cx a − b is
< 1 1 , if 0 < m < 1
b1 + b2 + K + bn
(a) > 2 ( a + b + c) (b) R
(c) > ( a + b + c) (d) < ( a + b + c) ii. If a1 , a 2 , a 3 , …, a n are distinct positive real
numbers and p, q, r are natural numbers, then
Sol. (c) We have, p+q+r p+q+r
a⋅ x b − c + b⋅ xc − a + c ⋅ x a − b
a1 + a2 + K + a np + q + r
>
a+ b+c n
{( x b −c a
) (x c −a b
) (x a − b c 1/ a + b + c
) } a1p + a 2p +K + a np a1q + a 2q +K + a nq
ax b − c + bx c − a + cx a − b >
⇒ > n n
a+ b+c
{ xa( b − c ) + b( c − a ) + c ( a − b ) 1/ a + b + c a1 + a 2 +K + a n
r r r
b −c c −a a−b
}
188 ⇒ ax + bx + cx > (a + b + c ) n
(a) ≥ ( a12 + a 22 + K + a n2 ) ( b1−2 + b2−2 + K + bn−2 )
X Example 16. If m >1 and n ∈ N , then
(a)
1m + 2 m + 3 m + K + n m n + 1
>
m
(b) ≤ ( a12 + a 22 + K + a n2 ) ( b1−2 + b2−2 + K + bn−2 ) 5
190
Sol. (d) Since, ax2 + x + b = 0 has real roots
X Example 20. If cos θ, sin φ and sin θ are in GP,
then roots of x 2 + 2 cot φ ⋅ x + 1 = 0 are always ⇒
⇒
(1)2 − 4 ab ≥ 0
− 4 ab ≥ − 1
5
2a 1
x2 − 2 x + 2 = 0
a − b a − b
X′ X ⇒ (a2 − b )x2 − 2 ax + 1 = 0
O
x2 − −
45
x n − S 1 x n − 1 + S 2 x n − 2 − S 3 x n − 3 + ... + ( −1) n S n = 0 ⇒
14
x − 1 = 0
q r = − {b 3 x2 + c 3 x − 3 bcx (ax + d )}
px2 + qx + r = 0, therefore α + β = − and αβ = .
p p ⇒ a x + x (3 a d − 3 abc + b 3 )
3 3 2 2
∴ α β + β α = αβ(α + β )
3 3 2 2
+ x (3 ad 2 − 3bcd + c 3 ) + d 3 = 0
= (αβ ) [(α + β ) − 2αβ ]
2
which is the required equation.
r q 2 2r r(q 2 − 2 pr )
= 2 − = X Example 33. If the roots of a1 x 2 + b1 x + c1 = 0
p p p p3
are α 1 , β1 and that of a 2 x 2 + b2 x + c2 = 0 are α 2 ,
β 2 such that α 1α 2 = β1β 2 = 1, then
Transformation of Equations a b c
Let α and β be the roots of the equation (a) 1 = 1 = 1
a 2 b2 c2
ax + bx + c = 0, then the equation
2
a b c
(b) 1 = 1 = 1
i. Whose roots are α + k, β + k is obtained by c2 b2 a 2
replacing x by x − k in the given equation. (c) a1 a 2 = b1 b2 = c1 c2
(d) None of the above
ii. Whose roots are α − k, β − k is obtained by
Sol. (b) Roots of the second equation are reciprocal of the
replacing x by x + k in the given equation. first.
1
iii. Whose roots are αk, βk is obtained by As α2 =
α1
multiplying the coefficients of x 2 , x and 1
and β2 =
constant term by k 0 , k 1 , k 2 respectively in the β1
given equation. ∴ Replacing x by
1
in a1 x2 + b1 x + c1 = 0, we get
α β x
iv. Whose roots are , is obtained by c1 x2 + b1 x + a1 = 0 …(i)
k k
and a2 x2 + b2 x + c 2 = 0 [given]…(ii)
multiplying the coefficients of x 2 , x and
Eqs. (i) and (ii) are same equations.
constant term by k 2 , k 1 , k 0 respectively in the c1 b a
∴ = 1 = 1 193
given equation. a2 b2 c 2
5 X Example 34. If α, β and γ are the roots of the
equation x (1 + x 2 ) + x 2 (6 + x ) + 2 = 0, then the
Common Roots
Let a1 x 2 + b1 x + c1 = 0 and a 2 x 2 + b2 x + c2 = 0 be
Objective Mathematics Vol. 1
value of α −1 + β −1 + γ −1 is
two quadratic equations such that a1 , a 2 ≠ 0 and
1 a1 b2 ≠ a 2 b1 .
(a) −3 (b)
2
1 i. When one common root If α is the common
(c) − (d) None of these root of these equations, then
2
( b1 c2 − b2 c1 ) ( a1 b2 − a 2 b1 ) = ( c1 a 2 − c2 a1 ) 2
Sol. (c) Since, 2 x3 + 6 x2 + x + 2 = 0 has roots α, β and γ.
So, 2 x3 + x2 + 6 x + 2 = 0 has roots α −1, β −1 and γ −1
which is the condition for roots of two
quadratic equations to be common.
[writing coefficients in reverse order,
since roots are reciprocal] ii. When two common roots The required
Coefficient of x2 a b c
Hence, sum of the roots = −
Coefficient of x3 condition is 1 = 1 = 1
1 a 2 b2 c2
∴ α −1 + β −1 + γ −1 = −
2
X Example 35. If ax 2 + bx + c = 0 and
Descartes Rule of Signs for the Roots of a bx 2 + cx + a = 0 have a common root and a, b and c
Polynomial are non-zero real numbers, then find the value of
Rule 1 The maximum number of positive real ( a 3 + b 3 + c 3 ) / abc.
roots of a polynomial equation
Sol. Given that, ax2 + bx + c = 0
f ( x ) = a 0 x n + a1 x n − 1 + a 2 x n − 2
and bx2 + cx + a = 0 have a common root. Hence,
+ K + an − 1 x + an = 0
(bc − a2 )2 = (ab − c 2 ) (ac − b 2 )
is the number of changes of the signs of ⇒ b 2c 2 + a4 − 2 a2 bc = a2 bc − ab 3 − ac 3 + b 2c 2
coefficients from positive to negative and
⇒ a4 + ab 3 + ac 3 = 3a2 bc
negative to positive. For instance, in the
a3 + b 3 + c 3
equation x 3 + 3x 2 + 7x − 11 = 0 the signs ⇒ =3
abc
of coefficients are
X Example 36. If the equation x 2 + 5x + 8 = 0
+ + + −
and ax 2 + bx + c = 0; a, b, c ∈ R have a common
As there is just one change of sign, the root, then a : b : c is
number of positive roots of
(a)1 : 5 : 6 (b)1 : 5 : 8
x 3 + 3x 2 + 7x − 11 = 0 is atmost 1. (c) 8 : 5 :1 (d) None of these
Rule 2 The maximum number of negative roots Sol. (b) Since, the quadratic equation x2 + 5 x + 8 = 0 has
of the polynomial equation f ( x ) = 0 is the imaginary roots. So, equation ax2 + bx + c = 0 will have
number of changes from positive to both roots same as the equation x2 + 5 x + 8 has.
negative and negative to positive in the a b c
signs of coefficients of the equation Thus, = = ⇒ a = λ, b = 5λ, c = 8λ
1 5 8
f ( − x ) = 0. Hence, the required ratio is 1 : 5 : 8.
7 If sin α, sin β and cos α are in GP, then roots of 12 The real roots of the equation
x + 2 x cot β + 1 = 0 are always
2 | x|3 − 3 x 2 + 3| x| − 2 = 0 are
equal real 0, 2 ±1 ±2 1, 2
imaginary greater than 1
13 If α and β are the roots of the quadratic equation
8 If x 2 + ax + b is an integer for every integer x, 1
6 x 2 − 6 x + 1 = 0, then (a + bα + cα 2 + dα 3 )
then 2
d is always an integer but b need not be an integer 1
b is always an integer but d need not be an integer + (a + bβ + cβ 2 + dβ 3 ) is equal to
Cannot be discussed 2
a and b are always integers 12d + 6 c + 4b + a
12
9 Let a > 0, b > 0 and c > 0. Then, both the roots of 12 a + 6b + 4 c + 9 d
the equation ax 2 + bx + c = 0 1
(12 a + 6b + 4 c + 3 d )
12
are real and negative have negative real part
None of these
are rational numbers None of these
10 If p, q and r are real and p ≠ q, then the roots of 14 Both the roots of the equation
( x − b) ( x − c ) + ( x − a) ( x − c ) + ( x − a) ( x − b) = 0
the equation are always
( p − q ) x 2 + 5 ( p + q )x − 2( p − q ) = 0 are positive negative
real and equal complex real None of these
real and unequal None of these
Y and y = f ( x ) < 0, ∀ x
Y
(α,0) (β,0)
X′ X
y = ax2+ bx + c X′ X
Y′ O
(ii) The parabola will just touch the X -axis at one a<0
point iff D = 0 y = ax 2 + bx + c
Y
In this case, the Y′
y = ax 2 + bx + c
parabola touches
Ø ax + bx + c > 0, ∀ x ∈R, iff a> 0 and D < 0 and
2
X-axis at (α, 0), when a>0
ax 2 + bx + c < 0, ∀ x ∈R , iff a< 0 and D < 0.
−b X′ X
α =β = O
2a X Example 37. What is the minimum height of
For a > 0, we have any point on the curve y = x 2 − 4x + 6 above the
y min = 0 Y′ X-axis?
−b
at x = , y max → ∞ Sol. Here, a = 1 > 0 and D = 16 − 4(6) = − 8 < 0
2a Therefore, the parabola remains completely above
> 0, if x ≠ α X-axis and minimum value of any point on the curve is
and y = f ( x ) is −D
= 0, if x = α given by
4a
.
− x + 3x + 4 < 0
2
x + 3x + 4
⇒ x − 3x − 4 > 0
2
x ( y − 1) + 3 x( y + 1) + 4( y − 1) = 0
2
⇒ ( x − 4) ( x + 1) > 0 Now, if D≥ 0
+ – + ⇒ 9( y + 1)2 − 16( y − 1)2 ≥ 0
–1 4 ⇒ − 7 y2 + 50 y − 7 ≥ 0
⇒ x< −1 ⇒ 7 y2 − 50 y + 7 ≤ 0
or x> 4 ⇒ (7 y − 1)( y − 7 ) ≤ 0
⇒ x ∈ (− ∞, − 1) ∪ (4, ∞ ) 1
⇒ ≤ y≤ 7
7
Ø Frequently used inequalities 1
Hence, the given expression lies between and 7.
● (x − a)(x − b) < 0 ⇒ x ∈(a, b) , where a < b 7
(x − a)(x − b) > 0 ⇒ x ∈(−∞ , a) ∪ (b , ∞), where a < b
x 2 −1
●
of x.
The following algorithm will explain the Location of the Roots of a
procedure: Quadratic Equation
Algorithm Here, we shall discuss various conditions satisfied
by the coefficients of a quadratic equation when the
Step I Equate the given rational expression to y.
location of its roots is given.
Step II Obtain a quadratic equation in x by
Let f ( x ) = ax 2 + bx + c, a, b, c ∈ R , a ≠ 0 and α, β be
simplifying the expression in Step I.
the roots of f ( x ) = 0. Suppose k , k1 , k 2 ∈ R and k1 < k 2 .
197
5 Then, the following hold good :
i. Conditions for a number k (If both the roots
ii. Conditions for a number k (If both the roots
of f ( x ) = 0 are greater than k)
of f ( x ) = 0 are less than k)
Objective Mathematics Vol. 1
a>0
f (k )
a>0 – b
f (k ) 2a
– b α X
k β
2a
α X
β k
– b ,– D
2a 4a
– b ,– D
2a 4a
– b ,– D
2a 4a
– b ,– D
2a 4a
k α β
X
α β k – b
X 2a
f (k )
– b a<0
2a
f(k)
a<0
(a) D ≥ 0 (roots may be equal)
(a) D ≥ 0 (roots may be equal) (b) af ( k ) > 0
(b) af ( k ) > 0 b
(c) k < − , where α ≤ β
b 2a
(c) k > − , where α ≤ β
2a X Example 43. For what values of m ∈ R , both
roots of the equation x 2 − 6mx + 9m 2 − 2m + 2 = 0
X Example 42. Find the values of m for which
exceed 3?
both roots of equation x 2 − mx + 1 = 0 are less than
unity. Sol. Let f( x) = x2 − 6mx + 9m2 − 2 m + 2.
as both roots of f( x) = 0 are greater than 3, we can take
Sol. Let f( x) = x2 − mx + 1, as both roots of f( x) = 0 are less b
D ≥ 0, af(3) > 0 and − > 3.
than 1, we can take D ≥ 0, af(1) > 0 2a
b Case I Consider, D ≥ 0
and − < 1.
2a (−6 m)2 − 4 ⋅ 1⋅ (9m2 − 2 m + 2 ) ≥ 0 ⇒ 8m − 8 ≥ 0
Case I Consider, D ≥ 0 ∴ m ≥ 1 or m ∈ [1, ∞ ) …(i)
(− m)2 − 4 ⋅ 1⋅ 1 ≥ 0 Case II Consider, af (3) > 0
1⋅ (9 − 18m + 9m2 − 2 m + 2 ) > 0
⇒ (m + 2 ) (m − 2 ) ≥ 0
⇒ 9m2 − 20m + 11 > 0
⇒ m ∈ (− ∞, − 2 ] ∪ [2, ∞ ) …(i)
⇒ (9m − 11) (m − 1) > 0
Case II Consider, af (1) > 0
⇒ m − 11 (m − 1) > 0
1⋅ (1 − m + 1) > 0
9
⇒ m− 2 < 0
m ∈ (− ∞, 1) ∪ , ∞
11
⇒ m< 2 ⇒ …(ii)
9
⇒ m ∈ (− ∞, 2 ) …(ii)
b
b Case III Consider, − >3
Case III Consider, − <1 2a
2a
+ +
+ + –
– +1 11/9
–2 2 6m
m > 3 ⇒ m> 1
<1 2
2 ⇒ m ∈ (1, ∞ ) …(iii)
⇒ m< 2
⇒ m ∈ (−∞, 2 ) …(iii) Hence, the values of m satisfying Eqs. (i), (ii) and (iii) at
the same time are m ∈ , ∞ .
11
Hence, the values of m satisfying Eqs. (i), (ii) and (iii) at
9
the same time are m ∈ (− ∞, − 2 ].
198
iii. Conditions for a number k (If k lies between
the roots of f ( x ) = 0)
X Example 45. Find the values of m for which
exactly one root of the equation
x 2 − 2mx + m 2 − 1 = 0 lies in the interval ( − 2, 4).
5
f (k ) +
+ +
X – –
α k β –3 –1 3 5
(4 + 4m + m2 − 1) (16 − 8m + m2 − 1) < 0
a<0 ⇒ (m2 + 4m + 3) (m2 − 8m + 15) < 0
⇒ (m + 1) (m + 3) (m − 3) (m − 5) < 0
(a) D > 0 (b) af ( k ) < 0, where α < β ⇒ (m + 3) (m + 1) (m − 3)(m − 5) < 0
∴ m ∈ (−3, − 1) ∪ (3, 5) ...(ii)
X Example 44. Find all values of p, so that 6 Hence, the values of m satisfying Eqs. (i) and (ii) at the
lies between roots of the equation same time are m ∈ (−3, − 1) ∪ (3, 5).
x 2 + 2 ( p − 3) x + 9 = 0.
Sol. Let f( x) = x2 + 2 ( p − 3) x + 9
v. Conditions for numbers k 1 and k 2 (If both
as 6 lies between the roots of
–
+ + roots of f ( x ) = 0 are confined between
f( x) = 0, we can take D > 0 and 0 6 k1 and k 2 )
af(6) < 0.
Case I Consider, D > 0
{2 ( p − 3)}2 − 4 ⋅ 1⋅ 9 > 0
a>0
⇒ ( p − 3)2 − 9 > 0 ⇒ p( p − 6) > 0
f (k1) f (k2)
⇒ p ∈ (− ∞, 0) ∪ (6, ∞ ) …(i)
Case II Consider, af (6) < 0 X
k1 α β k2
1 ⋅ {36 + 12 ( p − 3) + 9} < 0
3
⇒ 12 p + 9 < 0 ⇒ p + < 0
4 – b,– D
⇒ p ∈ (−∞, − 3/ 4) …(ii) 2a 4a
Hence, the values of p satisfying Eqs. (i) and (ii) at the – b,– D
same time are p ∈ (− ∞, − 3 / 4). 2 a 4a
⇒ …(i)
4 (a) a < 2 (b) 2 ≤ a ≤ 3
Case II Consider, af (−1) > 0 (c) 3a < a ≤ 4 (d) a > 4
4(4 + 2 + a) > 0
⇒ a > − 6 ⇒ a ∈ (−6, ∞ ) …(ii)
Sol. (a) Let f( x) = x2 − 2 ax + a2 + a − 3
Case III Consider, af (1) > 0 Since, both roots are less than 3.
4(4 − 2 + a) > 0 i.e. α < 3, β < 3
⇒ a > − 2 ⇒ a ∈ (−2, ∞ ) …(iii) Sum (S ) = α + β < 6
α+β 2a
Hence, the values of a satisfying Eqs. (i), (ii) and (iii) at ⇒ <3 ⇒ <3
2 2
the same time are a ∈ −2, .
1
4 ⇒ a< 3 …(i)
Again, product (P) = αβ
vi. Conditions for numbers k 1 and k 2 (If k1 and ⇒ P < 9 ⇒ αβ < 9
⇒ a2 + a − 3 < 9
k 2 lie between the roots of f ( x ) = 0)
⇒ a2 + a − 12 < 0
⇒ (a − 3) (a + 4) < 0
a>0
⇒ −4 < a < 3 …(ii)
k1 k2
α X
f (k2) β
f (k1)
f (k1)
f (k2) β α β 3
α
X
k1 k2 Again, D = B − 4 AC ≥ 0
2
Let
x 3 − [ x] = 3 ⇒ x 3 − 3 = [ x]
f( x) = x3 − 3 and g ( x) = [ x]
5
–3
Condition for Resolution into
Linear Factors Y′
Solving the given equations means finding the
The quadratic function x-coordinates of the points of intersection of the curves
ax 2 + 2hxy + by 2 + 2gx + 2 fy + c is resolvable into y = f( x) and y = g ( x).
If 1 < x < 2, we have g ( x) = 1 and f( x) = x3 − 3
linear rational factors iff
At the point of intersection of the two curves, we have
∆ = abc + 2 fgh − af 2
− bg 2 − ch 2 = 0 x3 − 3 = 1 ⇒ x = 41/ 3
a h g Hence, x = 4 is the solution of the equation
1/ 3
x 3 − [ x] = 3
i.e. h b f =0
g f c X Example 52. The number of solutions of the
equation | x | = cos x are
X Example 50. For what values of m can the (a) one (b) two (c) three (d) zero
expression 2x 2 + mxy + 3 y 2 − 5 y − 2 be expressed Sol. (b) Here,| x| = cos x Y
y=–x y=x
as the product of two linear factors? Thus, to find value of x
for which both curves
Sol. Comparing the given equation with y = cos x
have point of
ax2 + 2 hxy + by2 + 2 gx + 2 fy + c = 0, we have X′ X
intersections.
m 5 –π/2 O π/2
a = 2, h = , b = 3, c = − 2, f = − and g = 0 Clearly, there are two
2 2
points of intersection of
The given expression is resolvable into linear factors, if Y′
y =| x| and y = cos x.
abc + 2 hxy − af 2 − bg 2 − ch2 = 0 Hence, there are two real solutions.
25 m2
⇒ −12 − + 2 = 0
2 4
X Example 53. If b > a, then the equation
⇒ m2 = 49 ( x − a )( x − b) − 1 = 0 has
∴ m= ±7 (a) both roots in ( a, b)
(b) both roots in ( −∞, a )
(c) both roots in ( b, + ∞ )
Some Application of Graphs to (d) one root in ( −∞, a ) and the other in ( b, ∞ )
Find the Roots of Equations Sol. (d) Y
y = (x – a)(x – b) – 1
Here, we shall discuss some examples to find the
roots of equations with the help of graphs.
X Example 51. If x 3 − [x ] = 3, where [x ] denotes α a b β
X
202
WorkedOut Examples
Type 1. Only One Correct Option
Ex 1. If 0x 2 + x + | x | + 1 ≤ 0, then x lies in ⇒ −3x ≥ 6
or 3x ≥ 6
(a) ( 0, ∞ ) (b) ( − ∞ , 0)
⇒ x ≤ −2
(c) R (d) φ or x≥2
Sol. x 2 + x + | x | + 1 ≤ 0 gives two cases due to | x | . ⇒ x ∈ (− ∞ , − 2 ] ∪ [ 2, ∞ )
Case I When x ≥ 0 …(i) Hence, (b) is the correct answer.
x + 2x + 1 ≤ 0 or
2
(x + 1) ≤ 0
2
Ex 3. If a1 , a 2 , ..., a n are positive real numbers whose
⇒ x + 1= 0 product is a fixed real number c, then the
∴ x = − 1 but x ≥ 0 [from Eq. (i)] minimum value of a1 + a 2 + ... + a n − 1 + 2a n is
∴ No value of x ≥ 0.
(a) n ( 2c )1/ n
Case II When x < 0 …(ii)
(b) ( n + 1) c1/ n
x2 + x − x + 1 ≤ 0
(c) 2 nc1/ n
⇒ x2 + 1 ≤ 0
which is not true for any value of x < 0 (d) ( n + 1) ( 2 c )1/ n
∴ No value of x < 0 Sol. We have,
From above two cases no value of x is possible 1
i.e. x ∈ φ. (a + a2 + ... + an −1 + 2an )
n 1
Hence, (d) is the correct answer. ≥ [ a1 a2 ... an −1 (2a n )]1 / n = (2c)1 / n [using AM ≥ GM]
Ex 2. If | x − 1| + | x| + | x + 1| ≥ 6, then x lies in ⇒ a1 + a2 + ... + an − 1 + 2an ≥ n (2c)1 / n
(a) ( − ∞ , 2] (b) ( − ∞ , − 2] ∪ [ 2, ∞ )
Thus, minimum value of a1 + a2 + ... + a n −1 + 2a n is
(c) R (d) φ
n (2c)1 / n .
Sol. | x − 1| + | x | + | x + 1| ≥ 6, gives four cases Hence, (a) is the correct answer.
Case I When x < − 1 …(i)
Then, − (x + 1) − x − (x − 1) ≥ 6 Ex 4. Solution set of
⇒ −x − 1 − x − x + 1 ≥ 6 3
log 3 ( x 2 − 2) < log 3 | x | − 1 is
⇒ −3x ≥ 6 or x ≤ − 2 …(ii) 2
From Eqs. (i) and (ii), x ≤ − 2
(a) ( − 2 , − 1) (b) ( − 2, − 2 )
Case II When −1 ≤ x ≤ 0 …(iii)
(c) ( − 2 , 2) (d) None of these
⇒ x + 1 − x − (x − 1) ≥ 6
⇒ 1− x + 1≥ 6 ⇒ x ≤ −4 …(iv) Sol. We have,
∴ No value of x. [from Eqs. (iii) and (iv)] x 2 − 2 > 0,
3
|x| − 1 > 0
Case III When 0 ≤ x ≤ 1 …(v) 2
3
⇒ x + 1 + x − (x − 1) ≥ 6 and x2 − 2 < |x| − 1
2
⇒ x≥4 …(vi) 2 3
No solution, using Eqs. (v) and (vi). ⇒ x 2 > 2, | x | > and | x |2 − | x | − 1 < 0
3 2
Case IV When x > 1 …(vii) ⇒ | x | > 2 and | x | < 2
⇒ x + 1+ x + x −1≥ 6 ⇒ x ∈ (−2, − 2 ) ∪ ( 2, 2)
⇒ 3x ≥ 6 or x ≥ 2 …(viii)
Hence, (d) is the correct answer.
From Eqs. (vii) and (viii), x ≥ 2
Thus, from above four cases, Ex 5. Solution set of the inequality
x ≤ − 2 or x ≥ 2 1 1
⇒ x ∈ (− ∞ , − 2 ] ∪ [ 2, ∞ ) > is
2 − 1 1 − 2 x− 1
x
Aliter
4
As discussed above, solution exists only when all are (a) (1, ∞ ) (b) 0, log 2
positive or negative: 3
Thus, | x + 1| + | x | + | x − 1| ≥ 6
4
⇒ − (x + 1) − (x ) − (x − 1) ≥ 6 (c) ( −1, ∞ ) (d) 0, log 2 ∪ (1, ∞ )
or (x + 1) + x + (x − 1) ≥ 6 3 203
5 Sol. Put 2x = t, then t > 0. The given inequality becomes
1
>
2
t −1 2 − t
Ex 8. If roots of the equation
x 4 − 8x 3 + bx 2 + cx + 16 = 0
Objective Mathematics Vol. 1
= [ 2a − (b + c)]2 ≥ 0
5
(a) 5 (b) 10 α=
(c) −5 (d) Does not exist 2a
D≥0
D = (a − 3)2 − 4 a = a2 − 10a + 9 5
π x 2 ⋅ 2− (x − 3) + 4 + 2x −1 = x 2 ⋅ 2x +1 + 2− (x − 3) + 2
+ log | cos x| |sin x| = 2, when x ∈ 0, , is ⇒ x 2 ⋅ 2 7 − x + 2x − 1 = x 2 ⋅ 2 x + 1 + 2 5 − x
2
π π π π π ⇒ x 2 ⋅ 27 − x − 25 − x = x 2 ⋅ 2x + 1 − 2x − 1
(a) (b) (c) 0, (d) ,
4 3 4 4 2 ⇒ 25 − x (x 2 ⋅ 22 − 1) = 2x −1 (x 2 ⋅ 22 − 1)
1 ⇒ (25 − x − 2x −1 ) (4 x 2 − 1) = 0
Sol. Here, log|sin x | |cos x | + =2
1
log|sin x | |cos x | ⇒ x2 = and 5 − x = x − 1
1 4
⇒ y + = 2, where y = log|sin x | |cos x | ⇒ x = ± 1/ 2 and x = 3
y 1
∴Solution set is x = ± and x ≥ 3
⇒ y2 − 2 y + 1 = 0 2
⇒ y=1 Hence, (c) is the correct answer.
∴ log|sin x | |cos x | = 1
⇒ |cos x | = |sin x | Ex 51. For any real value of θ ≠ π , the value of the
⇒ |tan x | = 1 cos 2 θ − 1
π expression y = is
⇒ x= cos 2 θ + cos θ
4
Hence, (a) is the correct answer. (a) − 1≤ y ≤ 2 (b) y < 0 and y > 2
(c) − 1≤ y ≤ 1 (d) y ≥ 1
Ex 49. If a, b, c ∈ I and ax 2 + bx + c = 0 has irrational cos2 θ − 1
p Sol. Here, y =
root and λ ∈Q = , where f ( x ) = ax 2 + bx + c, cos2 θ + cos θ
q ⇒ ( y − 1)cos2 θ + y cos θ + 1 = 0
then | f ( λ )| 1
1 1 ⇒ cosθ = − 1 and cos θ =
(a) ≥ (b) < 2 1− y
q2 q ∴ −1<
1
<1
1− y 211
(c) Cannot be discussed (d) None of these
5 ⇒
⇒
1
1− y
2− y
+ 1 > 0 and
> 0 and
1
1− y
y
−1< 0
<0
Ex 55. For what values of K ∈ R the expression
2x 2 + K x y + 3 y 2 − 5 y − 2 can be expressed as
Objective Mathematics Vol. 1
1− y 1− y ( a1 x + b1 y + c1 ) ⋅ ( a 2 x + b2 y + c2 )?
⇒ y < 0 and y > 2 (a) −3, − 4 (b) 2, 3
Hence, (b) is the correct answer. (c) 3, 4 (d) 7, − 7
Ex 52. If the roots of the equation x 2 + ax + b = 0 are c Sol. As, ax 2 + 2hx y + by2 + 2g x + 2 f y + c can be
and d, then one of the roots of the equation expressed as product of two linear factors, if
x 2 + (2c + a ) x + (c 2 + ac + b 2 ) = 0 is abc + 2 f g h − af 2 − bg 2 − ch2 = 0
(a) c (b) d − c (c) 2d (d) 2c ⇒ 2x 2 + K x y + 3 y2 − 5 y − 2 can be expressed as
Sol. Here, f (x ) = x 2 + ax + b, then (a1 x + b1 y + c1 ) (a 2 x + b2 y + c2 ) , if
2
f (x + c) = (x + c)2 + a (x + c) + b 5 K 5
2(3) (−2) + 2 − (0) − 2 − − 3 (0)2
2 2 2
= x 2 + (2c + a) x + c2 + ac + b
2
which shows roots of f (x ) are transformed to (x − c), K
− (−2) = 0
i.e. roots of f (x + c) = 0 are c − c and d − c. 2
Thus, x 2 + (2c + a) x + c2 + ac + b2 = 0 has roots 0 ⇒ K 2 − 49 = 0 ⇒ K = 7, − 7
and (d − c). Hence, (d) is the correct answer.
Hence, (b) is the correct answer.
Ex 56. The number of triangles formed by the lines
Ex 53. Number of integers, which satisfy the represented by x 3 − x 2 − x − 2 = 0 and
(16)1/ x xy 2 + 2xy + 4x − 2 y 2 − 4 y − 8 = 0 is
inequality x+ 3 > 1, is equal to
(2 ) (a) 1 (b) 2
(a) infinite (b) 0 (c) 1 (d) 4 (c) 3 (d) None of these
(16)1 / x Sol. Here, x 3 − x 2 − x − 2 = 0
Sol. Here, x+3
>1
2 ⇒ (x − 2) (x 2 + x + 1) = 0 ⇒ x = 2 ...(i)
4/x 4
−x−3
2 and x y + 2x y + 4 x − 2 y − 4 y − 8 = 0
2 2
⇒ > 1 or 2x >1
2x + 3
4
⇒ y2 (x − 2) + 2 y (x − 2) + 4 (x − 2) = 0
−x−3 4
i.e. 2x > 20 ⇒ −x−3>0 ⇒ (x − 2) ( y2 + 2 y + 4 ) = 0
x
⇒ x=2 ...(ii)
(x 2 + 3x − 4 ) − (x + 4 ) (x − 1)
⇒− >0 or >0 Both the equation represent same line. So, number of
x x triangles is zero.
Using number line rule, Hence, (d) is the correct answer.
– + –
+
–4 0 1
Ex 57. If x 2 − (a + b + c) x + (ab + bc + ca ) = 0 has
imaginary roots, where a, b, c ∈ R + , then
⇒ x ∈ (− ∞ , − 4 ) ∪ (0, 1)
Hence, (a) is the correct answer. a , b and c
(a) can be sides of triangle
Ex 54. Number of non-negative integral solution of (b) cannot be side of triangle
equation y 4 + 6xy 2 − 8x = 0 is equal to (c) Nothing can be said
(a) 1 (b) 2 (c) 3 (d) infinite (d) None of the above
y4 Sol. Here, x 2 − (a + b + c) x + (ab + bc + ca) = 0 has
Sol. Here, x = but x is non-negative.
8 − 6 y2 imaginary roots.
⇒D < 0 or (a + b + c)2 − 4 (ab + bc + ca) < 0
y4
So, ≥0 ⇒ (a2 + b2 + c2 − 2ab − 2bc + 2ac) < 4 ac
8 − 6 y2
4 ⇒ (a − b + c)2 < 4 ac
⇒ 8 − 6 y2 > 0 or y2 <
3 ⇒ −2 ac < a − b + c
i.e. y = 0, 1 [as yis non-negative integers] ⇒ (a + c + 2 ac ) > b
For y = 0, we get x = 0
1 ⇒ ( a+ c )2 > b or a+ c> b
For y = 1, we get x = ∉ integer Similarly, b + c> a and a+ b> c
2
∴ Only one non-negative integral solution. ⇒ a , b and c can be sides of triangle.
212 Hence, (a) is the correct answer. Hence, (a) is the correct answer.
Ex 58. The solution set for
( 2 + 2 ) x + ( 2 − 2 ) x = 2 ⋅ 2 x / 4 is
Sol. As x 2 = 2 + 2 [ x ], where LHS is always positive.
Y 5
and 0 < β (1 − β ) ≤
4
1
1
0 < α (1 − α ) ≤ Sol. D1 = b2 − 4 ac < 0, D2 = b2 − 4 ac < 0, as the root is
non-real.
⇒ Both roots will be common.
5
49 + x 4 − 14 x 2 = 40 ⇒ x 4 − 14 x 2 + 9 = 0 ⇒ a=± 2
For polynomial equation with rational coefficients a = 2 is the only solution. Hence, Statement I is false.
irrational roots occurs in pairs. Statement II is true by definition.
Hence, (a) is the correct answer. Hence, (d) is the correct answer.
48
⇒ = c2 ⇒ c2 = 12
4 A O C X
x − 7x + 12 = 0 ⇒ x = 3, 4
2
∴ AB = BC =
4 2
= 4 units
Ex 86. Number of integral value of k for which k /2
2 lies between the roots of f ( x ) = 0, is
and OB = 4 2 − (2 2 )2 = 2 2 (a) 9 (b) 10 (c) 11 (d) 12
+ + D.Q | x 2 − x − 6 | = x + 2
1 – 3 ⇒ | (x − 3) (x + 2) | = x + 2
⇒ | x − 3 | |x + 2 | = x + 2
But f (1) = 4 + λ and f (3) = λ
For f (x ) = 0 to have exactly one root in (1, 3) (x − 3) (x + 2) = (x + 2), x<−2
f (1) and f (3) should have opposite signs ⇒− (x − 3) (x + 2) = (x + 2), −2 ≤ x < 3
∴ f (1) f (3) < 0 (x − 3) (x + 2) = x + 2, x>3
⇒ λ (λ + 4 ) < 0 ⇒ − 3 < λ + 1 < 0
∴ − 3 < λ + 1<1 x = 4, x<−2
⇒ [ λ + 1] = − 3, − 2, − 1, 0 ⇒ x = − 2, 2, −2 ≤ x < 3
x = 4, x>3
x − λx − 2
2
B.Q −3< <2
x2 + x + 1 Hence, x = − 2, 2, 4
⇒ − 3x − 3x − 3 < x − λx − 2 < 2x + 2x + 2
2 2 2 ∴ N =3
[Qx 2 + x + 1 > 0, ∀ x ∈ R] A → p, q, r, s; B → r, s; C → p; D → p
217
5 Ex 88. Match the statements of Column I with the
values of Column II.
A. Number of solutions is 3.
B. 2x − x − 1 = 0
Consider 2x = x + 1
[fig. (a)]
Objective Mathematics Vol. 1
Column I Column II
∴ There are two solutions.
A. Number of real solutions of| x + 1| = e x is p. 2
x = 0, 1 [both are non-negative] [fig. (b)]
B. The number of non-negative real roots of q. 3 C. p + q = α − 2
2 x − x − 1 = 0 is equal to ⇒ pq = − α − 1
C. If p and q are the roots of the quadratic r. 6 ∴ p2 + q2 = (α − 2)2 − 2 (− α − 1)
equation x 2 − (α − 2 ) x − α − 1 = 0, then
= α 2 − 4α + 4 + 2α + 2
minimum value of p2 + q 2 is equal to
= α 2 − 2α + 6 = (α − 1)2 + 5
D. If α and β are the roots of 2 x 2 + 7 x + c = 0 s. 5
7 ∴ Least value of p2 + q2 = 5
and|α 2 − β 2| = , then c is equal to
4 7 c
D. α + β = − , αβ =
2 2
Sol. Y Y y = x+1 7 7
y = |x+1| ∴ = |α 2 − β 2 | = |(α + β )| (α + β )2 − 4αβ =
4 2
y = 2x 49 7 7
y = ex − 2c ⇒ = 49 − 8c
X X 4 4 4
⇒ 49 − 8c = 1 ⇒ c = 6
Fig. (a) Fig. (b) A → q; B → p; C → s; D → r
Targ e t E x e rc is e s
4. The inequality < 3 is true, when x belongs to
x (a) (− ∞ , − 1/ 2) (b) (1/ 6, ∞ )
(a) [ 2 / 3, ∞ ) (b) (− ∞ , 2 / 3 ] (c) (−1/ 2, 1/ 6) (d) (− ∞ , − 1/ 2) ∪ (1/ 6, ∞ )
(c) (2 / 3, ∞ ) ∪ (− ∞ , 0) (d) None of these 3
16. Solution of 1 + > 2 is
x+4 x
5. < 2 is satisfied when x satisfies
x−3 (a) (0, 3 ] (b) [ − 1, 0)
(a) (−∞ , 3) ∪ (10, ∞ ) (b) (3, 10) (c) (− 1, 0) ∪ (0, 3) (d) None of these
(c) (−∞ , 3) ∪ [10, ∞ ) (d) None of these 17. Solution of | x 2 − 10 | ≤ 6 is
6. Solution of ( x − 1) 2 ( x + 4 ) < 0 is (a) (2, 4) (b) (− 4 , − 2)
(a) (− ∞ , 1) (b) (− ∞ , − 4 ) (c) (− 4 , − 2) ∪ (2, 4 ) (d) [ − 4 , − 2 ] ∪ [ 2, 4 ]
(c) (− 1, 4 ) (d) (1, 4) 1
18. Solution of x + > 2 is
7. Solution of ( 2x + 1) ( x − 3) ( x + 7) < 0 is x
(a) (− ∞ , − 7) ∪ (− 1/ 2, 3) (b) (− ∞ , − 7) ∪ (1/ 2, 3) (a) R − {0} (b) R − {− 1, 0, 1}
(c) (− ∞ , 7) ∪ (− 1/ 2, 3) (d) (− ∞ , − 7) ∪ (3, ∞ ) (c) R − {1} (d) R − {− 1, 1}
x+1 ( x + 1) 2
8. The set of values of x which satisfy the inequations 19. The solution set of + | x + 1| = is
x+2 x | x|
5x + 2 < 3x + 8 and < 4 is
x−1 (a) {x | x ≥ 0} (b) {x | x > 0} ∪ {− 1}
(a) (− ∞ , 1) (b) (2, 3) (c) {− 1, 1} (d) {x | x ≥ 1 or x ≤ − 1}
(c) (− ∞ , 3) (d) (− ∞ , 1) ∪ (2, 3) 20. The set of real values of x satisfying | x − 1 | ≤ 3 and
9. Solution of | 3x + 2 | < 1 is | x − 1 | ≥ 1is
(a) [ − 1, − 1/ 3 ] (b) {− 1/ 3, − 1} (a) [ 2, 4 ] (b) (− ∞ , 2 ] ∪ [ 4 , ∞ )
(c) (− 1, − 1/ 3) (d) None of these (c) [ − 2, 0 ] ∪ [ 2, 4 ] (d) None of these
24. Solution of | x − 1 | + | x − 2 | + | x − 3 | ≥ 6 is 35. Let f ( x ) = log 10 x 2 . The set of all values of x for
(a) [0, 4] (b) (− ∞ , − 2) ∪ [ 4 , ∞ ) which f ( x ) is real, is
(c) (− ∞ , 0 ] ∪ [ 4 , ∞ ) (d) None of these (a) [ − 1, 1] (b) [1, + ∞ )
(c) (− ∞ , − 1] (d) (− ∞ , − 1] ∪ [1, + ∞ )
25. If log 4 5 = a and log 5 6 = b, then log 3 2 is equal to
1 1 36. If x n > x n−1 > K > x 2 > x1 > 1, then the value of
(a) (b)
2a + 1 2b + 1 xKx1
log x1 log x2 log x3 ... log xn x nn− 1 is
1
(c) 2ab + 1 (d)
2ab − 1 (a) 0 (b) 1
(c) 2 (d) None of these
26. If log 5 a ⋅ log a x = 2, then x is equal to 2 2
37. 4 sin x
+ 4 cos x
is equal to
(a) 125 (b) a2
(c) 25 (d) None of these (a) ≤ 4 (b) ≥ 4
(c) ≤ 2 (d) ≥ 2
Ta rg e t E x e rc is e s
Targ e t E x e rc is e s
46. The minimum value of P = bcx + cay + abz , when 1
xyz = abc, is 55. If is a root of ax 2 + bx + 1 = 0, where a and b
4 − 3i
(a) 3abc (b) 6abc
are real, then
(c) abc (d) 4abc
(a) a = 25, b = − 8 (b) a = 25, b = 8
47. The greatest value of P = a2b3c4, when (c) a = 5, b = 4 (d) None of these
a + b + c = 18, is 56. If a ∈ R , b ∈ R, then the factors of the expression
(a) P = 4 4 ⋅ 64 ⋅ 84 (b) P = 4 2 ⋅ 63 ⋅ 84
a ( x 2 − y 2 ) − bxy are
(c) P = 32 ⋅ 63 ⋅ 84 (d) P = 4 2 ⋅ 62 ⋅ 82
(a) real and different (b) real and identical
48. If x1 , x 2 , ... , x n are any real numbers and n is any (c) complex (d) None of these
positive integer, then 57. The number of positive integral values of k for which
n n
2
n n
2
(16 x 2 + 12 x + 39) + k ( 9x 2 − 2 x + 11) is a perfect
(a) n ∑ xi2 < ∑ xi (b) n ∑ xi2 ≥ ∑ xi
square, is
i=1 i = 1 i=1 i = 1
2
(a) two (b) zero
n n (c) one (d) None of these
(c) ∑ xi2 ≥ n ∑ xi
(d) None of these
i=1 i = 1 58. For the equation 3x 2 + px + 3 = 0, p > 0, if one of the
roots is the square of the other, then p is equal to
49. If x, y and z are positive real numbers such that 1
x + y + z = 2, then (a) (b) 1
3
(a) (2 − x ) (2 − y) (2 − z) ≥ 8xyz 2
(b) x −1 + y−1 + z−1 ≥ 1/ 2 (c) 3 (d)
3
(c) (2 − x ) (2 − y) (2 − z) < 8xyz
(d) None of the above 59. Let α and β be the roots of the quadratic equation
x 2 + px + p 3 = 0 ( p ≠ 0). If (α , β ) is a point on the
50. For non-negative real numbers such that
a1 + a 2 + K + a n = p and q = ∑ a i a j , then parabola y 2 = x, then the roots of the quadratic
i< j equation are
1 1 2 (a) 4 , − 2
(a) q ≤ p2 (b) q > p
2 4 (b) − 4 , − 2
p p2 (c) 4, 2
(c) q < (d) q > (d) − 4 , 2 221
2 2
5 60. If a, b and c are positive real numbers, then the
number of real roots of the equation
ax 2 + b | x | + c = 0 is
69. If the roots of the equation ( a 2 + b 2 ) y 2
− 2 ( ac + bd ) y + c 2 + d 2 = 0 are equal, then
Objective Mathematics Vol. 1
(a) ab = dc (b) ac = bd
(a) 2 (b) 4
a c
(c) 0 (d) None of these (c) ad + bc = 0 (d) =
b d
61. If α and β are the roots of ax 2 + bx + c = 0 and
70. If p, q and r are positive and are in AP, then the roots
α + k , β + k are the roots of px 2 + qx + r = 0, then
of the quadratic equation px 2 + qx + r = 0 are real for
b 2 − 4ac
is equal to r p
q 2 − 4 pr (a) −7 ≥4 3 (b) −7 <4 3
p r
2
p
2
a (c) all p and r (d) no p and r
(a) (b) 1 (c) (d) 0
a p
2x + 1 x 2 + 7 2x + 17
71. The roots of the equation + 2 =
62. If the roots of the equation ax 2 + bx + c = 0 are in the 9 x −7 9
ratio m : n, then are
(a) mnb2 = ac (m + n)2 (b) b2 (m + n) = mn (a) 3, − 3 (b) 5, − 5
(c) m + n = b mn 2
(d) c (mn) = ab (m + n)
2 2 (c) 3 , − 3 (d) 5 , − 5
Targ e t E x e rc is e s
1 2
(a) AP (b) GP (c) product of roots = ( p + q2 )
2
(c) HP (d) None of these
(d) None of the above
83. If sin θ and cos θ are the roots of the equation x+1 ( x + 1) 2
ax 2 + bx + c, then 93. The solution set of + | x + 1| = is
x |x |
(a) (a − c)2 = b2 − c2 (b) (a − c)2 = b2 + c2
(a) {x | x ≥ 0} (b) {x | x > 0} ∪ {− 1}
(c) (a + c)2 = b2 − c2 (d) (a + c)2 = b2 + c2 (c) {− 1, 1} (d) {x | x ≥ 1 or x ≤ − 1}
84. A car travels 25 km an hour faster than a bus for a 94. { x ∈ R : | x − 2 | = x 2 } is equal to
journey of 500 km. If the bus takes 10 h more than (a) [ − 1, 2 ] (b) [1, 2 ]
the car, then the speeds of the bus and the car are (c) [ − 1, − 2 ] (d) {− 2, 1}
(a) 25 km/h, 40 km/h (b) 25 km/h, 50 km/h
(c) 25 km/ h, 60 km/h (d) None of these 95. Number of solutions of an equation
| x |2 − 3 | x | + 2 = 0 will be
85. If ( ax 2 + bx + c ) y + a ′x 2 + b ′x + c ′ = 0, then the
(a) 4 (b) 1 (c) 3 (d) 2
condition that x may be rational function of y, is
(a) (ac′ − a ′ c)2 = (ab′ − a ′ b) (bc′ − b′ c) 96. In the equation 4 x + 2 = 2x + 3 + 48 , the value of x will
(b) (ab′ − a ′ b)2 = (ac′ − a ′ c) (bc′ − b′ c) be
3
(c) (bc′ − b′ c)2 = (ab′ − a ′ b) (ac′ − a ′ c) (a) − (b) − 2
2
(d) None of the above
(c) − 3 (d) 1
86. If a ( b − c ) x + b ( c − a ) xy + c ( a − b ) y
2 2
is a
97. The real values of x which satisfy the equation
perfect square, then a, b and c are in 2
−3 2
−3
(5 + 2 6 )x + (5 − 2 6 )x = 10 are
(a) AP
(b) GP (a) ± 2 (b) ± 2
(c) HP (c) ± 2, ± 2 (d) 2, 2
(d) None of the above
98. The equation 125x + 45x = 2⋅ ( 27) x has
87. If α and β are the roots of ax 2 + c = bx, then the
(a) no solution
equation ( a + cy ) 2 = b 2 y in y has the roots (b) one solution
(a) α −1 , β −1 (b) α 2 , β 2 (c) two solutions
−1 −1
(c) α β , α β (d) α , β −2 −2 (d) more than two solutions 223
5 99. If α and β are the roots
x − px + q = 0 and α > 0, β > 0, then the value of
2
of the equation 109. The value of x
2 + ( 2 + 1) = ( 5 + 2 2 ) , is
x/ 2 x x/ 2
for which
Objective Mathematics Vol. 1
x 2 − 2a | x − a | − 3a 2 = 0 are (a) − 1
(b) 0
(a) (1 − 2 ) a, ( 6 − 1) a (c) 1
(b) (− 1 + 6 ) a, (1 + 2) a (d) None of the above
(c) (1 + 2 ) a, 0 2
+ 7 x +12)
118. The system y (x = 1 and x + y = 6, y > 0 has
(d) − (1 ± 6 ) a, (1 ± 2) a
(a) no solution (b) one solution
108. For a ≥ 0, the roots of the equation (c) two solutions (d) more than two solutions
x 2 − 2a | x − a | − 3a 2 = 0 are given by 119. The curve y = ( λ + 1) x 2 + 2 intersects the curve
(a) − a ( 6 + 1) (b) a ( 6 + 1) y = λx + 3 in exactly one point, if λ equals
224 (c) a (1 + 2 ), a (− 1 − 6 ) (d) a (1 + 2) (a) {− 2, 2} (b) {1} (c) {− 2} (d) {2}
120. If the expression x 2 + 2 ( a + b + c ) x
+ 3 ( bc + ca + ab ) is a perfect square, then
(a) a = b = c (b) a = ± b = ± c
130. If α and β are the roots of the equation
x 2 + px − 1/ ( 2 p 2 ) = 0, where p ∈ R. Then, the 5
Targ e t E x e rc is e s
125. The sum of values of x satisfying the equation x + y = 9, z + t = 4 and xt − yz = 6. Then, the
2 2 2 2
2 2
−3 −3
( 31 + 8 15 ) x + 1 = ( 32 + 8 15 ) x is greatest value of P = xz is
(a) 3 (b) 0 (a) 2 (b) 3 (c) 4 (d) 6
(c) 2 (d) None of these
135. If x + ax − 3x − ( a + 2) = 0 has real and distinct
2
126. If α and β are the roots of the equation
roots, then minimum value of ( a 2 + 1) / ( a 2 + 2) is
ax 2 + bx + c = 0, then the value of
(a) 1 (b) 0
( aα 2 + c ) / ( aα + b ) + ( aβ 2 + c ) /( aβ + b ) is 1 1
(c) (d)
b (b2 − 2ac) b2 − 4 ac 2 4
(a) (b)
4a 2a 136. The value of the expression x 4 − 8x 3 + 18x 2 − 8x + 2,
b (b2 − 2ac)
(c) (d) None of these when x = 2 + 3, is
a2c
(a) 2 (b) 1 (c) 0 (d) 3
127. If α and β are the roots of the equation x 2 + px + q = 0 n n
137. x 3 + y 3 is divisible by x + y, if
and α 4 , β 4 are the roots of x 2 − rx + q = 0, then the
(a) n is any integer ≥ 0
roots of x 2 − 4qx + 2q 2 − r = 0 are always
(b) n is an odd positive integer
(a) both non-real (b) both positive (c) n is an even positive integer
(c) both negative (d) opposite in sign (d) n is a rational number
128. Suppose A , B and C are defined as A = a 2 b + ab 2 138. If z 0 = α + iβ, i = −1, then the roots of the cubic
− a 2 c − ac 2 , B = b 2 c + bc 2 − a 2 b − ab 2 and C = a 2 c equation x 3 − 2 (1 + α ) x 2 + ( 4α + α 2 + β 2 ) x
+ ac 2 − b 2 c − bc 2 , where a > b > c > 0 and the − 2 (α + β ) = 0 are
2 2
(a) 2, z0 , z0 (b) 1, z0 , − z0
equation Ax 2 + Bx + C = 0 has equal roots, then (c) 2, z0 , − z0 (d) 2, − z0 , z0
a, b and c are in
(a) AP (b) GP (c) HP (d) AGP 139. If α , β and γ are the roots of x 3 + 64 = 0, then the
2 2
129. If α and β are the roots of ax 2 + c = bx, then the α α
equation whose roots are and , is
β γ
equation ( a + cy ) 2 = b 2 y in y has the roots
(a) αβ −1 , α −1β (b) α −2 , β −2 (a) x 2 − 4 x + 16 = 0 (b) x 2 + x + 1 = 0
(b) 160
(c) x + 2 (d) None of these (c) 0 (d) None of these
141. Let α + iβ , α , β ∈ R be a root of the equation 150. If p ∈ [ − 1, 1] , then the value of x for which
x 3 + qx + r = 0, q, r ∈ R. The cubic equation is 4x 3 − 3x − p = 0 has a root lies in
independent of α and β whose one root is 2α, is 1 1
(a) [0, 1] (b) ,1 (c) 0, (d) [ − 1, 1]
(a) x 3 + qx − r = 0 (b) x 3 + qx + 2r = 0 2 2
(c) x 3 + qx + r = 0 (d) x 3 − qx + r = 0
151. If α , β , γ and σ are the roots of the equation
142. If α , β are the roots of x + px + q = 0 and 2
x 4 + 4x 3 − 6x 2 + 7x − 9 = 0, then the value of
α β (1 + α 2 ) (1 + β 2 ) (1 + γ 2 ) (1 + σ 2 ) is
x 2n + p n x n + q n = 0 and , are the roots of
β α (a) 6 (b) 11
x n + 1 + ( x + 1) n = 0, then n must be (c) 13 (d) 5
(a) even integer (b) odd integer 152. If tan θ1 , tan θ 2 and tan θ 3 are the real roots of the
(c) rational but non-integer (d) None of these
x 3 − ( a + 1) x 2 + ( b − a ) x − b = 0, where
143. The quadratic equation whose roots are cubes of the θ1 + θ 2 + θ 3∈ ( 0, π ), then θ1 + θ 2 + θ 3 is equal to
roots of x 2 + bx + c = 0, is (a) π/2 (b) π/4 (c) 3π/4 (d) π
(a) x 2 + b (b2 − 3c) x − c3 = 0
153. If α , β and γ are the roots of x − x − 1 = 0, then
3 2
(b) x 2 + b (b2 − 3c) x + c3 = 0
(1 + α ) / (1 − α ) + (1 + β ) / (1 − β ) + (1 + γ ) / (1 − γ ) is
(c) x 2 − b (b2 − 3c) x + c3 = 0 equal to
Ta rg e t E x e rc is e s
(c) cax + bx − 1 = 0
2
(d) None of these 155. If the equations ax 2 + bx + c = 0 and x 2 + x + 1 = 0
have a common root, then
145. If x = 2 + 21/ 3 + 22/ 3 , then the value of x 3 − 6x 2 + 6x
(a) a + b + c = 0 (b) a = b = c
is (c) a = b or b = c or c = a (d) a − b + c = 0
(a) 3 (b) 2
(c) 1 (d) None of these 156. If a, b, c ∈ R and the equations ax 2 + bx + c = 0 and
x 3 + 3 x 2 + 3 x + 2 = 0 have two roots in common,
146. If roots of the equation x n − 1 = 0 are
then
1, a1 , a 2 , a 3 , ... , a n−1 , then the value of (1 − a1 )
(a) a = b ≠ c (b) a = b = − c
(1 − a 2 ) (1 − a 3 ) K (1 − a n−1 ) will be
2 n
(c) a = b = c (d) None of these
(a) n (b) n (c) n (d) 0
157. If the equations a x2 + b x + c = 0 and
147. If α and β are the roots of the quadratic
c x + b x + a = 0, a ≠ c have a negative common
2
x 2 − 2cos θx + 1 = 0 , then equation whose roots are
root, then the value of a − b + c is
α n , β n , is (a) 0 (b) 2
(a) x 2 − (2 cos nθ ) x + 1 = 0 (c) 1 (d) None of these
(b) 2x 2 − (2 cos nθ ) x − 1 = 0 158. If the equations x 2 + i x + a = 0 and x 2 − 2 x + ia = 0,
(c) x 2 + (2 cos nθ ) x + 1 = 0
a ≠ 0 have a common root, then
(d) x 2 + (2 cos nθ ) x − 1 = 0 (a) a is real
1
148. If 1, ω , ω , ... , ω
2 n−1
are the nth roots of unity, then (b) a = + i
2
(1 + ω ) (1 + ω ) ... (1 + ω n−1 ) equals
2
1
(c) a = − i
(a) 0, n is even (b) 1, n is even 2
226 (c) n, n is even (d) n2 , n is even (d) the other root is also common
159. If the equations x 2 + 2x + 3λ = 0 and 2x 2 + 3x + 5λ = 0
have a non-zero common root, then λ is equal to
(b) − 1
169. The inequality | 2x − 3 | < 1 is valid when x lies in the
interval 5
160. If the equations ax 2 + bx + c = 0 and x 2 + 2x + 3 = 0 170. The set of real values of x satisfying | x − 1 | − 1 ≤ 1is
have a common root, then a : b : c is equal to (a) [ − 1, 3 ] (b) [ 0, 2 ]
(a) 2 : 4 : 5 (b) 1 : 3 : 4 (c) [ − 1, 1] (d) None of these
(c) 1 : 2 : 3 (d) None of these
171. If 5x + ( 2 3 ) 2x ≥ 13x , then the solution set for x is
161. If the equations x − px + q = 0 and x − ax + b = 0
2 2
(a) [ 2, + ∞ ] (b) (2, + ∞ )
have a common root and the other root of the second (c) (4 , + ∞ ) (d) None of these
equation is the reciprocal of the other root of the first,
then ( q − b ) 2 is equal to 172. If log 10 x + log 10 y ≥ 2, then the smallest possible
value of x + y is
(a) aq ( p − b)2 (b) bq ( p − a)2
(a) 10 (b) 30
(c) bq ( p − b)2 (d) None of these (c) 20 (d) None of these
162. Let f ( x ) = 1 + 2x + 3x 2 + K + ( n + 1) x n , where n is x2 − x + 1
173. If x ∈ R, then takes values in the interval
even. Then, the number of real roots of the equation x2 + x + 1
f ( x ) = 0 is
1 1
(a) , 3 (b) ,3
3
(a) 0 (b) 1 3
(c) n (d) None of these
(c) (0, 3) (d) None of these
163. The value of x 2 + 2bx + c is positive, if
174. If y = f ( x ) = tan x cot 3x, then
(b) b2 − 4 ac < 0
Targ e t E x e rc is e s
(a) b2 − 4 ac > 0
1
(c) c2 < b (d) b2 < c (a) < y<1
3
1
164. If ax 2 + bx + 10 = 0 does not have two distinct real (b) − ∞ < y < or 3 < y < ∞
3
roots, then the least value of 5a + b is 1
(c) < y<∞
(a) − 3 (b) − 2 3
(c) 3 (d) None of these (d) − ∞ < y < 1
165. If − a 2 x 2 + 2x + 3a 2 > 0, ∀ x ∈ ( 2, 4 ), then the values 1 1
x x
175. The real values of x for which 372 > 1, are
of a lie in the interval 3 3
1 1 2 2 (a) x ∈[ 0, 64 ] (b) x ∈ (0, 64 )
(a) − , (b) − ,
3 3 7 7 (c) x ∈[ 0, 64 ) (d) None of these
4 4 2 2 2 2
(c) − , (d) − , 176. If α and β are the roots of 4x 2 − 16x + λ = 0, λ ∈ R
7 7 13 13
such that 1< α < 2 and 2 < β < 3, then the number of
166. The values of a which make the expression integral solutions of λ is
x 2 − ax + 1 − 2a 2 always positive for real values of x, (a) 5 (b) 6
are (c) 2 (d) 3
2 2 2 2 177. The least integral value of k for which
(a) − <a< (b) − ≤a≤
3 3 3 3 ( k − 2) x 2 + 8x + k + 4 > 0, ∀ x ∈ R, is
2 2
(c) − < a < 1 (d) 0 < a < (a) 5 (b) 4
3 3
(c) 3 (d) None of these
167. If x is integer satisfying x 2 − 6x + 5 ≤ 0 and
178. The values of a for which exactly one root of the
x 2 − 2x > 0, then the number of possible values of x is equation e a x 2 − e 2a x + e a − 1 = 0 lies between 1 and
(a) 3 (b) 4 2 are given by
(c) 2 (d) infinite
(5 − 17 ) 5 + 17
(a) log < a < log
6x 2 − 5x − 3 4 4
168. If < 4, then the least and highest values
x 2 − 2x + 6 (b) 0 < a < 100
5 10
of 4x 2 are (c) log < a < log
4 3
(a) 0, 81 (b) 0, 36 (c) − 10, 3 (d) 10, − 3 (d) None of the above 227
5 179. If the roots of the equation x 2 + 2ax + b = 0 are real
and distinct and they differ by atmost 2 m , then b lies
188. The values of a for which the equation
2x 2 − 2 ( 2a + 1) x + a ( a − 1) = 0 has roots α and β
satisfying the condition α < a < β, are
Objective Mathematics Vol. 1
in the interval
(a) (a2 , a2 + m2 ) (b) (a2 − m2 , a2 ) (a) (− 3, 0) (b) (0, ∞ )
(c) [ a − m , a ]
2 2 2
(d) None of these (c) (− ∞ , − 3) ∪ (0, ∞ ) (d) None of these
181.The interval of a for which the equation 190. If 2 a + 3b + 6 c = 0, a, b, c ∈ R, then the quadratic
tan 2 x − ( a − 4 ) tan x + 4 − 2a = 0 has atleast one equation a x 2 + b x + c = 0 has
(a) atleast one root in [0, 1] (b) atleast one root in [2, 3]
solution, ∀ x ∈ [ 0, π / 4], is
(c) atleast one root in (3, 4] (d) None of these
(a) a ∈ (2, 3)
(b) a ∈[ 2, 3 ] 191. Let f ( x ) = ax 2 + bx + c and b, c ∈ R , a ≠ 0, satisfying
(c) a ∈ (1, 4 ) f (1) + f ( 2) = 0. Then, the quadratic equation f ( x ) = 0
(d) a ∈[1, 4 ] has
182. If the expression [ mx − 1 + (1/ x )] is non-negative for (a) no real root (b) 1 and 2 as real roots
all positive real x, then the minimum value of m must (c) two equal roots (d) two distinct real roots
be 192. If x + λy − 2 and x − µy + 1are factors of the expression
(a) − 1/ 2 (b) 0 (c) 1/4 (d) 1/2
6x 2 − xy − y 2 − 6x + 8 y − 12, then
Ta rg e t E x e rc is e s
Targ e t E x e rc is e s
(b) | α | = 1
208. If the roots of the equation x 3 + px 2 + qx – 1 = 0
(c) | β | < 1
(d) None of the above
form an increasing GP, where p and q are real, then
(a) p + q = 0
203. If tan α and tan β are roots of the equation (b) p ∈ (− 3, ∞ )
x 2 + px + q = 0 with p ≠ 0, then (c) one of the roots is unity
(d) one root is smaller than 1 and one root is greater than 1
(a) sin 2 (α + β ) + p sin (α + β )cos (α + β )
+ q cos2 (α + β ) = q 209. Given that α , γ are roots of the equation
p Ax − 4x + 1 = 0 and β , δ are the roots of the equation
2
(b) tan (α + β) =
q−1 of Bx 2 − 6x + 1 = 0 such that α , β , γ and δ are in HP,
(c) cos (α + β ) = − p then
(d) sin (α + β ) = 1 − q
(a) A = 3 (b) A = 4
204. If ( ax + c ) y + ( a ′x + c ′ ) = 0 and x is a rational
2 2 (c) B = 2 (d) B = 8
function of y, then 210. If (1 + k ) tan 2 x − 4 tan x − 1 + k = 0 has real roots
(b) = ′
a c a a
(a) = tan x1 and tan x 2 , then
a′ c′ c c′
(c) ac′ − a′ c = 0 (d) None of these (a) k 2 ≤ 5
2 2
(b) tan (x1 + x2 ) = 2
x x (c) for k = 2, x1 = π / 4
205. The equation + = a ( a − 1) has (d) for k = 1, x1 = 0
x + 1 x − 1
(a) four real roots, if a > 2 211. If the equation x 2 + px + q = 0 has roots u and v,
(b) two real roots, if 1 < a < 2 where p and q are non-zero constants, then
(c) no real root, if a < − 1 (a) qx 2 + px + 1 = 0 has roots 1/u and 1/v
(d) four real roots, if a < − 1 (b) (x + p) (x − q) = 0 has roots u + v and uv
206. If α and β are the roots of the quadratic equation (c) x 2 + p2x + q2 = 0 has roots u2 and v 2
ax 2 + bx + c = 0, then which of the following u
(d) x 2 + px + p = 0 has roots and
v
expression will be the symmetric function of roots v u
α (x − a ) (x − b )
(a) log (b) α 2 β 5 + β 2α 5 212. For real x, the function will assume all
β x−c
real values provided
229
(a) a > b > c
5 (b) b ≤ c ≤ a
(c) a > c > b
(d) a ≤ c ≤ b
(d) µ = 0
(a) | x | ≤ 5 (b) | x | ≥ 5
213. Let P ( x ) = x 2 + bx + c, where b and c are integers. If
P ( x ) is a factor of both x 4 + 6x 2 + 25 and (c) y ≤ 2
2
(d) y2 ≤ 4
3x 4 + 4x 2 + 28x + 5, then 216. If cos x − y 2 − y − x 2 − 1 ≥ 0, then
(a) P (x ) = 0 has imaginary roots
(a) y ≥ 1 (b) x ∈ R (c) y = 1 (d) x = 0
(b) P (x ) = 0 has roots of opposite sign
(c) P(1) = 4 217. If the following figure shows the graph of
(d) P(1) = 6 f ( x ) = ax 2 + bx + c, then
214. If the equations 4x 2 − x − 1 = 0 and Y
3x 2 + ( λ + µ ) x + λ − µ = 0 have a common root,
then the rational values of λ and µ are
X
−3
(a) λ =
4
(b) λ = 0 (a) ac < 0 (b) bc > 0
3
(c) µ = (c) ab > 0 (d) abc < 0
4
has four choices (a), (b), (c) and (d) out of which only a b c
one is correct. The choices are
, and are in AP, then a1 , b1 and c1 are in
a1 b1 c1
(a) Statement I is true, Statement II is true; Statement II is
a correct explanation for Statement I
GP.
(b) Statement I is true, Statement II is true; Statement II is 219. Statement I If roots of the equation x 2 − bx + c = 0
not a correct explanation for Statement I
are two consecutive integers, then b 2 − 4c = 1.
(c) Statement I is true, Statement II is false
(d) Statement I is false, Statement II is true
Statement II If a, b and c are odd integers, then the
a b c
218. Statement I If , and are in AP, then roots of the equation 4abc x 2 + ( b 2 − 4ac ) x − b = 0
a1 b1 c1
are real and distinct.
a1 , b1 and c1 are in GP.
Passage III (Q. Nos. 226-228) Let f ( x ) = x 2 + b1x + c1 229. If a = 2, then the value of b − c is
and g( x ) = x + b2 x + c2 . If real roots of f ( x ) = 0 are α, β
2 (a) − 1 (b) 1 (c) − 2 (d) 2
and real roots of g( x ) = 0 are α + δ, β + δ and least value of 230. If b < 0, then how many different values of a we may
1 7
f ( x ) is − . Then, least value of g( x ) occurs at x = . have?
4 2
(a) 3 (b) 2 (c) 1 (d) 0
226. The least value of g ( x ) is
1
231. If b + c = 1and a ≠ − 2 , then for real values of a, c ∈
(a) − 1 (b) −
2 1
(a) − ∞ , (b) (− ∞ , 3)
1 1 4
(c) − (d) −
4 3 (c) (− ∞ , 1) (d) (− ∞ , 4 )
Targ e t E x e rc is e s
232. Match the statements of Column I with the values of 233. Match the statements of Column I with the values of
Column II. Column II.
Column I Column II Column I Column II
A. The real values of a for which the p. a≥ 6
A. If the equation x + 2 ( k + 1) x
2
p. 2< k< 4
quadratic equation
2 x 2 − ( a 3 + 8a − 1) x + a 2 − 4a = 0 + ( 9k − 5) = 0 has only negative roots, then
possesses roots of opposite signs are B. If the inequality x 2 − 2 ( 4k − 1) x q. k≥ 6
given by
+ 15k − 2 k − 7 > 0 is valid for all x, then
2
B. If the equation x 2 + 2 ( a + 1) x q. 0≤ a≤ 1
+ 9a − 5 = 0 has only negative roots, C. If x 2 − 2 ( k − 1) x + (2 k + 1) = 0 has both r. k< −1 or
then k> 0
roots positive, then
C. The value of a for which the inequality r. 0< a< 4
x 2 − 2 ( 4a − 1) x + 15a 2 − 2 a − 7 > 0 D. If 2 x 2 − 2 (2 k + 1) x + k ( k + 1) = 0 has one s. k≥ 4
is valid for all x ∈ R, is root less than k and other root greater than k,
then
x2 + 2 x + a s. 2 < a< 4
D. If x ∈ R, then can take all
x 2 + 4 x + 3a E. The graph of the curve x 2 = 3 x − y − 2 is t. 1
real values, if strictly below the line y equal to 4
231
Entrances Gallery
JEE Advanced/IIT JEE
1. Let a ∈ R and let f : R → R be given by 7. Let ( x 0 , y 0 ) be solution of the following equations
f ( x ) = x 5 − 5x + a, then [2014] (2x )ln 2 = (3 y)ln 3 and 3ln x = 2ln y.
(a) f (x ) has three real roots, if a > 4 Then, x 0 is equal to [2011]
(b) f (x ) has only one real root, if a > 4 1 1
(c) f (x ) has three real roots, if a < − 4 (a) (b)
6 3
(d) f (x ) has three real roots, if − 4 < a < 4 1
(c) (d) 6
2. The quadratic equation p( x ) = 0 with real 2
coefficients has purely imaginary roots. Then, the 8. Let α and β be the roots of x 2 − 6 x − 2 = 0 with
equation p( p( x )) = 0 has [2014]
α > β. If a n = α n − β n for n > 1, then the value of
(a) only purely imaginary roots
(b) all real roots
a10 − 2a 8
is [2011]
(c) two real and two purely imaginary roots 2a 9
(d) neither real nor purely imaginary roots (a) 1 (b) 2 (c) 3 (d) 4
3. The number of points in (− ∞, ∞), for which 9. A value of b for which the equations
x − x sin x − cos x = 0, is
2
[2013] x 2 + bx − 1 = 0
JEE Main/AIEEE
12. Let α and β be the roots of equation x 2 − 6x − 2 = 0. 13. If a ∈ R and the equation
− 3( x − [ x]) 2 + 2( x − [ x]) + a 2 = 0 (where, [x]
If a n = α − β , for n ≥ 1, then the value of
n n
denotes the greatest integer < x) has no integral
a10 − 2a 8
is equal to [2015] solution, then all possible values of a lie in the
2a 9 interval [2014]
(a) 6 (b) −6 (a) (− 1,0) ∪ (0, 1) (b) (1, 2)
232 (c) 3 (d) −3 (c) (− 2, − 1) (d) (− ∞ , − 2) ∪ (2, ∞ )
14. If the equations x 2 + 2x + 3 = 0 and ax 2 + bx + c = 0,
a, b, c ∈ R, have a common root, then a : b : c is [2013]
24. The value of a for which the sum of the squares of
the roots of the equation x 2 − ( a − 2) x − a − 1 = 0
assume the least value, is [2005]
5
Targ e t E x e rc is e s
[2010]
(d) is greater than α
(a) − 2 (b) − 1
(c) 1 (d) 2
28. If (1 − p ) is a root of quadratic equation
x 2 + px + (1 − p ) = 0, then its roots are [2004]
19. If the roots of the equation bx 2 + cx + a = 0 are
(a) 0, 1 (b) − 1, 1 (c) 0, − 1 (d) − 1, 2
imaginary, then for all real values of x, the
expression 3b 2 x 2 + 6bcx + 2c 2 is [2009] 29. If one root of the equation x 2 + px + 12 = 0 is 4,
(a) greater than 4ab (b) less than 4ab while the equation x 2 + px + q = 0 has equal roots,
(c) greater than − 4ab (d) less than − 4ab then the value of q is [2004]
49
20. The quadratic equations (a) (b) 12
4
x 2 − 6x + a = 0 and x 2 − cx + 6 = 0 (c) 3 (d) 4
have one root in common. The other roots of the
first and second equations are integers in the ratio 4 30. Let two numbers have arithmetic mean 9 and
: 3. Then, the common root is [2008] geometric mean 4. Then, these numbers are the
(a) 2 (b) 1 (c) 4 (d) 3 roots of the quadratic equation [2004]
(a) x 2 + 18x + 16 = 0 (b) x 2 − 18x + 16 = 0
21. If the difference between the roots of the equation
(c) x + 18x − 16 = 0
2
(d) x 2 − 18x − 16 = 0
x 2 + ax + 1 = 0 is less than 5, then the set of
possible values of a is [2007] 31. Let z1 and z 2 be two roots of the equation
(a) (− 3, 3) (b) (− 3, ∞) z 2 + az + b = 0, z being complex. Further, assume
(c) (3, ∞ ) (d) (− ∞ , − 3)
that the origin, z1 and z 2 form an equilateral
22. If the roots of the quadratic equation x 2 + px + q = 0 triangle. Then, [2003]
are tan 30° and tan 15° respectively, then the value (a) a2 = b (b) a2 = 2b
of 2 + q − p is [2006] (c) a2 = 3b (d) a2 = 4 b
(a) 3 (b) 0 (c) 1 (d) 2
32. If the sum of the roots of the quadratic equation
23. All the values of m for which both roots of the ax 2 + bx + c = 0 is equal to the sum of the squares of
equation x 2 − 2mx + m2 − 1 = 0 are greater than − 2
a b c
but less than 4 lie in the interval [2006] their reciprocals, then , and are in [2003]
c a b
(a) m > 3 (b) − 1 < m < 3
(c) 1 < m < 4 (d) − 2 < m < 0 (a) AP (b) GP (c) HP (d) AGP 233
5 33. The number of the real solutions of the equation
x 2 − 3| x| + 2 = 0 is [2003]
35. If α ≠ β and α 2 = 5α − 3, β 2 = 5β − 3, then the
equation having α /β and β / α as its roots, is [2002]
Objective Mathematics Vol. 1
(α − β )2 (b) b2 − c2 = 2ab
(a)
4 (c) b2 − a2 = 2ac
(b) (α + β )2 − αβ (d) b2 + c2 = 2ab
(c) (α + β )2 + αβ
(α − β )2 49. The value of x such that 32x − 2( 3x + 2 ) + 81 = 0 is
(d) + αβ [Kerala CEE 2014]
2
(a) 1 (b) 2 (c) 3
(α + β )2
(e) + αβ (d) 4 (e) 5
234 2
50. The equation whose roots are the squares of the
roots of the equation 2x 2 + 3x + 1 = 0, is
[Kerala CEE 2014]
59. The number of solutions of the inequation
| x − 2| + | x + 2| < 4 is
(a) 1 (b) 2
[Kerala CEE 2014]
(c) 4
5
(b) − p(3q − p2 ) and ( p2 − q) ( p2 + 3q) 63. Let a, b and c be real numbers, a ≠ 0. If α is a root of
(c) pq − 4 and p − q
4 4 a 2 x 2 + bx + c = 0, β is a root of a 2 x 2 − bx − c = 0 and
0 < α < β. Then, the equation a 2 x 2 + 2bx + 2c = 0 has
(d) 3 pq − p3 and ( p2 − q) ( p2 − 3q)
a root γ that always satisfies [UP SEE 2013]
53. The number of solution(s) of the equation (a) γ = α (b) α < β < γ
x + 1 − x − 1 = 4x − 1 is α+β
[WB JEE 2014] (c) α < γ < β (d) γ =
2
Targ e t E x e rc is e s
(a) 2 (b) 0 (c) 3 (d) 1
64. If the arithmetic mean of the roots of a quadratic
54. If 9 x = 12 + 147, then the value of x is equation is 8 and the geometric mean is 5, then the
[RPET 2014] equation is [BITSAT 2013]
(a) −2 (b) 2 (c) 3 (d) −3 (a) x 2 − 16x − 25 = 0 (b) x 2 + 16x − 25 = 0
(c) x − 16x + 25 = 0
2
(d) x 2 − 8x + 5 = 0
55. Solve the equation x 2 − 3x + 1 = 0. [J&K CET 2014]
(a) x = (− 3 ± 2i ) / 2 (b) x = (− 3 ± i ) / 2 65. If the roots of the equation ax 2 + bx + c = 0 are of
(c) x = (− 3 ± i ) (d) x = ( 3 ± i ) / 2 k +1 k+2
the form and , then ( a + b + c ) 2 is equal
k k +1
2π 2π
56. If a = cos + i sin , then the quadratic equation to [Manipal 2013]
7 7
whose roots are α = a + a 2 + a 4 and (a) b2 − 4 ac (b) b2 − 2ac
(c) 2b2 − ac (d) Σa2
β = a 3 + a 5 + a 6 , is [Manipal 2014]
(a) x 2 − x + 2 = 0 (b) x 2 + 2x + 2 = 0 66. If the equations 2ax 2 − 3bx + 4c = 0 and
(c) x 2 + x + 2 = 0 (d) x 2 + x − 2 = 0 3x 2 − 4x + 5 = 0 have a common root, then
( a + b ) / ( b + c ) is equal to ( a, b, c ∈ R )
57. Let p and q be real numbers. If α is the root of
[Kerala CEE 2013]
x 2 + 3 p 2 x + 5q 2 = 0, β is the root of (a) 1/2 (b) 3/35 (c) 34/31
x 2 + 9 p 2 x + 15q 2 = 0 and 0 < α < β, then the (d) 29/23 (e) None of these
equation x 2 + 6 p 2 x + 10q 2 = 0 has a root γ that 67. If log 2 ( 9x −1 + 7) − log 2 ( 3x −1 + 1) = 2 , then the
always satisfies [WB JEE 2014] values of x are [Karnataka CET 2012]
α
(a) γ = + β (b) β < γ (a) 0, 2 (b) 0, 1
4 (c) 1, 4 (d) 1, 2
α
(c) γ = + β (d) α < γ < β 68. If a, b and c are in arithmetic progression, then the
2
roots of the equation ax 2 − 2bx + c = 0 are
58. If the roots of the equation λ 2 + 8λ + µ 2 + 6 µ = 0 [WB JEE 2012]
are real, then µ lies between [RPET 2014] (a) 1 and
c 1
(b) − and −c
(a) −2 and 8 (b) −3 and 6 a a
c c
(c) −8 and 2 (d) −6 and 3 (c) −1and − (d) −2 and − 235
a 2a
77. If one of the roots of 2x 2 − cx + 3 = 0 is 3 and
5 69. The harmonic mean of the roots of the equation
( 5 + 2 ) x 2 − ( 4 + 5 ) x + 8 + 2 5 = 0 is
[Manipal 2012]
another equation 2x 2 − cx + d = 0 has equal roots,
where c and d are real numbers, then d is equal to
Objective Mathematics Vol. 1
the equation are real for k, is equal to [AMU 2012] and , is [MP PET 2011]
α β
(a) −4 (b) 1
(c) 4 (d) 0 (a) cx 2 + kbx + k 2a = 0 (b) cx 2 + k 2bx + ka = 0
(c) kcx 2 + bx + k 2a = 0 (d) k 2cx 2 + bx + ka = 0
73. If α and β are the roots of the equation
x 2 − 2x + 4 = 0, then the value of α n + β n will be 81. If 3 ≤ 3t − 18 ≤ 18, then which one of the following is
[BITSAT 2011] correct? [Kerala CEE 2010]
(a) i 2n+ 1 sin (nπ / 3) (a) 15 ≤ 2t + 1 ≤ 20 (b) 8 ≤ t < 12
(b) 2n+ 1 cos (nπ / 3) (c) 8 ≤ t + 1 ≤ 13 (d) 21 ≤ 3t ≤ 24
(c) i 2n− 1 sin (nπ / 3) (e) t ≤ 7 or t ≥ 12
Targ e t E x e rc is e s
(a) x 2 − x + 1 = 0 (b) x 2 − x − 1 = 0 (c) real, irrational and unequal
(c) x 2 + x − 1 = 0 (d) x 2 + x + 1 = 0 (d) real, rational and unequal
237
Answers
Work Book Exercise 5.1
1. (a) 2. (c) 3. (d) 4. (b) 5. (a)
Target Exercises
1. (b) 2. (b) 3. (a) 4. (c) 5. (a) 6. (b) 7. (a) 8. (d) 9. (c) 10. (c)
11. (b) 12. (c) 13. (b) 14. (d) 15. (d) 16. (c) 17. (d) 18. (b) 19. (b) 20. (c)
21. (d) 22. (c) 23. (d) 24. (c) 25. (d) 26. (c) 27. (d) 28. (c) 29. (a) 30. (a)
31. (c) 32. (b) 33. (b) 34. (c) 35. (d) 36. (b) 37. (b) 38. (c) 39. (d) 40. (b)
Ta rg e t E x e rc is e s
41. (c) 42. (b) 43. (a) 44. (a) 45. (b) 46. (a) 47. (b) 48. (b) 49. (a) 50. (a)
51. (b) 52. (a) 53. (a) 54. (b) 55. (a) 56. (a) 57. (c) 58. (c) 59. (a) 60. (c)
61. (c) 62. (a) 63. (a) 64. (a) 65. (c) 66. (b) 67. (c) 68. (a) 69. (d) 70. (a)
71. (b) 72. (c) 73. (b) 74. (b) 75. (c) 76. (a) 77. (b) 78. (a) 79. (b) 80. (a)
81. (d) 82. (a) 83. (d) 84. (b) 85. (a) 86. (c) 87. (d) 88. (c) 89. (b) 90. (c)
91. (b) 92. (b) 93. (b) 94. (d) 95. (a) 96. (d) 97. (c) 98. (b) 99. (d) 100. (d)
101. (c) 102. (d) 103. (d) 104. (b) 105. (b) 106. (b) 107. (a) 108. (c) 109. (c) 110. (b)
111. (b) 112. (d) 113. (d) 114. (a) 115. (a) 116. (b) 117. (c) 118. (d) 119. (c) 120. (a)
121. (a) 122. (d) 123. (c) 124. (c) 125. (b) 126. (c) 127. (d) 128. (c) 129. (b) 130. (d)
131. (a) 132. (d) 133. (b) 134. (b) 135. (c) 136. (b) 137. (a) 138. (a) 139. (b) 140. (b)
141. (a) 142. (a) 143. (b) 144. (a) 145. (b) 146. (a) 147. (a) 148. (a) 149. (a) 150. (b)
151. (c) 152. (b) 153. (a) 154. (b) 155. (b) 156. (c) 157. (a) 158. (c) 159. (b) 160. (c)
161. (b) 162. (a) 163. (d) 164. (b) 165. (d) 166. (a) 167. (a) 168. (a) 169. (b) 170. (a)
171. (d) 172. (c) 173. (b) 174. (b) 175. (c) 176. (d) 177. (a) 178. (a) 179. (c) 180. (d)
181. (b) 182. (c) 183. (a) 184. (a) 185. (b) 186. (d) 187. (c) 188. (c) 189. (c) 190. (a)
191. (d) 192. (a) 193. (c) 194. (b) 195. (a) 196. (b) 197. (d) 198. (c) 199. (a) 200. (a)
201. (b,c) 202. (a,b) 203. (a,b) 204. (a,b,c) 205. (a,b,d) 206. (a,b,d) 207. (a,b,c) 208. (a,c,d) 209. (a,d) 210. (a,b,c,d)
211. (a,b) 212. (b,d) 213. (a,c) 214. (a,d) 215. (a,c) 216. (c,d) 217. (a,b,d) 218. (d) 219. (b) 220. (c)
221. (b) 222. (a) 223. (c) 224. (b) 225. (a) 226. (c) 227. (b) 228. (a) 229. (b) 230. (c)
231. (a) 232. (*) 233. (**) 234. (1) 235. (2) 236. (1)
* A → r; B → p; C → s; D → q
** A → q; B → p; C → s; D → r; E → t
Entrances Gallery
1. (b,d) 2. (d) 3. (c) 4. (a,b,c) 5. (b) 6. (a) 7. (c) 8. (c) 9. (b) 10. (c)
11. (b) 12. (c) 13. (a) 14. (a) 15. (d) 16. (c) 17. (b) 18. (c) 19. (c) 20. (a)
21. (a) 22. (a) 23. (b) 24. (d) 25. (a) 26. (b) 27. (c) 28. (c) 29. (a) 30. (b)
31. (c) 32. (c) 33. (b) 34. (a) 35. (b) 36. (b) 37. (c) 38. (c) 39. (d) 40. (b)
41. (b) 42. (b) 43. (a) 44. (c) 45. (a) 46. (c) 47. (a) 48. (c) 49. (b) 50. (d)
51. (a) 52. (d) 53. (b) 54. (c) 55. (d) 56. (c) 57. (d) 58. (c) 59. (d) 60. (a)
61. (a) 62. (d) 63. (c) 64. (c) 65. (a) 66. (c) 67. (d) 68. (a) 69. (b) 70. (d)
71. (a) 72. (c) 73. (b) 74. (b) 75. (a) 76. (c) 77 (b) 78. (b) 79. (c) 80. (a)
81. (c) 82. (a) 83. (d) 84. (a) 85. (a) 86. (a) 87. (c) 88. (c) 89. (d) 90. (c)
238 91. (a) 92. (e) 93. (c)
Explanations
Target Exercises
1. The given inequation reduces to 1
12. Let us first solve|3 x + 1| <
8x 5 3
2< or x>
10 2 1 1
⇒ − < 3x + 1 <
∴ Least integer is 3. 3 3
4 2
2. a − b + c < 1, a + b + c > − 1, 9 a + 3 b + c < − 4 ⇒ − < 3x < −
3 3
⇒ a− b+ c <1 ⇒
4
− <x<−
2
⇒ − 2b < 2 9 9
and −a − b − c < 1
Also, 0 < |3 x + 1| is satisfied by each x except when
or 2b + 2 > 0
3x + 1 = 0
⇒ b + 1> 0 1
⇒ x=−
3. (a4 + b4 ) − (a3 b + ab3 ) = (a4 − a3 b) − (ab3 − b4 ) 3
= a3 (a − b) − b3 (a − b) 4 2 1
∴ Solution is − , − − − .
= (a − b)(a3 − b3 ) 9 9 3
= (a − b)2 (a2 + ab + b2 ) 13. | x − 1| is the distance of x from 1
which is positive as both factors are positive. | x − 3| is the distance of x from 3
Thus, (a4 + b4 ) − (a3 b + ab3 ) > 0 The points x = 2 is equidistant from 1 and 3.
⇒ a4 + b4 > a3 b + ab3 Hence, the solution consists of all x ≥ 2.
4. Using number line rule, 14. || x| − 1| < |1 − x| …(i)
2
Targ e t E x e rc is e s
x ∈ (− ∞, 0 ) ∪ , ∞ Case I x ≥ 0
3
∴ Eq. (i) becomes| x − 1| < x − 1or|1 − x| < 1 − x
5. Using number line rule, which is not satisfied by any x, because
x ∈ (− ∞, 3) ∪ (10, ∞ ) | a| ≥ a, ∀ a ∈ R
6. Using number line rule, Case II − 1≤ x < 0
x ∈ (− ∞, − 4) ∴ Eq. (i) becomes |− 1 − x| < 1 − x
or | x + 1| < 1 − x
7. Using number line rule,
⇒ x + 1 < 1 − x or x < 0
– ve + ve – ve + ve
Thus, Eq. (i) is satisfied for − 1 ≤ x < 0
–7 –—
1 3
2 Case III x < −1
Eq. (i) becomes |− 1 − x| < 1 − x
1
x ∈ (− ∞, − 7 ) ∪ − , 3 ⇒ |1 + x| < 1 − x
2
⇒ − (1 + x ) < 1 − x
x+2 ⇒ − 2 < 0, which is true
8. 5 x + 2 < 3 x + 8 and <4
x −1 So, solution set is (− ∞, 0 ).
⇒ x ∈ (− ∞, 1) ∪ (2, 3) 1 1
15. −2 < 4 ⇒ − 4< −2 < 4
9. |3 x + 2| < 1 ⇔ − 1 < 3 x + 2 < 1 x x
⇔ − 3 < 3x < − 1 ⇒
1
−2 < < 6
1 x
⇔ − 1< x < −
3 1 1
Hence, x ∈ − ∞, − ∪ , ∞ .
10. |3 − x| = x − 3 is true only when x − 3 ≥ 0 2 6
i.e. x ≥ 3 3
16. 1 + >2
11. |2 x − 3| < | x + 2| x
Squaring on both sides, we get 3 3
Case I 1+ >2 ⇒ >1 [clearly x > 0]
(2 x − 3)2 − ( x + 2 )2 < 0 x x
( x − 5)(3 x − 1) < 0 ⇒ 3 > x or x < 3
3 3
+ – + Case II 1 + < − 2 ⇒ <−3 [hence x < 0]
–∞ ∞ x x
1/3 5 ⇒ 3 > − 3x
1 ⇒ − 1 < x or x > − 1
⇒ x ∈ , 5
3 Hence, either 0 < x < 3 or − 1 < x < 0
239
5 17. | x 2 − 10| ≤ 6
⇒
⇒
− 6 < x − 10 ≤ 6
2
4 ≤ x ≤ 16
2
25. Here, 5 = 4a and 6 = 5b
Let
Then,
log 3 2 = x
2 = 3x
Objective Mathematics Vol. 1
| x + 1| | x + 1|2
19. + | x + 1| = O
X
| x| | x|
Since,| a| + | b| = | a + b| iff ab ≥ 0 Clearly, there cannot be more than one solution and by
( x + 1) ( x + 1)2 trial, the solution is x = 3.
∴ ⋅ ( x + 1) ≥ 0 ⇒ ≥0
x x 28. |4 − 5 x| > 2 2 = 4
⇒ x > 0 or { − 1} 5x 5x
⇒ − 1 > 1 or − 1< − 1
Ta rg e t E x e rc is e s
=
x log x + y log y + z log z
On multiplying, we get
1 2
3
1 1
b
1 1
( a + b2 + c 2 ) ⋅ 2 + 2 + 2
3a c
5
Targ e t E x e rc is e s
3 3 ⋅3 ⇒ Option (b) does not hold.
1/ 3
3x 1 1 a b c a b c
+ x x Again, + + ≥ ⋅ ⋅
⇒ 3 3 ⋅3 ≥ 3 . 1 3 b c a b c a
2 3 3x ⋅ 3 a b c
⇒ + + ≥3
2
⇒ 3 x − 1 + 3− x − 1 ≥ b c a
3 ⇒ Option (c) does not hold.
39. Since, AM ≥ GM 44. 3 (a2 + b2 + c 2 ) − (a + b + c )2
a b b c c
+ + + + ≥6 = 2(a2 + b2 + c 2 − bc − ca − ab)
b a c b a
b+c c + a a+ b = (b − c )2 + (c − a)2 + (a − b)2 ≥ 0
⇒ + + ≥6
a b c ⇒ 3(a2 + b2 + c 2 ) ≥ (a + b + c )2 > 9
Hence, the least value is 6. ⇒ a2 + b2 + c 2 > 3
40. Since, AM > GM for different numbers. ⇒ Option (a) holds.
1
(b + c − a) + (c + a − b) Now, a6 + b6 ≥ 12 a2 b2 − 64
∴ > [(b + c − a)(c + a − b)]2
2 If a6 + b6 + 64 ≥ 12 a2 b2
⇒ c > [(b + c − a)(c + a − b)]1/ 2 i.e. if a6 + b6 + 2 6 ≥ 3 ⋅ 2 2 ⋅ a2 b2
Similarly, b > [(b + c − a)(a + b − c )] 1/ 2
a6 + b6 + 2 6
i.e. if ≥ (2 6 a6 b6 )1/ 3 [Q AM ≥ GM]
and a > [(a + b − c )(c + a − b)]1/ 2 3
On multiplying, we get ⇒ Option (b) does not hold.
abc > (b + c − a)(c + a − b)(a + b − c ) Again, AM ≥ HM
⇒ (b + c − a)(c + a − b)(a + b − c ) − abc < 0 a+ b+c 3
∴ ≥
3 1 1 1
41. Here, x1 ⋅ x2 … xn = 1 + +
1 a b c
x1 + x2 + K + xn α 3 1 1 1 9
∴ ≥ ( x1 ⋅ x2 K xn )n ⇒ ≥ ⇒ + + ≥
n 3 1+ 1+ 1 a b c α
⇒ x1 + x2 + K + xn ≥ n a b c
42. Since, AM ≥ GM ⇒ Option (c) does not hold.
a2 + b2 + c 2
∴ ≥ (a2 b2c 2 )1/ 3 45. Using AM ≥ GM, one can show
3 (b + c )(c + a)(a + b) ≥ 8 abc
1/ 3
1 1 1 1 1 ⇒ ( p − a)( p − b)( p − c ) ≥ 8 abc
and 2 + 2 + 2 ≥ 2 2 2
3a b c a b c ⇒ Option (b) holds. 241
( p − a) + ( p − b) + ( p − c )
5 Also,
3
≥ [( p − a)( p − b)( p − c )]1/ 3
52. D = c 2 (3 a2 + b2 )2 − 4 abc 2 (− 6 a2 − ab + 2 b2 )
= c 2 (3 a2 − b2 + 4 ab)2
Objective Mathematics Vol. 1
a2 b3c 4 p
⇒ 29 ≥ 2 3 4 58. α + α 2 = −
2 ⋅ 3 ⋅ 4 3
3
or a2 b3c 4 ≤ 2 9 ⋅ 2 2 ⋅ 33 ⋅ 44 and α ⋅α 2 = ⇒ α 3 = 1
3
or a2 b3c 4 ≤ 42 ⋅ 63 ⋅ 84
⇒ α = 1, ω, ω 2
⇒ Maximum value of P is 42 ⋅ 63 ⋅ 84 . If α = 1, then p = − 6
2
( x 2 + x22 + K + xn2 ) x1 + x2 + K + xn If α = ω, then p = 3
48. Here, 1 ≥
n n But p>0 ⇒ p≠−6
2 Hence, p=3
n n
⇒ n∑ xi2 ≥ ∑ xi 59. α + β = − p, αβ = p3 and β 2 = α
i =1 i =1 Hence, the roots are 4 and − 2.
49. x + y + z = 2 60. Since, a, b and c are positive, therefore
Now, (2 − x )(2 − y )(2 − z ) = ( y + z )( z + x )( x + y ) ax 2 + b| x| + c > 0
We know, ( y + z ) ≥ 2 yz , ( x + z ) ≥ 2 xz , ( x + y ) ≥ 2 xy Hence, the equation ax 2 + b| x| + c = 0 has no real root.
∴ ( y + z )( z + x )( x + y ) ≥ 8 xyz b c
61. α + β = − , αβ =
⇒ (2 − x ) (2 − y ) (2 − z ) ≥ 8 xyz a a
x −1 + y −1 + z −1 x + y + z − 1 ⇒ [{(α + k ) + ( β + k )} 2 − 4 (α + k )( β + k )]
Also, ≥
3 3 = (α + β )2 − 4 αβ
2
−1 q r b2 4 c
2 ⇒ −4 = 2 −
⇒ x −1 + y −1 + z −1 ≥ 3 ⋅ p 2
p a a
3
q 2 − 4 pr b2 − 4 ac
⇒ x −1 + y −1 + z −1 ≥
9 ⇒ =
2 p2 a2
2
n n b2 − 4 ac a
50. p = (a1 + a2 + K + an ) = ∑
2 2
ai2 + 2 ∑ ai aj ⇒ =
q 2 − 4 pr p
i =1 i< j
α m
n
1 2 62. Since, =
⇒ p2 − 2q = ∑ ai2 ≥ 0 ⇒ q ≤ p β n
i =1
2 α +β m+ n
⇒ =
51. D = b − 4ac, D′ = d + 4 ac
2 2 α −β m− n
⇒ D + D′ = b2 + d 2 > 0 (α + β )2 (m + n )2
⇒ =
(α + β ) − 4 αβ (m + n )2 − 4 mn
2
242 ∴Atleast one of D, D′ is positive.
4 αβ
⇒
⇒
c/a
=
=
4 mn
(α + β )2 (m + n )2
mn
70. Given, p, q and r are in AP ⇒ 2q = p + r
The roots of px 2 + qx + r = 0 are real, if
p + r
2
5
∴ α =β =1
64. Let x = 6 + 6 + 6 + K ∞ = 6 + x 2 ac
⇒ c (a − b) = a(b − c ) ⇒ b =
Squaring on both sides, we get a+c
x2 = 6 + x Hence, a, b and c are in HP.
⇒ x = − 2, 3 73. Since, α and β are roots of equation x 2 + x α + β = 0.
But x cannot be negative. ∴ α + β = − α , αβ = β ⇒ α = 1
Hence, x = 3 [Qβ = 0 does not satisfy the equation]
65. α + β = − p, αβ = q ∴ 1+ β = − 1
Given, α + β =α + β
2 2
⇒ β = −2
= (α + β )2 − 2αβ 74. α and β are roots of 8 x 2 − 3 x + 27 = 0.
Targ e t E x e rc is e s
⇒ − p = p2 − 2q ⇒ α+β=
3
, αβ =
27
⇒ p + p = 2q
2 8 8
1 1 1 1
66. Here, q − r + r − p + p − q = 0 α 2 3 β 2 3 (α 3 )3 + (β 3 )3
∴ + =
p−q β α (αβ )1/ 3
∴Its roots are 1, .
q−r α+β 3/ 8
= =
67. 2 x 2 − 25 x = 3 (14) (αβ)1/ 3 (27 / 8)1/ 3
3/ 8 1
⇒ 2 x 2 − 25 x − 42 = 0 = =
3/ 2 4
⇒ (2 x + 3)( x − 14) = 0
⇒
3
x = − , 14 75. Since, f(1) = 0 and f ( x ) is perfect square.
2 ∴ α =β =1
But x cannot be negative. ⇒ αβ = 1
Hence, x = 14 or c 2 (a2 − b2 ) = a2 (b2 − c 2 )
x 2 − bx λ − 1 ⇒ b2 (a2 + c 2 ) = 2 a2c 2
68. Given, =
ax − c λ+1 2 a2c 2
⇒ b2 =
⇒ (λ + 1)( x − bx ) = (λ − 1)(ax − c )
2
a2 + c 2
⇒ (λ + 1)x 2 − [λb + b + λa − a]x + (λ − 1)c = 0 Hence, a2 , b2 and c 2 are in HP.
Since, α+β=0 76. We have,(1 + m)x 2 − 2(1 + 3 m)x + (1 + 8 m) = 0 ...(i)
λb + b + λa − a
⇒ =0 Let D be the discriminant of Eq. (i). Roots of Eq. (i) will
λ+1
be equal, if D = 0
⇒ λ(a + b) = a − b ⇒ m2 − 3 m = 0 ⇒ m(m − 3) = 0
a−b
⇒ λ= ∴ m = 0, 3
a+ b
77. Let the other root be β.
69. Discriminant = 0 2 1
⇒ 4(ac + bd )2 − 4(a2 + b2 )(c 2 + d 2 ) = 0
Then, α+β=− =−
4 2
⇒ 2 abcd − a2d 2 − b2c 2 = 0 ⇒
1
β = − −α ...(i)
⇒ (ad − bc )2 = 0 2
and 4 α 2 + 2α − 1 = 0
⇒ ad = bc
a c Now, 4 α 3 − 3 α = α (4 α 2 − 3) = α (1 − 2 α − 3)
⇒ = 243
b d [Q 4 α 2 + 2 α − 1 = 0]
5 = − 2α 2 − 2α = −
=−
1
(1 − 2α ) − 2α
1
2
(4 α 2 ) − 2α
[Q 4 α 2 = 1 − 2α ]
⇒
b a2
− =
a
b2 2 c
−
c2
a = b − 2 ca
2
c2
Objective Mathematics Vol. 1
2 a2
1 ⇒ 2ca2 = bc 2 + ab2
= − −α =β [from Eq. (i)]
2
Hence, 4 α 3 − 3 α is the other root. Hence, bc 2 , ca2 and ab2 are in AP.
78. Since, the roots are equal. 83. Since, sin θ and cos θ are the roots of the equation
∴ B − 4 AC = 0
2 ax 2 + bx + c = 0.
b c
⇒ (c − a)2 − 4(a − b)(b − c ) = 0 ∴ sin θ + cos θ = − and sin θ cos θ =
a a
⇒ c 2 + a2 − 2ca − 4ab + 4ac + 4b2 − 4bc = 0 Now, (sin θ + cos θ )2 = 1 + 2 sin θ cos θ
⇒ c + a + 2 ac + 4b − 4b(c + a) = 0
2 2 2
b2 2c a + 2 c
∴ = 1+ =
⇒ (c + a)2 + (2 b)2 − 2 ⋅ 2 b(c + a) = 0 a2 a a
⇒ [(c + a) − (2 b)]2 = 0 ⇒ b2 = a(a + 2c ) = a2 + 2 ac
⇒ c + a − 2b = 0 ⇒ b + c2
2
= a2 + 2 ac + c 2 = (a + c )2
⇒ 2b = a + c Hence, (a + c )2 = b2 + c 2
Hence, a, b and c are in AP. 84. Let the speed of the bus = x km/h, then the speed of the
Aliter car = ( x + 25) km/h
As x = 1satisfy given equation. Time taken by the bus to cover 500 km =
500
h
∴ α = 1is the root x
⇒ α =β =1 and time taken by the car to cover 500 km =
500
h
a−b ( x + 25)
∴ αβ = 1 =
b−c 500 500 50 50
Given, = + 10 ⇒ = +1
( x + 25) ( x + 25)
Ta rg e t E x e rc is e s
⇒ 2b = a + c x x
50 50
79. Let the roots be α and β. ⇒ − =1
−n n α p x ( x + 25)
Then, α + β = , αβ = and = 50( x + 25 − x )
l l β q ⇒ =1
x( x + 25)
p q n α β
Now, + + = + + αβ ⇒ 1250 = x 2 + 25 x
q p l β α
n n ⇒ x 2 + 25 x − 1250 = 0
− +
α + β + αβ ⇒ x + 50 x − 25 x − 1250 = 0
2
= = l l =0
αβ n ⇒ ( x + 50 )( x − 25) = 0
l Q x ≠ − 50 or x = 25
80. The given equation can be written as Hence, the speed of the bus = 25 km/h and speed of
(ab − 1)x 2 + (a + b)x − ab = 0 the car = (25 + 25) = 50 km/h.
⇒
1
+
1
=
x+ p x+q r
1
r ( x + q + x + p) = ( x + p)( x + q )
5
Targ e t E x e rc is e s
⇒ −= On taking x = 1and x = − 2, the equation is satisfied.
a c2
Hence, its solution is { − 2, 1}.
⇒ − bc = ab − 2 a2c
2 2
90. Since, x 2 − 3 x + 2 1
97. 5 − 2 6 =
5+ 2 6
i.e. ( x − 2 )( x − 1) is a factor of x 4 − px 2 + q.
∴ x = 2, x = 1are roots of x 4 − px 2 + q = 0 ∴Given equation
2 2
−3 −3
⇒ 16 − 4 p + q = 0 and 1 − p + q = 0 (5 + 2 6 )x + (5 − 2 6 )x = 10
On solving these equations, we get 1 2
Becomes y + = 10, where y = (5 + 2 6 )x − 3
p = 5, q = 4 y
91. (3 x )2 − 36 ⋅ 3 x + 243 = 0 ⇒ y 2 − 10 y + 1 = 0
Put 3 = y, the equation becomes
x ⇒ y = 5± 2 6
2
−3
y 2 − 36 y + 243 = 0 ⇒ (5 + 2 6 )x = (5 + 2 6 )1
⇒ ( y − 9)( y − 27 ) = 0
2
−3
⇒ (5 + 2 6 )x = (5 + 2 6 )−1
⇒ y = 9, 27
⇒ x − 3=1
2
⇒ 3x = 9
or 3 x = 27 or x2 − 3 = − 1
⇒ x =2 ⇒ x 2 = 4 or x2 = 2
or x=3 Hence, x=±2
∴Solution pair is {2, 3}. or x=± 2 245
5 98. The given equation can be written as
5
3
3x
5
x
+ =2
3
⇒
⇒
x2 + 1 − x
x
= (integer) k
x 2 − (k + 1) x + 1 = 0
[say]
Objective Mathematics Vol. 1
⇒ ( t − 1) ( t + t + 1) + ( t − 1) = 0
2 103. The given equation can be written as
3/ x 1/ x
⇒ ( t − 1) ( t + t + 2) = 0
2 3 3
+ =2
2 2
⇒ t = 1 or t + t + 2 = 0
2
1/ x
3
But t + t + 2 = 0 does not have real solutions.
2
Put = t, the equation becomes t 3 + t − 2 = 0
x
2
5
Therefore, t = 1 ⇒ = 1 ⇒ x=0 ⇒ (t − 1) (t 2 + t + 2 ) = 0
3
But t 2 + t + 2 = 0 has no real root. [Q t = 1]
99. Since, α and β are the roots of the equation 1/ x
3
x 2 − px + q = 0 ⇒ =1
2
∴ α+β=p 1
and αβ = q ⇒ =0
x
Now, (α 1/ 4 + β1/ 4 )4 = [(α 1/ 4 + β1/ 4 )2 ]2 which is not possible for any value of x.
= [α 1/ 2 + β1/ 2 + 2(αβ)1/ 4 ]2 104. Here,α + β = − b < 0 [Qb > 0]
= [ α + β + 2 αβ + 2(αβ ) 1/ 4 2
] αβ = c < 0 [Qc < 0]
Since, αβ < 0 and α < β ⇒ α is a negative root.
= [ p + 2 q + 2(q ) 1/ 4 2
]
Ta rg e t E x e rc is e s
sin (e x ) = t +
1 1
= t − +2
t t
2
[Q 5 x > 0 ]
5
110. [ x ] − [ x ] − 2 = 0
2 1 1 1 1 1
= 1 − + − + − + ... ∞
2 2 3 3 4
[ x ] = 2, − 1
=1
⇒ x ∈ [− 1, 0 ) ∪ [2, 3) 2
+ 7 x + 12
118. y x =1
111. Let e sin x = t
⇒ x 2 + 7 x + 12 = 0
Targ e t E x e rc is e s
1
t − − 4= 0 ⇒ x = − 3, − 4
t
⇒ t =2 ± 5 ⇒ y = 9, 10 [when y ≠ 1]
⇒ e sin x = 2 + 5, 2 − 5 Again, when y = 1, x = 5
But e sin x cannot be negative. ∴ Solutions are (− 3, 9) (− 4, 10 ) and (5, 1.)
∴ e sin x = 2 + 5 119. As (λ + 1) x 2 + 2 = λx + 3 has only one solution.
⇒ e sin x > e D=0
⇒ λ2 − 4 (λ + 1) (−1) = 0
⇒ sin x > 1, which is not possible.
⇒ λ2 + 4λ + 4 = 0
So, the given equation has no real solution.
⇒ (λ + 2 )2 = 0
112. Given, x x
= xx
∴ λ = −2
⇒ x x
= ( x x )1/ 2 , x > 0 120. Given quadratic expression is
⇒ x x
= x x/ 2, x > 0 x 2 + 2 (a + b + c ) x + 3 (bc + ca + ab) .
⇒ Either x = 1 This quadratic expression will be a perfect square, if the
x discriminant of its corresponding equation is zero.
or x = ,x>0
2 Hence,
Hence, x = 1and 4 4 (a + b + c )2 − 4 × 3 (bc + ca + ab) = 0
6 ± 36 − 32 6 ± 2 1 1 ⇒ (a + b + c )2 − 3 (bc + ca + ab) = 0
113. sec θ = = = ,
16 16 2 4 ⇒ a2 + b2 + c 2 + 2 ab + 2 bc + 2ca
But sec θ ≤ − 1or sec θ ≥ 1 − 3 (bc + ca + ab) = 0
Hence, the given equation has no roots. ⇒ a2 + b2 + c 2 − ab − bc − ca = 0
1
114. Given, log 2 x +
1
= 3+
1 ⇒ [2 a2 + 2 b2 + 2c 2 − 2 ab − 2 bc − 2ca] = 0
log 2 x 3 2
1
1 ⇒ [(a2 + b2 − 2 ab) + (b2 + c 2 − 2 bc )
= log 2 y + 2
log 2 y + (c 2 + a2 − 2ca)] = 0
1 1
⇒ log 2 x = 3 and log 2 y = [Q x ≠ y ] ⇒ [(a − b)2 + (b − c )2 + (c − a)2 ] = 0
3 2
⇒ x = 2 3 and y = 21/ 3 which is possible only when (a − b)2 = 0 , (b − c )2 = 0
Hence, x + y 3 = 8 + 2 = 10 and (c − a)2 = 0 i.e. a = b = c
247
5 121. ( x 2 + x − 2 )( x 2 + x − 3) = 12
Put x + x = y, so that Eq.(i) becomes
2
( y − 2 )( y − 3) = 12
…(i) Now, for equation x 2 − 4 qx + 2 q 2 − r = 0, product of
roots is
2q 2 − r = 2 (αβ)2 − (α 4 + β 4 )
Objective Mathematics Vol. 1
⇒ y 2 − 5y − 6 = 0 = − (α 2 − β 2 )2 < 0
⇒ ( y − 6) ( y + 1) = 0 ⇒ y = 6, − 1
As product of roots is negative, so the roots must be
When y = 6, we get real.
x2 + x − 6 = 0
128. A = a(b − c ) (a + b + c )
⇒ ( x + 3) ( x − 2 ) = 0 ⇒ x = − 3, 2
B = b(c − a) (a + b + c )
When y = − 1, we get
C = c ( a − b) ( a + b + c )
x2 + x + 1 = 0
Now, Ax 2 + Bx + C = 0
which has non-real roots and sum of roots is − 1.
⇒ (a + b + c ) [a (b − c ) x 2 + b (c − a) x + c (a − b)] = 0
122. Here, x = 0 is not a root. Divide both the numerator and
denominator by x and put x + 3/ x = y to obtain Given that roots are equal.
4 5 3 ∴ D=0
+ = ⇒ y = − 5, 3
y + 1 y−5 2 ⇒ b2 (c − a)2 − 4ac (b − c ) (a − b) = 0
x + 3/ x = − 5 has two irrational roots and x + 3/ x = 3 ⇒ b2c 2 − 2 ab2c + b2 a2 − 4a2 bc + 4acb2
has imaginary roots. + 4a2c 2 − 4abc 2 = 0
123. Given α and β are roots of equation ⇒ b c + b a + 4a c + 2 ab c − 4a2 bc − 4abc 2 = 0
2 2 2 2 2 2 2
x − 2x + 3 = 0
2
⇒ (bc + ab − 2 ac )2 = 0
⇒ α 2 − 2α + 3 = 0 …(i) ⇒ bc + ab = 2 ac
and β 2 − 2β + 3 = 0 …(ii) 1 1 2
⇒ + =
⇒ α 2 = 2α − 3 a c b
⇒ α 3 = 2α 2 − 3 α Hence, a, b and c are in HP.
⇒ P = (2α 2 − 3 α ) − 3 α 2 + 5 α − 2 129. Q ax 2 − bx + c = 0
Ta rg e t E x e rc is e s
= − α + 2α − 2 = 3 − 2 = 1
2
b
∴ α+β=
[using Eq. (i)] a
Similarly, we have Q = 2 c
and αβ =
Now, sum of roots is 3 and product of roots is 2. a
Hence, the required equation is x 2 − 3 x + 2 = 0. Also, (a + cy )2 = b2 y
124. Since, α and β are the roots of the equation ⇒ c 2 y 2 − (b2 − 2 ac ) y + a2 = 0
2 x − 35 x + 2 = 0.
2
c
2 b 2 c
⇒ y 2 − − 2 y + 1 = 0
∴ 2α 2 − 35 α = − 2 a a a
2
⇒ 2α − 35 = − ⇒ (αβ)2 y 2 − (α 2 + β 2 )y + 1 = 0
α
and 2 β 2 − 35 β = − 2 ⇒ y 2 − (α −2 + β −2 )y + α −2β −2 = 0
−2
⇒ 2β − 35 = ⇒ ( y − α −2 ) ( y − β −2 ) = 0
β
3 3 Hence, the roots are α −2 and β −2 .
− 2 − 2
Now, (2α − 35)3 (2β − 35)3 =
α β 130. Here, α 4 + β 4 = (α 2 + β 2 )2 − 2α 2β 2
8 × 8 64
= 3 3 = = 64 [Qα β = 1] = [(α + β )2 − 2αβ ]2 − 2 (αβ )2
α β 1
2
2
−3 2
−3 1 1
125. (31 + 8 15 )x + 1 = (32 + 8 15 )x = p2 + 2 −
2 2 2 p 2 p4
−3 −3 −3
⇒ (31 + 8 15 )x + 1x = (32 + 8 15 )x
1
⇒ x − 3=1
2
or x = ± 2 [Q a + b = (a + b)n ]
n n = p4 + +2
2 p4
c
126. aα 2 + c = − bα, aα + b = − 1
2
α = p2 − + 2 + 2 ≥2 + 2
Hence, the given expression is 2 p2
b 2 b (b2 − 2 ac ) 131. x1( x − x2 )2 + x2 ( x − x1 )2 = 0
(α + β 2 ) =
c a2c
⇒ x 2 ( x1 + x2 ) − 4 x x1 x2 + x1 x2 ( x1 + x2 ) = 0
127. Since, α and β are roots of x 2 + px + q = 0.
D = 16 ( x1 x2 )2 − 4 x1 x2 ( x1 + x2 )2 > 0 [Q x1 x2 < 0 ]
∴ α + β = − p and αβ = q
Now, α and β 4 are roots of x 2 − rx + q = 0.
4 The product of roots is x1 x2 < 0.
248 ∴ α +β =r
4 4
and α β = q4 4 Thus, the roots are real and of opposite signs.
132. ( x + a)( x + 1991) + 1 = 0
⇒
⇒
( x + a)( x + 1991) = − 1
( x + a) = 1
141. α ± iβ are complex roots of equation x 3 + qx + r = 0 and
γ is its real root.
⇒ ( x − γ )( x 2 − 2αx + α 2 + β 2 ) = x 3 + qx + r
5
Targ e t E x e rc is e s
⇒ a ∈R 143. Let α and β be the roots of x 2 + bx + c = 0.
a2 + 1 1 1
∴ = 1− 2 ≥ Then, α + β = − b, αβ = c
a +2
2
a +2 2
Roots of the required equation are α 3 and β 3 . So, the
equation is x 2 − (α 3 + β 3 )x + α 3β 3 = 0
136. x = 2 + 3
⇒ ( x − 2 )2 = 3 ⇒ x 2 − {(α + β)3 − 3 αβ (α + β)} x + (αβ)3 = 0
⇒ x − 4x + 1 = 0
2
...(i) ⇒ x 2 − (− b3 + 3 cb)x + c 3 = 0
⇒ ( x − 2 )4 = 9 ⇒ x 2 + b(b2 − 3 c )x + c 3 = 0
⇒ x 4 − 8 x 3 + 24 x 2 − 32 x + 16 = 9 144. Since,α and β are roots of the equation ax 2 + bx + c = 0.
⇒ x 4 − 8 x 3 + 18 x 2 − 8 x + 2 + 6 ( x 2 − 4 x + 1) − 1 = 0 b
∴ α+β=−
From Eq. (i), we get a
x 4 − 8 x 3 + 18 x 2 − 8 x + 2 = 1 c
and αβ =
n n a
137. x 3 + (− x )3 = 0, if n ≥ 0 and n is an integer.
The required equation is
138. At x = 2, 1 1 1 1
x2 − + x+ ⋅ =0
x 3 − 2(1 + α )x 2 + (4α + α 2 + β 2 )x − 2(α 2 + β 2 ) aα + b aβ + b aα + b aβ + b
= 8 − 8 (1 + α ) + 8 α + 2 α 2 + 2β 2 − 2α 2 − 2β 2 = 0 ⇒ { a2αβ + ab (α + β) + b2 } x 2
∴ x = 2, z0 and z0 are three roots.
− { a (α + β ) + 2 b} x + 1 = 0
139. Let α = − 4, β = − 4 ω and γ = − 4ω 2 ⇒ (ca − b2 + b2 )x 2 − (2 b − b)x + 1 = 0
2 2
α 1 α 1 ⇒ cax 2 − bx + 1 = 0
∴ = 2 = ω and = 4 =ω
2
β ω γ ω
145. x = 2 + 21/ 3 + 2 2 / 3
∴Required equation is
⇒ x − 2 = 21/ 3 + 2 2 / 3
x 2 − (ω + ω 2 )x + ω 3 = 0 ⇒ x2 + x + 1 = 0
⇒ ( x − 2 )3 = (21/ 3 + 2 2 / 3 )3
140. Let f ( x ) = x 4 + ax 3 + bx 2 + cx − 1
⇒ x 3 − 8 − 6x ( x − 2)
Since, ( x − 1)3 is a factor.
= (21/ 3 )3 + (2 2 / 3 )3 + 3 (21/ 3 )⋅ (2 2 / 3 ) (21/ 3 + 2 2 / 3 )
∴ f(1) = 0, f′ (1) = 0, f ″ (1) = 0
⇒ a + b + c = 0, 3 a + 2 b + c = − 4 On putting 21/ 3 + 2 2 / 3 = x − 2 in above equation, we get
and 3a + b = − 6
x 3 − 6 x 2 + 12 x − 8 = 6 + 6 ( x − 2 )
⇒ a = − 2, b = 0, c = 2
So, other factor is ( x + 1.) ⇒ x 3 − 6x 2 + 6x = 2 249
5 146. 1, a1, a2 ,..., an − 1 are roots of x n − 1 = 0
⇒
x −1n
x −1
= ( x − a1 ) ( x − a2 )...( x − an − 1 )
On putting x = i and then x = − i , we get
1 − 4i + 6 + 7 i − 9 = (i − α ) (i − β )(i − γ )(i − σ )
and 1 + 4i + 6 − 7 i − 9 = (− i − α )(− i − β )(− i − γ )(− i − σ )
Objective Mathematics Vol. 1
= ( x − a1 ) ( x − a2 ) ...( x − an − 1 ) 1− α 1− β 1− γ 1−1−1
Put x = − 1, we get 1+ α
⇒ = −5
(−1)n − 1 (1 + a1 ) (1 + a2 )...(1 + an − 1 ) 1− α
= 1 − 1 + 1 − ... + 1 154. Here, x → x + 1
0, if n is even ⇒ ax 2 + (b + 2 a)x + a + b + c = 0
=
1, if n is odd But equation given is 2 x 2 + 8x + 2 = 0
n −1
Thus, (1 + ω) (1 + ω )...(1 + ω
2
)= n ⇒ a = 2, b + 2 a = 8, a + b + c = 2
149. Let y = − 5 + 4i ⇒ y + 10 y + 41 = 0
2 ⇒ b = 4, c = − 4
∴ f ( x ) = x 4 + 9 x 3 + 35 x 2 − x + 4 ⇒ b= −c
= x 2 ( x 2 + 10 x + 41) − x ( x 2 + 10 x + 41) 155. x 2 + x + 1 = 0 has roots ω, ω 2 .
+4 ( x 2 + 10 x + 41) − 160 ∴ ax 2 + bx + c = 0
= − 160 ∴Both roots common.
∴f (− 5 + 4i ) = − 160 a b c
⇒ = =
150. Let x = cos θ, we get 4 cos 3 θ − 3 cos θ = p 1 1 1
⇒ p = cos 3 θ 156. We have, x 3 + 3 x 2 + 3 x + 2 = 0
1 −1
⇒ θ = cos ( p) and x = cos θ ⇒ ( x + 1)3 + 1 = 0
3
1 ⇒ ( x + 1 + 1) {( x + 1)2 − ( x + 1) + 1} = 0
⇒ x = cos cos − 1 ( p) ...(i)
3 ⇒ ( x + 2 ) ( x 2 + x + 1) = 0
Since, − 1 ≤ p ≤ 1 ⇒ 0 ≤ cos − 1 p ≤ π −1 ± 3 i
⇒ x = − 2,
1 π 2
or 0 ≤ cos −1 p ≤ , as we know cos x is decreasing.
3 3 ⇒ x = − 2, ω, ω 2
1 π Since, a, b, c ∈ R, ax 2 + bx + c = 0 cannot have one
∴ cos 0 ≥ cos cos − 1 p ≥ cos …(ii)
3 3 real and one imaginary root. Therefore, two common
From Eqs. (i) and (ii), we get roots of ax 2 + bx + c = 0 and x 3 + 3 x 2 + 3 x + 2 = 0 are
1 1 ω and ω 2 .
≤ x ≤ 1 ⇒ x ∈ ,1
2 b
2 Thus, − = ω + ω2 = − 1
a
151. Since, α, β, γ and σ are the roots of the given equation, c
⇒ a = b and = ω ⋅ ω2 = 1 ⇒ c = a
therefore a
250 x 4 + 4 x 3 − 6 x 2 + 7 x − 9 = ( x − α ) ( x − β) ( x − γ ) ( x − σ ) ⇒ a= b=c
157. As the coefficients are in reverse order, the roots of
ax + bx + c = 0 are α and β, while the roots of
2
1 1
163. x 2 + 2 bx + c > 0
So, the given equation has no roots.
⇒ D < 0 ⇒ 4b2 − 4 c < 0
5
Targ e t E x e rc is e s
∴ Roots of x + 2 x + 3 = 0 are imaginary. Since, the
2
167. x 2 − 6 x + 5 ≤ 0 and x 2 − 2 x > 0
equations x 2 + 2 x + 3 = 0 and ax 2 + bx + c = 0 are
given to have a common root, therefore both roots will ⇒ 1≤ x ≤ 5
be common. Hence, both the equations are identical. and x < 0 or x > 2
⇒ a : b : c = 1: 2 : 3 ⇒ 2<x≤5
1 ⇒ x ∈{ 3, 4, 5}
161. Let α and β be the roots of x 2 − px + q = 0 and α and Hence, there are three solutions.
β
be the roots of x 2 − ax + b = 0. 168. Denominator = ( x − 1)2 + 5 > 0, ∀x
Then, α + β = p and αβ = q ⇒ 2 x 2 + 3 x − 27 = (2 x + 9)( x − 3) ≤ 0
1 α 9
Also, α + = a and =b which gives − ≤ x ≤ 3 leading to 0 ≤ 4 x 2 ≤ 81
β β 2
2 2
α 1 169. Given,|2 x − 3| < 1 ⇒ − 1 < 2 x − 3 < 1
Now, (q − b)2 = αβ − = α 2 β −
β β ⇒ 1< x < 2
2
α 1 ⇒ x ∈(1, 2 )
= ⋅ βα (α + β) − α + β
β 170. | x − 1| − 1 ≤ 1
= bq ( p − a)2
⇒ 0 ≤ | x − 1| ≤ 2
162. For x > 0, f ( x ) > 0, so there is no positive real root of ⇒ | x − 1| ≤ 2
f( x) = 0
⇒ − 1≤ x ≤ 3
Now, f(0 ) = 1 ≠ 0, so x = 0 is not a root x x
f ( x ) = 1 + 2 x + 3 x 2 + K + (n + 1)x n 171. + ≥ 1
…(i) 5 12
13 13
Multiplying Eq. (i) by x, we get
xf ( x ) = x + 2 x 2 + K + nx n + (n + 1)x n + 1 ∴ cos x α + sin x α ≥ 1
5
⇒ (1 − x )f ( x ) = (1 + x + x 2 + K + x n ) − (n + 1)x n + 1 where, cos α =
13
1 − xn + 1
= − (n + 1)x n + 1 and sin α =
12
1− x 13
1 − x n + 1 (n + 1)x n + 1
⇒ f( x) = − Equality holds for x = 2.
(1 − x )2 (1 − x )
If x < 2, both cos α and sin α increase (being positive
1 − (n + 2 )x n + 1 + (n + 1)x n + 2
= fractions).
(1 − x )2
So, cos x α + sin x α > 1
So, the equation f ( x ) > 0, ∀x.
Hence, no solution. If x < 2. Thus, x ≤ 2. 251
5 172. Here, xy ≥ 100
x+ y
2
≥ xy
179. Let the roots be α and β.
∴
Given,
α + β = − 2a and αβ = b
|α − β| ≤ 2m
Objective Mathematics Vol. 1
⇒ x + y ≥ 2 ⋅ 10 ⇒ |α − β|2 ≤ (2m)2
⇒ x + y ≥ 20
⇒ (α + β ) − 4ab ≤ 4m2
2
x2 − x + 1
173. Let 2 =m ⇒ 4a2 − 4b ≤ 4m2
x + x+1
⇒ a2 − m2 ≤ b
Discriminant ≥ 0 and discriminant D>0 or 4a2 − 4b > 0
⇒ (1 + m)2 − 4(1 − m)2 ≥ 0
⇒ a − m ≤ b and
2 2
b < a2
1
⇒ (m − 3) m − ≤ 0 Hence, b ∈ [a2 − m2 , a2 ]
3
1 180. Given, a < b < c < d . Let
⇒ m∈ ,3
3 f ( x ) = ( x − a)( x − c ) + 2( x − b)( x − d )
tan x tan x (1 − 3 tan 2 x ) ⇒ f (b) = (b − a)(b − c ) < 0
174. y = = and f (d ) = (d − a)(d − c ) > 0
tan 3 x 3 tan x − tan 3 x
1 Hence, f ( x ) = 0 has one root in (b, d ). Also, f (a)f (c ) < 0.
⇒ y< or y > 3 So, the other root lies in (a, c ). Hence, roots of the
3 equation are real and distinct.
1
⇒ −∞<y< or 3 < y < ∞
3 (a − 4) − (a − 4)2 − 4(4 − 2 a)
181. tan x =
175. The given inequation is valid only when 2
a− 4− a
x≥0 ...(i) = = a − 2, − 2
2
The given inequation can be written in the form
∴ tan x = a − 2 [Q tan x ≠ − 2]
372 − x − x > 1
π
Ta rg e t E x e rc is e s
⇒ 72 − x − x > 0 [Q 3 > 1] x ∈ 0,
4
Q
⇒ x + x − 72 < 0 ∴ 0 ≤ a−2 ≤1
⇒ ( x + 9) ( x − 8) < 0 ⇒ 2≤a≤3
But x + 9 > 0, ∀x ≥ 0
∴ x − 8< 0 ⇒ x <8 182. We know that, ax 2 + bx + c ≥ 0, ∀ x ∈ R
∴ 0 ≤ x < 64 If a > 0 and b2 − 4ac ≤ 0.
176. f(1) > 0, f(2 ) < 0, f(3) > 0 and D > 0 1
∴ mx − 1 + ≥ 0
x
⇒ − 12 + λ > 0,
mx 2 − x + 1
λ < 16, ⇒ ≥0
λ > 12 and 16 (16 − λ ) > 0 x
⇒ 12 < λ < 16 ⇒ mx 2 − x + 1 ≥ 0 as x > 0
∴ λ ∈{13, 14, 15} Now, mx 2 − x + 1 ≥ 0, if m > 0 and 1 − 4m ≤ 0
Hence, three integral solutions. 1
⇒ m > 0 and m ≥
4
177. k − 2 > 0 and 1
64 − 4 (k − 2 ) (k + 4) < 0 Thus, the minimum value of m is .
4
k > 2 and 16 − (k 2 + 2 k − 8) < 0
183. The equation on simplifying gives
k > 2 and k 2 + 2 k − 24 > 0
x ( x − b) ( x − c ) + x ( x − c ) ( x − a) + x ( x − a) ( x − b)
k > 2 and (k < − 6 or k > 4) − ( x − a) ( x − b) ( x − c ) = 0 ...(i)
⇒ k>4 Let f ( x ) = x ( x − b) ( x − c ) + x ( x − c ) ( x − a)
∴ Least integral value of k = 5 + x ( x − a) ( x − b) − ( x − a) ( x − b) ( x − c )
178. (e a − e 2 a + e a − 1) (4 e a − 2 e 2 a + e a − 1) < 0 We can assume without loss of generality that
a < b < c . Now,
⇒ (e 2 a − 2e a + 1) (2e 2 a − 5 e a + 1) < 0
f (a) = a (a − b) (a − c ) > 0
Let x = ea
f (b) = b (b − c ) (b − a) < 0
⇒ ( x − 1)2 (2 x 2 − 5 x + 1) < 0 f (c ) = c (c − a) (c − b) > 0
5 − 17 5 + 17 So, one root of Eq. (i) lies in (a, b) and one root in (b, c ).
⇒ ( x − 1)2 x − x − <0
4 4 Obviously the third root must also be real.
5 − 17 5 + 17 184. As a < b < c < d are in AP.
⇒ <x<
4 4 ∴f ( x ) = ( x − a)( x − c ) + 2( x − b)( x − d )
5 − 17 5 + 17 ⇒ f (a) = +ve, f (b) = − ve, f (c ) = − ve and f (d ) = + ve
⇒ log < a < log
252 4 4 ⇒ One root lies in (a, b) and other in (c , d ).
185. cos 4 x − cos 2 x + 1 − p = 0; 0 ≤ cos 2 x ≤ 1,
∴
The roots of y 2 − y + 1 − p = 0 lie between 0 and 1.
α ≥ 0, β ≥ 0
191. Since, f (1) = − f (2 ),
i.e. f (1)⋅ f (2 ) < 0,
Hence, the equation must have a root x ∈(1, 2 ).
5
1 − 2 ≤ 0, 1 − p − 1 + 1 ≥ 0 = 4 x 2 + 4 x(m − 2 ) + (m2 + 12 )
and 1 − 4 (1 − p) ≥ 0 = [4 x 2 + 4 x(m − 2 ) + (m − 2 )2 ] + (m2 + 12 ) − (m − 2 )2
⇒
3
≤ p≤1 = [2 x + (m − 2 )]2 + [12 + 4m − 4]
4
For rational factors, D should be a perfect square.
186. Since, both roots of f ( x ) = 0 exceed a. Therefore, ∴ 8 + 4m = 0 ⇒ m = − 2
Discriminant > 0 …(i) Aliter
f (a) > 0 …(ii) Use abc + 2 fgh − af 2 − bg 2 − ch 2 = 0
1
− >a …(iii) ⇒ m= −2
2
On solving Eqs. (i), (ii) and (iii), we get 194. The given expression
a< −2 x 2 y
2
y x
= z 2 a + b + c + 2 a + 2 b
187. f (0 )⋅ f (1) > 0 z z z z
Targ e t E x e rc is e s
(− 1) (1 − a2 + 2 a − 1) > 0 x y
_ + 2c
⇒ a2 − 2 a > 0 + + z z
0 2
⇒ a(a − 2 ) > 0 = z 2 [aX 2 + bY 2 + c + 2 aY + 2 bX + 2cXY ] …(i)
⇒ a<0 x y
or a>2 where, = X and =Y
z z
188. Since, a lies between the roots of the given equation. The given expression can be resolved into rational
∴ 2 f (a) < 0 factors when the expression under the brackets given
⇒ f (a) < 0 in Eq. (i) can be resolved into rational factors.
Here, f ( x ) = 2 x 2 − 2(2 a + 1) x + a(a − 1) The condition for this is
abc + 2 ⋅ a ⋅ b ⋅ c − a ⋅ a2 − b ⋅ b2 − c ⋅ c 2 = 0
∴ f (a) = 2 a2 − 2(2 a + 1) a + a(a − 1) < 0
[Q here, f = a, g = b, h = c ]
⇒ −a − 3 a < 0
2
⇒ a3 + b3 + c 3 = 3abc
⇒ a (a + 3) > 0
⇒ a ∈ (− ∞, − 3) ∪ (0, ∞ ) 195. Given equation is
x 2 + 9y 2 − 4x + 3 = 0
189. Since, α < − 1and β > 1
or x 2 − 4x + 9y 2 + 3 = 0 ...(i)
∴ α + λ = − 1and β = 1 + µ, where λ , µ > 0
c b Since, x is real.
Now, 1 + + = 1 + αβ + |α + β | ∴ (− 4)2 − 4(9 y 2 + 3) ≥ 0
a a
= 1 + (− 1 − λ ) (1 + µ) + |− 1 − λ + 1 + µ| ⇒ 16 − 4 (9 y 2 + 3) ≥ 0
= 1 − 1 − µ − λ − λµ + |µ − λ| ⇒ 4 − 9y 2 − 3 ≥ 0
− µ − λ − λµ + µ − λ , if µ > λ ⇒ 9y 2 − 1 ≤ 0
=
− µ − λ − λµ + λ − µ, if λ > µ ⇒ (3 y − 1) (3 y + 1) ≤ 0
c b −1 1
∴ 1+ + = − 2 λ − λµ or − 2µ − λµ ⇒ ≤y≤
a a 3 3
c b Eq. (i) can also be written as
In both cases, 1 + + <0 [Q λ , µ > 0]
a a 9y 2 + 0 y + x 2 − 4x + 3 = 0
ax 3 bx 2 Since, y is real.
190. Let f ( x ) = + + cx + d
∴ 0 2 − 4 × 9 ( x 2 − 4 x + 3) ≥ 0
3 2
where, f (0 ) = f (1) = d ⇒ x 2 − 4x + 3 ≤ 0
∴f ′ ( x ) has atleast one root [0, 1] ⇒ ( x − 1) ( x − 3) ≤ 0
or ax 2 + bx + c has atleast one root [0, 1]. ⇒ 1≤ x ≤ 3 253
5 1
2
−15
Case I y = a + b ⇒ (a + b )x =a+ b
196. If mr , satisfy the given equation
m r ⇒ x − 15 = 1 ⇒ x = ± 4
2
x 2 + y 2 + 2 gx + 2 fy + c = 0, then
Objective Mathematics Vol. 1
1
Case II y = a − b ⇒ y =
1 2f a+ b
mr2 + 2 + 2 gmr + +c =0
mr mr ⇒ y = (a + b )−1
⇒ mr4 + 2 gmr3 + cmr2 + 2 fmr + 1 = 0 ⇒ (a + b )x
2
−15
= (a + b )− 1
Now, roots of given equation are m1, m2 , m3 and m4 . ⇒ x − 15 = − 1
2
The product of roots,
Constant term 1 ⇒ x = ± 14
m1m2 m3 m4 = = =1
4
Coefficient of mr 1 202. The roots of ax + bx + c = 0 are imaginary.
2
Targ e t E x e rc is e s
(− 4)2 − 4 (1 + k ) (− 1 + k ) ≥ 0
⇒ a < −1 ⇒ All roots are real ⇒ 16 − 4 (k 2 − 1) ≥ 0
a a−1
1< a < 2 ⇒ x = ± i, ± ⇒ k2 ≤ 5
2−a a+1
−4 4
⇒ Only two roots are real. We have, tan x1 + tan x2 = − =
1 + k 1 + k
⇒ a > 2 ⇒ All roots are real. − 1+ k
and tan x1 ⋅ tan x2 =
206. Symmetric functions are those which do not change by 1+ k
interchanging α and β. 4
207. sec 2 θ + cosec 2θ = sec 2 θ ⋅ cosec 2θ 1+ k 4
∴ tan ( x1 + x2 ) = = =2
Sum of the roots is equal to their product and the roots − 1 + k 2
1−
are real. 1+ k
b c
∴ − = ⇒ b+c =0 For k = 2, from Eq. (i),
a a
3 tan 2 x − 4 tan x + 1 = 0
Also, b2 − 4ac ≥ 0
1
⇒ c 2 − 4ac ≥ 0 ⇒ tan x = 1,
3
⇒ c (c − 4a) ≥ 0 π 1
∴ x1 =, x2 = tan − 1
⇒ c − 4a ≥ 0 [Qc > 0] 4 3
Further b2 + 4ab ≥ 0 For k = 1, from Eq. (i), 2 tan 2 x − 4 tan x = 0
⇒ b + 4a ≤ 0 [Q b < 0] ⇒ tan x = 0, 2 ⇒ x1 = 0, x2 = tan −1 2
208. Let the roots be a/r, a, ar, where a > 0, r > 1. 211. We have, u + v = − p and uv = q
Now, a/ r + a + ar = − p ...(i) 1 1 u+v −p 1 1 1 1
(a) + = = and ⋅ = =
a(a/ r ) + a(ar )(ar )(a/ r ) = q ...(ii) u v uv q u v uv q
(a/ r ) (a) (ar ) = 1 ...(iii) ∴ The required equation is
⇒ a3 = 1 ⇒ a = 1 p 1
x2 − − x + = 0
Hence, option (c) is correct. q q
From Eq. (i), putting a = 1, we get ⇒ qx 2 + px + 1 = 0
1 (b) (u + v ) + uv = − p + q and (u + v ) uv = − pq
− p− 3> 0 Qr + >2
r ∴ The required equation is
⇒ p< −3 x 2 − (− p + q ) x + (− pq ) = 0
Hence, option (b) is not correct. ⇒ x 2 + ( p − q ) x − pq = 0
Also, 1/ r + 1 + r = − p ...(iv) 255
⇒ ( x + p) ( x − q ) = 0
5 (c) u 2 + v 2 = (u + v )2 − 2uv = p2 − 2q
and u v = (uv ) = q
2 2
⇒ (c − a) (c − b) ≤ 0 ...(iii)
2a
⇒ a ≤ c ≤ b or b≤c ≤ a From Eqs. (i), (ii) and (iii), we get
213. Since, P( x ) divides both of them. So, P( x ) also divides ac < 0, ab < 0 and bc > 0
(3 x 4 + 4 x 2 + 28 x + 5) − 3 ( x 4 + 6 x 2 + 25) 218. For ax 2 + bx + c = 0 and a1 x 2 + b1 x + c1 = 0 have a
= − 14 x 2 + 28 x − 70 common root
(a1c − ac1 )2 = 4 (ab1 − ba1) (bc1 − b 1c ) ...(i)
= − 14( x 2 − 2 x + 5)
a b c
which is a quadratic. If , , are in AP.
a1 b 1 c 1
Hence, P( x ) = x 2 − 2 x + 5
ba1 − ab 1 cb 1 − c 1 b
⇒ P(1) = 4 = =k
a1b 1 b 1c 1
214. Roots of 4 x 2 − x − 1 = 0 are irrational. So, one root cb 1 − ac1
common implies both roots are common. and = 2k
a1c1
4 −1 −1 −3
∴ = = ⇒ λ= ,µ = 0 On putting these values in Eq. (i), we have
3 λ + µ λ −µ 4
c1a1 = b 12
215. 2 x 2 + 6 xy + 5 y 2 = 1 ...(i)
219. Statement I Given equation is x 2 − bx + c = 0
Eq. (i) can be rewritten as
Let α and β be two roots such that
2 x 2 + (6 y )x + 5 y 2 − 1 = 0 lα − βl = 1
Since, x is real. ⇒ (α + β)2 − 4αβ = 1
36 y 2 − 8 (5 y 2 − 1) ≥ 0 ⇒ b2 − 4 c = 1
⇒ y2 ≤ 2 Statement II Given equation is
⇒ − 2≤y≤ 2 4abc x 2 + (b2 − 4ac ) x − b = 0.
Eq. (i) can also be rewritten as ∴ D = (b2 − 4ac )2 + 16 ab2c
5 y + (6 x )y + 2 x − 1 = 0
2 2
= (b2 + 4ac )2 > 0
Since, y is real. Hence, roots are real and unequal.
∴ 36 x 2 − 20 (2 x 2 − 1) ≥ 0
Solutions (Q.Nos. 220-222)
⇒ 36 x 2 − 40 x 2 + 20 ≥ 0 Let the other roots of f { f ( x )} = x be λ and δ.
⇒ − 4 x 2 ≥ − 20 ⇒ f { f (λ )} = λ
⇒ x2 ≤ 5 Let f(λ ) = γ
256 ⇒ − 5≤x≤ 5 ⇒ f (γ ) = γ
Other roots γ and δ lie on the line
y=−x+c
There must be two points C and D on the parabola
229. If a = 2, then
b−c =1 5
Targ e t E x e rc is e s
⇒ 0<a<4
225. As c 2 is local maximum and c1 is local minimum.
B. Equation has negative roots of discriminant ≥ 0,
⇒ f ( x ) = 0 has atleast two solutions. α < 0, β < 0
Solutions (Q. Nos. 226-228) i.e. α + β < 0 and f(0 ) > 0
(β − α) = ((β + δ) − (α + δ)) ∴ 4(a + 1)2 − 36 a + 20 > 0
(β + α )2 − 4αβ = [(β + δ ) + (α + δ)]2 − 4 (β + δ) (α + δ)
⇒ a2 − 7 a + 6 ≥ 0
(− b1 ) − 4 c1 = ( − b2 ) − 4 c 2
2 2
⇒ a ≤ 1 or a≥6 ...(i)
D1 = D2 α+β<0
Least value of f ( x ) is ⇒ a + 1> 0
D 1 ⇒ a> −1
− 1 =− ⇒ D1 = 1 ⇒ D2 = 1 ...(ii)
4 4 and f(0 ) > 0
∴Least value of g( x ) is 9a − 5 > 0
D 1
− 2 =− ⇒ a>
5
...(iii)
4 4 9
Least value of g( x ) accurs at
b 7 From Eqs. (i), (ii) and (iii), we get
x=− 2 = ⇒ b2 = − 7 a≥6
2 2
b22 − 4 c 2 = D2 ⇒ 49 − 4 c 2 = 1 C. Given, x 2 − 2(4a − 1)x + 15 a2 − 2 a − 7 > 0
48 ∴ Discriminant < 0 [Q coefficient of x 2 > 0]
⇒ = c 2 ⇒ c 2 = 12
4 ⇒ 4 (4a − 1) − 4 (15 a − 2 a − 7 ) < 0
2 2
x 2 − 7 x + 12 = 0 ⇒ x = 3, 4 ⇒ a2 − 6 a + 8 < 0
Solutions (Q. Nos. 229-231) ⇒ 2<a<4
Let x + ax + bx + cx + d
4 3 2
x + 2x + a
2
D. Let y =
= ( x − x1 ) ( x − x2 ) ( x − x3 ) ( x − x4 ) x 2 + 4 x + 3a
Let ( x − x1 ) ( x − x2 ) = x 2 + px + q ⇒ x 2 ( y − 1) + 2 (2 y − 1)x + a (3 y − 1) = 0
and ( x − x3 ) ( x − x4 ) = x 2 + px + r
As x ∈ R, D ≥ 0
∴ q = x1 x2 and r = x3 x4 ∴ 4(2 y − 1)2 − 4( y − 1) a(3 y − 1) ≥ 0
x 4 + ax 3 + bx 2 + cx + d 4
= x 4 + 2 px 3 + ( p2 + q + r )x 2 + p(q + r )x + qr ⇒ (4 − 3 a) y 2 − 4(1 − a) y + 1 − a ≥ 0 ⇒ a <
3
∴ a = 2 p; b = p2 + q + r ; c = p(q + r ); d = qr and a (a − 1) ≤ 0
Clearly, a3 − 4ab + 8 c = 0 ...(i) ∴ 0 ≤ a≤1 257
5 233. A. Since, f ( x ) = x 2 + 2(k + 1)x + (9k − 5)
negative roots.
has
and
1
8 k2 + k + ≥ 0
2
−k −k<0
2
Objective Mathematics Vol. 1
258
Entrances Gallery
1. Let y = x 5 − 5 x and g( x ) = − a. Then, it is clear from the 1 1 1
5
Targ e t E x e rc is e s
log 2
⇒ − log 2 = log x
1 1
⇒ x= ⇒ x0 =
(0,–1) 2 2
8. an = α n − β n
Hence, 2 solutions.
α 2 − 6α − 2 = 0
4. log 2 3 x = ( x − 1) log 2 4 = 2( x − 1)
Multiply with α 8 on both sides, we get
⇒ x log 2 3 = 2 x − 2
2 α 10 − 6 α 9 − 2α 8 = 0 …(i)
⇒ x=
2 − log 2 3 Similarly, β10 − 6 β 9 − 2β 8 = 0 ...(ii)
After rearranging, we get From Eqs. (i) and (ii), we get
x=
2 α 10 − β10 − 6(α 9 − β 9 ) = 2 (α 8 − β 8 )
1 a − 2 a8
2− ⇒ a10 − 6 a9 = 2 a8 ⇒ 10 =3
log 3 2 2 a9
2 log 3 2
= 9. x 2 + bx − 1 = 0
2 log 3 2 − 1
Rearranging, again and x2 + x + b = 0 …(i)
1 Common root is
b+1
x=
log 3 4
=
log 4 3
=
1 (b − 1) x − 1 − b = 0 ⇒ x=
log 3 4 − 1 1 1 − log b−1
−1 4 3
log 4 3 This value of x satisfies Eq. (i).
5. Let 1 + a = y (b + 1)2 b + 1
∴ + + b=0
(b − 1)2 b−1
⇒ ( y1/ 3 − 1) x 2 + ( y1/ 2 − 1) x + y1/ 6 − 1 = 0
⇒ b = 3 i, − 3 i, 0
y1/ 3 − 1 2 y1/ 2 − 1 y1/ 6 − 1
⇒ x + x+ =0
10. Since,f − ⋅ f − < 0, so lies in − , − .
1 3 3 1
y −1 y −1 y −1
2 4 4 2
Taking lim on both the sides, we get
y →1 11. α 3 + β 3 = q
1 2 1 1
x + x+ =0 ⇒ (α + β)3 − 3αβ (α + β) = q
3 2 6
⇒ − p3 + 3 pαβ = q
⇒ 2 x 2 + 3x + 1 = 0
q + p3
1 ⇒ αβ =
∴ x = − 1, − 3p
2 259
5 ⇒
⇒
α β
x2 − + x + ⋅ = 0
β α
x −
(α 2 + β 2 )
α β
β α
x + 1= 0
14. Given equations are
and
x2 + 2 x + 3 = 0
ax 2 + bx + c = 0
…(i)
…(ii)
Objective Mathematics Vol. 1
2
αβ Since, Eq. (i) has imaginary roots.
(α + β)2 − 2αβ So, Eq. (ii) will also have both roots same as Eq. (i).
⇒ x2 − x + 1= 0
αβ Thus,
a b c
= =
2 p3 + q 1 2 3
p −2 Hence, a : b : c is 1 : 2 : 3
3p
⇒ x2 − x + 1= 0 15. Given equation is
p3 + q
e sin x − e − sin x = 4
3p 1
⇒ e sin x − sin x = 4
⇒ ( p + q ) x − (3 p − 2 p − 2q ) x + ( p3 + q ) = 0
3 2 3 3
e
⇒ ( p3 + q ) x 2 − ( p3 − 2q )x + ( p3 + q ) = 0 Now, let y = e sin x
1
12. Given, α and β are the roots of the equation ∴ y− =4
y
x − 6 x − 2 = 0.
2
⇒ y 2 − 4y − 1 = 0
Q an = α n − β n for n ≥ 1
∴ a10 = α 10 − β10 4 ± 16 + 4
⇒ y=
a8 = α − β 8 ⇒ a9 = α 9 − β 9
8 2
⇒ y =2 ± 5
Now, consider
a10 − 2 a8 α 10 − β10 − 2(α 8 − β 8 ) On substituting the value of y, we get
= e sin x = 2 ± 5
2 a9 2(α 9 − β 9 )
α 8 (α 2 − 2 ) − β 8 (β 2 − 2 ) Now, sine is a bounded function,
= i.e. − 1 ≤ sin x ≤ 1.
2(α 9 − β 9 )
Ta rg e t E x e rc is e s
∴ e − 1 ≤ e sin x ≤ e
Q α and β are the roots of
2 1
⇒ e sin x ∈ , e
x − 6x − 2 = 0 e
So, x 2 = 6x + 2
α 8 ⋅ 6 α − β8 ⋅ 6 β 16. Let z = x + iy, given Re( z ) = 1
= ⇒ α = 6α + 2
2
∴ x =1
2(α − β )
9 9
⇒ α − 2 = 6α ⇒ z = 1 + iy
2
and β2 = 6 β = 2 Since, the complex roots are conjugate of each other.
∴ z = 1 + iy and 1 − iy are two roots of z 2 + α z + β = 0
⇒ β 2 − 2 = 6 β
Product of roots = β
6 α 9 − 6 β9 6 ⇒ (1 + iy ) (1 − iy ) = β
= = =3
2(α 9 − β 9 ) 2 ∴ β = 1 + y2 ≥ 1
Aliter ⇒ β ∈ (1, ∞ )
Since, α and β are the roots of the equation
17. Let the quadratic equation be
x 2 − 6x − 2 = 0
ax 2 + bx + c = 0
⇒ x = 6x + 2 ⇒ α 2 = 6α + 2
2
∴
greater than − 2 but less than 4.
D ≥ 0, − 2 < −
b
< 4,
5
Targ e t E x e rc is e s
6 3 24. Let α and β be the roots of equation
∴ x − 6x +
2
8= 0
x 2 − (a − 2 )x − a − 1 = 0
⇒ ( x − 4) ( x − 2 ) = 0
Then, α + β = a − 2 and αβ = − a − 1
⇒ x = 2, 4
Now, α 2 + β 2 = (α + β)2 − 2αβ
and x 2 − cx + 6 = 0
⇒ α 2 + β 2 = (a − 2 )2 + 2(a + 1)
If x = 2, then 2 2 − 2c + 6 = 0 ⇒ c = 5
∴ x 2 − 5x + 6 = 0 ⇒ α 2 + β 2 = a2 − 2 a + 6
⇒ x = 2, 3 ⇒ α 2 + β 2 = (a − 1)2 + 5
Hence, the common root is 2. The value of α 2 + β 2 will be least, if a − 1 = 0
21. Letα andβ be the roots of equation x 2 + ax + 1 = 0, then ⇒ a=1
α + β = − a and αβ = 1. Aliter
Now, α − β = (α + β)2 − 4αβ Since, α + β = (a − 2 ) and αβ = − a − 1
Let f (a) = α 2 + β 2
⇒ α − β = a2 − 4
= (α + β)2 − 2αβ
According to given condition,
= (a − 2 )2 + 2(a + 1)
a2 − 4 < 5
= a2 − 2 a + 6
⇒ a2 − 4 < 5
⇒ f ′ (a) = 2 a − 2
⇒ a2 < 9 For maxima or minima, put f ′ (a) = 0.
⇒ a <3 ∴ 2a − 2 = 0 ⇒ a = 1
⇒ a ∈ (− 3, 3) Now, f ″ (a) = 2 ⇒ f ″ (1) = 2 > 0
22. Since, tan 30° and tan 15° are the roots of equation ∴ f (a) is minimum at a = 1.
x 2 + px + q = 0. 25. Let n and (n + 1) be the two consecutive roots of
∴ tan 30 ° + tan 15° = − p x 2 − bx + c = 0. Then, n + (n + 1) = b and n (n + 1) = c
and tan 30 ° tan 15° = q ∴ b2 − 4 c = (2 n + 1)2 − 4 n (n + 1)
Now, 2 + q − p = 2 + tan 30 ° tan 15° = 4 n2 + 4 n + 1 − 4 n2 − 4 n = 1
+ (tan 30 ° + tan 15° )
26. Let f ( x ) = x 2 − 2 kx + k 2 + k − 5
= 2 + tan 30 ° tan 15° + 1 − tan 30 ° tan 15°
Since, both roots are less than 5.
tan 30 ° + tan 15° b
Q tan 45° = 1 − tan 30 ° tan 15° Then, D ≥ 0, − <5
2a
⇒ 2+q − p=3 and f(5) > 0
261
5 Now,
⇒
D = 4k 2 − 4(k 2 + k − 5)
= − 4k + 20 ≥ 0
k≤5 …(i)
Then,
and
z1 + z2 = − a
z1 z2 = b
On putting these values in Eq. (i), we get
Objective Mathematics Vol. 1
−
b
<5 ⇒ k<5 …(ii) (− a)2 = 3 b
2a ⇒ a2 = 3b
and f(5) > 0
32. Given equation is ax 2 + bx + c = 0
⇒ 25 − 10 k + k 2 + k − 5 > 0
Let α and β be the roots of the equation.
⇒ k 2 − 9k + 20 > 0 b c
⇒ (k − 5) (k − 4) > 0 Then, α+β=− and αβ =
a a
⇒ k < 4 and k > 5 …(iii) 1 1 α 2 + β2
Also given, α + β = 2 + 2 =
From Eqs. (i), (ii) and (iii), we get α β α 2β 2
k<4 2
α + β 2
27. Let f ( x ) = an x + an − 1 x
n n −1
+ ... + a1 x = 0 ... (i) ⇒ α+β= −
αβ αβ
f (0 ) = 0 b − b / a
2
2
and f (α) = 0 ⇒ − = −
a c/a c/a
According to the Rolle’s theorem, 2
b b 2a
f′ ( x) = 0 ⇒ = −
−
a c c
has atleast one root between (0, α ).
2a b b c
⇒ f ′ ( x ) = 0 has a positive root less than α. ⇒ = +
c c c a
28. Since, (1 − p) is a root of quadratic equation 2a b c
x 2 + px + (1 − p) = 0 …(i) ⇒ = +
b c a
So, (1 − p) satisfied the above equation. ⇒
c a
, and
b
are in AP.
∴ (1 − p)2 + p (1 − p) + (1 − p) = 0 a b c
Ta rg e t E x e rc is e s
⇒ (1 − p) (1 − p + p + 1) = 0 a b c
⇒ , and are in HP.
⇒ (1 − p) 2 = 0 c a b
⇒ p=1 33. Given equation is x 2 − 3 x + 2 = 0
On putting the value of p in Eq. (i), we get x 2 + x = 0 Case I When x > 0, then x = x
⇒ x = 0, − 1 ∴ x 2 − 3x + 2 = 0
29. Since, one of the roots of equation x 2 + px + 12 = 0 is 4. ⇒ ( x − 1) ( x − 2 ) = 0
∴ 16 + 4 p + 12 = 0 ⇒ x = 1, 2
⇒ 4 p = − 28 Case II When x < 0, then x = − x
⇒ p= −7 ∴ x 2 + 3x + 2 = 0
So, the other equation is x 2 − px + q = 0 whose roots ⇒ ( x + 1) ( x + 2 ) = 0
are equal. Let the roots be α and α. ⇒ x = − 1, − 2
7 Hence, four solutions are possible.
∴ Sum of roots = α + α =
1 34. Since, one root of the quadratic equation
7 (a2 − 5a + 3)x 2 + (3a − 1) x + 2 = 0 is twice as large as
⇒ α=
2 the other, then let their roots be α and 2α.
and product of roots = α ⋅ α = q (3 a − 1)
2 ∴ α + 2α = − 2
7 49 (a − 5 a + 3)
⇒ =q ⇒ q =
2 4 (3 a − 1)
⇒ 3α = − 2
30. Let α and β be two numbers whose arithmetic mean is 9 (a − 5 a + 3)
and geometric mean is 4. 2
and α ⋅ 2α = 2
∴ α + β = 18 and αβ = 16 (a − 5 a + 3)
∴Required equation is 2
⇒ 2α = 2
2
x 2 − (α + β) x + (αβ) = 0 (a − 5 a + 3)
⇒ x 2 − 18 x + 16 = 0 (3 a − 1)2 1
⇒ = 2
31. Since, origin z1 and z2 are the vertices of an equilateral 9 (a − 5 a + 3)
2 2
(a − 5 a + 3)
triangle, then ⇒ (3 a − 1)2 = 9 (a2 − 5 a + 3)
z12 + z22 = z1 z2 ⇒ 9 a2 − 6 a + 1 = 9 a2 − 45 a + 27
⇒ ( z1 + z2 )2 = 3 z1 z2 …(i) ⇒ 45 a − 6 a = 27 − 1
26 2
Again, z1 and z2 are the roots of the equation ⇒ a= =
262 z 2 + az + b = 0 39 3
35. Since, α 2 = 5 α − 3
⇒
⇒
α 2 − 5 α + 3 = 0 and β 2 = 5 β − 3
β − 5β + 3 = 0
2
39. Let α and β be the roots of the equation
x 2 − (a − 2 ) x − a + 1 = 0
∴ α + β = a−2
5
Targ e t E x e rc is e s
⇒ 2 x2 − 7 x + 7 = 2 a2 + 16 − 8 a 4 a − 16
⇒ 2 x2 − 7 x + 5 = 0 ⇒ + + 3= b
4 2
Now, D = b2 − 4ac ⇒ a + 16 − 8 a + 8 a − 32 + 12 = 4b
2
= (− 7 )2 − 4 × 2 × 5 ∴ a2 − 4b = 4
= 49 − 40 = 9 > 0
41. Since, α and β are the roots of x 2 − ax + b2 = 0.
Hence, it has two real roots.
Then, α+β=a
37. Let y = 20 301 and αβ = b2
Number of digits = Integral part of (301 log10 20 ) + 1 Now, α + β 2 = (α + β )2 − 2αβ
2
a
Hence, one of the root of given equation is 1.
∴ aS n + 1 + bS n + cS n − 1 = 0
Let another root be α.
2 loge b loge b2 48. Since,sin α andcos α are the roots of ax 2 + bx + c = 0.
∴ Sum of roots, 1 + α = = b c
loge a loge a ∴ sin α + cos α = − and sin α cos α =
loge ac a a
⇒ α= −1 b
2
loge a ⇒ (sin α + cos α ) = −
2
a
(loge a + loge c )
= −1 b2
loge a ⇒ sin 2 α + cos 2 α + 2 sin α cos α =
loge c a2
= = log a c c b2
loge a ⇒ 1+ 2⋅ =
a a2
Hence, roots are 1 and log a c.
⇒ a (a + 2c ) = b2
45. Given α , β are the roots of ax 2 + bx + c = 0 and
⇒ b2 − a2 = 2 ac
α + h, β + h are the roots of px 2 + qx + r = 0.
b c 49. Given, 32 x − 2 (3 x + 2 ) + 81 = 0
∴ α + β = − , αβ =
a a ∴ (3 x )2 − 2 (3 x ) 32 + 81 = 0
q r Let 3x = y
and α + h + β + h = − , (α + h ) (β + h ) =
p p ∴ y − 18 y + 81 = 0
2
Now, (α + h ) − (β + h ) = α − β
⇒ ( y − 9)2 = 0
⇒ [(α + h ) − (β + h )]2 = (α − β )2
⇒ y = 9 ⇒ 3 x = 32 [Q 3 x = y]
⇒ [(α + h ) + (β + h )]2 − 4 (α + h ) ( β + h )
∴ x =2
Ta rg e t E x e rc is e s
= (α + β )2 − 4αβ
50. Let the roots of the equation 2 x 2 + 3 x + 1 = 0 beα andβ.
q 2 4r b2 4 c −3
⇒ − = − Then, α+β= …(i)
p2 p a2 a 2
q − 4 pr p − 4ac
2 2 1
⇒ = and αβ = …(ii)
p2 a2 2
∴ α + β 2 = (α + β )2 − 2αβ
2
b − 4ac a
2 2
∴ = 2 − 3
2
1 9 5
q 2 − 4 pr p = − 2 = − 1=
2 2 4 4
Hence, the ratio of the square of their discriminants is 2
1 1
a2 : p2 . and α 2β 2 = =
2 4
46. Given, f ( x ) = 2 x 2 + 5 x + 1 …(i) ∴ Required equation is
Also, f ( x ) = a ( x + 1) ( x − 2 ) + b ( x − 2 ) ( x − 1) x 2 − (α 2 + β 2 ) x + α 2β 2 = 0
+ c ( x − 1) ( x + 1)
5 1
= a ( x 2 − x − 2 ) + b ( x 2 − 3 x + 2 ) + c ( x 2 − 1) ⇒ x2 − x + = 0
4 4
⇒ f ( x ) = (a + b + c ) x 2 + (− a − 3b) x
⇒ 4x 2 − 5x + 1 = 0
+ (− 2 a + 2 b − c ) …(ii)
On equating the coefficients of x 2 , x and constant 51. Given equation can be rewritten as
r2
terms in Eqs. (i) and (ii), we get x2 − x + 1= 0
a + b + c = 2, − a − 3b = 5 and− 2 a + 2 b − c = 1 pq
On solving above equations, we get r2
∴ tan A + tan B = and tan A tan B = 1
a = − 4, b = − 1/ 3 and c = 19 / 3 pq
Hence, exactly one choice for each of a, b and c. We know that, A + B + C = 180 °
47. Given, α and β are the roots of equation ⇒ ( A + B) = 180 ° − C
⇒ tan ( A + B) = tan (180 ° − C )
ax 2 + bx + c = 0.
tan A + tan B
b c ⇒ = − tan C
∴ α+β=− and αβ = 1 − tan A tan B
a a
Now, S n + 1 = α n + 1 + β n + 1 r 2 / pq
⇒ = − tan C
1− 1
= α n + 1 + β n + 1 + α nβ + β nα − α nβ − β nα
⇒ ∞ = − tan C
= α n (α + β ) + β n (α + β ) − αβ (α n − 1 + β n − 1 ) ∴ C = 90 °
= (α + β ) (α n + β n ) − αβ (α n − 1 + β n − 1 ) Hence, ∆ABC is a right angled triangle.
264
52. Q Sum of roots, α + β = − p and αβ = q
∴ (α 3 + β 3 ) = (α + β )3 − 3 αβ (α + β )
= (− p) − 3 q (− p) = − p + 3 pq
3 3
Then, sum of the roots,
S = α + β = a + a2 + a3 + a4 + a5 + a6
a (1 − a6 ) a − a7 a − 1
5
∴ β 2 + 9 p2β + 15 q 2 = 0 …(ii)
53. Given equation is x + 1 − x − 1 = 4 x − 1 ...(i)
Let f ( x ) = x 2 + 6 p2 x + 10 q 2
On squaring both sides, we get Then, f (α ) = α 2 + 6 p2α + 10 q 2
( x + 1) + ( x − 1) − 2 x 2 − 1 = 4 x − 1 = (α 2 + 3 p2α + 5 q 2 ) + 3 p2α + 5 q 2
⇒ 2 x − 2 x − 1 = 4x − 1
2
= 0 + 3 p2α + 5 q 2 [from Eq. (i)]
⇒ − 2 x − 1 = 2x − 1
2
⇒ f (α ) > 0 and f ( β ) = β 2 + 6 p2β + 10 q 2
Again, squaring on both sides, we get = ( β 2 + 9 p2 β + 15 q 2 ) − (3 p2β + 5 q 2 )
4 ( x 2 − 1) = 4 x 2 + 1 − 4 x = 0 − (3 p2β + 5 q 2 )
⇒ − 4 = + 1 − 4x ⇒ f ( β) < 0
Targ e t E x e rc is e s
⇒ 4x = 5 ⇒ x = 5 / 4 Thus, f ( x ) is a polynomial such that f (α ) > 0 and
5 f ( β ) < 0.
But when we put x = in Eq. (i), we get
4 Therefore, there exists γ satisfying α < γ < β such that
5 5 5 f (γ ) = 0.
+ 1− −1= 4× −1
4 4 4 58. Given equation is λ2 + 8λ + µ 2 + 6 µ = 0.
9 1
⇒ − = 5−1 Since, roots are real.
4 4 ∴ b2 − 4ac ≥ 0
3 1
⇒ − = 2 ⇒ 1 = 2, which is not true. ⇒ (8)2 − 4 ( µ 2 + 6 µ ) ≥ 0
2 2
⇒ 64 − 4 ( µ 2 + 6 µ ) ≥ 0
Hence, no value of x satisfy the given equation.
⇒ 16 − ( µ 2 + 6 µ ) ≥ 0
54. Given, 9 x = 12 + 147
⇒ µ 2 + 6 µ − 16 ≤ 0
On squaring both sides, we get
⇒ µ 2 + 8 µ − 2 µ − 16 ≤ 0
81x = 12 + 147 + 2 12 147
⇒ 81x = 159 + 84 ⇒ µ ( µ + 8) − 2 ( µ + 8) ≤ 0
⇒ 81x = 243 ⇒ ( µ + 8) ( µ − 2 ) ≤ 0
∴ x=3 ∴ − 8≤µ ≤2
Aliter 59. Given,| x − 2| + | x + 2| < 4
9 x = 12 + 147
Case I When x < − 2
⇒ 9 x =2 3 + 7 3 ⇒ − ( x − 2) − ( x + 2) < 4
⇒ 9 x =9 3 ⇒ − 2x < 4
⇒ x = 3 ⇒ − x < 2 ⇒ x > − 2, which is not true.
∴ x=3 Hence, no value of x exist.
55. x 2 − 3 x + 1 = 0 Case II When − 2 < x < 2
3± 3− 4 3±i ⇒ − ( x − 2) + x + 2 < 4
⇒ x= = ⇒ 4 < 4, which is not true.
2 2
Hence, no value of x exist.
2π 2π
56. Given, a = cos + i sin Case III When x > 2
7 7
∴ a7 = cos 2 π + i sin 2 π [Q e iθ
= cos θ + i sin θ ] ⇒ x −2 + x + 2 < 4
⇒ 2 x < 4 ⇒ x < 2, which is not true.
=1
So, no value of x exist.
Also, α = a + a2 + a4 and β = a3 + a5 + a6 Hence, the number of solutions of the inequation is 0. 265
5 60. 2 x − 5 ≤
⇒
4x − 7
3
6 x − 15 ≤ 4 x − 7
Now, on substituting the value of k in Eq. (iii), we get
2+
c −a
2a
+
2 a
1
+1
=−
b
a
Objective Mathematics Vol. 1
⇒ 2x ≤ 8 ⇒ x ≤ 4 c −a
61. 3 x + 2 > − 16 c −a c −a b
⇒ 2+ + =−
⇒ x>−6 2a a+ c a
and 2 x − 3 ≤ 11 2 (2 a) (a + c ) + (c − a) (c + a) + 2 a (c − a) b
⇒ =−
⇒ x ≤7 2 a (a + c ) a
∴ x ∈ (− 6, 7 ] ⇒ a2 + c 2 + 6ac = − 2 ab − 2 bc
1
62. We can write, 5 x + 5− x = 5 x + x ⇒ a2 + b2 + c 2 + 2 ab + 2 bc + 2ca = b2 − 4ac
5
1 ∴ (a + b + c )2 = b2 − 4ac
= 5x + x − 2 + 2
5 66. Since, the second equation has imaginary roots.
x 1
2
2 a − 3b 4 c
= 5 − x + 2 ∴ = = =k
5 3 −4 5
3k 4k 5k
This means 5 x + 5− x > 1 ⇒ a= ,b= ,c =
2 3 4
Thus, sin (e ) > 1, which is not possible.
x
3k 4k
+
a+ b 3 = 34
63. By hypothesis, a2α 2 + bα + c = 0 …(i) ∴ = 2
b + c 4k + 5k 31
and a β − bβ − c = 0
2 2
…(ii)
3 4
where, 0 <α <β
9x − 1 + 7
and α ≠ 0. 67. log 2 = 2 log 2 2
Let f ( x ) = a2 x 2 + 2 bx + 2c 3 x − 1 + 1
(32 )x − 1 + 7 (3 x − 1 )2 + 7
Ta rg e t E x e rc is e s
Clearly, it is continuous on [α , β ]. ⇒ =4 ⇒ =4
(3 x − 1 + 1) 3x − 1 + 1
∴ f (α ) = a2α 2 + 2 bα + 2c = − α 2 a2 < 0
Let 3x − 1 = y
and f (β ) = a2β 2 + 2 bβ + 2c = 3 a2β 2 > 0 y +7
2
∴ =4
Therefore, by the intermediate value theorem of y+1
continuous function, f ( x ) = 0 has a root γ between α ⇒ y 2 + 7 = 4y + 4
and β. ⇒ y − 4y + 3 = 0
2
∴ α+β=
4+ 5
5+ 2
73. Here, α + β = 2 and αβ = 4
Now, (α − β ) = (α + β )2 − 4αβ 5
Targ e t E x e rc is e s
...(ii)
71. (α + β ) + (α − β ) = − p [given] αβγ = − 1 ...(iii)
⇒ 2α = − p 1 1
p Now, Σ = Σ
⇒ α=− α + β − γ − γ − γ
2
and [(α + β ) (α − β )] = q [given] − 1 − 1 1
= Σ = Σ
⇒ α2 − β = q 2γ 2 γ
⇒ β = α2 − q − 1 1 1 1
= + +
2 α β γ
2
p
= − − q
2
− 1 Σαβ − 1 − 2
p2 = = = −1
= −q 2 αβγ 2 − 1
4
⇒ p2 − 4 q = 4 β 75. (i) b must be even integer.
(ii) Its discriminant is a perfect square of an even number.
The given equation is
So, D = b2 + 4 ⋅ 16
( p2 − 4 q ) ( p2 x 2 + 4 px ) − 16 q = 0
= b2 + 64
⇒ 4 β ( p2 x 2 + 4 px ) − 16 (α 2 − β ) = 0 [Qα 2 − β = q]
⇒ β (4 α 2 x 2 − 8 αx ) − 4 (α 2 − β ) = 0 [Q p = − 2α] Here, 0 and 6 only the even integers value of b, on which
the discriminant of given quadratic equation have
⇒ α βx − 2αβx + β = α
2 2 2
perfect square of an even number.
⇒ (αx β − β )2 = α 2
So, the number of integral values of b is 2.
⇒ αx β − β = ± α
1 1 76. On taking option (c), it is clear that,
∴ x= ± 2
α β 1 1
a + b + c = 0
2 2
72. Given, x 2 − 2 2 kx + 2e 2 log k − 1 = 0
⇒ a + 2b + 4c = 0
∴ Product of roots = 2e 2 log k − 1 = 31 [given]
77. 2(3)2 − c (3) + 3 = 0
⇒ 2e 2 log k = 32
2 ⇒ c =7
⇒ e log k = 16 and 2 x2 − 7 x + d = 0
⇒ k 2 = 16 Also, B 2 = 4 AC
∴ k=±4
⇒ 49 = 4 × 2 × d
But k = − 4, log k is not defined. 49
Hence, required value of k is 4. ∴ d =
8 267
5 78.
( 3 + 1+
( 3 + 1) − (2
3 − 1)2 ( 3 − 2 )
3 − 1)2
84. ax 2 + bx + c = 0
Replacing x by
1 − bx
ax
, we get the required equation
[Qc ≠ 0]
Objective Mathematics Vol. 1
( 3 + 1 + 3 − 1 + 2 2)( 3 − 2)
= 2
( 3 + 1) − ( 3 − 1) 1 − bx 1 − bx
a + b +c =0
ax ax
2( 3 + 2 ) ( 3 − 2 )
= =1
2 ⇒ a(1 + b2 x 2 − 2 bx ) + ax(b − b2 x ) + ca2 x 2 = 0
79. We have,|2 x − 3| < | x + 5| ⇒ a + ab2 x 2 − 2 abx + abx − ab2 x 2 + a2cx 2 = 0
Case I If − ∞ < x < − 5 ⇒ acx 2 − bx + 1 = 0
–5
85. Since, one root of the equation x 2 + px + q = 0 is
3/2
⇒ − 2x + 3 < − x − 5 2 + 3, then the other root will be 2 − 3.
⇒ −x<−8 ∴ Sum of roots, 2 + 3 + 2 − 3=− p
∴ x>8 …(i) ⇒ p=−4
So, no solution exist. and product of roots, (2 + 3 ) (2 − 3) = q
Case II If − 5 < x < 3 / 2 ∴ q =1
− 2x + 3 < x + 5 86. α + β = − p, αβ = q
−2
⇒ − 3x < 2 ⇒ x>
3 ∴ α 2 + β 2 = (α + β )2 − 2αβ
2 3 = p2 − 2q
∴ − <x< …(ii)
3 2
3 ⇒ (α − β )2 = α 2 + β 2 − 2αβ
Case III If <x<∞
2 = ( p2 − 2q ) − 2q = p2 − 4 q
⇒ 2x − 3 < x + 5
87. a + b = − a ...(i)
⇒ x<8
Ta rg e t E x e rc is e s
3 ab = b ...(ii)
∴ <x<8 ...(iii) From Eq. (ii), a=1 [Q b ≠ 0]
2
From Eq. (i), b= −2
From Eqs. (i), (ii) and (iii), we get
−2 88. Let α and β be the roots, then
x ∈ , 8
3 α + β = b, αβ = c
Given, |α − β| = 1
k k α + β − b / a
80. We have, + = k = k ⇒ (α + β )2 − 4 αβ = 1
α β αβ c/a
⇒ b2 − 4 c = 1
− kb k k k 2 k 2a
= and ⋅ = = 89. Qα = ω, β = ω 2 will satisfy the given equation.
c α β αβ c
− kb
2
k a Now, α 19 = ω19 = ω, β 7 = ω14 = ω 2
∴ x2 − x+ =0
c c ∴Required equation is
⇒ cx 2 + kbx + k 2 a = 0 x 2 − (ω + ω 2 )x + ω 3 = 0
81. 3 ≤ 3 t − 18 ≤ 18 ⇒ 21 ≤ 3 t ≤ 36 ⇒ x2 + x + 1 = 0
⇒ 7 ≤ t ≤ 12 ⇒ 8 ≤ t + 1 ≤ 13 90. Q x 2 + 15| x| + 14 = | x|2 + 15| x| + 14 > 0
x + 11
82. >0 for all real x.
x−3
So, given equation has no solution.
⇒ ( x − 3) ( x + 11) > 0
⇒ x < − 11, x > 3 91. Since, roots are equal.
⇒ x ∈ (− ∞, − 11) ∪ (3, ∞ ) ∴ (2 6 )2 = 4 ⋅ 2 ⋅ a
logc + b a + logc − b a ⇒ 24 = 8 a ⇒ a = 3
83. 3 7 3 7
2 logc + b a ⋅ logc − b a 92. Let α = + i and β = − i
2 2 2 2
log a log a 9 49 29
+ ∴ α + β = 3, αβ = + =
log(c + b) log(c − b) 4 4 2
=
log a log a 6 b 29
2⋅ ⋅ ⇒ = 3, =
log(c + b) log(c − b) a a 2
log a{log(c − b) + log(c + b)} ⇒ a = 2, b = 29
=
2(log a)2 ∴ a + b = 31
9
x2
9
x3
9
... xn
9
Objective Mathematics Vol. 1
⇒
1
1+ =
x
⇒
10
=
x S= ∑ k (k !) = ∑ {(k + 1) − 1}(k !)
9 10 × 9 9 10 × 9 k =1 k =1
n
∴ x = 100 = ∑ {(k + 1)! − k !}
k =1
X Example 9. Find the remainder when
= (n + 1)! − 1
1! + 2! + 3! + ...+ n! is divided by 15, if n ≥5.
⇒ S + 1 = (n + 1)!
(a) 13 (b) 12 (c) 3 (d) 5
S+1
Thus, ∈ Integer
Sol. (c) Let N = 1! + 2 ! + 3! + ...+ n! n!
N 1! + 2 ! + 3! + 4! + 5! + 6! + ...+ n!
⇒ =
15 15 X Example 13. S n = 1! + 2! + 3! + 4! + K + n! cannot
N 1! + 2 ! + 3! + 4! 5! + 6! + 7 ! + L + n! be the square of natural number except for n, is
⇒ = +
15 15 15 (a) 1, 4 (b) 2, 3 (c) 1, 3 (d) 2, 4
N 1 + 2 + 6 + 24
⇒ = + 8k Sol. (c) For n = 1, we have
15 15
S1 = 1! = 1, which is a perfect square.
N 33
⇒ = [as 5!, 6!, 7 !, 8! are divisible by 15] For n = 2, we have
15 15
S 2 = 1! + 2 ! + = 1 + 2 = 3, which is not a perfect square.
Hence, remainder is 3.
For n = 3, we have
(2n)! S 3 = 1! + 2 ! + 3! = 1 + 2 + 6 = 9
X Example 10. The value of is which is a perfect square.
n!
For n = 4, we have
(a) {1 ⋅ 3 ⋅ 5... (2n − 1)}2 n (b) {1 ⋅ 3 ⋅ 5... ( n − 1)}2 n S 4 = 1! + 2 ! + 4! = 1 + 2 + 6 + 24 = 33
(c) {1 ⋅ 3 ⋅ 5... (2n + 1)}2 n (d) None of these which is not a perfect square. 271
6 For n ≥ 5, we find that the digits at unit’s place in n! is 0
and S 4 = 1! + 2 ! + 3! + 4! has 3 as the digit at unit’s
place. Therefore, for n ≥ 5, S n has 3 at unit’s place. But
X Example 16. The exponent of 12 in 50! is
(a) 22 (b) 23 (c) 45 (d) 48
Objective Mathematics Vol. 1
272
Representation of Symbols n Pr 6
and nCr
n ≥ r ; n, r ( ≥ 0) ∈ integers. ∴ r = 51 − 10 = 41
4n
v. n
C0 =1 = nCn X Example 19. C 2n : 2n C n is equal to
{1 ⋅ 3 ⋅ 5... ( 4n − 1)} {1 ⋅ 3 ⋅ 5... ( 4n − 1)}2
vi. n
Cr = nCn − r , 0 ≤ r ≤ n (a) (b)
{1 ⋅ 3 ⋅ 5... (2n − 1)}2 {1 ⋅ 3 ⋅ 5... (2n − 1)}
n +1
vii. n
C r −1 + n C r = Cr , 1 ≤ r ≤ n {1 ⋅ 3 ⋅ 5... (2n − 1)}2 273
(c) (d) None of these
{1 ⋅ 3 ⋅ 5... ( 4n − 1)}
6 ⇒ (n − 2 ) (n − 3) (n − 11) < 0 [ Q n + 2 > 0 for n ∈ N ]
4n
C2n 4 n! n! n!
Sol. (a) We have, = ×
2n
Cn 2 n! 2 n! 2 n! ⇒ n ∈ (−∞, 2 ) ∪ (3, 11)
{1 ⋅ 2 ⋅ 3 ⋅ 4 ⋅ 5 ⋅ 6 ... (4 n − 1) 4 n!} n! n! – + – +
=
Objective Mathematics Vol. 1
(1 ⋅ 2 ⋅ 3 ⋅ 4 ⋅ 5 ⋅ 6 ... 2 n)2 2 n! 2 3 11
{1 ⋅ 3 ⋅ 5 ... (4n − 1)} {2 ⋅ 4 ⋅ 6 ... 4n} n! n! ⇒ n ∈ (0, 2 ) ∪ (3, 11) ⇒ n = 1, 4, 5, 6, 7, 8, 9,10
=
n −1
{1 ⋅ 3 ⋅ 5 ... (2 n − 1)}2 {2 ⋅ 4 ⋅ 6 ... 2 n}2 2 n! But C 4 and n − 2 P2 both are meaningful for n ≥ 5.
{1 ⋅ 3 ⋅ 5 ... (4n − 1)} 2 2 n 2 n! n! n! Hence, n = 5, 6, 7, 8, 9, 10.
=
{1 ⋅ 3 ⋅ 5 ... (2 n − 1)}2 2 2 n {1 ⋅ 2 ⋅ 3 ... n}2 2 n! 20
Cn
=
{1 ⋅ 3 ⋅ 5 ... (4 n − 1)} 2 2 n 2 n! n! n! X Example 23. The value of when both 25
{1 ⋅ 3 ⋅ 5 ... (2 n − 1)}2 2 2 n (n!)2 2n! Cm
{1 ⋅ 3 ⋅ 5 ... (4 n − 1)} numerator and denominator have their greatest
= values, is
{1 ⋅ 3 ⋅ 5 ... (2 n − 1)}2
140 140 143 140
(a) (b) (c) (d)
X Example 20. The number of positive terms in 403 4025 4025 2045
n+3
195 P3 Sol. (c) We know that,
the sequence x n = − n +1
, n ∈ N are n C , if n is even
4 ⋅ Pn
n
Pn + 1 Greatest value of n C r = n n / 2
C( n + 1)/ 2 , if n is odd
(a) 2 (b) 3 20
∴ 20
C n is greatest for n = = 10
(c) 4 (d) None of these 2
n+ 3 25 + 1
P3 25
C m is greatest for m = = 13
Sol. (c) We have, xn = 195 − n+1
and
2
n
4 ⋅ Pn Pn + 1
For n = 10 and m = 13, we have
195 (n + 3) (n + 2 ) (n + 1) 195 (n + 3) (n + 2 ) 20
Cn 20
C 20! 12 ! × 13! 143
= − = − = 25 10 = × =
4 ⋅ n! (n + 1)! 4 ⋅ n! n! 25
Cm C13 10! × 10! 25! 4025
195 − 4 n2 − 20 n − 24 171 − 4 n2 − 20 n
= =
4 ⋅ n! 4 ⋅ n! X Example 24. (n!)! is divisible by
Q xn is positive. (a) 28(2n −1) n − 1 (b) (3n)!
171 − 4 n2 − 20 n
∴ > 0 ⇒ 4 n2 + 20 n − 171 < 0 (c) ( n!) n!
(d) ( n!) ( n − 1)!
4 ⋅ n!
which is true for n = 1, 2 , 3, 4. Sol. (d) Clearly, (n!)! is the product of natural numbers from 1
Hence, the given sequence has 4 positive terms. to n!.
∴ (n!)! = {1 × 2 × 3 × K × n} × {(n + 1) (n + 2 ) K(2 n)}
X Example 21. The value of × {(2 n + 1) (2 n + 2 )...(3 n)}
M M M
( 7 C 0 + 7C1 ) + ( 7 C1 + 7C 2 ) + ... + ( 7 C 6 + 7C 7 ) is × {(n! − n + 1)(n! − n + 2 ) (n! − n + 3)... n!} …(i)
(a) 2 8 − 2 (b) 2 8 − 1 (c) 2 8 + 1 (d) 2 8 We observe that,
Last term of first bracket on RHS of Eq. (i) is n.
Sol. (a) ( 7C 0 + 7C1 ) + ( 7C1 + 7C 2 ) + ... + ( 7C 6 + 7C 7 ) Last term of second bracket on RHS of Eq. (i) is 2 ⋅ n.
= 8C1 + 8C 2 + ... + 8C 7 Last term of third bracket on RHS of Eq. (i) is 3 ⋅ n and so on.
= 8C 0 + 8C1 + 8C 2 + ... + 8C 7 + 8C 8 − ( 8 C 0 + 8C 8 ) Last term of the last bracket on RHS of Eq. (i) is n! i.e.
n(n − 1)!. It is clear from above pattern that there are(n − 1)!
= 2 8 − (1 + 1) = 2 8 − 2
brackets on the RHS of Eq.(i) and in each bracket, there
is product of n consecutive natural numbers.
X Example 22. The value of n for which From Eq. (i), we have
n −1 5
C 4 − n − 1C 3 − ⋅ n − 2 P2 < 0, where n ∈ N , is ( n − 1)
⇒
(n − 2 ) (n − 3)
{(n − 1) (n − 4) − 4 (n − 1) − 30} < 0
∴ (n!)! = ∏ n! Ir = (n!)n − 1! ∏ Ir
r =1 r =1
24
⇒ (n − 2 ) (n − 3) (n2 − 9n − 22 ) < 0 = (n!)( n − 1)! × A natural number
274 ⇒ (n − 2 ) (n − 3) (n − 11) (n + 2 ) < 0 Thus, (n!)! is divisible by (n!)( n − 1)! .
Work Book Exercise 6.3 6
⇒
1⋅2
= 78
n2 − 5n + 6 = 156
Objective Mathematics Vol. 1
X Example 28. In a network of railways, a small X Example 32. On a railway route, there are
island has 15 stations. The number of different 15 stations. The number of tickets required in order
types of tickets to be printed for each class, if every that it may be possible to book a passenger from
station must have tickets for other station, are every station to every other, is
(a) 230 15! 15!
(a) (b)
(b) 210 13!2! 13!
(c) 340 15!
(d) None of the above (c)15! (d)
2!
Sol. (b) For each pair of stations, two different types of
tickets are required. Now, the number of selections of Sol. (a) Required number of tickets = 15C 2 = 15!
2 !13!
2 stations from 15 stations = 15 C 2 .
∴Required number of types of tickets X Example 33. If a denotes the number of
15!
= 2 ⋅ 15C 2 = 2 ⋅ = 15 × 14 = 210 permutations of ( x + 2) things taken all at a
2 !13!
time,b denotes the number of permutations of x
X Example 29. In a certain test, a i students gave things taken 11 at a time and c denotes the number
wrong answers to atleast i questions, where of permutations of ( x −11) things taken all at a
i =1, 2, 3,...,k. No student gave more than k wrong time such that a =182 bc, then the value of x is
answers. The total number of wrong answers given (a) 15 (b) 12
is (c) 10 (d) 19
(a) a1 + a 2 + ... + a k x+ 2
Sol. (b) We have, Px + = a ⇒ a = ( x + 2 )!
(b) a1 + a 2 + ... + a k − 1 2
(c) a1 + a 2 + K + a k + 1 P11 = b
x
Also,
x!
(d) None of the above ⇒ b=
( x − 11)!
Sol. (a) Total number of wrong answers and x − 11
Px − 11 = c
= 1 ⋅ (a1 − a2 ) + 2 ⋅ (a2 − a3 ) + K + (k −1) (ak − 1 − ak ) + kak
= a1 + a2 + a3 + K + ak ⇒ c = ( x − 11)!
Q a = 182 bc
Example 30. In a class tournament, the x!
X ∴ ( x + 2 )! = 182 ⋅ ⋅ ( x − 11)!
participants were to play one game with another, ( x − 11)!
two class players fell ill, having played 3 games ⇒ ( x + 2 ) ( x + 1) = 182 = 14 × 13
⇒ x + 1 = 13
each. If the total number of games played is 84, and x + 2 = 14
then the number of participants at the beginning, ∴ x = 12
was
(a) 22 (b) 15 X Example 34. In a certain test, there are n
(c) 17 (d) None of these questions. In this test, 2 n − i students gave wrong
answers to atleast i questions, where i =1, 2, 3, ..., n.
Sol. (b) Suppose, the two players did not play at all, so that
the remaining (n − 2 ) players played n−2
C 2 matches. If the total number of wrong answers given is
Since, these two players played 3 matches each, hence 2047, then n is equal to
the total number of matches (a) 10 (b) 11
276 = n − 2C 2 + 3 + 3 = 84 [given] (c) 12 (d) 13
Sol. (b) The number of students answering exactly
i (1 ≤ i ≤ n − 1) questions wrongly is 2 n − i − 2 n − i −1. The
number of students answering all n questions wrongly is 2 0 .
Method 3
Applicable only if the digits used are such that they 6
Sum of all the numbers greater than 10000 formed To find the sum of these 24 numbers, we will find the
by the digits 1, 3, 5, 7, 9, no digit being repeated. sum of digits at unit’s, ten’s, hundred’s and thousand’s
places in all these numbers.
Method 1 Consider the digits in the unit’s place in all these
numbers. Each of the digits 2, 3, 4, 5 occur in 3! i.e.
All possible numbers = 5! = 120
6 times in the unit’s place.
If one occupies the unit’s place, then total number So, total for the digits in the unit’s place in all the
= 24 numbers = (2 + 3 + 4 + 5) × 3! = 84.
Hence,1 enjoys unit’s place 24 times. Since, each of the digits 2, 3, 4, 5 occurs 3! times in
anyone of the remaining places. So, the sum of the
1
digits in the ten’s, hundred’s and thousand’s places in
all the numbers = (2 + 3 + 4 + 5) × 3! = 84
Similarly, 1 enjoys each place 24 times. Hence, the sum of all the numbers
Sum due to 1 = 1 × 24 (1 + 10 + 10 2 + 10 3 + 10 4 ) = 84 (100 + 101 + 102 + 103 ) = 93324
Similarly, sum due to the digit
Ø Sum of all the numbers that can be formed with n (non-zero)
3 = 3 × 24 (1 + 10 + 10 2 + 10 3 + 10 4 ) digits, when repetition is not allowed and each digit being used
M M M M M M M M (10 n − 1)
once = (n − 1)! (sum of digits)
Required total sum = 24 (1 + 10 + 10 + 10 3 + 10 4 )
2
(10 − 1)
(1 + 3 + 5 + 7 + 9) = n − 1! (sum of digits) × (111 … n times)
digits are even, is so that each child gets only one coin, is
(a) 144 (b) 72 (c) 288 (d) 720 (a) 1720 (b) 1680
(c) 1570 (d) None of these
Sol. (d) Terminal digits are the first and last digits.
Since, terminal digits are even. Sol. (b) Total number of coins = 2 + 2 + 3 + 1 = 8
∴1st place can be filled in 3 ways and last place can Q2 coins are of 10 paise, 2 coins are of 20 paise, 3 coins
be filled in 2 ways and remaining places can be filled in are of 25 paise and 1 coin is of 50 paise.
5
P4 = 120 ways. ∴Required number of ways
Hence, the number of six digit numbers, so that the 8! 8×7 × 6× 5× 4× 3×2 ×1
= =
terminal digits are even = 3 × 120 × 2 = 720. 2 ! × 2 ! × 3! × 1! 2 × 1 × 2 × 1 × 3 × 2 × 1 × 1
= 8 × 7 × 6 × 5 = 1680
Permutations of Objects not all Distinct
X Example 51. A boy has 3 library tickets and 9
1. The number of mutually distinguishable
books of his interest in the library. Out of these 8,
permutations of n things taken all at a time, of he does not want to borrow Chemistry part II,
which p are alike of one kind, q alike of second unless Chemistry part I is also borrowed. The
n! number of ways in which he can choose the three
kind such that p + q = n, is .
p! q ! books to be borrowed, is
2. The number of permutations of n things, of which (a) 41 (b) 32
p1 are alike of one kind, p2 are alike of second (c) 51 (d) None of these
kind, p3 are alike of third kind,..., pr are alike of Sol. (a) The following are the different possibilities in which
rth kind such that three books can be borrowed.
n! (i) When Chemistry part II is selected, then Chemistry
p1 + p2 + ... + pr = n, is . part I is also borrowed and the third book is
p1 ! p2 ! p3 !... pr ! selected from the remaining 6 books = C(6, 1) = 6.
3. The number of permutations of n things, of which (ii) When Chemistry part II is not selected, in this case,
he has to select the three books from the remaining
p are alike of one kind, q are alike of second kind 7 books. First choice can be made in
n! 7 ×6×5
and remaining all are distinct, is . C(7, 3) = = 35 ways.
p! q ! 1× 2 × 3
4. Suppose there are r things to be arranged, ∴ Total number of ways in which he can choose the
three books to be borrowed = 6 + 35 = 41.
allowing repetitions. Let further p1 , p2 , ..., pr be
the integers such that the first object occurs X Example 52. There are three copies, each of 4
exactly p1 times, the second occurs exactly p2 different books. The number of ways in which they
can be arranged on a shelf, is
times, etc. Then, the total number of permutations
12! 11!
of these r objects to the above condition is (a) 4
(b)
( p1 + p2 + ... + pr )! (3!) (3!) 2
p1 ! p2 ! p3 !... pr ! 9!
(c) (d) None of these
(3!) 2
X Example 49. The number of arrangements
which can be made out of the letters of the word Sol. (a) Total number of books = 3 × 4 = 12 in which each
ALGEBRA, without changing the relative order of 4 different books is repeated 3 times.
(positions) of vowels and consonants, is Hence, the required number of arrangements
(a) 72 (b) 54 12 ! 12 !
= =
(c) 36 (d) 62 3! × 3! × 3! × 3! (3!)4
Sol. (a) We have to arrange the 3 vowels in their places, i.e. X Example 53. A library has a copies of one
in the 1st, 4th, 7th places and the 4 consonants in their book, b copies of two books, c copies of each of
places. The number of ways to arrange 3 vowels in 1st, 4th three books and single copy of d books. The total
3! number of ways in which these books can be
and 7th places = [Qthere are 2A’s]
2! distributed, is
The number of ways to arrange 4 consonants in their ( a + 2b + 3c + d )! ( a + b + c + d )!
places = 4!
(a) (b)
a ! b! c! a ! b! c!
∴Required number of arrangements ( a + 2b + 3c + d )!
=
3!
× 4! = 3 × 24 = 72 (c) (d) None of these
280 2! a ! ( b!) 2 ( c!) 3
a6
Sol. (c) Total number of books = a + 2 b + 3c + d
Since, there are b copies each of two books, c copies
each of three books and single copy of d books.
a5
6
an a2
X Example 54. How many different a1
arrangements can be made out of the letters in the Clearly, this circular permutation provides n linear
expansion A 2 B 3C 4 , when written in full? permutations as given below:
9! 9! a1 , a 2 , a 3 , ..., a n − 1 , a n
(a) (b)
2! + 3! + 4! 2 ! 3 ! 4! a 2 , a 3 , a 4 , ..., a n , a1
(c) 2! + 3! + 4!(2!3! 4!) (d) 2!3! − 4 a 3 , a 4 , a 5 , ..., a n , a1 , a 2
a 4 , a 5 , a 6 , ..., a n , a1 , a 2 , a 3
Sol. (b) A 2 B3C 4 written in full is AA BBB CCCC. … … … …
9!
∴Required number of ways = … … … …
2 ! 3! 4! a n , a1 , a 2 , a 3 , ..., a n − 1
X Example 55. The number of ways in which the Thus, each circular permutation gives n linear
six faces of a cube is painted with six different permutations. But there are x circular permutations, so
colours, is that number of linear permutations is xn. But the number
(a) 6 of linear permutations of n distinct objects is n!.
(b) 6! n!
∴ xn = n! ⇒ x = = ( n − 1)!
(c) 6 C 2 n
(d) None of the above Ø In the above theorem, anti-clockwise and clockwise orders of
Sol. (d) Number of ways = 6! = 1 [all faces are alike] arrangements are considered as distinct permutations.
6!
282
Work Book Exercise 6.4 6
x= y y = 12 x x = 10 y x = 12 y 27378 27405
27399 None of these
19 The number of times the digit 3 will be written
when listing the integers from 1 to 1000, is 25 The number of ways in which 10 candidates
269 300 271 302 A1, A 2 , …, A 10 can be ranked, so that A 1 is
always above A 2 , is
20 The number of ways in which a mixed double
10!
game can be arranged from amongst 9 married 10 !
couples, if no husband and wife play in the same 2
game, is 9!
756 1512 None of the above
3024 None of these
26 There are n white and n black balls marked
21 The number of different seven digit-numbers that 1, 2, 3, …, n. The number of ways in which we
can be written using only the three digits 1, 2 and can arrange these balls in a row, so that
3 with the condition that the digit 2 occurs twice neighbouring balls are of different colours, is
in each number, is n! (2 n)!
2
P2 ⋅ 2 5 7
C2 ⋅25 2
2( n!)
(2 n)!
7
C 2 ⋅ 52 None of these ( n!)2
22 The number of ways one can put 5 different balls 27 A man invites in a party of (m + n ) friends to
in 5 different boxes such that atmost three boxes dinner and places m at one round table and n at
is empty, is another. The number of ways of arranging the
3000 3010 2990 3120 guests is
( m + n)!
23 Given that n is odd, the number of ways in which m! n !
three numbers in AP can be selected from ( m + n)!
1, 2, 3, …, n, is ( m − 1)!( n − 1)!
( n − 1)2 ( n + 1)2 ( n + 1)2 ( n − 1)2 ( m − n)!( n − 1)!
2 4 2 4 None of the above
Geometrical Applications of n Cr
Some basic Geometrical Applications on n C r are as 8. Number of parallelogram formed by two system
follow: of parallel lines (when 1st set contains m parallel
1. Out of n non-concurrent and non-parallel straight lines and 2nd set contains n parallel lines)
lines, points of intersection are n C 2 . = n C 2 × mC 2
2. Out of n points, the number of straight lines 9. Number of squares formed by two system of
(when three points are not collinear) are n C 2 . parallel lines in which 1st set is perpendicular
3. If out of n points, m are collinear, then 2nd sets of lines (when 1st set contains m parallel
lines and 2nd set contains n parallel lines)
Number of straight lines = n C 2 − mC 2 + 1 m−1
4. In a polygon, total number of diagonals out of = ∑ (m − r ) (n − r ); m < n
n points (when three points are not collinear) r =1
n ( n − 3)
= X Example 62. The number of parallelograms
2
that can be formed from a set of four parallel lines
5. Number of triangles formed from n points (when
intersecting another set of three parallel lines, is
three points are not collinear) are n C 3 . (a) 6 (b) 18
6. Number of triangles out of n points in which m (c) 12 (d) 9
are collinear, are n C 3 − mC 3 . Sol. (b) Required number of parallelograms
4! 3!
7. Number of triangles that can be formed out of = 4C 2 × 3C 2 = ×
2 ! 2 ! 2 ! 1!
n points (when none of the side is common to the 4×3 3
= × = 18
284 sides of polygon) are n C 3 − n C1 − n C1 ⋅ n − 4C1 . 2 ×1 1
X Example 63. The number of diagonals that
can be drawn by joining the vertices of an octagon,
Sol. (b) 4 lines intersect each other in 4 C 2 = 6 points and
4 circles intersect in 4 P2 = 12 points.
Each line cuts 4 circles into 8 points.
6
286
Number of Divisors and the Sum
of the Divisors of a Given
Sol. (b) We have,
2160 = 2 4 × 33 × 51
The total number of divisors is same as the number of
6
( mn)! 1 ( mn)!
Size × m! =
( n!) m m! ( n!) m
Number of ways in which ( m + n) distinct items
can be divided into two unequal groups containing m
( m + n)! X Example 78. The number of ways in which a
and n items is . pack of 52 cards can be divided equally into four
m! n!
groups, is
Proof 52! 52!
(a) (b)
The number of ways in which ( m + n) items are (13!) 4
(13!) 4 × 4!
divided into two groups containing m and n items is 52!
same as the number of combinations of ( m + n) things (c)
(13!) × 4!
(d) None of these
taken m at a time. Thus, the required number
( m + n)! Sol. (b) Here, 52 cards are to be divided in four equal
= m + nCm = . groups and order of the group is not important.
m! n! 52 !
So, required number of ways =
(13!)4 × 4!
Ø ● The number of ways in which (m + n + p) items can be
divided into unequal groups containing m, n, p items, is X Example 79. The number of ways 12 different
m+ n + p (m + n + p) !
C m⋅ n + pC n = books can be distributed equally among 4 persons,
m !n ! p ! is
● The number of ways to distribute (m + n + p) items among 12! 12! 12! 12!
3 persons in the groups containing m, n and p items (a) (b) (c) (d)
( 4!) 3
(3!) × 3
4
(3!) 4
( 4!) 4
= (Number of ways to divide) × (Number of groups)!
(m + n + p) ! Sol. (c) Here, 12 different books can be divided equally
= ×3! among 4 persons that each person will get 3 books.
m !n ! p !
Hence, required number of distribution
12 !
X Example 77. The number of ways to 16 = 12C 3 ⋅ 9C 3 ⋅ 6C 3 ⋅ 3C 3 =
(3!)4
different things to three persons A, B, C so that B
gets one more than A and C gets two more than Division of Identical Objects into Groups
B, is
(a)
16 !
(b)
16! i. The total number of ways of dividing n
4 !5 ! 7 ! 3 !5 !8 ! identical items among r persons, each one of
(c) 4 !5 ! 7 ! (d) None of these whom, can receive 0, 1, 2 or more items ( ≤ n)
is n + r − 1 C r − 1 .
Sol. (a) Suppose, A gets x things, then B gets ( x + 1) and C
gets ( x + 3) things. Or
∴ x + x + 1 + x + 3 = 16 The total number of ways of dividing n
⇒ x=4 identical objects into r groups, if blank groups
Thus, we have to distribute 16 things to A, B and C in are allowed, is n + r − 1 C r − 1 .
such that A gets 4, B gets 5 and C gets 7 things.
(4 + 5 + 7 )!
∴Required number of ways = X Example 80. The total number of ways can
4! 5! 7 !
16! 15 identical Mathematics books be distributed
=
4! 5! 7 ! among six students, is
15! 20!
(a) (b)
Division of Objects into Groups of 6! 9! 5!15!
Equal Size (c) 15P6 (d) None of these
The number of ways in which mn different objects Sol. (b) We know that the total number of ways in which
can be divided equally into m groups, each containing n things all alike can be distributed into r different boxes is
n + r −1
C r − 1, when blank box is allowed. Hence, number of
n objects and the order of groups is not important, is
ways in which 15 identical books be distributed among six
( mn)! 1 students
20!
( n!) m m! = 15 + 6 − 1C 6 − 1 = 20C 5 =
288 5!15!
ii. The total number of ways of dividing n
identical items among r persons, each one of
If r (0 ≤ r ≤ n) objects occupy the places assigned to
them i.e. their original places and none of the remaining
( n − r ) objects occupies its original places, then the
6
iii. The number of ways in which n identical X Example 84. The number of ways can 10 letters
items can be divided into r groups so that no be placed in 10 marked envelopes, so that no letter
group contains less than m items and more than is in the right envelope, are
k ( m < k ) items is coefficient of x n in the 1 1 1 1
(a)10! 1 − + − + K +
expansion of ( x m + x m + 1 + K + x k ) r . 1! 2! 3! 10!
1 1 1 1
X Example 82. Five distinct letters are to be (b)10! 1 + − + − K −
1! 2 ! 3 ! 10!
transmitted through a communication channel. A
1 1 1 1
total number of 15 blanks is to be inserted between (c) 1 + − + − K −
the letters with atleast three between every two. 1! 2! 3! 10!
The number of ways in which this can be done, is 1 1 1 1
(d) 9! 1 + − + − K −
(a) 1200 (b) 1800 1! 2! 3! 10!
(c) 2400 (d) 3000
Sol. (a) The required number of ways is equal to the
Sol. (c) For 1 ≤ i ≤ 4, let xi ( ≥ 3) be the number of blanks number of dearrangements of 10 objects.
between ith and (i + 1) th letters. Then, Hence, required number of ways
x1 + x2 + x3 + x4 = 15 …(i)
= 10! 1 − +
1 1 1 1
− + K+
The number of solutions of Eq. (i) 1! 2 ! 3! 10!
= Coefficient of t 15 in (t 3 + t 4 + K )4
= Coefficient of t 3 in (1 − t )−4 X Example 85. Ajay writes letters to his five
= Coefficient of t in (1 + C1 + C 2 t + C 3 t + K )
3 4 5 2 6 3
friends and addresses the corresponding. The
But 5 letters can be permuted in 5! = 120 ways. number of ways can the letters be placed in the
Thus, the required number of arrangements envelopes, so that atleast two of them are in the
= (120) (20) = 2400 wrong envelopes, are
(a)120
Dearrangements (b)125
(c)119
If n distinct objects are arranged in a row, then the (d) None of the above
number of ways in which they can be dearranged, so
that none of them occupies its original place is Sol. (c) Required number of ways
5
1 1 1 1 1 = ∑
5
C 5 − r D(r )
n!1 − + − + − K + (−1) n r =2
1! 2! 3! 4! n! 5
5! 1 1 1 (−1)r
and it is denoted by D ( n).
= ∑ r !(5 − r )! r ! 1 − 1! + 2 ! − 3! + K + r!
289
r =2
6 1 (−1)r
5 3
5! 1 1 − xn + 1 1 − x2 n + 1
= ∑ (5 − r )! 2 ! − 3! + K +r!
= Coefficient of x3 n in
r =2 1− x 1− x
= + − + − +
5! 1 5! 1 1 5! 1 1 1
= Coefficient of x3 n in (1 − xn + 1 )3 (1 − x2 n + 1 ) (1 − x)−4
Objective Mathematics Vol. 1
3! 2 ! 2 ! 2 ! 3! 1! 2 ! 3! 4!
= Coefficient of x3 n in
+ − −
5! 1 1 1 1
+
0! 2 ! 3! 4! 5! [(1 − 3 xn + 1 + 3 x2 n + 2 − x3 n + 3 ) (1 − x2 n + 1 ) (1 − x)−4 ]
= 10 + 20 + (60 − 20 + 5) + (60 − 20 + 5 − 1) = Coefficient of x3 n in
= 10 + 20 + 45 + 44 = 119 [(1 − 3 xn + 1 − x2 n + 1 + 3 x2 n + 2
+ … ) (1 − x)−4 ]
= Coefficient of x3 n in (1 − x)−4
Number of Integral Solutions of − 3 Coefficient of x2 n − 1 in (1 − x)−4
Linear Equations and Inequations − Coefficient of xn − 1 in (1 − x)−4
+ 3 Coefficient of xn − 2 in (1 − x)−4
Consider the equation = 3n + 4 − 1
C4 − 1 − 3 × 2n − 1 + 4 − 1
C4 − 1 − n −1+ 4 −1
C4 − 1
x1 + x 2 + x 3 + x 4 + K + x r = n …(i) + 3× n − 2 + 4 −1
C4 − 1
where, x1 , x 2 , x 3 , x 4 , …, x r and n are non-negative = 3n + 3
C 3 − 3 × 2 n + 2C 3 − n + 2C 3 + 3 × n + 1C 3
integers. (3n + 3)(3n + 2 )(3n + 1) (2 n + 2 )(2 n + 1)(2 n)
= − 3⋅
This equation may be interpreted as that n identical 6 6
(n + 2 )(n + 1)(n) (n + 1)(n)(n − 1)
objects are to be divided into r groups, where a group − + 3⋅
6 6
may contain any number of objects. Therefore, 1
= (n + 1)(5n + 10n + 6)
2
Total number of solutions of Eq. (i) 6
= Coefficient of x n in ( x 0 + x 1 + K + x n ) r
X Example 87. The number of ways of selecting
= n + r − 1C n or n + r − 1 C r − 1
n objects out of 3n objects, of which n are alike and
Ø ● The total number of non-negative integral solutions of the rest are different, is
equation x1 + x 2 + K + x r = n is n + r − 1C r − 1 and the total (2n − 1)! (2n − 1)!
(a) 2 2n − 1 + (b) 2 2n − 1 −
number of solutions of the same equation in the set N of n!( n − 1)! n!( n − 1)!
natural numbers is n − 1C r − 1. ( 2 n + 1)!
(c) 2 2n + 1 + (d) None of these
● If the upper limit of a variable in solving an equation of the n!( n + 1)!
form x1 + x 2 + K + x m = n subject to the conditions
ai ≤ x ≤ b i ; i = 1, 2 , K , m is more than or equal to the sum Sol. (a) The required number of ways
required and lower limit of all the variables are non-negative,
then upper limit of that variable can be taken as infinite. = Coefficient of xn in ( x0 + x1 + x2 + K + xn )( x0 + x)2 n
● In order to solve inequations of the form 1 − x n + 1
= Coefficient of x n in (1 + x)
2n
x1 + x 2 + K + x m≤ n 1− x
We introduce a dummy (artificial) variable x m+ 1 such that = Coefficient of x n in (1 − x)−1 (1 + x)2 n
x1 + x 2 + K + x m + x m+ 1 = n, where x m+ 1 ≥ 0. ∞
= Coefficient of x n in ∑ xr (1 + x)2 n
The number of solutions of this equation are same as the r = 0
number of solutions of Eq. (i).
n
= Coefficient of x n in ∑ xr (1 + x)2 n
X Example 86. In an examination, the maximum
r = 0
marks for each of three papers is n and that for n
= Coefficient of x n in ∑x (1 + x)2 n
r
fourth paper is 2n. Then, the number of ways in
r =0
which a candidate can get 3n marks, is n
1
∑
n−r
(a) ( n − 1) (5n 2 + 10n + 6) = Coefficient of x in (1 + x)2 n
6 r =0
1 n
(b) ( n + 1) (5n 2 + 10n + 6) = ∑
2n
Cn − r
6 r =0
1 = Cn + Cn + 1 + K + C1 +
(c) ( n + 1) (5n 2 + n + 6)
2n 2n 2n 2n
C0
6 1 2n + 1
(d) None of the above = [2 n C n + {2 n C 0 + C1 + K +
2n 2n
Cn + Cn + 1
2
Sol. (b) The total number of ways of getting 3n marks + K+ 2n
C 2 n }] [ Q nC r = nC n − r ]
= Coefficient of x3 n in 1 2n 1 2 n! (2 n − 1)!
= [ Cn + 2 2n ] = + 2 2n = 2 2n − 1 +
( x0 + x1 + x2 + K + xn )3 × ( x0 + x1 + K + x2 n ) 2 2 n! n! n! (n − 1)!
290
6
4
X Example 88. The number of ways of selecting 1 − x5
= Coefficient of x4 in
4 letters from the word EXAMINATION, is 1− x
−4
= Coefficient of x in [(1 − x ) (1 − x) ]
1− x 7 ×6×5
= = 35
−3 3×2
= Coefficient of x in (1 − x ) (1 − x)
4 3 3
(1 + x) 5
3 In how many ways can we put 12 different balls in 6 The number of ways of dividing 20 persons into
three different boxes such that the first box 10 couples, is
contains exactly 5 balls? 20 ! 20
a C10
12
C 3 ⋅ 57 12
C5 ⋅27 2 10
20 !
c 12
C 5 ⋅ 52 None of these c None of these
(2 !)9
291
6 7 The number of integer solutions for the equation
a
x + y + z + t = 20, where x, y, z, t ≥ − 1, is
20
C4 23
C3
18 The number of non-negative integral solutions of
x + y + z ≤ n, where n ∈ N is
a n +3
C3 b n +4
C4
Objective Mathematics Vol. 1
27 27 n +5
c C4 C3 c C5 d None of these
8 The number of ways in which mn students can be 19 If n objects are arranged in a row, then the
distributed equally among m sections, is number of ways of selecting three of these
( mn)! ( m n)! objects, so that no two of them are next to each
a
n! ( n!)m other, is
( mn)! n− 2 n− 3
c ( mn)m a C3 b C2
m! n ! n− 3
c C3 d None of these
9 The number of integers which lie between 1 and
10 6 and which have the sum of the digits equal to 20 There are three piles of identical red, blue and
12, is green balls and each pile contains atleast
10 balls. The number of ways of selecting
a 8550 5382 c 6062 8055
10 balls, if twice as many red balls as green balls
10 The number of integral solutions of are to be selected, is
x + y + z = 10, with x ≥ − 5, y ≥ − 5, z ≥ − 5, is a 3 b 4
a 135 136 c 455 105 c 6 d 8
11 The number of ways in which a score of 11 can 21 Two classrooms A and B having capacity of 25
be made from a throw by three persons, each and (n − 25) seats, respectively. Let A n denotes
throwing a single die once, is the number of possible sitting arrangements of
a 45 b 18 room A, when n students are to be seated in
c 27 d None of these these rooms, starting from room A which is to be
filled up full to its capacity. If
12 If x, y, z, … are (m + 1) distinct prime numbers,
A n − A n − 1 = 25!(49 C25 ), then n equals
then then number of factors of x n y z K is
a 49 b 48 c 50 d 51
a m( n + 1) b 2 nm
c ( n + 1)2 m
d n⋅2 m 22 Between two junction stations A and B, there are
12 intermediate stations. The number of ways in
13 There are m copies of each of n different books in which a train can be made to stop at 4 of these
a university library. The number of ways in which stations, so that no two of these halting stations
one or more than one book can be selected, is are consecutive, is
a mn + 1 b ( m + 1)n − 1 a 8
C4 b 9
C4
c ( n + 1) − m n
d m c 12
C4 − 4 d None of these
14 The number of ways in which one or more balls 23 The sum of the divisors of 2 5 ⋅ 34 ⋅ 52 is
can be selected out of 10 white, 9 green and
a 3 2 ⋅ 7 1 ⋅ 112
7 blue balls, is
b 63 ⋅ 121 ⋅ 31
a 892 b 881
c 3 ⋅ 7 ⋅ 11 ⋅ 31
c 891 d 879
d None of the above
15 The number of all three element subsets of the 24 The number of ways arranging m positive and
set { a1, a2 , a3 , K , an } which contain a3 , is
n < m + 1negative signs in a row, so that no two
n n−1
a C3 b C3 negative signs are together, is
n−1
c C2 d None of these a m +1
Pn
n+1
16 If one quarter of all three element subsets of the b Pm
m +1
set A = { a1, a2 , a3 , K , an } contains the element a3 , c Cn
then n is equal to n +1
d Cm
a 10
b 12
25 If ai, i = 1, 2, 3, 4 is four real numbers of the same
ai
c 14 sign, then the minimum value of Σ ,
d None of the above aj
i, j ∈{1, 2, 3, 4}, i ≠ j , is
17 The number of positive integral solutions of
a 8
abc = 30 is
b 6
a 30 b 27 c 12
292 c 8 None of these d None of the above
WorkedOut Examples
Type 1. Only One Correct Option
Ex 1. Number of positive integer n less than 17, for Ex 4. ∑ ∑∑∑ is equal to
which n! + ( n + 1)! + ( n + 2)! is an integral 0≤i < j <k <l ≤n
multiple of 49, is (a) n + 1 C 4 (b) n n + 1C 4
(a) 0 (b) 3
(c) n + 1 C 3 (d) n ( n + 1)
(c) 5 (d) 2
Sol. Here, n! + (n + 1)! + (n + 2)! Sol. As ∑ ∑ ∑ ∑n = n∑ ∑ ∑ ∑ represents
= n![1 + (n + 1) + (n + 2)(n + 1)] = n!(n + 2)2 0≤ i < j < k< l ≤ n 0≤ i < j < k< l ≤ n
Either 7 divides (n + 2) or 49 divides n !. selection of four terms from {0, 1, 2, ..., n} i.e. (n + 1)
i.e. n = 5 ,12, 14, 15, 16 [Qn < 17] terms.
Thus, ∑ ∑ ∑ ∑ n = n ⋅n + 1 C 4
Thus, number of solutions is five.
0≤ i < j < k< l ≤ n
Hence, (c) is the correct answer.
Hence, (b) is the correct answer.
2 2 1 2a
Ex 2. If + + = , where a, b ∈ N , then Ex 5. Let A denotes the property that two elements of
9! 3! 7! 5!5! b!
the ordered pair ( a, b) is A = {1, 5, 9, 13, ..., 1093} add upto 1094. Then,
maximum number of elements in A can be
(a) (9, 10)
(a) 273 (b) 136
(b) (10, 9) (c) 137 (d) 138
(c) (7, 10)
(d) (10, 7) Sol. Since, A = {1, 5, 9, 13, ..., 1093} is an arithmetic
progression.
2
+
2
+
1 1093 − 1
Sol. Here, ∴ Number of terms = +1
9! 3!7! 5!5! 4
=
1
+
1
+
1
+
1
+
1 = 274
1!9! 3!7! 5!5! 3!7! 9!1! Since, sum of equidistant terms in AP is equal to sum of
1 10! 10! 10! 10! 10! first and last terms = 1 + 1093 = 1094.
= + + + +
10! 9!1! 7!3! 5!5! 3!7! 9! 1 ! ∴ Maximum number of elements in A that add upto 1094
1 10 274
= { C 1 + 10C 3 + 10C 5 + 10C 7 + 10C 9 } = = 137
10! 2
1 29 2a Hence, (c) is the correct answer.
= ⋅ (210 − 1 ) = , but it is .
(10)! 10! b!
Ex 6. Let n1 = x1 x 2 x 3 and n2 = y1 y2 y3 be two 3-digit
⇒ a = 9 and b = 10 numbers, then the pairs of n1 and n2 can be
Hence, (a) is the correct answer. formed, so that n1 can be subtracted from n2
without borrowing, is
Ex 3. Number of ordered triplets (x, y, z ) such that
(a) 55⋅ 54 (b) 45⋅ 55
x, y, z are primes and x y + 1 = z, is
(a) 0 (c) 45⋅ ( 55) 2 (d) 55⋅ ( 45) 2
(b) 1 Sol. Here, n1 = x1x2x3 and n 2 = y1 y2 y3
(c) 3 ⇒ n1 can be subtracted from n2 without borrowing, if
(d) None of the above yi ≥ xi for i = 1, 2, 3.
r = 0, 1, 2, ..., 9, for x2 and x3
Sol. Here, x y + 1 = z, where x , y, z are prime. ∴ Let xi = r ⇒
Thus, y cannot be odd, if y is prime. r = 1, 2, 3, ..., 9, for x1
⇒ x y + 1is divisible by ( x + 1). ∴ yi = r, r + 1, ...,9
Now, z must be odd. Thus, for y1, y2 and y3, we have (10 − r) choices each.
Now, total number of ways for choosing yi and xi
⇒ x must be even. [Qx y = z − 1]
9 9 9
Thus, only even value (i.e. prime) is x = 2. = ∑ (10 − r) ∑ (10 − r) ∑ (10 − r)
⇒ x = 2, y = 2, z = 5 r = 1 r = 0 r = 0
So, there is only one such triplet (2, 2, 5). = 45 ⋅ 55 ⋅ 55 = 45 ⋅ (55)2
Hence, (b) is the correct answer. Hence, (c) is the correct answer. 293
6 Ex 7. Let
E = (2n + 1)(2n + 3)(2n + 5)K ( 4n − 3)( 4n − 1) ;
n >1, then 2 n E is divisible by
Ex 10. A seven-digit numbers divisible by 9 is to be
formed by using 7 out of numbers {1, 2, 3, 4, 5,
Objective Mathematics Vol. 1
to spell the word MAT is 93, then K is equal to So, 3x1 + 2x2 + x3 = 14; x1 , x2 , x3 ≥ 1
∴ The number of solutions
(a) 3 (b) 5
(c) 7 (d) None of these = Coefficient of t 14 in {(t 3 + t6 + t 9 + ...) (t 2 + t 4 + ...)
(t + t 2 + ...)}
Sol. Here, A, T, M bears unlimited number of coupons.
Thus, selecting K in which word MAT is not spelled. = Coefficient of t 8 in {(1 + t 3 + t6 + K )
If atleast one letter is not selected. i.e. 3C 1. ...(i) (1 + t 2 + t 4 + ...) (1 + t + t 2 + ...)}
From the remaining two we have to select K i.e. for each = Coefficient of t 8 in {(1 + t 2 + t 3 + t 4 + t 5 + 2t6
selection of K coupons we have 2 ways.
+ t 7 + 2t 8 ) (1 + t + t 2 + K + t 8 )}
For K coupons, we have 2K ways but to select atleast one,
we have = 1 + 1 + 1 + 1 + 1 + 2 + 1 + 2 = 10
⇒ 2K − 1 …(ii) Since, three distinct numbers can be assigned to three
Words cannot be used to spell MAT boys in 3! ways.
⇒ 3(2K − 1) = 93 ⇒ K = 5 So, total number of ways = 10 × 3! = 60
Hence, (c) is the correct answer.
Hence, (b) is the correct answer.
Ex 25. Total number of positive integral solutions of
Ex 22. In a shooting competition, a man can score 5, 4,
15 < x1 + x 2 + x 3 ≤ 20 is equal to
3, 2 or 0 points for each shot. Then, the number
of different ways in which he can score 30 in (a) 1125 (b) 1150
seven shots, is (c) 1245 (d) 685
(a) 419 (b) 418 (c) 420 (d) 421 Sol. 15 < x1 + x2 + x3 ≤ 20
Sol. Number of ways of making 30 in 7 shots ⇒ x1 + x2 + x3 = 16 + r; r = 0, 1, 2, 3, 4
= Coefficient of x in (x + x + x + x + x )
30 0 2 3 4 5 7 Now, number of positive integral solutions of
= Coefficient of x 30 in {(x 0 + x 2 + x 3 ) + x 4 (x + 1)}7 x1 + x2 + x3 = 16 + r is 13 + r + 3 − 1C 13 + r
15 + r 15 + r
= Coefficient of x 30 in i.e. C 13 + r = C2
{x 28 (x + 1)7 + 7C 1x 24 (x + 1)6 (1 + x 2 + x 3 ) Thus, total solutions
4
+ C 2x (x + 1) (x + x + 1) + K} ∑ 15 + r
7 20 5 3 2
= C 2 = 15C 2 + C2 +
16 17
C2 + C2 +
18 19
C2
= C 5 + C 1 ( C 3 + C 2 + C 0 ) + C 2 ( C 1 + 2)
7 7 6 6 6 7 5 r=0
Ex 23. The number of ways in which the sum of upper Ex 26. Ten persons numbered 1, 2, ..., 10 play a chess
faces of four distinct dices can be six, is tournament, each player playing against every
(a) 10 (b) 4 other player exactly one game. It is known that
(c) 6 (d) 7 no game ends in a draw. Let w1 , w2 , ..., w10 be
Sol. The number of required ways will be equal to the the number of games won by players 1, 2, 3, ...,
number of solutions of 10 respectively and l1 , l2 , ..., l10 be the number
x1 + x2 + x3 + x4 = 6 of games lost by the players 1, 2, ..., 10,
where, x1 , x2 , x3 , x4 ≥ 1 respectively. Then,
Let, x1 − 1 = a1, x2 − 1 = a2, x3 − 1 = a3, x4 − 1 = a4 ≥ 0
(a) Σw i2 = 81 − Σli2 (b) Σw i2 = 81 + Σli2
⇒ (a1 + 1) + (a2 + 1) + (a3 + 1) + (a4 + 1) = 6
where, a1 , a2 , a3 , a4 ≥ 0 (c) Σw i2 = Σli2 (d) None of these
⇒ a1 + a2 + a3 + a4 = 2
Sol. Clearly, each player will play 9 games and total number
∴ Number of solutions = 2 + 4 − 1C 4 − 1 = 5C 3 = 10
of games = 10C 2 = 45
Hence, (a) is the correct answer.
Clearly, wi + li = 9
Ex 24. The number of ways can 14 identical toys be and Σwi = Σli = 45
distributed among three boys, so that each one ⇒ wi = 9 − li
gets atleast one toy and no two boys get equal ⇒ wi2 = 81 + li2 − 18li
number of toys, is ⇒ Σwi2 = 81⋅ 10 + Σli2 − 18Σli
(a) 45 (b) 48 = 810 + Σli2 − 18 ⋅ 45 = Σli2
(c) 60 (d) None of these Hence, (c) is the correct answer.
296
Ex 27. The number of subsets of the set
A = {a1 , a 2 , ..., a n } which contain even
number of elements, is
Sol. There are exactly (n − 1) subsets of S containing two
elements having 1 as least element, exactly (n − 2)
subsets of S having 2 as least element and so on.
6
(a) 27 (b) 54
9 10
(c) 64 (d) None of these
(a) ∑ 9
Pi (b) 511 (c) ∑ 10
Pi (d) 1023
i=1 i=1 Sol. Q x1 ⋅ x2 ⋅ x3 = 22 ⋅ 3 ⋅ 5
Sol. Since, the digits required is non-zero. Total number of positive integral solutions
∴ To select amongst {1, 2, 3, 4, 5, 6, 7, 8, 9} = 3 ⋅ 3 ⋅ (3C 1 + 3C 2 ) = 54
Thus, any number is of the form Hence, (b) is the correct answer.
2x1 x2 K xk 3, where 1 ≤ x1 < x2 < x3 < K < x9 ≤ 9 Aliter
i.e. number of numbers lying between (2, 3) x 1 ⋅ x 2 ⋅ x 3 = 22 ⋅ 3 ⋅ 5
= 9C 1 + 9C 2 + 9C 3 + K + 9C 9
Here, 22 can be assigned to a1 , a2 , a3.
= 29 − 1 = 1023
⇒ a1 + a2 + a3 = 2
Hence, (d) is the correct answer. ⇒ 2+ 3− 1
C 3 − 1 = 4C 2 = 6
Ex 34. The number of divisors of n = 2 7 ⋅ 3 5 ⋅ 5 3 , and 31 can be assigned to b1 , b2 , b3.
which are of the form 4t + 1( t ∈ N ), is ⇒ b1 + b2 + b3 = 1 ⇒ 1+ 3− 1
C3 − 1 = 3
(a) 12 (b) 10 ∴ x1 ⋅ x2 ⋅ x3 = 2 ⋅ 3 ⋅ 5
2 1 1
(c) 11 (d) 14
Total number of positive integral solutions
Sol. Any number will be of the form 4 t + 1, if it does not = 6 × 3 × 3 = 54
contain any power of 2 but contain even number of odds
of the form 4 k + 3 and any number of odds of the form Ex 38. The number of positive integral solutions of
4 k + 1, so total factors = 1 × 3 × 4 = 12 the equation x1 x 2 x 3 x 4 x 5 = 1050, is
But one will be 1, also so required number = 12 − 1 = 11 (a) 1800 (b) 1600
Hence, (c) is the correct answer. (c) 1400 (d) None of these
Aliter Sol. Using prime factorisation of 1050, we can write the
Odd numbers of the type 4 t + 1 or 4 t + 3 and they are given equation as
symmetrical. x1x2x3x4x5 = 2 × 3 × 52 × 7
Number of odd numbers = (1 + 5)(1 + 3) = 24
We can assign 2, 3 or 7 to any of variables. We can assign
[any number of 5’s and 3’s and no 2’s]
entire 52 to just one variable in 5 ways or can assign
Required number = 12 but 1 is included.
52 = 5 × 5 to two variables in 5C 2 ways. Thus, 52 can be
∴Required number of numbers = 12 − 1 = 11
assigned in
Ex 35. Total number of divisors of n = 2 5 ⋅ 3 4 ⋅ 510 ⋅ 7 6
5
C 1 + 5C 2 = 5 + 10 = 15 ways
that are of the form 4λ + 2, λ ≥ 1, is equal to Hence, required number of solutions
(a) 385 (b) 55 (c) 384 (d) 54 = 5 × 5 × 5 × 15 = 1875
Sol. Q 4 λ + 2 = 2 (2λ + 1) = odd multiple of 2 Hence, (d) is the correct answer.
Thus, total divisors = 1⋅ 5 ⋅ 11⋅ 7 − 1 = 384 Aliter
[one is subtracted because there will be case x 1 ⋅ x 2 ⋅ x 3 ⋅ x 4 ⋅ x 5 = 2 × 3 × 52 × 7
when selected powers of three, five and seven 5+ 2− 1
For 5 , the number of ways =
2
C 5 − 1 = 6C 4 = 15
are zero each and this will make λ = 0]
1+ 5− 1
Hence, (c) is the correct answer. For 21, the number of ways = C 5 − 1 = 5C 4 = 5
∴Positive integral solutions for x1 ⋅ x2 ⋅ x3 ⋅ x4 ⋅ x5
Ex 36. Total number of divisors of n = 3 5 ⋅ 5 7 ⋅ 7 9 that
= 2 × 3 × 52 × 7 is 15 × 5 × 5 × 5 = 1875
are of the form 4λ + 1, λ ≥ 0, is equal to
(a) 240 (b) 30 (c) 120 (d) 15 Ex 39. Let a be a factor of 120, then the number of
Sol. Q 3 n1 n1
= (4 − 1) = 4 λ 1 + (− 1) , n1
positive integral solutions of x1 x 2 x 3 = a is
5n2 = (4 + 1)n2 = 4 λ 2 + 1 (a) 160 (b) 320 (c) 480 (d) 960
and 7 n3
= (8 − 1) n3
= 4 λ 3 + (− 1) n3 120
Sol. Let x4 be such that x4 = , then the number of positive
a
Hence, any positive integer power of 5 will be in the form
integral solutions of x1x2x3 = a is same as that of number
of 4 λ 2 + 1. Even powers of 3 and 7 will be in the form of
of positive integral solutions of x1x2x3x4
4 λ + 1 and odd powers of 3 and 7 will be in the form of
4 λ − 1. Thus, required number of divisors = 120 = 23 × 3 × 5
= 8 ⋅ (3 ⋅ 5 + 3 ⋅ 5) = 240 We can assign 3 and 5 to unknown quantities in 4 × 4
298 Hence, (a) is the correct answer. ways.
We can assign all 2 to one unknown in 4C 1 ways, to two
unknown in 4C 2 and to three unknown in 4C 3 ways.
Ex 43. The function f :{1, 2, 3, 4, 5} → {1, 2, 3, 4, 5} that
are onto and f ( i) ≠ i, is equal to 6
1 1
(c) (10!) 2
+ E A, B, C , D C4 = 5
5
3! 7! ( 2!) 5 6!
∴ Required number of selections
1 1 = 5C 1 + 5C 1 + 5C 4 + 5C 4 = 20
(d) (10!) 2
+
3! 7! ( 2!) 4 6! Hence, (b) is the correct answer.
301
6 Ex 55. The number of ways in which we can choose 2
distinct integers from 1 to 100, such that the
difference between them is atmost 10, is
Ex 56. n locks and n corresponding keys are available.
But the actual combination is not known. The
Objective Mathematics Vol. 1
302
n n
Sol. If power of p is l in n!, then l = + 2 +...
p p
Statement II 3 m + 7 n has last digit zero,
when m is of 4k − 2 type and n is of 4l type
where k , l ∈W.
6
7! 8 4!
(a) 2984124 ∴Number of ways = ⋅ C4 ⋅
2!2! 2!
(b) 2984244 Hence, (a) is the correct answer.
(c) 2959595
Passage III (Ex. Nos. 68-70) Let set S = {1, 2, 3, ...,
(d) None of the above n} be a set of first n natural and A ⊆ S . Suppose, n( A)
Sol. Desired number represents cardinal number and min (A) represents least
= 2985984 − { 2985984 + 3 2985984 − 6 2985984 } number among the elements of set A.
= 2985984 − 1860 = 2984124
[Q 2985984 = 212 ⋅ 36] Ex 68. The greatest value of min (A), where A ⊆ S and
Hence, (a) is the correct answer. n( A ) = r, 1 ≤ r ≤ n, is
(a) r
Passage II (Ex. Nos. 65-67) Consider the letters of
the word ‘MATHEMATICS’. There are eleven letters (b) ( n − r )
some of them are identical. Letters are classified as (c) n − r + 1
repeating and non-repeating letters. Set of repeating (d) r + 1
letters = {M , A , T } and set of non-repeating letters
= {H, E, I, C, S }. Sol. Consider, A = {n − r + 1, n − r + 2, ..., n} ⊂ S
Clearly, n( A ) = r and min ( A ) = n − r + 1
Ex 65. Possible number of words taking all letters at a ∴ Greatest value of min ( A ) = n − r + 1
time such that atleast one repeating letter is at Hence, (c) is the correct answer.
odd position in each word, is
9! 11! Ex 69. The number of subsets A of S for which
(a) (b)
2! 2! 2! 2! 2! 2! n( A ) = r and min ( A ) = k , is
11! 9! 9! n−k
(c) − (d) (a) Cr − 1
2! 2! 2! 2! 2! 2! 2! n
(b) C r − 1
Sol. Since, there are 5 even places and 3 pairs of repeated n− k +1
letters, therefore atleast one of these must be at an odd (c) Cr − 1
place. n− k −1
11! (d) Cr − 1
∴The number of ways =
2!2!2! Sol. k is the least member of A and rest of the r − 1members
Hence, (b) is the correct answer. of A are among the numbers k + 1, k + 2, k + 3, ..., n.
Ex 66. Possible number of words taking all letters at a ∴Number of ways = n − kC r − 1
time such that in each word both M’s are Hence, (a) is the correct answer.
together and both T’s are together but both A’s
are not together, is
11! 10!
Ex 70. The value of ∑ {min( A)} = k is
n( A) = r
8
(a) 7!⋅ C 2 (b) −
2! 2! 2! 2! 2! (a) n ⋅ n − k C r − 1
6! 4 ! 9!
(c)
2! 2!
(d)
2! 2! 2! (b) ( n + 1) ⋅ n − k C r − 1 − r ⋅ n − k + 1C r
Sol. Make a bundle of both M’s and another boundle of T’s. (c) k ⋅ n − k C r − 1 + n ⋅ n − k + 1C r
Then, except A’s we have 5 letters remaining, so M’s, T’s
and the letters except A’s can be arranged in 7! ways. (d) n C r
∴Total number of arrangements = 7! × 8C 2 n− r + 1
305
6 Type 6. Single Integer Answer Type Questions
Ex 74. The possible number of ordered triads Coefficient of x 12 in
Objective Mathematics Vol. 1
Sol. (1) This is a case equivalent to distributing 12 identical 1 with both 3, 3 with A = 3, B not, 3 with B = 3 and A not
flowers into 3 identical boxes is same as x + y + z = 12 thus, 7 ways of choosing A , B , C , hence 7 ⋅ 10 = 70 ways
taking only different combinations of x , y and z. ⇒ k =7
Case I x = y = z = 4 only 1 way Ex 77. N is the number of ways in which a person can
Case II x = y ≠ z walk up a stairway which has 7 steps. If he can
2x + z = 12 take 1 or 2 steps up the stairs at a time, then the
(a) x > z, x − z = a, a ≥ 1 value of N /3 is _________ .
⇒ x=z+ a
So, 2x + z = 12 Sol. (7) If x denotes the number of times, he can take unit step
⇒ 3z + 2a = 12 , a ≥ 1, z ≥ 0 and y denotes the number of times, he can take 2 steps,
i.e. coefficient of x 12 in then x + 2 y = 7.
We must have x = 1, 3, 5.
(1 + x 3 + x6 + K )(x 2 + x 4 + K ) = 2
If x = 1, then steps will be 1, 2, 2, 2.
(b) x < z, z − x = a 4!
⇒ Number of ways = =4
⇒ z=x+ a 3!
So, 3x + a = 12, a ≥ 1, x ≥ 0 If x = 3, then steps will be 1, 1, 1, 2, 2.
i.e. coefficient of x 12 in ⇒ Number of ways =
5!
= 10
(1 + x 3 + x6 + x 9 + ...)(x + x 2 + ...) = 4 3! 2!
Case III x + y + z = 12, x ≠ y ≠ z If x = 5, then steps will be 1, 1, 1, 1, 1, 2.
Taking only different combinations of x , y and z. ⇒ Number of ways = 6C 1 = 6
Let x > y > z If x = 7, then steps will be 1, 1, 1, 1, 1, 1, 1.
⇒ y−z=a ⇒ Number of ways = 7C 0 = 1
⇒ y = z + a, a ≥ 1 Hence, total number of ways (N ) = 4 + 10 + 6 + 1 = 21
x − y=b
N 21
⇒ x = z + a + b, b ≥ 1 ⇒ =
3 3
x + y + z = 12
⇒ 3z + 2a + b = 12 ; a, b ≥ 1, z > 0 =7
306
Target Exercises
Type 1. Only One Correct Option
1. If α = mC 2 , then α
C 2 is equal to 11. Let A be a set of n (≥ 3) distinct elements. The
(a) m+ 1
C4 (b) m−1
C4 (c) 3 m+ 2
C4 (d) 3 m+ 1
C4
number of triplets (x, y, z) of the elements of A in
which atleast two coordinates same, is
n+1
2. If n C 3 + nC 4 > C 3 , then (a) n P3 (b) n3 − nP3 (c) 3n2 − 2n (d) 3n2 (n − 1)
(a) n > 6 (b) n > 7
(c) n < 6 (d) None of these
12. The total number of six-digit numbers that can be
formed, having the property that every succeeding
n−1
3. The value of ∑ nCr / ( nCr + nC r + 1 ) equals digit is greater than the preceding digit, is
(a) 9 C 3 (b) 10C 3 (c) 9 P3 (d) 10
P3
r=0
(a) n + 1 (b) n / 2 13. The number of four-digit numbers that can be made
(c) n + 2 (d) None of these
with the digits 1, 2, 3, 4 and 5 in which atleast two
n n
Pr
∑
4. The value of is digits are identical, is
r =1 r! (a) 4 5 − 5! (b) 505
(c) 600 (d) None of these
(a) 2n (b) 2n − 1 (c) 2n − 1 (d) 2n + 1
Targ e t E x e rc is e s
2n + 1 2n − 1 14. The total number of five-digit numbers of different
5. If Pn − 1 : Pn = 3 : 5, then n is equal to
digits in which the digit in the middle is the largest, is
(a) 4 (b) 6 (c) 3 (d) 8 9
(a) ∑ n P4 (b) 33(3!)
6. The number less than 1000 that can be formed using n= 4
the digits 0, 1, 2, 3, 4, 5 when repetition is not (c) 30(3!) (d) None of these
allowed is equal to
15. The number of nine non-zero digit numbers such that
(a) 130 (b) 131
(c) 156 (d) 155 all the digits in the first four places are less than the
digit in the middle and all the digits in the last four
7. The numbers greater than 1000 but not greater than places are greater than that in the middle, is
4000, which can be formed with the digits 0, 1, 2, 3, 4 (a) 2(4 !) (b) 3(7!) / 2 (c) 2(7!) (d) 4 P4 × 4P4
(repetition of digits is allowed), are
(a) 350 (b) 375 16. The total number of three-digit numbers, the sum of
(c) 450 (d) 576 whose digits is even, is equal to
8. A variable name in certain computer language must (a) 450 (b) 350 (c) 250 (d) 325
be either an alphabet or an alphabet followed by a 17. The permutations of n objects taken
decimal digit. The total number of different variable (i) atleast r objects at a time
names that can exist in that language is equal to (ii) atmost r objects at a time
(a) 280 (b) 290
(if repetition of the objects is allowed)
(c) 286 (d) 296
are respectively
9. The number of five-digit numbers that contain 7 nn − r + 1 nr + 1 − 1
(a) and
exactly once is n−1 n−1
(a) (41) (93 ) (b) (37) (93 ) nn− r + 1 nr (nr + 1 − 1)
(b) and
(c) (7) (94 ) (d) (41) (94 ) n −1 n−1
n− r
r
n (n − 1) nr + 1 − 1
10. The total number of flags with three horizontal strips (c) and
n−1 n−1
in order, which can be formed by using 2 identical red,
(d) None of these
2 identical green and 2 identical white strips, is equal
to 18. How many ten-digit numbers can be written by using
(a) 4! the digits 1 and 2?
(b) 3 × (4 !)
(a) 10
C 1 + 9C 2 (b) 210
(c) 2 × (4 !)
(d) None of these (c) 10
C2 (d) 10! 307
6 19. A five-digit number divisible by 3 is to be formed
using the numerals 0, 1, 2, 3, 4 and 5 without
repetition. The total number of ways this can be done
30. The number of 5-digit telephone numbers having
atleast one of their digits repeated is
(a) 90000 (b) 100000 (c) 30240 (d) 69760
Objective Mathematics Vol. 1
is
(a) 216 (b) 240 (c) 600 (d) 3125 31. If letters of the word ‘KUBER’ are written in all
possible orders and arranged as in a dictionary, then
20. The total number of 9-digit numbers which have all rank of the word ‘KUBER’ will be
different digits is (a) 67 (b) 68 (c) 65 (d) 69
(a) 10! (b) 9! (c) 9 ⋅ 9! (d) 10 ⋅ 10!
32. The total number of 4-digit numbers that are greater
21. Eight chairs are numbered 1 to 8. Two women and than 3000, that can be formed using the digits 1, 2, 3,
three men wish to occupy one chair each. First the 4, 5, 6 (no digit is being repeated in any number) is
women choose the chairs from amongst the chairs equal to
marked 1 to 4 and then the men select the chairs from (a) 120 (b) 240 (c) 480 (d) 80
amongst the remaining. The number of possible
arrangements is 33. In a country, no two persons have identical set of
(a) C 3 × C 2
4 4
(b) C 2 × P3
4 4 teeth and there is no person without a tooth, also no
(c) 4 P2 × 4P3 (d) None of these person has more than 32 teeth. If shape and size of
tooth is disregarded and only the position of tooth is
22. From 4 Officers and 8 Jawans, a committee of 6 is to considered, then maximum population of that
be chosen to include exactly one officer. The number country can be
of such committee is (a) 232 (b) 232 − 1
(a) 160 (b) 200 (c) 224 (d) 300 (c) Cannot be determined (d) None of these
23. Seven different lecturers are to deliver lectures in 34. n different toys have to be distributed among
seven periods of a class on a particular day. A, B and n children. Total number of ways in which these toys
Ta rg e t E x e rc is e s
C are three of the lecturers. The number of ways in can be distributed, so that exactly one child gets no
which a routine for the day can be made such that A toy, is equal to
delivers his lecture before B and B before C, is (a) n! (b) n !⋅n C 2
(a) 420 (b) 120 (c) (n − 1) ! ⋅ nC 2 (d) n !⋅ n − 1C 2
(c) 210 (d) None of these
24. The number of arrangements of letters of the word 35. The total number of permutations of k different
‘BANANA’ in which the two N’s do not appear things, in a row, taken not more than r at a time (each
together is thing may be repeated any number of times) is equal
(a) 40 (b) 60 (c) 80 (d) 100
to
kr − 1 k (k r − 1)
(a) k r − 1 (b) k r (c) (d)
25. How many different nine-digit numbers can be k −1 (k − 1)
formed from the number 223355888 by rearranging
its digits, so that odd digits occupy even positions? 36. A person predicts the outcome of 20 cricket matches
(a) 16 (b) 36 (c) 60 (d) 180 of his home team. Each match can result either in a
win, loss or tie for the home team. Total number of
26. Let A = {x | x is a prime number and x < 30}. The
number of different rational numbers whose ways in which he can make the predictions, so that
numerator and denominator belong to A, is exactly 10 predictions are correct, is equal to
(a) 90 (b) 180 (a) 20
C 10 ⋅ 210 (b) 20
C 10 ⋅ 320
(c) 91 (d) None of these (c) 20
C 10 ⋅ 310 (d) 20
C 10 ⋅ 220
27. Let S be the set of all functions from the set A to the 37. A team of four students is to be selected from a total
set A. If n ( A ) = k, then n ( S ) is of 12 students. Total number of ways in which team
(a) k ! (b) k k (c) 2k − 1 (d) 2k can be selected such that two particular students
refuse to be together and other two particular
28. Let A be the set of 4-digit numbers a1 a 2 a 3 a 4 , where
students wish to be together only, is equal to
a1 > a 2 > a 3 > a 4 , then n ( A ) is equal to
(a) 220 (b) 182
(a) 126 (b) 84
(c) 226 (d) None of these
(c) 210 (d) None of these
38. The total number of numbers that are less than 3⋅ 108
29. An n-digit number is a positive number with exactly and can be formed using the digits 1, 2, 3, is equal to
n-digits. Nine hundred distinct n-digit numbers are to 1 9 1 9
be formed using only the three digits 2, 5 and 7. The (a) (3 + 4 ⋅ 38 ) (b) (3 − 3)
2 2
smallest value of n for which this is possible is 1 1
308 (c) (7 ⋅ 38 − 3) (d) (39 − 3 + 38 )
(a) 6 (b) 7 (c) 8 (d) 9 2 2
39. Four couples (husband and wife) decide to form a
committee of four members. The number of different
committees that can be formed in which no couple
48. The number of different pairs of words
(****, ***) that can be made with the letters of
the word ‘STATICS’ is
6
40. In an examination of 9 papers, a candidate has to pass 49. A shopkeeper sells three varieties of perfumes and he
in more papers than the number of papers in which he has a large number of bottles of the same size of each
fails in order to be successful. The number of ways in variety in his stock. There are 5 places in a row in his
which he can be unsuccessful, is showcase. The number of different ways of
(a) 255 (b) 256 (c) 193 (d) 319 displaying the three varieties of perfumes in the
showcase is
41. The number of 5-digit numbers that can be made
(a) 6 (b) 50
using the digits 1 and 2 and in which atleast one digit (c) 150 (d) None of these
is different, is
(a) 30 (b) 31 50. The number of ways in which 3 boys and 3 girls (all
(c) 32 (d) None of these are of different heights) can be arranged in a line, so
that boys as well as girls among themselves are in
42. In a club election, the number of contestants is one decreasing order of height from left to right, is
more than the number of maximum candidates for (a) 1 (b) 6!
which a voter can vote. If the total number of ways in (c) 20 (d) None of these
which a voter can vote be 62, then the number of
candidates is 51. The number of words of four letters containing equal
(a) 7 (b) 5 number of vowels and consonants, repetition
(c) 6 (d) None of these allowed, is
(a) 1052 (b) 210 × 243
43. Two players P1 and P2 play a series of ‘2n’ games.
Targ e t E x e rc is e s
(c) 105 × 243 (d) None of these
Each game can result in either a win or loss for P1 .
Total number of ways in which P1 can win the series 52. There are three teams each of a chairman, a
of these games, is equal to supervisor and a worker three different companies.
1 2n 2n 1 2n There are nine bonus of different denominations to
(a) (2 − C n ) (b) (2 − 2 ⋅ 2nC n ) be paid to these nine persons in all. In how many
2 2
1 1 ways can this be done with due respect to superiority
(c) (2n − 2nC n ) (d) (2n − 2 ⋅ 2nC n ) is given in every team?
2 2
(a) 865 (b) 129
44. In the decimal system of numeration, the number of (c) 1680 (d) None of these
6-digit numbers in which the sum of digits is
53. If two numbers are selected from numbers 1 to 25,
divisible by 5, is then the number of ways that their difference does
(a) 180000 (b) 540000 not exceed 10 is
(c) 5 × 105 (d) None of these
(a) 105 (b) 195
(c) 15C 2 (d) None of these
45. The number of possible outcomes in a throw of n
ordinary dice in which atleast one of the dice shows 54. The number of ways in which a mixed double game
an odd number, is can be arranged amongst 9 married couples, if no
(a) 6n − 1 (b) 3n − 1 husband and wife play in the same game, is
(c) 6n − 3n (d) None of these (a) 756 (b) 1512
(c) 3024 (d) None of these
46. The number of different matrices that can be formed
55. In a certain test, there are n questions. In this test
with elements 0, 1, 2 or 3, each matrix having 4
2n − i students gave wrong answers to atleast i
elements, is
question, where i = 1, 2, ... , n. If the total number of
(a) 3 × 24 (b) 2 × 4 4
wrong answers given is 2047, then n is equal to
(c) 3 × 4 4 (d) None of these (a) 10 (b) 11 (c) 12 (d) 13
47. There are 20 questions in a question paper. If no two 56. The number of natural numbers which are less than
students solve the same combination of questions but 2 ⋅ 108 and which can be written by means of the digit
solve equal number of questions, then the maximum 1 and 2, is
number of students who appeared in the (a) 772 (b) 870 (c) 900 (d) 766
examination, is 57. The number of times digit 3 will be written when
20
(a) C9 (b) 20C 11 listing the integer from 1 to 1000, is
20 309
(c) C 10 (d) None of these (a) 269 (b) 300 (c) 271 (d) 302
6 58. Five balls of different colours are to be placed in
three boxes of different sizes. Each box can hold all
five balls. The number of ways in which we can place
66. The value of 10 C 5 / 11 C 6 , when numerator and
denominator takes their greatest value, is
Objective Mathematics Vol. 1
6 5 10 10
(a) (b) (c) (d)
the balls in the boxes (order is not considered in the 11 11 6 5
box) so that no box remains empty is
(a) 150 (b) 300 67. The number of subsets {1, 2, 3, ..., n} having least
(c) 200 (d) None of these element m and greatest element k, 1≤ m < k ≤ n, is
(a) 2n − (k − m) (b) 2k − m − 2 (c) 2k − m− 1 (d) 2k − m + 1
59. The number of permutations of the letters of the word
‘HINDUSTAN’ such that neither the pattern ‘HIN’ 68. A class has 21 students. The class teacher has been
nor ‘DUS’ nor ‘TAN’ appear, are asked to make n groups of r students each and go to
(a) 166674 (b) 168474 (c) 166680 (d) 181434 zoo taking one group at a time. The size of group zoo
i.e. the value of r) for which the teacher goes to the
60. Two teams are to play a series of 5 matches between maximum number of times is (no group can go to the
them. A match ends in a win or loss or draw for a zoo twice)
team. A number of people forecast the result of each (a) 9 or 10 (b) 10 or 11 (c) 11 or 12 (d) 12 or 13
match and no two people make the same forecast for
the series of matches. The smallest group of people 69. A class has n students. We have to form a team of the
in which one person forecasts correctly for all the students including atleast two students and also
matches will contain n people, where n is excluding atleast two students. The number of ways
(a) 81 (b) 243 of forming the team is
(c) 486 (d) None of these (a) 2n − 2n (b) 2n − 2n − 2
(c) 2n − 2n − 4 (d) None of these
61. In a class of 20 students, every student had a hand
shake with every other student. The total number of 70. From 4 gentlemen and 6 ladies, a committee of five is
hand shakes were to be selected. The number of ways, in which the
Ta rg e t E x e rc is e s
(a) 180 (b) 190 (c) 200 (d) 210 committee can be formed so that gentlemen are in
majority, is
62. There are 10 persons among whom two are brother.
(a) 66 (b) 156
The total number of ways in which these persons can (c) 60 (d) None of these
be seated around a round table so that exactly one
person sit between the brothers, is equal to 71. If the total number of m elements subsets of the set
(a) (2!) (7!) (b) (2!) (8!) A = {a1 , a 2 , a 3 , ... , a n } is k times the number of
(c) (3!) (7!) (d) (3!) (8!) m elements subsets containing a 4 , then n is
(a) (m − 1) k (b) mk
63. The number of ways in which a couple can sit around (c) (m + 1) k (d) None of these
a table with 6 guests, if the couple take consecutive
seats, is 72. An urn contains 3 red pens, 4 green pens and 6
(a) 1440 (b) 720 yellow pens. The number of ways of drawing 4 pens
(c) 5040 (d) None of these from the urn, if atleast one red pen is to be included
in the draw, is (all the pens are different from each
64. The number of different garlands, that can be formed
other)
using 3 flowers of one kind and 3 flowers of other
(a) 500 (b) 505
kind, is (c) 510 (d) None of these
(a) 60 (b) 20
(c) 4 (d) 5 73. Two numbers are chosen from 1, 3, 5, 7, ... , 147, 149
and 151 and multiplied together in all possible ways.
65. In the next world cup of cricket, there will be 12
The number of ways which will give us the product a
teams, divided equally in two groups. Teams of each
multiple of 5, is
group will play a match against each other. From
(a) 1710 (b) 2900
each group, 3 top teams will qualify for the next (c) 1700 (d) None of these
round. In this round each team will play against
others once. Four top teams of this round will qualify 74. Let Tn denotes the number of triangles which can be
formed using the vertices of a regular polygon of n
for the semifinal round, where each team will play
sides. If Tn + 1 − Tn = 21, then n equals
against the other three. Two top teams of this round
(a) 5 (b) 7 (c) 6 (d) 4
will go to the final round, where they will play the
best of three matches. The minimum number of 75. If a polygon has 44 diagonals, then the number of its
matches in the next world cup will be sides are
(a) 54 (b) 53 (a) 11 (b) 7
310 (c) 38 (d) None of these (c) 8 (d) None of these
76. The sides AB, BC, CA of a ∆ABC have 3, 4, 5 interior
points, respectively on them. Total number of
triangles that can be formed using these points as
85. The sides AB, BC and CA of a ∆ABC have a, b and c
interior points on them respectively, then the number
of triangles that can be constructed using these
6
Targ e t E x e rc is e s
k=1
2
(c) n (d) None of these
81. There are three coplanar parallel lines. If any p 89. The total number of six-digit numbers x1 x 2 x 3 x 4 x 5 x 6
points are taken on each of the lines, the maximum having the property x1 < x 2 ≤ x 3 < x 4 < x 5 ≤ x 6 , is
number of triangles with vertices at these points is (a) 10
C6 (b) 12C6
(a) 3 p2 ( p − 1) + 1 (b) 3 p2 ( p − 1) (c) 11
C6 (d) None of these
(c) p2 (4 p − 3) (d) None of these
90. A class contains three girls and four boys. Every
82. In a plane, there are two families of lines y = x + r, Saturday five students go on a picnic, a different
y = − x + r, where r ∈{0, 1, 2, 3, 4}. The number of group of students is being sent each week. During the
squares of diagonals of length 2 formed by the lines, picnic, each girl in the group is given doll by the
is accompanying teacher. All possible groups of five
(a) 9 (b) 16 have gone once, the total number of dolls the girls
(c) 25 (d) None of these have got, is
83. Line L1 contains l1 point and line L2 contains l2 point. (a) 21 (b) 45 (c) 27 (d) 24
If the points on L1 are joined to the points on L2 , then 91. The total number of ways of selecting two numbers
number of points of intersection of new lines, is from the set {1, 2, 3, 4, ...., 3n}, so that their sum of
(a) l1 C 2 × l2 C 2 divisible by 3, is
(b) 4 ⋅ l1C 2 × l2 C 2 2n2 − n 3n2 − n
(a) (b) (c) 2n2 − n (d) 3n2 − n
(c) 2 ⋅ l1C 2 × l2 C 2 2 2
(d) None of the above
92. If r > p > q, the number of different selections of
84. The number of triangles whose vertices are at the p + q things taking r at a time, where p things are
vertices of an octagon but none of whose sides identical and q other things are identical, is
happen to come from the octagon, is (a) p + q − r (b) p + q − r + 1
(a) 16 (b) 28 (c) 56 (d) 70 (c) r − p − q + 1 (d) None of these 311
6 93. The number of proper divisors of 2 p ⋅ 6q ⋅ 15r is
(a) ( p + q + 1) (q + r + 1) (r + 1)
(b) ( p + q + 1) (q + r + 1) (r + 1) − 2
102. A person writes letters to 6 friends and addresses the
corresponding envelopes. The number of ways in
which all 5 letters can be placed in wrong envelopes,
Objective Mathematics Vol. 1
(c) ( p + q) (q + r) r − 2 is
(d) None of the above (a) 264 (b) 210
(c) 206 (d) None of these
94. The number of even proper divisors of 1008 is
(a) 23 (b) 24 103. The number of ways in which m + n ( n ≤ m + 1)
(c) 22 (d) None of these different things can be arranged in a row such that no
95. The number of ways to fill each of the four cells of two of the n things may be together, is
(m + n)! m! (m + 1)!
the table with a distinct natural number such that the (a) (b)
m ! n! (m + n)!
sum of the numbers is 10 and the sum of the numbers
m ! n!
places diagonally are equal, is (c) (d) None of
(m − n + 1)!
these
104. Number of divisors of the form 4n + 2 ( n ≥ 0) of the
integer 240, is
(a) 2! × 2! (b) 4! (a) 4 (b) 8
(c) 2(4 !) (d) None of these (c) 10 (d) 3
96. In the figure, two 4-digit numbers are to be formed 105. Total number of non-negative integral solutions of
by filling the places with digits. The number of x1 + x 2 + x 3 = 10 is equal to
12
different ways in which the places can be filled by (a) C3 (b) 10C 3
12
digits so that the sum of the numbers formed is also a (c) C2 (d) 10C 2
4-digit number and in no place the addition is with
Ta rg e t E x e rc is e s
Targ e t E x e rc is e s
(b) n − 1 P2 (b) 455
(c) 310
(c) n (n − 1)
(d) None of the above
(d) None of the above
questions, each question contains Statement I as a product of two positive integers is 12.
(Assertion) and Statement II (Reason). Each question Statement II 1400 is divisible by exactly three
has 4 choices (a), (b), (c) and (d) out of which only one is prime factors.
correct. The choices are
130. Statement I Let E = {1, 2, 3, 4} and F = {a, b}.
(a) Statement I is true, Statement II is true; Statement II
is a correct explanation for Statement I
Then, the number of onto functions from E to F is 14.
(b) Statement I is true, Statement II is true; Statement II Statement II Number of ways in which four
is not a correct explanation for Statement I distinct objects can be distributed into two different
boxes, if no box remains empty is 14.
(c) Statement I is true, Statement II is false
(d) Statement I is false, Statement II is true 131. Statement I Number of ways in which India can
win the series of 11 matches, if no match is drawn
126. Statement I The number of positive integral
is 210 .
solutions of abc = 30 is 27.
Statement II Number of ways in which three Statement II For each match, there are two
prizes can be distributed among three persons is 33 . possibilities, either India wins or loses.
127. Statement I Number of ways in which 10 identical 132. Statement I Number of ways in which Indian team
toys can be distributed among three students, if each (11 players) can bat, if Yuvraj wants to bat before
receives at least two toys, is 9 C 2 . Dhoni and Pathan wants to bat after Dhoni is 11!/3!.
Statement II Number of positive integral solutions Statement II Yuvraj, Dhoni and Pathan can be
of x + y + z + w = 7 is 6 C 3 . arranged in batting order in 3! ways.
Ta rg e t E x e rc is e s
128. Statement I ( n 2 )! / ( n !) n is a natural number, 133. Statement I When number of ways of arranging
21 objects of which r objects are identical of one type
∀ n ∈ N.
and remaining are identical of second type is
Statement II Number of ways in which n 2 objects maximum, then maximum value of 13 C r is 78.
can be distributed among n persons equally is
2n + 1
( n 2 )!/( n !) n . Statement II C r is maximum, when r = n.
Targ e t E x e rc is e s
144. A function is defined as
f :{a1 , a 2 , a 3 , a 4 , a 5 , a 6 } → {b1 , b2 , b3 }.
C. The value of r. ( n + 1)! − 1
Then, match the following. 2
C 2 + 3C 2 + 4C 2 + ... + nC 2 is
Column I Column II
A. Number of surjective functions is p. divisible by 6
n n +1
s. C3
∑( C r )
n 2
B. Number of functions in which q. divisible by 2 D. The value of is
f( ai ) ≠ b i , is r=0
t. not possible
JEE Main/AIEEE
5. The number of integers greater than 6000 that can be (a) Statement I is true, Statement II is true; Statement II is
formed, using the digits 3, 5, 6, 7 and 8 without not a correct explanation for Statement I
repetition, is [2015] (b) Statement I is true, Statement II is false
(c) Statement I is false, Statement I is true
(a) 216 (b) 192
Ta rg e t E x e rc is e s
Targ e t E x e rc is e s
voter votes for atleast one candidate, then the number things taken r at a time, then the expression
of ways in which he can vote, is [2006] n
C r + 1 + nC r − 1 + 2 × nC r equals [2003]
(a) 6210 (b) 385 (c) 1110 (d) 5040 n+ 2 n+ 2 n+ 1 n+ 1
(a) Cr (b) C r + 1 (c) Cr (d) Cr + 1
[EAMCET 2014]
(a) 11 (b) 5 finds that she goes to the zoo 84 times more that a
(c) 7 (d) 9 particular child goes to the zoo. The number of
33. Find n C 21 , if n C10 = nC11 . children in her class is [GGSIPU 2011]
[J&K CET 2014]
(a) 12
(a) 1 (b) 0 (b) 10
(c) 11 (d) 10 (c) 60
(d) None of the above
34. Determine n, if 2n
C 2 : nC 2 = 9 : 2. [J&K CET 2014]
(a) 5 (b) 4 43. A student is allowed to select atmost n books from a
(c) 3 (d) 2 collection of ( 2n + 1) books. If the total number of
ways in which he can select atleast one book is 225,
35. Out of thirty points in a plane, eight of them are
then the value of n is [J&K CET 2011]
collinear. The number of straight lines that can be
(a) 6 (b) 5
formed by joining these points, is [EAMCET 2014] (c) 4 (d) 3
(a) 296 (b) 540
(c) 408 (d) 348 44. In how many ways can 5 prizes be distributed among
four students, when every student can take one or
36. The number of positive integers which can be formed
more prizes? [BITSAT 2011]
by using any number of digits from 0, 1, 2, 3, 4, 5 but
(a) 1024 (b) 625
using each digit not more than once in each number (c) 120 (d) 600
is [Karnataka CET 2013]
(a) 1200 (b) 1500 45. The number of ways in which the digits 1, 2, 3, 4, 3,
(c) 1600 (d) 1630 2, 1 can be arranged so that the odd digits always
Ta rg e t E x e rc is e s
37. The total number of ways in which five ‘+’ and three occupy the odd places, is [MP PET 2011]
‘−’ signs can be arranged in a line such that no two (a) 6 (b) 12
(c) 18 (d) 24
‘−’ sign occur together, is [AMU 2013]
(a) 10 46. The number of integers greater than 6000 that can be
(b) 20 formed with 3, 5, 6, 7 and 8, where no digit is
(c) 15
(d) None of the above
repeated, is [Kerala CEE 2011]
(a) 120 (b) 192
38. A student is to answer 10 out of 13 questions in an (c) 216 (d) 72
examination such that he must choose atleast 4 from (e) 202
the first five questions. The number of choices 47. If 56
Pr + 6 : 54
Pr + 3 = 30800 : 1, then the value of r is
available to him is [Manipal 2013] [Kerala CEE 2010]
(a) 140 (b) 196 (a) 40 (b) 51
(c) 280 (d) 346 (c) 41 (d) 510
(e) 101
39. A box contains 2 white balls, 3 black balls and 4 red
balls. In how many ways can 3 balls be drawn from 48. The number of permutations by taking all letters and
the box, if atleast one black ball is to be included in keeping the vowels of the word ‘COMBINE’ in the
the draw? [AMU 2013] odd places, is [WB JEE 2010]
(a) 64 (b) 24 (c) 3 (d) 12 (a) 96
(b) 144
40. Four speakers will address a meeting, where speaker (c) 512
Q will always speak after speaker P. Then, the (d) 576
number of ways in which the order of speakers can
49. From 12 books, the difference between number of
be prepared is [WB JEE 2012]
ways of selection of 5 books when one specified
(a) 256 book is always excluded and one specified book is
(b) 128
(c) 24 always included, is [Kerala CEE 2010]
(d) 12 (a) 64 (b) 118
(c) 132 (d) 330
41. Sum of digits in the unit’s place formed by the digits (e) 462
1, 2, 3 and 4 taken all at a time is
50. If n − 1 C 3 + n−1
[OJEE 2012]
C 4 > nC 3 , then n is just greater than
(a) 30
(b) 60 integer [WB JEE 2010]
(c) 59 (a) 5 (b) 6
318 (d) 61 (c) 4 (d) 7
Answers
Work Book Exercise 6.1
1. (d) 2. (b) 3. (d) 4. (b) 5. (a) 6. (d) 7. (a) 8. (d) 9. (a) 10. (c)
Targ e t E x e rc is e s
Target Exercises
1. (d) 2. (a) 3. (b) 4. (b) 5. (a) 6. (b) 7. (b) 8. (c) 9. (a) 10. (a)
11. (b) 12. (a) 13. (b) 14. (d) 15. (d) 16. (a) 17. (d) 18. (b) 19. (a) 20. (c)
21. (d) 22. (c) 23. (d) 24. (a) 25. (c) 26. (c) 27. (b) 28. (c) 29. (b) 30. (d)
31. (a) 32. (b) 33. (b) 34. (b) 35. (d) 36. (a) 37. (c) 38. (c) 39. (d) 40. (b)
41. (a) 42. (c) 43. (a) 44. (a) 45. (c) 46. (c) 47. (c) 48. (b) 49. (c) 50. (c)
51. (d) 52. (d) 53. (d) 54. (b) 55. (b) 56. (d) 57. (b) 58. (a) 59. (b) 60. (b)
61. (b) 62. (b) 63. (a) 64. (d) 65. (b) 66. (a) 67. (d) 68. (b) 69. (b) 70. (a)
71. (b) 72. (b) 73. (d) 74. (b) 75. (a) 76. (d) 77. (d) 78. (a) 79. (d) 80. (b)
81. (c) 82. (a) 83. (c) 84. (a) 85. (d) 86. (a) 87. (b) 88. (a) 89. (c) 90. (b)
91. (b) 92. (b) 93. (b) 94. (a) 95. (a) 96. (b) 97. (a) 98. (a) 99. (c) 100. (b)
101. (d) 102. (a) 103. (d) 104. (a) 105. (c) 106. (a) 107. (a) 108. (c) 109. (a) 110. (b)
111. (c) 112. (a) 113. (a) 114. (a) 115. (b) 116. (b) 117. (c) 118. (a) 119. (b,c) 120. (b,c)
121. (a,b,d) 122. (a,b,c) 123. (a,c) 124. (a,c) 125. (a,b) 126. (a) 127. (d) 128. (a) 129. (b) 130. (a)
131. (b) 132. (a) 133. (d) 134. (a) 135. (b) 136. (b) 137. (c) 138. (b) 139. (a) 140. (b)
141. (d) 142. (a) 143. (*) 144. (**) 145. (***) 146. (6) 147. (8) 148. (8) 149. (4) 150. (9)
151. (2) 152. (6)
* A → r; B → s; C → p; D → q
** A → p,q,r,s; B → p,q,r,s; C → p,q,r,s,t; D → s
*** A → r; B → p; C → s; D → q
Entrances Gallery
1. (7) 2. (5) 3. (c) 4. (5) 5. (b) 6. (c) 7. (b) 8. (a) 9. (b) 10. (a)
11. (b) 12. (d) 13. (c) 14. (d) 15. (d) 16. (c) 17. (b) 18. (d) 19. (a) 20. (c)
21. (b) 22. (a) 23. (b) 24. (b) 25. (c) 26. (c) 27. (c) 28. (d) 29. (c) 30. (b)
31. (b) 32. (b) 33. (a) 34. (a) 35. (c) 36. (d) 37. (b) 38. (b) 39. (a) 40. (d)
41. (b) 42. (d) 43. (c) 44. (a) 45. (c) 46. (b) 47. (c) 48. (d) 49. (c) 50. (d)
319
Explanations
Target Exercises 8. Total number of variables, if only alphabet is used is 26.
m(m − 1) Total number of variables, if alphabets and digits both
1. We have, α = C2 ⇒ α =
m
are used is 26 × 10. Hence, the total number of variables
2
α (α − 1) 1 m(m − 1) m(m − 1) is 26 (1 + 10 ) = 286.
α
∴ C2 = = ⋅ − 1 9. If 7 is used at first place, the number of numbers is 94
2 2 2 2
1 and for any other four places, it is 8 × 93 .
= m(m − 1) (m − 2 ) (m + 1) Now, required number of numbers = 94 + 4 × 8 × 93
8
1 = 93 (9 + 32 ) = 41 (93 )
= (m + 1) m (m − 1) (m − 2 ) = 3 m + 1C4
8
10. If all strips are of different colours, then number of flags
n+1
2. Given, n C3 + nC4 > C3 is 3 ! = 6 . When two strips are of same colour, then
n+1 n+1 n+1 number of flags is 3 C1 × (3 !/ 2 ) × 2C1 = 18.
⇒ C4 > C3 [Q Cr + Cr + 1 =
n n
Cr + 1]
n+1
∴Total number of flags = 6 + 18 = 24 = 4!
C4 n −2
⇒ n+1
>1 ⇒ >1 ⇒ n > 6 11. Total number of triplets without restriction is n × n × n.
C3 4 The number of triplets with all different coordinates is
n −1 n n −1 n
P3 .
Cr 1
3. We have, ∑ n
= ∑
Cr + nCr + 1 r = 0 n
Cr + 1
Therefore, the required number of triplets is n 3 − n P3 .
r =0
1+ n 12. x1 < x2 < x3 < x4 < x5 < x6 , when the number is
Cr
n −1 x1 x2 x3 x4 x5 x6 . Clearly, no digit can be zero. Also, all the
1
= ∑ n−r
digits are distinct. So, let us first select six digits from the
r = 0 1+ list of digits 1, 2, 3, 4, 5, 6, 7, 8, 9 which can be done in
r +1 9
C6 ways.
n −1 n −1
r +1
Ta rg e t E x e rc is e s
⇒ (n − 4) (3 n + 1) = 0 5 0, 1,...,4 5 4 × 4 P3
∴ n=4
6. The number of one-digit numbers = 0 6 0, 1,...,5 … 5 × 5P3
The number of two-digit numbers = 5 × 5 = 25.
The number of three-digit numbers = 5 × 5 × 4 = 100. 7 0, 1,...,6 … 6 × 6P3
Hence, the total numbers are 131. 8 0, 1,...,7 … 7 × 7P3
7. Numbers greater than 1000 and less than or equal to
9 0, 1,...,8 … 8 × 8P3
4000 will be of 4-digits and will have either 1 or 2 or 3 in
the 1st place. After fixing 1 at first place, then 2nd place Thus, number of required numbers = 5292
can be filled by any of the 5-digits. Similarly, the 3rd
15. According to the given conditions, numbers can be
place can be filled up in 5 ways and 4th place can be formed by the following format:
filled up in 5 ways. Thus, there will be 5 × 5 × 5 = 125
ways in which 1 will be in first place but this also includes
1000. Hence, there will be 124 numbers having 1 in the
first place. Similarly, 125 for each 2 or 3. One number will
be there in which 4 will be in the first place i.e. 4000.
Hence, the required number of numbers Filled with 1, 2, 3, 4 Filled with 6, 7, 8, 9
= 124 + 125 + 125 + 1
320 ∴ Number of required numbers = 4 P4 × 4 P4
= 375
16. Total number of digits (sum of digits is even) = 450
17. (i) Required number of permutations = Number of
permutations of n objects (taken r at a time + taken
26. A = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29}. A rational number
is made by taking any two in any order. 6
Targ e t E x e rc is e s
= 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 = 9! Total words starting with KR = 3 ! = 6
∴Total number of numbers = 9 × 9! The first word starting with KU will be KUBER.
21. Number of ways for women = 4 P2 So, rank of the word KUBER
Number of ways for men = 6 P3 = 24 + 24 + 18 + 1 = 67
∴ Total number of ways = 4 P2 × 6 P3 32. Total number of such numbers
= 4 ⋅ 5 ⋅ 4 ⋅ 3 = 240
22. Number of committees = 4C1 × 8C5 = 4 × 56 = 224 33. Maximum population = 2 32 − 1[as each position of tooth
23. As the order of A, B and C is not to change, therefore has two options]
number of ways of assigning three periods to them is 34. Total number of ways
7 n!
C3 . Now, we left with 4 periods for 4 lecturers that can = nC2 × nC1 × (n − 1) ! ⋅ ⋅ n ! = n !⋅ nC2
assign in 4! ways. 2 ! (n − 2 )!
∴Required number of ways = 7C3 × 4 ! 35. Total number of permutations = 0 + k + k 2 + k 3 +K+ k r
=
7!
× 4! =
7!
= 840 k (k r − 1)
=
3! × 4! 3! (k − 1)
24. Total number of arrangements of the letters of the given 36. Matches whose predictions are correct can be selected
word in 20 C10 ways. Now, each wrong prediction can be made
6!
= = 60 in 2 ways. Thus, total number of ways = 20
C10 ⋅ 210 .
3! 2 !
Number of arrangements in which two N’s are together 37. LetS1 andS 2 refuse to be together andS 3 andS 4 want to
5! be together only. Total number of ways, when S 3 and S 4
= = 20
3! are selected
∴ Number of arrangements in which two N’s are not = (8 C2 + 2C1 ⋅ 8C1 ) = 44
together Total number of ways when S 3 and S 4 are not selected
= 60 − 20 = 40 = (8 C2 + 2C1 ⋅ 8C3 ) = 182
25. There are 5 odd places and that can be filled by using Thus, total number of ways = 44 + 182 = 226
5! 38. Formed number can be atmost of nine digits.
2, 2, 8, 8, 8 in = 10 ways and remaining 4 even
2 ! 3! Total number of such numbers
places can be filled by using 3, 3, 5, 5 in
4!
= 6 ways = 3 + 32 + 33 + K + 38 + 2 ⋅ 38
2! × 2! 3 (38 − 1) 39 − 3 + 4 ⋅ 38 7 ⋅ 38 − 3
= + 2 ⋅ 38 = =
∴Total number of numbers = 10 × 6 = 60 3−1 2 2 321
6 39. The number of committees of 4 gentlemen = 4C4 = 1
The number of committees of 3 gentlemen, 1 wife
= 4C3 × 1C1
after selecting 3 gentlemen, only 1
49. Possibilities
One triplet, two different
Selections
3
C1 × 2C 2 3
Arrangements
C1 × 2C 2 ×
5!
3!
= 60
Objective Mathematics Vol. 1
Targ e t E x e rc is e s
2! 70. In a committee of 5 persons, the gentlemen will be in
Number of permutation of those containing ‘TAN’ = 7 ! majority, if the number of gentlemen ≥ 3.
Number of permutation of those containing ‘HIN’ and
‘DUS’ = 5! Total number of ways of forming committee
Number of permutation of those containing ‘HIN’ and = 4C3 × 6C2 + 4C4 × 6C1
‘TAN’ = 5! = 4 × 15 + 1 × 6
Number of permutation of those containing ‘TAN’ and = 66
‘DUS’ = 5!
71. Total number of m elements subsets of A = nCm
Number of permutation of those containing ‘HIN’,
‘DUS’ and ‘TAN’ = 3! Number of m elements subsets of A each containing the
9! 7 ! element a4 = Number of ways of choosing remaining
∴Required number = − 7 ! + 7 ! + − 3 × 5 ! − 3 !
2! 2 (m − 1) elements of the subset, out of remaining (n − 1)
= 168474 elements of A
60. The smallest number of people = n − 1Cm − 1
n −1
= Total number of possible forecast Given that, n
Cm = k ×Cm − 1
= Total number of possible results n! (n − 1)!
= 3 × 3 × 3 × 3 × 3 = 243 =k⋅
m ! (n − m)! (m − 1)! (n − m)!
61. Since, every pair of the students gives us a hand shake ⇒ n = km
∴Total number of hand shakes 72. Required number of ways
= Total number of pairs of students = Total number of ways of choosing 4 pens
= Number of ways of choosing two students out of − Number of ways of choosing 4 non-red pens
20 ! 3+ 4+ 6 4+ 6
= 20C2 = = C4 − C4 = 13C4 − 10C4
2 !⋅ 18 !
20 × 19 × 18 ! 13 ⋅ 12 ⋅ 11 ⋅ 10 10 ⋅ 9 ⋅ 8 ⋅ 7
= = 190 = −
2 × 18 ! 4⋅ 3⋅2 ⋅1 4⋅ 3⋅2 ⋅1
63. A couple and 6 guests can be arranged in (7 − 1)! ways. 73. Out of the given numbers, the numbers which are
multiple of 5, are 5, 10, 15, 20,...,145.
But the two people forming the couple can be arranged
among themselves in 2 ! ways. This is an AP whose first term a = 5,
Common difference = 5
∴ Required number of ways = 6 ! × 2 ! = 1440
nth term, t n = 145
5! ∴ 145 = 5 + (n − 1) × 5
64. Required number of garlands = =5
2 ⋅ 2 !⋅ 3 ! ⇒ n = 29 323
6 Now, if total number of numbers is m, then
⇒
151 = 1 + (m − 1) × 2
m − 1=
151 − 1
⇒ m = 76
81. The number of triangles with vertices on different lines
= pC1 × pC1 × pC1 = p3
The number of triangles with two vertices on one line
Objective Mathematics Vol. 1
2
and the third vertex on any one of the other two lines
So, number of ways in which product is a multiple of 5 p ( p − 1)
= 3C1 { p C2 × 2 pC1} = 6 p ⋅
= Both two numbers from 5, 10, 15, 25,...,145 2
+ One number from 5, 10, 15, 25,...,145 and one from So, the required number of triangles
remaining numbers
= p3 + 3 p2 ( p − 1) = p2 (4 p − 3)
= 29C2 + 29 C1 × 76C1
= 29 × 14 + 29 × 76= 29 × 90 = 2610 82. There are two sets of five parallel lines at equal
distances.
74. Q n + 1C3 − nC3 = 21
m5
(n + 1) (n − 1) n n(n − 1) (n − 2 )
∴ − = 21 4 m4
6 6 m3
n(n − 1) m2
⇒ [(n + 1) − (n − 2 )] = 21 3
6 m1
⇒ n(n − 1) = 42
2
⇒ n 2 − n − 42 = 0 l5
⇒ n = − 6, 7 l4
1
∴ n =7 l3
n(n − 1) l2
75. Q n C2 − n = 44 ⇒ − n = 44
2 O l1
∴ n 2 − 3 n − 88 = 0
⇒ n = − 8 , 11 Clearly, lines like l1, l 3 , m1, m3 form a squares whose
∴ n = 11 diagonals length is 2. So, the number of required
squares = 3 × 3 = 9.
76. Total number of triangles =12 C3 − 3C3 − 4C3 − 5C3 = 205
Ta rg e t E x e rc is e s
78. A selection of four vertices of the polygon gives an Required number of points on intersection of new lines
interior intersection.
= 2 × Number of choosing 1 point on L1 and 2 point on L2
∴The number of sides = n
⇒ n
C4 = 70 = 2 ⋅ l1C1 × l 2C2
⇒ n (n − 1) (n − 2 ) (n − 3) = 24 × 70 84. Required number of triangles
= 8×7 × 6× 5 = Total number of triangles
∴ n=8
− Number of triangles having two sides common
∴ The number of diagonals = 8 C2 − 8 = 20
− Number of triangles having one side common
79. n C2 is point of intersection. = 8C3 − 8 − 8 × 4 = 16
80. Let x0 be the number of objects to left of the first object 85. A
chosen, x1 be the number of objects between the first c
and the second, x2 be the number of objects between 1
the second and the third and x3 be the number of
objects to the right of the third object. We have, 2
x0 , x3 ≥ 0, x1, x2 ≥ 1 3
3 2
and x0 + x1 + x2 + x3 = n − 3 ...(i)
1
The number of solutions of Eq. (i) a
= Coefficient of y n − 3 in (1 + y + y 2 + ... ) (1 + y + y 2 + ... ) B C
1 2 3 b
( y + y 2 + y 3 + ... ) ( y + y 2 + y 3 + ... )
n−3
= Coefficient of y in y 2 (1 + y + y 2 + y 3 + ... )4 Required number of triangles
n−5
= Coefficient of y in (1 − y )−4 = Total number of ways of choosing 3 points
= Coefficient of y n − 5 in (1 + 4C1 y + 5C2 y 2 + 6C3 y 3 + ... ) − Number of ways of choosing all the 3 points
(n − 2 ) (n − 3) (n − 4) from AB or BC or CA
= n − 5 + 3Cn − 5 = n − 2C3 = = a+ b+c
C3 − (a C3 + bC3 + c C3 )
324 6
86. | x| ≤ k ⇒ − k ≤ x ≤ k
and | y| ≤ k ⇒ − k ≤ y ≤ k
| x − y| ≤ k ⇒ | y − x| ≤ k
...(i)
...(ii)
94. 1008 = 2 4 × 32 × 7
∴The required number of even proper divisors
= Total number of selections of atleast one 2 and any
6
(k
(1
,–
,–
,
= 8 + 7 + ... + 1 = 36
∴Number of points having integral coordinates ∴The required number of ways
= (2 k + 1)2 − 2[k + (k − 1) + ...+ 2 + 1] = 55 × 55 × 55 × 36
= (3 k 2 + 3 k + 1)
97. Coefficient of x 3 in
87. Total number of ways = 31 × 15 × 8 = 3720 ( x 0 + x1 + x 2 ) ( x 0 + x1 + x 2 + x 3 )( x1 + x 2 + x 3 + x 4 )
88. Total number of squares = 8. We are to choose 6 =6
Targ e t E x e rc is e s
squares for six X’s and this can be done is 8 C6 = 28 98. 38808 = 2 3 × 32 × 7 2 × 111
ways. This also include the possibility that either the top ∴ Divisors = 4 × 3 × 3 × 2 − 2 = 70
horizontal row does not have any X or the bottom 15 + 3 − 1
99. C3 − 1 = 17C2
horizontal row have no X. These possibilities are not
100. + + + +
required. 33 33 33 33 33
∴Total number of ways = 28 − 2 = 26 2 4 8 16 32
= 16 + 8 + 4 + 2 + 1 = 31
89. Total number of such numbers
101. For 1 ≤ k ≤ p − 1, n + k = p ! + k + 1, is clearly divisible
= 9C6 + 9C5 + 9C5 + 9C4 = 10C6 + 10
C5 = 11 C6
by k + 1. Therefore, there is no prime number in the
90. The number of times, a particular girl goes on picnic = 6C4 given list.
∴Total number of dolls given to the girls 102. The number of ways in which all 5 letters be placed in
6!
= 6 C4 ⋅ 3 = ⋅ 3 = 45 wrong envelopes
4! 2 ! 1 1 1 1 1
= 6 C5 . 5 ! 1 − + − + −
1! 2 ! 3 ! 4 ! 5 !
91. Case I 1 4 7 ... 3 n − 2
Case II 2 5 8 ... 3 n − 1 1 1 1 1
= 720 − + − = 264
2 6 24 120
Case III 3 6 9 ... 3 n
That means we must take 2 numbers from last row or 103. There is (m + 1) space between them (including the
one number each from first and second rows.
beginning and the end) and n things can be placed in all
Total number of ways = nC2 + nC1 ⋅ nC1z
possible spaces in m + 1 Pn ways.
n (n − 1) 3 n2 − n
= + n2 = ∴Required number of ways
2 2 m !⋅ (m + 1)!
= m ! ⋅ m + 1Pn =
92. The number of selections of p things from q identical (m + 1 − n )!
things are (r − p) things from q identical things = 1 × 1 104. We have, 240 = 2 4 × 31 × 51
p→ p p − 1... r − q
∴ There are 4 divisors of 240 which of the form
q → r − p r − p + 1... q 4n + 2, n ≥ 0.
Similarly, in all other cases, total number of ways
= p − (r − q ) + 1or q − (r − p) + 1 = p + q − r + 1 105. Number of non-negative integral solutions
= 12C10 = 12C2
93. 2 p ⋅ 6 q ⋅ 15r = 2 p + q ⋅ 3 q + r ⋅ 5r
∴The number of proper divisors 106. Q x1 + x2 + 2 x3 = 15 ⇒ x1 + x2 = 15 − 2 x3
= {Total number of selections from ( p + q ) twos, (q + r ) where, x3 can be 1, 2, ..., 7.
threes and r fives} − 2 Let x3 = r
= ( p + q + 1)(q + r + 1)(r + 1) − 2 ⇒ x1 + x2 = 15 − 2 r 325
6 Number of positive integral solutions of this equation
= (14 − 2 r )
∴Total number of solutions
or p+q + r + s=8
The required number of solutions
= The number of non-negative integral solutions of
Objective Mathematics Vol. 1
7 ⋅ 8
7
= ∑ (14 − 2 r ) = 14 ⋅ 7 − 2 ⋅ = 42 ( p + q + r + s = 8)
2 (8 + 3) (8 + 2 ) (8 + 1)
r =1
= = 165
6
107. x1 + x2 + x3 + x4 = 15 and xi ≥ 2
⇒ ( x1 − 2 ) + ( x2 − 2 ) + ( x3 − 2 ) + ( x4 − 2 ) = 7 119. If a, b and c are in AP, then a and c both are odd or both
⇒ y1 + y2 + y3 + y4 = 7, where yi = xi − 2 ≥ 0 are even.
⇒ 10 C7 = 10C3 are number of non-negative. Case I When n is even.
108. Coefficient of x in 3 The number of ways of selection of two even numbers, a
and c is n / 2 C2 . Number of ways of selection of two odd
{( x 0 + x1 + x 2 + x 3 ) ( x 0 + x1 + x 2 ) ⋅ ( x 0 + x1 )4 } numbers is n / 2 C2 .
= 247 Hence, the number of AP’s
109. Let the balls put in the box be x1, x2 , x3 , x4 and x5 . n n
− 1
2 2 n (n − 2 )
We have, 2 ⋅ C2 = 2 ⋅
n/ 2
=
x1 + x2 + x3 + x4 + x5 = 15, xi ≥ 2 2 4
⇒ ( x1 − 2 ) + ( x2 − 2 ) + ( x3 − 2 ) + ( x4 − 2 ) + ( x5 − 2 ) = 5 Case II When n is odd.
⇒ y1 + y2 + y3 + y4 + y5 = 5, yi = xi − 2 ≥ 0
The number of ways of selection of two odd numbers a
= 5 + 5 − 1C5 − 1 = 9C4 and c is ( n + 1)/ 2 C2 . The number of ways of selection of
110. Coefficient of x 210 in{( x 0 + x1 + x 2 + x 3 + ... + x100 )3 } two even numbers a and c is ( n − 1)/ 2 C2 .
= 93
C3 Hence, the number of AP’s = ( n + 1)/ 2C2 + ( n − 1)/ 2C2
n + 1 n + 1 n − 1 n − 1
111. Required number of ways = Number of non-negative − 1 − 1
Ta rg e t E x e rc is e s
Targ e t E x e rc is e s
and batsman play, number of ways is 2 C114C10 .
Now, number of ways of distributing these n groups
When one all rounder, one wicketkeeper and nine from
among n persons is
batsman and bowlers play, number of ways is
(n 2 )! (n 2 )!
n ! = , which is always an integer.
4
C1 2C1 14C9 .
n
(n !) n ! (n !)n
When all eleven players play from bowlers and batsmen
Also, we know that product of r is divisible by r ! . then number of ways is 14 C11.
Now, (n 2 ) ! = 1 × 2 × 3 × 4 × ... × n 2
Total number of selections
= 1 × 2 × × 3.... n × (n + 1) (n + 2 )... 2 n
× (2 n + 1) (2 n + 2 )... 3 n × { n 2 − (n 2 − 1)} = 4C1 14C10 + 2C1 14C10 + 4C1 2C1 14C9 + 14
C11
{ n 2 − (n 2 − 1)} ... n 2 135. If the particular bowler plays, then two batsmen will not
2 play. So, rest of 10 players can be selected from 17
Thus, in n ! , there are n rows each consisting product of
n integers. Each row is divisible by n ! . other players. Number of such selections is 17C10 .
(n 2 )! If the particular bowler does not play, then number of
Hence, (n 2 )! is divisible by (n !)n or is a natural
(n !)n selections = 19C11
number. If all the three players do not play, then number of
Hence, both statements are correct and Statement II is selections = 17C11
the correct explanation of Statement I.
∴Total number of selections = 17C10 + 19
C11 + 17C11
129. Q1400 = 2 3 527
The number of ways in which 1400 can be expressed as 136. If the particular batsman is selected, then rest of
a product of two positive integers is 10 players can be selected in 18 C10 ways.
(3 + 1) (2 + 1) (1 + 1) If particular wicketkeeper is selected, then rest of 10
= 12
2 players can be selected in 18 C10 ways.
Statement II is correct but does not explain Statement I
as it just gives the information of prime factor about If both are not selected, then number of ways is 18 C11.
which 1400 is divisible. Hence, total number of ways
= 2 ⋅18 C10 + 18C11 = 19C11 + 18
C10
130. In onto functions, each image must be assigned to
12
atleast one pre-image. Now, if we consider the images a 137. Seven persons can be selected for first table in C7
and bas two different boxes, then four distinct objects 1, ways. Now, these seven persons can be arranged in
2, 3 and 4 (pre-images) can be distributed, such that no 6! ways. The remaining five persons can be arranged on
box remains empty, in 2 4 − 2C1 (2 − 1)4 = 14 ways. the second table in 4! ways.
Hence, both statements are correct and Statement II is Hence, total number of ways = 12C5 6 ! 4 ! 327
the correct explanation of Statement I.
6 138. Here, A can sit on first table and B on the second or A on
second table and B on the first table.
If A is on the first table, then remaining six for first table
Let C = (n − 1)⋅ nC1 + (n − 2 )⋅ nC2 + ....+ 1⋅ nCn − 1 ...(i)
139. If A, B are on the first table, then remaining five can be = n (2 n − nC0 − nCn ) = n(2 n − 2 )
selected in 10
C5 ways. ⇒ C = n (2 n − 1 − 1)
Now, seven persons including A and B can be arranged Thus, S = n(2 n − 1 − 1) + (2 n − 1)= (n + 2 ) 2 n − 1 − (n + 1)
on the first table in which A and B are together in 2 ! 5 ! C. We have,
ways. Remaining five can be arranged on the second n+1
2
C2 + 3C2 + 4C2 + K + nC2 = C3
table in 4! ways. Total number of ways is 10 C5 4!5!2!.
n n
If A and B are on the second table, then remaining three D. We have, ∑ (nCr )2 = ∑ (nCr ) (nCn − r )
can be selected in 10 C3 ways. r =0 r =0
Now, five persons including A and B can be arranged on ∴ The number of ways of selecting n persons out on
the second table in which A and B are together in 2!3! n men and n women = 2nCn
ways. Remaining seven can be arranged on the first
146. Let T and S denote teacher and student, respectively.
table in 6! ways. Total number of ways for first table is
10 Then, we have following possible patterns according to
C7 6!3!2!.
questions
∴Total number of ways = 10C7 6 ! 3 ! 2 ! + 10
C5 4 ! 5 ! 2 ! (i) T S S T S S T S S
140. 2 candidates can be selected out of 4 in 4C2 ways. (ii) S T S S T S S T S
Ta rg e t E x e rc is e s
(iii) S S T S S T S S T
141. Required number of ways = 38 − 3C1 ⋅ 2 8 + 3C2
Hence, total number of arrangements are
142. Each letter has 3 choices of letter boxes in 35 ways. 3 ⋅ (3 !)6 ! = 18 × 6 ! ⇒ k = 6
143. A. 20 C2 − 4C2 + 1 = 190 − 6 + 1 = 185 147. To form a triangle, 3 points out of 5 can be chosen in
B. 1 × 20
C2 = 190 5
C3 = 10 ways.
C. 2 × C2 = 56
8
But of these, the three points lying on the 2 diagonals
D. 6 C2 × 4 = 60 will be collinear.
So, 10 − 2 = 8 triangles can be formed.
144. A. Number of surjective functions is
148. Here, A is common letter in words SUMAN and DIVYA.
36 − 3C1 (3 − 1)6 + 3C2 (3 − 2 )6 = 729 − 192 + 3 = 540
Now, for selecting six different letters, we must select A
B. If f (ai ) ≠ bi, then pre-image a1, a2 , a3 cannot be either from word SUMAN or from word DIVYA.
assigned to images b1, b2 , b3 , respectively. Hence, for possible selections, we have
Hence, each of a1, a2 , a3 can be assigned to images A excluded from SUMAN + A included in SUMAN
in 2 ways. a4 , a5 , a6 can be assigned to images in 3 = 4C3 ⋅ 5C3 + 4C2 ⋅ 4C3
ways each.
= 40 + 24 = 64
Hence, number of functions is 2 3 33 = 216 Hence, N 2 = 64 ⇒ N = 8
C. One-one functions are not possible, as pre-images 149. Number of arrangements are 2 n ! n !.
are more than images.
Given that, 2 n ! n ! = 1152
D. Number of many one functions ⇒ (n !)2 = 576
= Total number of functions
− Number of one-one functions ∴ n ! = 24 ⇒ n = 4
= 36 − 0 = 729 150. Zero or more oranges can be selected out of 4 identical
oranges in 4 + 1 = 5 ways.
145. A. For k ≥ 1, we have
Zero or more apples can be selected out of 5 identical
k ⋅ k ! = [(k + 1) − 1] k ! = (k + 1)! − k ! apples in 5 + 1 = 6 ways.
Thus, 1⋅ 1! + 2 ⋅ 2 ! + 3 ⋅ 3 ! + K + n ⋅ n ! Zero or more mangoes can be selected out of 6 identical
= (2 ! − 1) + (3 ! − 2 !) + (4 ! − 3 !) + K+ {(n + 1)! − n !} mangoes in 6 + 1 = 7 ways.
= (n + 1) ! − 1 ∴Total number of selections when all the three types of
B. Let S = n ⋅ nC1 + (n − 1)⋅ nC2 + (n − 2 )⋅ nC3 + K+ 1⋅ nCn fruits are selected = 5 × 6 × 7 = 210
= (n − 1) ⋅n C1 + (n − 2 )⋅ nC2 + K + 1 ⋅ nCn − 1 But in one of these selections number of each type of
fruit is zero and hence this selection must be excluded.
328 + (n C1 + nC2 + K + nCn )
∴ Required number of ways = 210 − 1 = 209
151. Suppose box Ahas x1 balls, box B has x2 balls and boxC
has x3 balls. Then,
x1 + x2 + x3 ≤ 12, x1 ≥ 1, x2 ≥ 3, 1 ≤ x3 ≤ 5
= Coefficient of x 7 in
= C7 − C2 = 110
10 5
(1 − x 5 ) (1 + 4C1 x + 5C2 x 2 + 6C3 x 3 + . .. ) 6
(1 + x + x 2 + ... + x 7 ) (1 + x + x 2 + x 3 + x 4 )
∴Required number of solutions = ∑ (22 − 2 k )
k=0
(1 + x + x 2 + ... + x 7 ) = 22 + 20 + 18 + ... + 2
= Coefficient of x 7 in (1 − x )− 4 (1 − x 5 )(1 − x 8 ) = 2 (1 + 2 + 3 + ... + 11)
11 × 12
= Coefficient of x 7 in (1 − x )−4 (1 − x 5 ) =2 × = 132
2
Entrances Gallery
1. When n5 takes value from 10 to 6 the carry forward Aliter
8× 6× 4
moves from 0 to 4 which can be arranged in Required value =
4 3!
C1 4 C2 4
C3 4
C4
4
C0 + + + + =7 ∴ p=5
4 3 2 1
Aliter 5. The integer greater than 6000 may be of 4 digit or 5 digit.
Targ e t E x e rc is e s
Possible solutions are So, here two cases arise.
1, 2, 3, 4, 10 Case I When number is of 4 digit.
1, 2, 3, 5, 9 Four-digit number can starts from 6, 7 or 8.
1, 2, 3, 6, 8 6,7 or 8
1, 2, 4, 5, 8
1, 2, 4, 6, 7
1, 3, 4, 5, 7
2, 3, 4, 5, 6 3 4 3 2
Hence, there are 7 solutions. Thus, total number of 4-digit number, which are greater
2. Number of red lines = nC2 − n than 600 = 3 × 4 × 3 × 2 = 72
Case II When number is of 5 digit.
Number of blue lines = n
Total number of five-digit number which are greater
Hence, n
C2 − n = n than 6000 = 5 ! = 120
⇒ n
C2 = 2 n ∴Total number of integers = 72 + 120 = 192
n (n − 1) 6. Given, n( A) = 2, n(B) = 4
⇒ = 2n
2 ∴ n ( A × B) = 8
⇒ n − 1= 4 Now, the number of subsets of A × B having 3 or more
∴ n=5 elements
3. Required number of ways = 8C3 + 8C4 + ... + 8C8
= 5 ! − { 4 ⋅ 4 ! − 4C2 ⋅ 3 ! + 4C3 ⋅ 2 ! − 1} = 53 = (8 C0 + 8C1 + ... + 8C8 ) − (8 C0 + 8C1 + 8C2 )
4. Let (1, 1, 1), (− 1, 1, 1), (1, − 1, 1), (−1, − 1, 1) be vectors = 2 8 − 8C0 − 8C1 − 8C2 [Q n C0 + nC1 + ... + nCn = 2 n ]
a , b, c, d and rest of the vectors be − a , − b, − c, − d and = 256 − 1 − 8 − 28 = 219
let us find the number of ways of selecting coplanar 7. Number of ways = 35 − 3C1 ⋅ 2 5 + 3C2 ⋅ 15
vectors.
= 243 − 96 + 3 = 150
Observe that out of any three coplanar vectors, two will
be collinear (anti-parallel). 8. As, an = bn + c n
Number of ways of selecting the anti-parallel pair = 4 ⇒ an = 1 ... (1 or 0)
Number of ways of selecting the third vector = 6 ⇒ an = 1_ _ _ _ _ _ _1 = an − 1 + 1 _ _ _ _ _ _ _ 1 0 = an − 2
Total = 24 14
4244
3
( n − 1) places
14
4244
3
( n − 2 ) places
∴Number of non-coplanar selections
an = an −1 + an − 2
= 8C3 − 24 = 32 = 2 5 , p = 5 ∴ a17 = a16 + a15
329
6 9. b6 = Six-digit numbers ending with 1.
⇒ 1 – – – – 1
∴Required number of words = 8C4 ×
= 8C4 ×
7!
4 !2 !
7 × 6!
Objective Mathematics Vol. 1
Targ e t E x e rc is e s
(5 !)4 ⇒
n!
=
n!
10 ! (n − 10 )! 11! (n − 11)!
27. Total number of available courses = 9
Out of these, 5 courses can be chosen. But it is given ⇒ 11 × 10 ! (n − 11)! = 10 ! (n − 10 ) (n − 11)!
that 2 courses are compulsory for every student i.e. ⇒ 11 = n − 10 ⇒ n = 11 + 10 = 21
you have to choose only 3 courses instead of 5, out of Now, n
C21 = 21C21 = 1
7 instead of 9.
2n
7 × 6× 5 C2 9
It can be done in 7C3 ways = 34. Given, 2n
C2 : nC2 = 9 : 2 ⇒ n
=
6 C2 2
= 35 ways (2 n )! 2 ! (n − 2 )! 9
⇒ × =
28. There may be two cases. 2 ! (2 n − 2 )! n! 2
(2 n ) (2 n − 1) (2 n − 2 )! 2(n − 2 )! 9
Case I Two children get none and one get three and ⇒ × =
others get one each. Then, total number of ways 2(2 n − 2 )! n (n − 1) (n − 2 )! 2
10 ! 2(2 n − 1) 9
= × 10 ! ⇒ = ⇒ 4 (2 n − 1) = 9 (n − 1)
2 ! × 3! × 7 ! n −1 2
⇒ 8n − 4 = 9n − 9 ⇒ 9n − 8n = − 4 + 9
Case II Two get none and two get 2 each and the
∴ n=5
others get one each. Then, total number of ways
10 ! 35. Total number of points in a plane is 30.
= × 10 !
(2 !)4 × 6 ! Out of them, 8 points are collinear.
∴ Total number of straight lines formed
Hence, total number of ways 30 × 29 8 × 7
(10 !)2 (10 !)2 = 30C2 − 8C2 + 1 = − +1
= + 2 2 ×1
2 ! × 3 ! × 7 ! (2 !)4 × 6 ! = 435 − 28 + 1= 408
(10 !)2 × 25 36. We have, 0, 1, 2, 3, 4, 5 i.e. six numbers, one zero and 5
=
(2 !)2 × 6 ! × 84 positive numbers.
29. 3 consonants can be selected from 7 consonants One-digit number = 5 P1 = 5
in 7C3 ways. Two-digit numbers = 6 P2 − 5 P1 = 25
2 vowels can be selected from 4 vowels in 4C2 ways. Three-digit numbers = 6 P3 − 5 P2 = 100
∴ Required number of words = 7C3 × 4C2 × 5 ! Four-digit numbers = 6 P4 − 5 P3 = 300
Five-digit numbers = 6 P5 − 5 P4 = 600
selected 5! letters can be arranged
in 5! ways, to get different words Six-digit numbers = 6 P6 − 5 P5 = 600
∴ Total possible numbers
= 35 × 6 × 120 = 25200 = 5 + 25 + 100 + 300 + 600 + 600 = 1630 331
6 37. First, we fix the 5 plus ‘+’ in five alternate positions.
... + ... + ... + ... + ... + ...
Now, select the three positions for three ‘minus’ out of 6
⇒
∴
n
3
= 84
n = 252
Objective Mathematics Vol. 1
blank positions. 43. Since, the student is allowed to select atmost n books
∴ Required number of ways out of (2 n + 1) books. Therefore, in order to select atleast
6
P3 6× 5× 4 one book, he has the choice to select one, two, three, ...,
= 1× = 1 × 6C3 = 1 × = 1 × 5 × 4 = 20
3! 3×2 ×1 n books. Thus, if T is the total number of ways of
selecting atleast one book, then
38. Case I When he chooses 4 questions from first five
2n + 1
questions. T= C1 + 2 n + 1C2 + ... + 2 n + 1Cn = 255 ...(i)
2n + 1
Now, the number of choices = 5C4 × 8C6 Now, C0 + 2 n + 1C1 + ... + 2 n + 1Cn + 2 n + 1Cn + 1
8×7 + 2n + 1
Cn + 2 + ... + 2n + 1
C2 n + 1
= 5× = 140
2 ×1 2n + 1 2n + 1
= (1 + 1) =2
Case II When he chooses 5 questions from first five
2n + 1 2n + 1 2n + 1
questions. ∴ C0 + 2( C1 + ... + Cn )
2n + 1
Now, the number of choices + C2 n + 1 = 22n + 1
8×7 × 6
= 5C5 × 8C5 = 1 × 8C3 = = 56
3×2 ×1 ⇒ 1 + 2T + 1 = 2 2 n + 1
Now, the total number of choices available ⇒ 1 + 2 (255) + 1 = 2 2 n + 1 [from Eq. (i)]
= 140 + 56 = 196
⇒ 255 + 1 = 2 2n
⇒ 256 = 2 2n
⇒ 4 = 4n4
= 3 ⋅ 2 ⋅ 1 + 3 ⋅ 4 ⋅ 1 = 6 + 12 = 18
Similarly, 3rd, 4th and 5th prizes can be distributed in
Case III When 3 drawn balls contain all black balls 4 ways each.
= 3C3 ⋅ 2C0 ⋅ 4C0 = 1 Hence, by fundamental principle of counting, the total
On adding all three cases, we get required ways number of ways = 4 × 4 × 4 × 4 × 4 = 45 = 1024
= 45 + 18 + 1 = 64
4! 3!
Aliter 45. Required number of ways = × = 18
2 !2 ! 2 !
Case I When 3 drawn balls contains 1 black ball
6× 5 46. The number of integers greater than 6000
= 6C2 × 3C1 = × 3 = 45
2 ×1 = 5 ! + (3 × 4 × 3 × 2 ) = 192
Case II When 3 drawn balls contain 2 black balls 56
Pr + 6
3× 2 47. Q 54 = 30800
= 6C1 × 3C2 = 6 × = 18 Pr + 3
2 ×1
56 ! (51 − r )!
Case III When 3 drawn balls contain all black balls ∴ × = 30800
= 3C3 = 1 54 ! (50 − r )!
On adding all three cases, we get ⇒ 56 × 55 × (51 − r ) = 56 × 55 × 10
Required ways = 45 + 18 + 1 = 64 ⇒ 51 − r = 10
∴ r = 41
40. Four speakers will address the meeting in 4! ways = 24
different ways in which half number of cases will be such 48. The vowels in the word COMBINE are O, I, E which can
that P speaks before Q and half number of cases will be be arranged at 4 places in 4 P3 ways and other words
such that P speaks after Q. can be arranged in 4! ways.
24 Hence, total number of ways
∴Required number of ways = = 12
2 = 4 P3 × 4 ! = 4 ! × 4 ! = 576
41. Required sum = 3 ! (1 + 2 + 3 + 4) = 6 (10 ) = 60 49. Required number of ways
11! 11!
42. Number of ways of selecting 3 children from n children = 11C5 − 11C4 = − = 132
= C3
n 5 ! 6 ! 4 !7 !
n −1 n −1
Since, the number of times she will go to the garden 50. C3 + C4 > nC3
= 84 × (Number of ways that a particular child goes to n+1
the zoo) ⇒ n
C4 > nC3 [Q n Cr + nCr + 1 = Cr + 1]
n −1 (n − 1)(n − 2 ) ⇒
n!
>
n!
⇒ C3 = 84 × (1 ×
n
C2 ) ⇒ C3 = 84 ×
n
2 (n − 4)! 4 ! (n − 3)! 3 !
n(n − 1)(n − 2 ) (n − 1)(n − 2 ) ⇒ (n − 3) (n − 4)! > (n − 4)! 4
⇒ = 84 ×
332 3×2 ×1 2 ∴ n >7
7
Mathematical
Induction
Introduction
There are two basic processes of reasoning. Chapter Snapshot
Deduction (result is deduced from general to particular) and induction (result is
generalised from a particular result). ● Introduction
Deduction is the application of a general case to a particular case i.e. given a statement ● Statement
to be proven, often called a conjecture or a theorem in Mathematics, valid deductive ● Principle of Mathematical
steps are derived and a proof may or may not be established. Induction
In contrast to deduction, induction depends on working with each case and developing a ● Algorithm for Mathematical
conjecture by observing incidences till each and every case is observed. Induction
Induction is a key aspect of scientific reasoning, where collecting and analysing data is ● Types of Problems
the norm. Thus, induction means the generalisation from particular cases or facts.
In algebra or in other disciplines of Mathematics, there are certain results or statements
that are formulated in terms of n (where, n is a positive integer).
To prove such statements, the well suited principles that is used based on the specific
technique, is the principle of mathematical induction.
Statement
A sentence or description which can be judged to be true or false, is called a statement.
e.g. (i) 3 divides 9.
(ii) Jaipur is the capital of Rajasthan.
A statement involving mathematical relations is known as the mathematical
statement. e.g. 3 divides 9.
Mathematical Induction
(c) 133 (d) None of these (a)1 − 2 n (b) 2 n + 1 (c) 2 n − 1 (d) 2 n + 2
Sol. (c) Putting n = 1in 11n + 2 + 12 2 n + 1, we get Sol. (b) We have, u n + 1 = 3u n − 2u n − 1 …(i)
113 + 12 3 = 3059, which is divisible by 133. Step I Given, u1 + 1 = 3 = 2 + 1 = 2 + 11
Sol. (b) Check through option, the condition 2 n (n − 1)! < nn X Example 8. If a1 = 2, a n = 5 a n − 1 , for all
is satisfied for n > 2. natural numbers n ≥ 2, then the value of a 4 is equal
to
Recursion Type Problems (a) 150 (b) 50
In this type of problems, we get a sequence in (c) 200 (d) None of these
which later terms are deduced from earlier ones by
Sol. (d) We have, a1 = 2
using the principle of mathematical induction.
Then, a2 = 5 a2 − 1 = 5 a1 = 10
This process can be explained by following a3 = 5 a3 − 1 = 5 a2 = 5 × 10 = 50
examples: ∴ a4 = 5 a4 − 1 = 5 a3 = 5 × 50 = 250
2 The value of the natural numbers n such that the 6 For every natural number n, n(n + 1) is always
inequality 2 n > 2 n + 1 is valid, is a even b odd
a for n ≥ 3 b for n < 3 c multiple of 3 d multiple of 4
c for n ∈ N d for any n n
n + 1
3n − 3 n −1 7 If n is a natural number, then > n ! is true,
3 If n ∈ N, then 7 2n
+2 ⋅3 is always divisible 2
by when
a 25 b 35 a n< 1 b n≥ 1
c 45 d None of these c n≥ 2 d n< 3
335
WorkedOut Examples
Type 1. Only One Correct Option
Ex 1. The value of sum in the nth bracket of n (n + 1) (n2 + n + 2) 2(4 )
Sol. If n = 1, then = =1
(1) + (2 + 3) + ( 4 + 5 + 6 + 7) + (8 + 9 + 10 8 8
+… 15) +… , is Hence, (a) is the correct answer.
(a) 2n ( 2n + 2n − 1 − 1)
Ex 4. Sum of nth bracket of
(b) 2n − 1 ( 2n + 2n − 1 − 1)
(c) 2n − 2 ( 2n + 2n − 1 − 1) 1 1 1 1 1
(1) + + 2 + 3 + 4 + 5 +… is
(d) None of the above 3 3 3 3 3
( 3 − 1)
n 3
( 3n − 1)
Sol. If n = 1, then 2n (2n + 2n − 1 − 1) (a) (b)
= 2 (2 + 1 − 1) = 2(2) = 4, 2⋅ 4 n − 1 2⋅ 3(n − 1)(n + 2)/ 2
2n − 1 (2n + 2n − 1 − 1) = 20 (2 + 20 − 1) = (2 + 1 − 1) = 2 ( 3 + 1)
n
(c) (d) None of these
and 2n − 2 (2n + 2n − 1 − 1) = 2− 1 (21 + 20 − 1) 3⋅ 7n − 1
= 2− 1 (2) = 1 (3n − 1)3 (2)3
Sol. If n = 1, then = = 4;
∴ Sum of nth bracket = 2n − 2 (2n + 2n − 1 − 1) 2⋅ 4n − 1 2
(3n − 1) 2 3n + 1 4
Hence, (c) is the correct answer. = = 1 and =
2 ⋅ 3(n − 1) (n + 2) / 2 2 ⋅ 30 3 ⋅ 7n − 1 3
Ex 2. If (1) + (2 + 3 + 4) + (5 + 6 + 7 + 8 + 9)+… , then (3n − 1)
∴ Sum of nth bracket = (n − 1) (n + 2) / 2
the sum of terms in the nth bracket is 2⋅ 3
(a) ( n − 1) 3 + n 3 Aliter
nth bracket
(b) ( n + 1) 3 + 8n 2 1 − 1/ 3n
1 1 1
( n + 1) ( n + 2) = n(n − 1) / 2 + … + ( n + 1) n/ 2 − 1 = n(n − 1) / 2
(c) 3 3 3 1 − 1/ 3
6n
3(3n − 1) 3n − 1
(d) ( n + 1) 3 + n 3 = n n (n − 1) / 2 = (n − 1) (n + 2) / 2
2⋅ 3 3 2⋅ 3
Sol. If n = 1, then (n − 1)3 + n3 = 0 + 1 = 1, Hence, (b) is the correct answer.
(n + 1)3 + 8n2 = 8 + 8 = 16, Ex 5. The sum of (12 ) + (12 + 2 2 ) + (12 + 2 2 + 3 2 )
(n + 1) (n + 2) 6 +… n brackets is equal to
= = 1,
6n 6 n ( n + 1) ( n + 2) n( n + 1) 2 ( n + 2)
and (n + 1) + n = 8 + 1 = 9
3 3 (a) (b)
6 12
If n = 2, then (n − 1)3 + n3 = 1 + 8 = 9, n( n + 1) ( 2n + 1)
(c) n ( n + 1) ( n + 2) (d)
(n + 1) (n + 2) 12 6
= =1
6n 12
Sol. Q tn = 12 + 22 + … + n2
∴ Sum of nth bracket = (n − 1) + n 3 3
n (n + 1) (2n + 1) n(2n2 + 3n + 1)
Hence, (a) is the correct answer. = =
6 6
n3 n2 n
Ex 3. (1) + (2 + 3) + (4 + 5 + 6) + ... n brackets is equal = + +
3 2 6
to n3 n2 n
n( n + 1) ( n 2 + n + 2) ∴S n = ∑ + +
(a) 3 2 6
8
n2 (n + 1)2 n(n + 1)(2n + 1) n(n + 1)
n ( n + 1) ( n 2 − n + 2) = + +
(b) 12 12 12
8 n(n + 1)
n( n − 1) ( n 2 + n + 2) = [ n(n + 1) + 2n + 1 + 1]
(c) 12
8 n(n + 1) (n2 + 3n + 2) n(n + 1)2 (n + 2)
n( n − 1) ( n 2 − n + 2) = =
(d) 12 12
336 8 Hence, (b) is the correct answer.
Ex 6. (1) + (1 + 3) + (1 + 3 + 5) + ... n brackets is equal
to
n( n + 1) ( n + 2)
Ex 9. 2 ⋅ 12 + 3 ⋅ 2 2 + 4 ⋅ 3 2 +… + (n + 1)n 2 is equal to
(a)
n( n + 1) ( n + 2) ( 3n + 5) 7
Mathematical Induction
(a) 12
6 n( n + 1) ( n + 2) ( n + 3)
(b)
n( n + 1) ( 3n 2 + 23n + 46) 4
(b)
12 (c) 2n( n + 1) ( n + 2) ( n + 3)
n( n + 1) ( n + 2) ( 3n + 1)
n( 27n 3 + 90n 2 + 45n − 50) (d)
(c) 12
4
n( n + 1) ( 2n + 1) Sol. Q tn = (n + 1)n2 = n3 + n2
(d)
6 n2 (n + 1)2 n(n + 1) (2n + 1)
= +
4 6
Sol. n th bracket = 1 + 3 + 5 + ... + (2n − 1) = n2 n(n + 1)
n(n + 1) (2n + 1) = [ 3n(n + 1) + 2(2n + 1)]
∴ S n = Σ n2 = 12
6 n(n + 1) (3n2 + 7n + 2)
Hence, (d) is the correct answer. =
12
n(n + 1) (n + 2) (3n + 1)
Ex 7. (1) + (1 + 2) + (1 + 2 + 3) +… n brackets is equal =
12
to Hence, (d) is the correct answer.
n( n + 1) ( n + 2)
(a) Ex 10. 1 ⋅ 2 2 + 2 ⋅ 3 2 + 3 ⋅ 4 2 +… + n(n + 1) 2 is equal to
6
n( n + 1) ( 3n 2 + 23n + 46) n( n + 1) ( n + 2) ( 3n + 5)
(b) (a)
12 12
n( n + 1) ( n + 2) ( n + 3)
n( 27n 3 + 90n 2 + 45n − 50) (b)
(c) 4
4
n( n + 1) ( 2n + 1) (c) 2n( n + 1) ( n + 2) ( n + 3)
(d) n ( n + 1) ( n + 2) ( 3n + 1)
16 (d)
12
Sol. If n = 1, then the sum of the terms = (1) = 1,
Sol. Q tn = n (n + 1)2 = n(n2 + 2n + 1) = n3 + 2n2 + n
n(n + 1) (n + 2) 1 × 2 × 3
∴ = ∴ S n = Σn3 + 2Σn2 + Σn
6 6
n2 (n + 1)2 2n(n + 1)(2n + 1) n(n + 1)
=1 = + +
4 6 2
Hence, (a) is the correct answer. n(n + 1)
= [ 3n(n + 1) + 4 (2n + 1) + 6 ]
12
Ex 8. 1 ⋅ 3 ⋅ 4 + 2 ⋅ 4 ⋅ 5 + 3 ⋅ 5 ⋅ 6 +… upto n terms is
n(n + 1) (3n2 + 11n + 10)
equal to =
12
n( n + 1) ( n + 2) n(n + 1) (n + 2) (3n + 5)
(a) =
6 12
n( n + 1) ( 3n 2 + 23n + 46) Hence, (a) is the correct answer.
(b)
12
12 12 + 2 2 12 + 2 2 + 3 2
n( 27n + 90n 2 + 45n − 50)
3
Ex 11. + + +… upto n terms is
(c) 3 5 7
4 equal to
n( n + 1) ( 2n + 1) n( n + 1) ( n + 2) n( n + 1) ( n + 2)
(d) (a) (b)
6 18 6
Sol. Given expression n( n + 1) ( n + 2) 2n ( n + 1) ( n + 2)
(c) (d)
Σn(n + 2) (n + 3) = Σ (n3 + 5n2 + 6n) 3 3
n2 (n + 1)2 5n(n + 1) (2n + 1) 6n(n + 1) 12 + 22 + … + n2 n(n + 1)
= + + Sol. Q tn = =
4 6 2 2n + 1 6
n(n + 1) (n2 + n) 1 n(n + 1)(2n + 1) n(n + 1)
= [ 3n (n + 1) + 10(2n + 1) + 36 ] ∴ Sn = Σ = +
12 6 6 6 2
n(n + 1) (3n2 + 23n + 46) n(n + 1) (n + 2)
= =
12 18
Hence, (b) is the correct answer. Hence, (a) is the correct answer.
337
7 Ex 12. 1 ⋅ 2 + 2 ⋅ 3 + 3 ⋅ 4 +… upto n terms is equal to
(a)
n( n + 1) ( n + 5)
(b)
n( n + 1) ( n + 2)
Sol.
⇒
S n = 1 + 4 + 13 + 40 + … + tn
Sn = 1 + 4 + 13 + … + tn + 1 + tn
0 = 1 + 3 + 9 + 27 + … − tn
Objective Mathematics Vol. 1
3 3 (3n − 1) (3n − 1)
n( 4n 2 + 6n − 1) ⇒ tn = =
(c) (d) n( n + 1) ( n + 2) (3 − 1) 2
3 (3n − 1)
∴ Sn = Σ
Sol. If n = 1, then the sum of the terms = 1⋅ 2 = 2 2
n(n + 1) (n + 2) 1 × 2 × 3 3(3n − 1) n
= =2 = −
3 3 2(3 − 1) 2
Hence, (b) is the correct answer. (3n + 1 − 3 − 2n)
=
4
Ex 13. 1 ⋅ 3 + 2 ⋅ 3 2 + 3 ⋅ 3 3 +… + n ⋅ 3 n is equal to
Hence, (b) is the correct answer.
( 2n − 1)3n + 1 + 3 ( 2n + 1)3n + 1 + 3
(a) (b) (3n 2 − 3n + 2)
4 4 Ex 17. 1 + 4 + 10 + 19 +… + is equal to
( 2n + 1)3n + 1 − 3 ( 2n − 1)3n + 1 − 3 2
(c) (d) n( n + 1) ( 2n + 1)
4 4 (a)
6
Sol. If n = 1, then n 2 ( n + 1) 2
(b)
(2n − 1)3n + 1 + 3 (2n + 1)3n + 1 + 3 15 4
= 3, = ,
4 4 2 n ( n + 1) ( n + 2)
(c)
(2n + 1)3n + 1 − 3 (2n − 1)3n + 1 − 3 3 6
= 6, =
4 4 2 n( n 2 + 1)
(2n − 1)3n + 1 + 3 (d)
∴ Sum = 2
4
Hence, (a) is the correct answer. (3n2 − 3n + 2)
Sol. Sum = Σ
2
Ex 14. 1 ⋅ 1! + 2 ⋅ 2! + 3 ⋅ 3! +… + n ⋅ n! is equal to 3 2 3
= Σn − Σn + Σ1
(a) ( n + 1)! − 1 2 2
3n (n + 1) (2n + 1) 3n (n + 1)
(b) ( n − 1)! + 1 = − +n
12 4
(c) ( n + 1)! + 1 n
(d) ( n − 1)! − 1 = [ 2n2 + 3n + 1 − 3n − 3 + 4 ]
4
Sol. If n = 1, then (n + 1)! − 1 = 2 − 1 = 1, (n − 1)! + 1 = 2, n n(n2 + 1)
= [ 2n2 + 2 ] =
(n + 1)! + 1 = 2 + 1 = 3, (n − 1)! − 1 = 1 − 1 = 0 4 2
∴ Sum = (n + 1)! − 1 Hence, (d) is the correct answer.
Hence, (a) is the correct answer.
1 1 1 1
Ex 18. 1 − 1 − 1 − … 1 −
2 3 4 n + 1
is equal to
Ex 15. 1 ⋅ 3 + 3 ⋅ 5 + 5 ⋅ 7 +… upto n terms is equal to
n( n + 1) ( n + 5) 1
(a) (a)
3 n+1
n( n + 1) ( n + 2) n
(b) (b)
3 n+1
n( 4n 2 + 6n − 1) n
(c) (c)
3 2n + 1
(d) n( n + 1) ( n + 2) n
(d)
n(n + 1) (n + 5) n(n + 1) (n + 2) 3n + 1
Sol. If n = 1, then = 4, = 2,
3 3
1 1 n 1
n(4 n2 + 6n − 1) Sol. If n = 1, then = , = ,
= 3, n(n + 1) (n + 2) = 6 n+1 2 n+1 2
3
n 1 n 1
Hence, (c) is the correct answer. = , =
2n + 1 3 3n + 1 4
Ex 16. 1 + 4 + 13 + 40 +… upto n terms is equal to If n = 2, then
1 1 n
= , =
2
3n + 1 − 2n ( 3n + 1 − 2n − 3) n+1 3 n+1 3
(a) (b) n
2n 4 ∴ Sum =
n+1
3n − 1 + 3n ( 3n − 1 + 2n 2 )
338 (c) (d) Hence, (b) is the correct answer.
9 8
Target Exercises
Type 1. Only One Correct Option
3 15 63 x x( x + a1 )
1. + + +K n terms is equal to 9. 1 + + +…+
4 16 64 a1 a1 a 2
(a) n −
1 n 1
4 − (b) n +
1 −n
4 −
1 x( x + a1 ) ( x + a 2 )… ( x + a n − 1 )
3 3 3 3 is equal to
1 n 1 1 1 a1 a 2… a n
(c) n + 4 − (d) n − 4 − n +
3 3 3 3 (x + a1 )(x + a2 )… (x + an )
(a)
1 2 2 3 3 4 a1a2… an
⋅ ⋅ ⋅ (x − a1 )(x − a2 )… (x − an )
(b)
2. 2 32 + 32 2 3 + 3 2 32 3 + ... n terms is equal to a1a2… an
1 1 +2 1 +2 +3 (c) (x + a1 )(x + a2 ) … (x + an )
n2 n3 n 1 (d) (x − a1 )(x − a2 ) … (x − an )
(a) (b) (c) (d)
(n + 1)2 (n + 1)3 n+1 n+1
10. Using mathematical induction, the numbers a n ’s are
1 + 2 + 3 + ... + n
2 2 2 2
defined by a 0 = 1, a n + 1 = 3n 2 + n + a n , ( n ≥ 0).
3. Σ is equal to
1+ 2 + 3 + K + n Then, a n is equal to
(n2 + 2n) n2 − 2n (a) n3 + n2 + 1 (b) n3 − n2 + 1 (c) n3 − n2 (d) n3 + n2
(a) (b)
3 6
Targ e t E x e rc is e s
1 5 1 3 7
n2 + 11 11. For n ∈ N , n + n + n is
(c) (d) None of these 5 3 15
12n
(a) an integer (b) a natural number
1⋅ 22 + 2⋅ 32 + 3⋅ 4 2 + … + n( n + 1) 2 (c) a positive fraction (d) None of these
4. is equal to
12 ⋅ 2 + 22 ⋅ 3 + 32 ⋅ 4 + … + n 2 ( n + 1) 12. If n ∈ N , then x n − y n is divisible by
3n + 5 3n + 1 (a) x − 1 (b) x − y (c) x + y (d) y − 1
(a) (b)
3n + 1 3n + 5
(c) (3n + 1)(3n + 5) (d) None of these 13. x + a is divisible by x + a for n is any
n n
1 n n n 1 1 1 1
(a) (b) (c) (d) (a) (b) (c) (d)
n+1 n+1 2n + 1 3n + 1 3n + 1 3n + 2 3n + 4 3n + 5
340
Type 5. Match the Column 7
Mathematical Induction
31. Match the following:
Column I Column II
n +1
A. The smallest positive integer for which the statement 3 < 4 holds is
n
p. 1
B. If x − 1is divisible by x − k. Then, the least positive integral value of k is
n
q. 4
C. If 49 + 16n + k is divisible by 64 for n ∈ N. Then, the numerically least
n
r. 2
negative integral value of k is
D. For all n ∈ N, 2 4 n − 15n − 1 is divisible by 15 k . Then, the maximum s. 3
integer value of k is
34. The minimum value of n for which 10n + 3⋅ 4 n+ 2 + 5 is an integral multiple of 97, is___________ .
Entrances Gallery
Targ e t E x e rc is e s
JEE Main/AIEEE
1. 23n − 7n − 1 is divisible by [2014] Statement II For every natural number n ≥ 2
(a) 64 (b) 36 n( n + 1) < n + 1. [2008]
(c) 49 (d) 25
(a) Statement I is correct, Statement II is correct;
2. Statement I The sum of the series Statement II is a correct explanation for Statement I
1 + (1 + 2 + 4 ) + ( 4 + 6 + 9) + ( 9 + 12 + 16) (b) Statement I is correct, Statement II is correct;
+ .... + ( 361 + 380 + 400) is 8000. Statement II is not a correct explanation for Statement I
n (c) Statement I is correct, Statement II is incorrect
Statement II ∑ [ k 3 − ( k − 1)3 ] = n 3 , for any (d) Statement I is incorrect, Statement II is correct
k =1
natural number n. [2012] 1 0 1 0
5. If A = and I = , then which one of the
(a) Statement I is true, Statement II is true; Statement II is
not a correct explanation for Statement I
1 1 0 1
(b) Statement I is true, Statement II is false following holds, ∀ n ≥ 1 by the principle of
(c) Statement I false, Statement II is true mathematical induction? [2005]
(d) Statement I is true, Statement II is true; Statement II is a
(a) A n = 2n − 1 A + (n − 1)I (b) A n = nA + (n − 1)I
correct explanation for Statement I
(c) A n = 2n − 1 A − (n − 1)I (d) A n = nA − (n − 1)I
3. Statement I For each natural number n,
( n + 1) 7 − n 7 − 1is divisible by 7. 6. Let S ( k ) = 1 + 3 + 5 + ... + ( 2k − 1) = 3 + k 2 .
Statement II For each natural number n, n 7 − n is Then, which of the following is true? [2004]
divisible by 7. [2011] (a) S (1) is correct
(a) Statement I is incorrect, Statement II is correct (b) Principle of mathematical induction can be used to
(b) Statement I is correct, Statement II is correct; prove the formula
Statement II is correct explanation for Statement I (c) S (k ) ⇒
/ S (k + 1)
(c) Statement I is correct, Statement II is correct; (d) S (k ) ⇒ S (k + 1)
Statement II is not a correct explanation for Statement I
(d) Statement I is correct, Statement II is incorrect 7. 1⋅ 2⋅ 3 + 2⋅ 3⋅ 4 + 3⋅ 4 ⋅ 5 + ... n terms is equal to [2002]
n(n + 1)(n + 2)(3n + 5) n(n + 1)(n + 2)(n + 3)
4. Statement I For every natural number n ≥ 2 (a) (b)
12 4
1 1 1 n(n + 1)(n + 2)(3n + 1)
+ +K+ > n. (c) 2n(n + 1)(n + 2)(n + 3) (d)
1 2 n 12
341
7 Other Engineering Entrances
8. If n is a positive integer, then n 3 + 2n is divisible by 12. If a, b and n are natural numbers, then a 2n − 1 + b 2n − 1
Objective Mathematics Vol. 1
10. Let n ≥ 2 be an integer, 13. Which of the following result is valid? [AMU 2011]
(a) (1 + x ) > (1 + nx ), for all natural numbers n
n
2π 2π
cos sin 0 (b) (1 + x )n ≥ (1 + nx ), for all natural numbers n, where x > − 1
n n
(c) (1 + x )n ≤ (1 + nx ), for all natural numbers n
2π 2π
A = − sin cos 0
(d) (1 + x )n < (1 + nx ), for all natural numbers n
n n
0 0 1 14. If n is a natural number, then [AMU 2011,13]
and I is the identity matrix of order 3. Then, n3
[WB JEE 2014] (a) 1 + 2 + ... + n <
2 2 2
3
(a) A n = I and A n − 1 ≠ I n3
(b) A m ≠ I for any positive integer m (b) 1 + 2 + ...+ n =
2 2 2
3
(c) A is not invertible (c) 12 + 22 + ...+ n2 > n3
(d) A m = 0 for a positive integer m n3
(d) 12 + 22 + ...+ n2 >
1 1 1 kn 3
11. If + + + ... n terms = , then
2× 4 4 × 6 6× 8 n+1 15. If a1 = 1 and a n = na n − 1 for all positive integers n ≥ 2,
Ta rg e t E x e rc is e s
Answers
Work Book Exercise
1. (d) 2. (a) 3. (a) 4. (c) 5. (b) 6. (a) 7. (c)
Target Exercises
1. (b) 2. (c) 3. (a) 4. (a) 5. (b) 6. (b) 7. (c) 8. (a) 9. (a) 10. (b)
11. (b) 12. (b) 13. (c) 14. (c) 15. (b) 16. (b) 17. (a) 18. (c) 19. (a,c) 20. (a,c)
21. (a,d) 22. (d) 23. (a) 24. (a) 25. (c) 26. (c) 27. (a) 28. (c) 29. (d) 30. (c)
31. (*) 32. (1) 33. (3) 34. (2)
* A → q; B → p; C → p; D → r
Entrances Gallery
1. (c) 2. (d) 3. (b) 4. (b) 5. (d) 6. (d) 7. (b) 8. (d) 9. (c) 10. (a)
11. (a) 12. (a) 13. (b) 14. (d) 15. (b)
342
Explanations
Target Exercises
1. If n = 1, then n(n + 1)(n + 2 )(3 n + 1)
=
1 1 4 1 −2 12
n − 4n − = 1 − − = , n (n + 1)(n + 2 )(3 n + 5)
3 3 3 3 3
Σn (n + 1)2 12
1 1
n + 4− n − = 1 +
1 1 9 3
− = = , ∴ =
3 3 12 3 12 4 Σn 2 (n + 1) n(n + 1)(n + 2 )(3 n + 1)
1 1 4 1 12
n + 4n − = 1 + − = 2, 3n + 5
3 3 3 3 =
1 1 1 1 15 5 3n + 1
and n − 4− n + = 1 − + = =
3 3 12 3 12 4 n4
1 −1 5. S n = Σ
∴ Sum = n + 4−n (2 n + 1)(2 n − 1)
3 3
n4
2. If n = 1, then =Σ 2
4n − 1
n2 1
= , n2 1 1
(n + 1)2
4 =Σ + +
4 16 16 (2 n + 1)(2 n − 1)
n3 1
= , n(n + 1)(2 n + 1) n (2 n + 1) − (2 n − 1)
(n + 1)3 8 = + +Σ
24 16 32(2 n + 1)(2 n − 1)
n 1
= , n(n + 1)(2 n + 1) n 1 1
n+1 2 = + + 1 −
24 16 32 2 n + 1
1 1
and = n(n + 1)(2 n + 1) n n
n+1 2 = + +
Targ e t E x e rc is e s
24 16 16 (2 n + 1)
If n = 2, then
n(n + 1)(2 n + 1) n(2 n + 2 )
n
=
2 = +
n+1 3 24 16 (2 n + 1)
1 1 n(n + 1) (2 n + 1) + 3
2
= =
n+1 3 24 2 n + 1
∴ Sum =
n n(n + 1)(n 2 + n + 1)
=
n+1 6 (2 n + 1)
12 + 2 2 + 32 + K + n 2 1
3. We have, 6. t n =
1+ 2 + 3 + K + n n(n + 1)
n(n + 1)(2 n + 1)2 (2 n + 1) 2 −1 3−2 4− 3 (n + 1) − n
= = ∴ Sn = + + + ... +
n(n + 1) 6 3 1⋅ 2 2⋅3 3⋅ 4 n(n + 1)
(Σn ) n n(n + 1) n 1 1 1 1 1
Sn = 2 + = + = 1 − + − + ... + −
3 3 3 3 2 2 3 n n+1
(n + 2 n )
2
1 n
= = 1− =
3 n+1 n+1
4. Σ n(n + 1)2 = Σ (n 3 + 2 n 2 + n ) 7. If n = 1, then
n 2 (n + 1)2 2 n(n + 1)(2 n + 1) n(n + 1) 1 1
= + + = ,
4 6 2 n+1 2
n(n + 1) n 1
= [3 n(n + 1) + 4(2 n + 1) + 6] = ,
12
n+1 2
n(n + 1)(3 n 2 + 11 n + 10 ) n 1
= = ,
12 2n + 1 3
n(n + 1)(n + 2 )(3 n + 5) n 1
= and =
12 3n + 1 4
Σn 2 (n + 1) = Σ(n 3 + n 2 ) n
∴ Sum =
n (n + 1)
2 2
n(n + 1)(2 n + 1) 2n + 1
= +
4 6 8. If n = 1, then
n(n + 1) sin 2 n θ sin 2θ
= [3 n(n + 1) + 2(2 n + 1)]
12 =
2 n sin θ 2 sin θ
n(n + 1)(3 n 2 + 7 n + 2 ) 2 sin θ cos θ
= = = cos θ 343
12 2 sin θ
7 9. If n = 1, then given sum = 1 +
10. Given, a0 = 1, an + 1 = 3 n 2 + n + an
x x + a1
a1
=
a1
∴
and
1
3n + 5
(2 n )!
=
≤
1
8
1
Objective Mathematics Vol. 1
2n
2 (n !) 2
3n + 1
⇒ a1 = 3 (0 ) + 0 + a0 = 1
18. If n = 2, then
⇒ a2 = 3 (1)2 + 1 + a1
(2 n )! 24
= 3 + 1+ 1= 5 = =6
(n !)2 4
From option (b), 4n 8
Let P(n ) = n 3 − n 2 + 1 and =
2n + 1 3
∴ P(0 ) = 0 − 0 + 1 = 1 = a0 (2 n )! 4n
⇒ >
P(1) = 13 − 12 + 1 = 1 = a1 (n !)2 2 n + 1
and P(2 ) = (2 )3 − (2 )2 + 1 = 5 = a2
19. Given, an = nan − 1 + 5
∴ an = n 3 − n 2 + 1
For n = 2, then
11. If n = 1, then a2 = 2 a1 + 5 = 7 [Q a1 = 1]
1 5 1 3 7 a3 = 3 a2 + 5 = 21 + 5 = 26
n + n + n
5 3 15 a4 = 4a3 + 5 = 104 + 5 = 109
1 1 7
= + + ∴ a5 = 5a4 + 5 = 545 + 5 = 550
5 3 15
3+ 5+ 7 20. Check through options, the condition is satisfied,
= ∀ n ∈ N.
15
=1 21. n p − n is divisible by p for any natural number greater
12. If n = 1, then than 1.
x − y = x − y, divisible by x − .y.
n n It is Fermet’s theorem.
Aliter
Ta rg e t E x e rc is e s
Mathematical Induction
27. Consider 1 + 3 + 5 + ... + (2 k − 1) = [1 + (2 k − 1)]
2 = (10 m + 6)2 + 1
Q if a and l are the first term and last
= 10(10 m2 + 12 m+ 3)+ 7
n
term of an AP, then S n = (a + l ) Thus, last digit of an is 7, ∀ n > 1.
2
⇒ 1 + 3 + 5 + ... + (2 k − 1) = k 2 31. A. If n = 1, then 32 </ 4
If n = 2, then 27 </ 16
Thus, S (k ) can be expressed as k 2 . If n = 3, then 81 </ 64
i.e. S (k ): 1 + 3 + 5 + ...+ (2 k − 1) = k 2 If n = 4, then 243 < 256
B. x n − 1is divisible by x − 1, so k = 1
28. Consider S (k ): 1 + 3 + 5 + ... + (2 k − 1) = 3 + k 2
C. Value of k = − 1, so numerically 1 is smallest.
Then, S(1) : 1 = 3 + 12 , which is not true.
D. If n = 1⇒ 2 4n − 15 n − 1 = 0; n = 2
Suppose S (k ) is true, then
1 + 3 + 5 + ... + (2 k − 1) = 3 + k 2 ⇒ 256 − 30 − 1 = 225 = 152
So, maximum value of k is 2.
On adding (2 k + 1) both sides, we get
(n + 2 )! 3! 6
1 + 3 + 5 +…+ (2 k − 1) + (2 k + 1) = 3 + k 2 + (2 k + 1) 32. If n = 1, then = = = 1, divisible by 1.
6 (n − 1)! 6 × 0 ! 6
= 3 + (k + 1)2
which is S (k + 1.) 33. If n = 1, then n 3 + 2 n = 1 + 2 = 3, divisible by 3.
Thus, S (k ) ⇒ S (k + 1)
2
34. For n = 1, we have given expression = 207 = 9 × 23
29. For n = 2, a2 = 2 2 + 1 = 2 4 + 1 and for n = 2, we have given expression = 873 = 9 × 97
= 16 + 1 = 17 Thus, for n = 2 given expression is an integral multiple
Thus, the last digit of a2 is 7. of 97.
Targ e t E x e rc is e s
Entrances Gallery
1. Let P(n ) = 2 3 n − 7 n − 1 which is divisible by 7.
⇒ P(1) = 0, P(2 ) = 49 For n = k, P2 (k ) = k 7 − k
P(1) and P(2 ) are divisible by 49. Let P2 (k ) be divisible by 7.
Let P(k ) = 2 3 k − 7 k − 1 = 49I ∴ k 7 − k = 7λ …(i)
P(k + 1) = 2 3 k + 3 − 7 k − 8 For n = k + 1, P2 (k + 1) = (k + 1)7 − (k + 1)
= 8 (49 I + 7 k + 1) − 7 k − 8 = (k 7 − k ) + 7(k 6 + 3k 5 + ... + k )
= 49 (8I ) + 49k = 49λ = 7 λ + 7(k 6 + 3k 5 + ....+ k ) [from Eq. (i)]
[where λ = 8I + k, which is an integer] ⇒ Divisible by 7.
n
∑ [k
1 1 1
2. We have, 3
− (k − 1) ]
3
4. Let P(n ) = + + ... +
k =1 1 2 n
= (13 − 0 3 ) + (2 3 − 13 ) + (33 − 2 3 ) + ...+ [n 3 − (n − 1)3 ] = n 3 ∴ P(2 ) =
1
+
1
∴1 + (1 + 2 + 4) + (4 + 6 + 9) + (9 + 12 + 16) 1 2
+ ... + (361 + 380 + 400 ) = 1707
. > 2
= (13 − 0 3 ) + (2 3 − 13 ) + (33 − 2 3 ) + (43 − 33 ) Let us assume that
+ ... + (20 3 − 193 ) 1 1 1
P(k ) = + + ... + > k is true, for n = k + 1
= (20 ) = 8000
3
1 2 k
3. Let P1(n ) = (n + 1)7 − n 7 − 1 LHS =
1
+
1
+ ... +
1
+
1
= (7C0 n 7 + 7C1n 6 + ... + 7 C6 n + 1) − n 7 − 1 1 2 k k+1
= (n 7 + 7C1n 6 + ... + 7 C6 n + 1) − n 7 − 1 1 k(k + 1) + 1
> k + =
= 7C1n 6 + ....+ 7C6 n k+1 (k + 1)
7(7 − 1) 5 k+1
= 7n6 + n + ... + 7 n > [Q k(k + 1) > k, ∀ k ≥ 0]
2 k+1
which is divisible by 7. = (k + 1)
Now, let P2 (n ) = (n )7 − n
∴ P(k + 1) > k + 1
for n = 1, P2 (1) = 0
345
7 By mathematical induction, Statement I is true, ∀ n ≥ 2.
Now, let
∴
α(n ) = n(n + 1)
α(2 ) = 2(2 + 1)
9. For n = 1, 10 n + 3 ⋅ 4n + 2 + 5 = 10 + 3 ⋅ 43 + 5
= 207, which is divisible by 9.
So, by induction, the result is divisible by 9.
Objective Mathematics Vol. 1
= 6<3
2π 2π
cos n sin n 0
Let us assume that
α(k ) = k(k + 1) < (k + 1) is true.
2π 2π
For n = k + 1 10. Given, A = − sin cos 0
n n
LHS = (k + 1) (k + 2 ) < (k + 2 ) [Q(k + 1) < (k + 2 )] 0 0 1
∴ α(k + 1) < (k + 2 )
By mathematical induction, Statement II is true but 2π 2π
Statement II is not a correct explanation for Statement I. cos n sin n 0
1 0 1 0 1 0 2π 2π
5. A2 = = Now, A × A = − sin cos 0
n n
1 1 1 1 2 1
0 0 1
1 0 1 0 1 0
A3 = =
2 1 1 1 3 1
2π 2π
cos n sin n
M M M 0
1 0
An = can be verified by induction. 2π 2π
n 1 × − sin cos 0
n n
Now, taking options 0 0 1
n 0 n − 1 0
(b) nA + (n − 1) I = +
n n 0 n − 1
Arrange properly in a line
2 n − 1 0
= ≠ An 2 2π 2 2π
− 1 cos n − sin n
Ta rg e t E x e rc is e s
n 2 n
n 0 n − 1 0 = 2π 2π 2π 2π
(d) nA − (n − 1) I = −
−
sin cos − sin cos
n n 0 n − 1 n n n n
1 0 0
= = A
n
n 1 2π 2π 2π 2π
cos sin + sin cos 0
n n n n
6. 1 + 3 + 5 + K + (2 k + 1)
2π 2π
= [1 + 3 + 5 + K + (2 k − 1)] + (2 k + 1) − sin 2 + cos 2 0
n n
= 3 + k 2 + 2k + 1 1
[given] 0
= 3 + (k + 1)2 2π 2π 2π
cos 2 × 2 sin cos 0
∴ S (k ) ⇒ S (k + 1) n n n
2π 2π 2π
7. t n = n(n + 1)(n + 2 ) = −2 sin cos cos 2 × 0
n n n
= n(n 2 + 3 n + 2 ) 0 0 1
= n3 + 3 n2 + 2n
∴S n = Σ n 3 + 3 Σ n 2 + 2 Σ n 2π 2π
cos 2 × n sin 2 × n 0
n 2 (n + 1)2 3n(n + 1)(2 n + 1) 2 n(n + 1)
= + + 2π 2π
4 6 2 = − sin 2 × cos 2 × 0
n n
n(n + 1) 1
= [n(n + 1) + 4 n + 2 + 4] 0 0
4
n(n + 1)(n 2 + 5n + 6)
= Similarly,
4 n − 1 2π n − 1 2π
n(n + 1)(n + 2 )(n + 3) cos 2 × sin 2 × 0
= n n
4
n − 1 2π n − 1 2π
A = − sin 2 × × 0
n
cos 2
8. Let P(n ) = n 3 + 2 n n n
Now, P(1) = 1 + 2 = 3 0 0 1
P(2 ) = 8 + 4 = 12
P(3) = 27 + 6 = 33 1 0 0
Clearly, we see that all these numbers are divisible = 0 1 0 = I
by 3. 0 0 1
346
n − 2 2π
cos 2
×
and An − 1 = − sin 2 n − 2 ×
n
2π
sin 2 n − 2 ×
cos 2 n − 2 ×
2π
n
2π
0
0 ≠ I
For n = k, let P(k ) : (1 + x )k ≥ (1 + kx ) is true.
For n = k + 1, P(k + 1) : (1 + x )k + 1 ≥ {1 + (k + 1)x} is also
true.
7
Mathematical Induction
n n We will show P(k + 1) is true.
0 0 1
Consider (1 + x )k + 1 = (1 + x )k ⋅ (1 + x ) ≥ (1 + kx )(1 + x )
[if x > − 1]
kn 1 1 1 = 1 + x + kx + kx 2 ≥ 1 + x + kx [Q k > 0 and x > − 1]
11. = + + + ... n terms
n + 1 2 ⋅ 4 4⋅ 6 6⋅ 8 = 1 + (k + 1)x
1 4 − 2 6 − 4 8 − 6 2n + 2 − 2n Thus, (1 + x )k + 1 ≥ 1 + (k + 1)x, if x > − 1
= + + + ... +
2 2⋅4 4⋅ 6 6⋅ 8 2 n(2 n + 2 )
14. By taking option (d),
1 1 1 1 1 1 1 1 1 1
= − + − + − + ... + − When n = 1, then 1 > [true]
2 2 4 4 6 6 8 2 n 2 n + 2 3
8
1 1 1 When n = 2, then 5 > , [true]
= −
2 2 2 (n + 1)
3
When n = 3, then 14 > 9, [true]
n 1
= ⇒ k= 64
4(n + 1) 4 When n = 4, then 30 > = 2133
. , [true]
3
12. 2 n − 1 is an odd positive integer. 15. Given, an = nan − 1
⇒ a2 n − 1 + b2 n − 1 is divisible by a + b.
⇒ a2 = 2 a1 = 2 [Q a1 = 1]
13. Let P(n ) : (1 + x )n ≥ (1 + nx ) a3 = 3 a2 = 3 (2 ) = 6
For n = 1, (1 + x )1 = 1 + x = 1 + 1⋅ x ≥ 1 + 1⋅ x a4 = 4(a3 ) = 4 (6) = 24
∴ (1 + x )1 ≥ 1 + 1⋅ x ∴ a5 = 5 (a4 ) = 5 (24) = 120
Targ e t E x e rc is e s
347
8
Binomial
Theorem
Binomial Theorem for Positive Integral Index
If x and a are real numbers, then for all n Î N , Chapter Snapshot
( x + a ) n = n C 0 x n a 0 + n C1 x n -1 a 1 + n C 2 x n - 2 a 2
● Binomial Theorem for Positive
+K + n C r x n - r a r + K + n C n -1 x 1 a n -1 + n C n x 0 a n Integral Index
n
i.e. (x + a ) n = å n C r x n - r a r . ● Multinomial Theorem
r =0 ● Greatest Coefficient
Binomial Theorem
(1 + x ) n = n C 0 + n C1 x + n C 2 x 2 (a) 3 (b) 6
+K + nCr x r +K + nCn x n (c) 5 (d) None of these
n Sol. (c) Since, here n = 9 is odd, therefore the expansion of
i.e. (1 + x ) n = å n C r x r (1 + 5 2 x)9 + (1 - 5 2 x)9 has æç
9 + 1ö
÷ = 5 terms.
r =0 è 2 ø
known as the expansion of (1 + x ) n in X Example 4. Using binomial theorem, expand
ascending powers of x.
{( x + y) 5 + ( x - y) 5 } and hence find the value of
vi. Putting a =1 in the expansion of ( x + a ) n , we
{( 2 + 1) 5 + ( 2 - 1) 5 }.
get
( x + 1) n = n C 0 x n + n C1 x n -1 + n C 2 x n - 2 + K Sol. We have,
( x + y)5 + ( x - y)5 = 2 [5 C 0 x5 + 5C 2 x3 y2 + 5C 4 x1 y4 ]
+ n C r x n - r + K + n C n -1 x + n C n
n = 2( x5 + 10 x3 y2 + 5 xy4 )
n n n -r
i.e. ( x + 1) = å C r x Putting x = 2 and y = 1, we get
r =0 ( 2 + 1)5 + ( 2 - 1)5 = 2 {( 2 )5 + 10( 2 )3 + 5 2 }
known as the expansion of ( x +1) n in = 2(4 2 + 20 2 + 5 2 ) = 58 2
descending powers of x.
x. We have,
vii. Putting x =1 and a = - x in the expansion of
( x + a ) n = n C 0 x n a 0 + n C1 x n -1 a 1 + n C 2 x n - 2 a 2
( x + a ) n , we get
+ K+ n C r x n - r a r + K + n C n x 0 a n
(1 - x ) n = n C 0 - n C1 x + n C 2 x 2 - n C 3 x 3 + K
Here, ( r +1)th term is given by n C r x n - r a r .
+ ( -1) r n C r x r + K + ( -1) n n C n x n
n If Tr +1 denotes the ( r +1)th term, then
i.e. (1 - x ) n = å ( -1) r n
Cr x r Tr +1 = n C r x n - r a r
r =0
This is called the general term, because by
X Example 2. Expand (2x - 3 y) 4 by binomial giving different values to r we can determine
theorem. all terms of the expansion.
Sol. Using binomial theorem, we have Also, the general term can be expressed as
4
(2 x - 3 y)4 = {2 x + (- 3 y)}4 = å(- 1)
r 4
C r (2 x)4 - r (3 y)r n! s r
x a , where r + s = n.
r =0
r ! s!
= 4C 0 (2 x)4 (3 y)0 - 4C1(2 x)3 (3 y) + C 2 (2 x)2 (3 y)2
1 4
xi. In the binomial expansion of ( x - a ) n , the
- 4C 3 (2 x)(3 y)3 + 4C 4 (2 x)0 (3 y)4
general term is given by
= 16 x4 - 4(8 x3 )(3 y) + 6(4 x2 )(9 y2 ) - 4(2 x)(27 y3 ) + 81y4
= 16 x4 - 96 x3 y + 216 x2 y2 - 216 xy3 + 81y4
Tr +1 = ( -1) r n C r x n - r a r
We have, Tr +1 =
-2
C r ( x3 )12 - r æç 2 ö÷
12
èx ø
r
Objective Mathematics Vol. 1
10 - r r
x æ- 2ö = 12C r x36 - 3 r - 2 r (- 1)r 2 r
Tr + 1 = 10
C r æç ö÷ ç 2 ÷
è 3ø èx ø
= 12
C r (- 1)r 2 r x36 - 5 r …(i)
10 - r
1
C r æç ö÷
10 r 10 - r - 2 r 11
= (- 2 ) x to find the coefficient of x , put 36 - 5r = 11
è 3ø
10 - r
Þ 5r = 25 Þ r = 5
1
= C r æç ö÷
10
(- 2 )r x10 - 3 r On substituting the value of r in Eq. (i), we get
è 3ø T6 = 12C 5 (- 1)5 2 5 x11
Now, replace r by r - 1, we get the rth term i.e. Thus, the coefficient of x11 is
11 - r
1 - 12 ´ 11 ´ 10 ´ 9 ´ 8
Tr = 10C r -1 æç ö÷
12
(- 2 )r -1 x13 - 3 r C 5 (- 1)5 2 5 = ´ 32
è 3ø 5´ 4´ 3´2
Since, the r th term contains the x4 , therefore we have = - 25344
13 - 3 r = 4
Þ 3r = 9 Þ r = 3 X Example 8. The coefficient of x p and x q
(p and q are positive integers) in the expansion of
X Example 6. The number of integral terms in (1 + x ) p + q are
642
æ 1 1ö
(a) equal
the expansion of ç 5 2 + 7 6 ÷ is (b) equal with opposite signs
ç ÷
è ø (c) reciprocal of each other
(a) 106 (b) 108 (d) None of the above
(c) 103 (d) 109 Sol. (a) Coefficient of xp and xq in the expansion of
Sol. (b) Clearly, the general term in binomial expansion of (1 + x)p +q
are p +q
C P and p +q
Cq
642 p +q p +q ( p + q )!
æ 1 1ö and Cp = Cq =
ç52 + 76 ÷ is given by p! q !
ç ÷
è ø
æ 1ö
642 - r
æ 1ö
r xvii. Independent term or constant term of a
Tr + 1 = 642
Cr ç52 ÷ ç7 6 ÷ binomial expansion is the term in which
ç ÷ ç ÷ exponent of the variable is zero. i.e. the
è ø è ø
Obviously, r should be a multiple of 6. coefficient of x 0 .
642
Total numbers = = 107, but first term for r = 0 is
6 X Example 9. The ratio of the coefficient of x 15
also integral. Hence, total terms are 107 + 1 = 108 15
æ 2ö
to the term independent of x in ç x 2 + ÷ is
xiv. The coefficient of x k in the expansion of è xø
( x + a ) n can be obtained by equating the (a) 12 : 32 (b) 1 : 32
power of x in the general term to k. This will (c) 32 : 12 (d) 32 : 1
give value of r and on substituting this value in Sol. (b) Clearly, the general term in the expansion of
general term we can find the coefficient of x k . æ x2 + 2 ö
15
ç ÷ is given by
è xø
Ø If r is not a positive integer, then there will be no term containing
r
2
x k and hence coefficient of x k will be zero. Tr + 1 = 15
C r ( x2 )15 - r æç ö÷
è xø
xv. The coefficient of ( r +1)th term in the = 15
C r (2 )r x30 - 3 r …(i)
expansion of (1 + x ) n is n C r . Now, for the coefficient of term containing x15 ,
30 - 3r = 15, i.e. r = 5
Therefore, 15 C 5 (2 )5 is the coefficient of x15 [from Eq.(i)]
xvi. The coefficient of x r in the expansion of
Now, to find the term independent of x, put 30 - 3 r = 0
(1 + x ) n is n C r .
Thus, 15 C10 210 is the term independent of x [from Eq.(i)]
15
X Example 7. The coefficient of x 11 in the C52 5 1 1
Now, the ratio is 15
= =
12 C10 210 25 32
æ 3 2 ö
expansion of ç x - ÷ is
è x2 ø xviii. In the binomial expansion of ( x + a ) n , the rth
(a) - 25344 (b) 25344 term from the end is ( n - r + 2)th term from
350 (c) 23544 (d) - 23544 the beginning.
X Example 10. The 4th term from the end in the
æ x3
expansion of ç
2 ö
9
- ÷ is ii.
Some another form of binomial expansion
(x + y + z ) n = å
n!
x r ys z t
8
Binomial Theorem
r ! s! t !
è 2 x2 ø r + s+ t = n
n + 3-1
670 671 The above expansion has C 3-1
(a) (b) n +2
3
x x3 = C 2 terms
672 n!
(c) (d) None of these iii. ( x + y + z + u) n = x p yq z r us
x3 å p! q ! r ! s!
p + q + r + s= n
Sol. (c) Clearly, the 4th term from the end is 9 - 4 + 2 i.e. 7th n + 4-1
term from the beginning, which is given by
There are C 4-1 = n + 3C 3
terms in the
æ x3 ö
3 6 9 above expansion.
T7 = 9C 6 çç ÷÷ æ -2 ö = 9C x × 64
ç 2÷ 3 Above result can be generalized in the
è2 ø èx ø 8 x12
9´ 8´7 64 672 following form (known as multinomial
= ´ 3 = 3 theorem)
3´2 ´1 x x
( x1 + x 2 + K + x k ) n
xix. Middle term in a binomial expansion If n is n! r r r
an even natural number, then in the binomial = å r ! r !K r ! x11 x 22 K x kk
r1 + r2 +K+ rk = n 1 2 k
æn ö
expansion of ( x + a ) n , ç + 1÷ th term is the
è2 ø The general term in the above expansion is
middle term. n!
x1r1 x 2r2 x 3r3 K x krk
r1 ! r2 ! r3 !K rk !
xx. If n is odd natural number, then
æ n + 1ö æ n + 3ö The number of terms in the above expansion is
ç ÷ th and ç ÷ th are the middle terms in equal to the number of non-negative integral
è 2 ø è 2 ø
solution of the equation r1 + r2 + K + rk = n,
the binomial expansion of ( x + a ) n . because each solution of this equation gives a
term in the above expansion. The number of
Ø When there are two middle terms in the expansion, then their
binomial coefficients are equal. such solutions is n + k -1 C k -1 .
X Example 11. The middle term (terms) in the Ø n
The coefficient of x1 1 × x 2n2 K x nmm in the expansion of
9
æ p xö n!
expansion of ç + ÷ is/are (x1 + x 2 + K + x m )n is
è x pø n1 ! n2 ! n3 ! K nm!
126 p 126x 125 p 125x X Example 12. The number of distinct terms in
(a) (b) (c) (d)
x p x p the expansion of ( x + y - z )16 is
Sol. (a, b) Since, the power of binomial is odd, therefore we (a) 136 (b) 153 (c) 16 (d) 17
have two middle terms which are 5th and 6th terms. These
are given by
Sol. (b) ( x + y - z)16 = 16C 0 x16 + 16C1 x15 ( y - z) + …
p æ xö
5 4
p 126 p + 16
C r x16 - r ( y - z)r + .... + 16
C16 ( y - z)16
T5 = 9C 4 æç ö÷ ç ÷ = 9C 4 =
è x ø è pø x x Clearly, all the terms are distinct.
4 5 \ The number of distinct terms
p æ xö x 126 x
and T6 = 9C 5 æç ö÷ ç ÷ = 9C 5 = = 1 + 2 + 3 + K + 17
è x ø è pø p p 17 ´ 18
= = 153
2
Binomial Theorem
coefficient n C 0 , n C1 , n C 2 , …, n C n are known as the Tr
binomial coefficients. n - r +1 a
For given value of n, Þ × > = <1
r x
(a) If n is even, then greatest coefficient = n C n / 2
ìæ n + 1ö ü a
(b) If n is odd, then greatest coefficient are Þ íç ÷ - 1ý > = < 1
n n
îè r ø þ x
Cn - 1 Cn + 1 n +1 x n +1 xö
and . æ
Þ -1 > = < Þ > = < ç1 + ÷
2 2 r a r è aø
Ø ● Binomial coefficient of middle term is the greatest binomial n +1 n + 1ö
coefficient. Þ > = < r Þ r > = <æ
x ç x÷
● The greatest coefficient in the expansion of 1+ ç1 + ÷
n! a è aø
(x1 + x 2 + ¼ + x m )n is , where q and r are
m- r
(q !) [(q + 1)!]r Thus, Tr + 1 > = < Tr according as
the quotient and remainder respectively when n is divided æn + 1 ö
by m. r>=< ç ÷ …(i)
ç x ÷
1ç + ÷
X Example 17. Find the value of r for which è aø
200
C r is the greatest. Now, two cases arise.
Sol. Coefficient of terms in the expansion of ( x + y)200 are n +1
200 200 200
Case I When is an integer.
C0, C1, C 2 , …, 200 C 200 × x
1+
Since, middle term has greatest coefficient. a
\ Greatest coefficient = Coefficient of middle term n +1
= Coefficient of 101st term = 200C100 Let = m. Then, from Eq. (i), we have
x
Hence, 200
C r is the greatest, when r = 100 1+
a
X Example 18. The greatest coefficient in the mth and ( m +1)th terms are greatest terms.
expansion of ( x + y + z + w)15 is Case II When
n +1
is not an integer.
15! 15! x
(a) (b) 1+
3
3!( 4!) (3!) 3 4! a
n +1
15! Let m be the integral part of . Then, from
(c) (d) None of these x
2!( 4!) 2 1+
a
Sol. (a) The greatest coefficient is Eq. (i), we have ( m +1)th term is the greatest term.
n!
= [here, n = 15, q = 3, r = 3, k = 4] Above discussion suggests the following algorithm
(q !)k - r [(q + 1)!]r
to find the greatest term in a binomial expansion.
15! 15!
= =
(3!)4 - 3 [(3 + 1)!]3 3!(4!)3
Algorithm
Step I Write Tr + 1 and Tr from the given expansion.
Greatest Term Step II Find
Tr + 1
Let Tr + 1 and Tr be ( r +1)th and rth terms, Tr
respectively in the expansion of ( x + a ) n . Then, Tr + 1
Step III Put >1
Tr
Tr + 1 = n C r x n - r a r and Tr = n C r - 1 x n - r + 1 a r - 1
Step IV Solve the inequality in step III for r to get an
Tr + 1 n
Cr x n - r a r
\ = inequality of the form r < m or r > m.
Tr n
Cr - 1x n - r + 1a r - 1 If m is an integer, then mth and ( m +1)th terms
n! ( r - 1)!( n - r + 1)! a are equal in magnitude and these two are the
= ´ ×
( n - r )! r ! n! x greatest terms. If m is not an integer, then
n - r +1 a obtain the integral part of m, say k. In this
= × case, ( k +1) th term is the greatest term. 353
r x
8 Shortcut Method
To find the greatest term (numerically) in the
X Example 20. The greatest term (numerically)
3
in the expansion of (2 + 3x ) 9 , when x = , is
2
Objective Mathematics Vol. 1
expansion of (1 + x ) n .
| x | ( n + 1) 5 ´ 311 5 ´ 313
(a) Calculate . (a) (b)
| x | +1 2 2
13
7´3
(b) If m is integer, then Tm and Tm + 1 are equal and (c) (d) None of these
both are greatest term. 2
Sol. (c) We have,
(c) If m is not integer, there T[ m] + 1 is the greatest 9 9
3xö 9ö éQ x = 3 ù
term, where [ ] denotes the greatest integral part. (2 + 3 x)9 = 2 9 æç1 + 9æ
÷ = 2 ç1 + ÷ êë
è 2 ø è 4ø 2 úû
n
n n næ yö ½ x(n + 1) ½ éQ - 1 < 0ù
Ø To find greatest term in (x + y) , express (x + y) = x ç1 + ÷ . \ r =½ ½ êë úû
è xø ½ ( x + 1) ½ 3
n
æ yö ½ æ 9 ö(9 + 1) ½
Then, find the greatest term in ç1 + ÷ . ½ çè ÷ø ½ 90 12
è xø =½ 4 ½= =6 ¹ Integer
æ 9
½ ç ÷+1 ½ö 13 13
X Example 19. The greatest term (numerically) ½ è 4ø ½
1 The greatest term in the expansion is T[r ] + 1 = T6 + 1 = T7
in the expansion of (3 - 5x )15 , when x = is Hence, the greatest term = 2 9 × T7
5 6 6
9 9
15
(a) C 3 ´ 3 10 15
(b) C 3 ´ 3 11 = 2 9 × T6 + 1 = 2 9 ×9 C 6 æç ö÷ = 2 9 ×9 C 3 æç ö÷
è 4ø è 4ø
(c) 15
C 3 ´ 312 (d) None of these 9 × 8 × 7 312 7 ´ 313
= 29 × × =
1× 2 × 3 212 2
Sol. (c) Let Tr + 1 and Tr denote the (r + 1th
) and rth terms
respectively. Then,
Tr + 1 = 15C r 315 - r (-5 x)r and Tr = 15
Cr - 13
15 - r + 1
(-5 x)r - 1
R-f Factor Relation
Tr 15
C r 315 - r (-5 x)r
To find the integral and fractional parts of an
+1
Þ = 16 - r irrational number of the form ( a + b c ) n , where a, b, c
Tr 15
Cr - 13 (-5 x)r - 1
Tr 15 - r + 1 æ -5 x ö
and n are natural number, follow the following
+1
Þ = ç ÷ algorithm.
Tr r è 3 ø
Tr 16 - r æ 5 1 ö 1
Þ
Tr
+1
=
r
´ ç - ´ ÷, when x =
è 3 3ø 5
Algorithm
Tr 16 - r 1
Step I Write the given expression equal to I + f ,
+1
Þ = ´ , numerically where I is its integral part and f is the
Tr r 3
fractional part.
[neglecting minus sign]
Now, Step II Define G by replacing ‘+’ sign in the given
Tr +1 expression by ‘-’. Note that G always lies
> 1 (numerically)
Tr between 0 and 1.
16 - r 1 Step III Either add G to the expression in step I or
Þ ´ >1
r 3 subtract G from the expression in step I so that
Þ 16 > 4r RHS is an integer.
Þ r<4 Step IV If G is added to the expression in step I, then
Since, 4 is an integer. Therefore, 4th and 5th terms are
numerically greatest terms.
G + f will always come out to be equal to 1
Now, T4 = T3 + 1 = 15C 3 315 - 3 (-5 x)3 i.e. G = 1 - f . If G is subtracted from the
3
expression in step I, then G will always come
1 1
Þ T4 = C 3 ´ 312 æç -5 ´ ö÷ , when x =
15 out to be equal to f .
è 5ø 5
Step V Obtain the value of the desired expression
Þ T4 = 15C 3 ´ 312 (numerically)
after getting f in terms of G.
and T5 = T4 + 1 = 15
C 4 315 - 4 (-5 x)4
X Example 21. Integral part of (2 + 5 ) 2n + 1 is
4
1 1
= C 4 311 æç -5 ´ ö÷ , when x =
15 (n Î N )
è 5ø 5 (a) an even number
= 15C 4 ´ 311 (numerically) (b) an odd number
15
= C 3 ´ 312 (c) an even or an odd number depending upon the
From above, we see that the values of both greatest value of n
354 terms are equal. (d) None of the above
Sol. (a) Here, " n Î N, (2 + 5 )2 n + 1 Ï N
\ We denote (2 + 5 ) 2n + 1
by I + f
where I is an integer and f Î R such that 0 < f < 1
e.g. (i) (1 + 7) 51 - 1 = 8 51 - 1 is M(7) i.e.
multiple of 7 8
Binomial Theorem
Q 0 < ( 5 - 2) < 1 (ii) (1 + 7) 51 - 1-51 ´ 7 = 8 51 - 358 is M ( 7 2 )
\ We denote ( 5 - 2 )2 n + 1 by G i.e. multiple of 49.
51 ´ 50
where G Î R such that 0 < G < 1 (iii) (1 + 7) 51 - 1 - 51 ´ 7 - ´ 72
Now, I + f = ( 5 + 2 )2 n + 1 2
= ( 5 )2 n + 1 + 2 n + 1C1( 5 )2 n × 2 = 8 51 - 358 - 62475
2n + 1
+ C 2 ( 5 )2 n - 1 × 2 2 + ¼ …(i) = 8 51 - 62833 is M ( 7 3 ) i.e. multiple of 343.
2n + 1
G = ( 5 - 2) = ( 5 )2 n + 1 - 2n + 1
C1( 5 )2 n × 2
2n + 1
+ C 2 ( 5 )2 n - 1 × 2 2 - ¼ …(ii) X Example 23. Which of the following
On subtracting Eq. (ii) from Eq. (i), we get expression is divisible by 1225?
I + f - G = 2 [2 n + 1C1(5)n × 2 + 2 n + 1C 3 (5)n - 1 × 2 3 + ¼ ] (a) 6 2n - 35n - 1 (b) 6 2n - 35n + 1
= 2k, where k is an integer.
(c) 6 2n - 35n (d) 6 2n - 35n + 2
QI is an integer.
\ f - G = 2 k - I is an integer. …(iii) Sol. (a) Consider expression = 62n - 35n - 1
0< f <1
Now, 0 < f < 1ü = (62 )n - 35n - 1 = 36n - 35n - 1
ý Þ -1 < -G < 0 …(iv)
and 0 < G < 1þ -1 < f - g < 1 So, 62n - 35n - 1 = (1 + 35)n - 35n - 1
From Eqs. (iii) and (iv), f - G = 0 = 1 + 35n + nC 2 × 352 + ¼ + 35n - 35n - 1
Now, from Eq. (iii), I = 2 k - (f - G ) = 2 k - 0 = 2 k = 352 [n C 2 + nC 3 × 35 + ¼ + 35n - 2 ]
= 1225 ´ a positive integer, if n ³ 2
X Example 22. The integral part of ( 2 + 1) 6 is
If n = 1, then 62n - 35n - 1 = 0, which is divisible by 1225.
(a) 198 (b) 196
(c) 197 (d) 199 So, options (b), (c) and (d) are not divisible by 1225.
Sol. (c) Let ( 2 + 1)6 = I + f, where I Î N and 0 < f < 1. X Example 24. If 7103 is divided by 25, then the
Clearly, I is the greatest integer less than or equal to remainder is
( 2 + 1)6 . (a) 20 (b) 16 (c) 18 (d) 15
Let G = ( 2 - 1)6 . Then,
Sol. (c) We have, 7103 = 7(49)51 = 7(50 - 1)51
I + f + G = ( 2 + 1)6 + ( 2 - 1)6
= 7{5051 - 51
C1 5050 + 51
C 2 5049 - ¼ - 1}
Þ I + f + G = 2{6 C 0 ( 2 )6 + 6C 2 ( 2 )6 - 2 + ¼}
Þ I + f + G = An even integer = 7{(5051 - 51
C1 5050 + 51
C 2 5049 - ¼ ) - (7 + 18 - 18)}
Þ f + G =1 = k + 18 (say) [Qk is divisible by 25]
Again, I + f + G
\ Remainder is 18.
= 2{6 C 0 ( 2 )6 + 6C 2 ( 2 )6 - 2 + 6C 4 ( 2 )6 - 4 + 6 C 6 ( 2 )6 - 6 }
Þ I + 1 = 2(8 + 15 ´ 4 + 15 ´ 2 + 1) [Q f + G = 1] 2 4n
X Example 25. The fractional part of is
Þ I = 197 15
1 2
(a) (b)
Divisibility Problems 15 15
4
From the expansion, (c) (d) None of these
15
(1 + a ) n = 1 + n C1a + n C 2a 2 +¼ + n C n a n
4n
16n (1 + 15)n
We can conclude that Sol. (a) 2 = =
15 15 15
i. (1 + a ) n - 1 = n C1a + n C 2a 2 +¼ + n C n a n is 1 + nC115 + nC 2 152 + ¼ + nC n 15n
=
divisible by a i.e. it is a multiple of a. 15
1 + 15k 1
= , where k Î N = + k
In short, we can write that (1 + a ) n - 1 = M (a ) 15 15
ì2 4n ü ì 1 ü 1
ii. (1 + a ) n - 1 - na = n C 2a 2 + n C 3a 3 \ í ý = í + ký =
î 15 þ î 15 þ 15
+¼ + n C n a n = M (a 2 )
X Example 26. Larger of 99 50 + 100 50 and 10150
n n( n - 1) 2
iii. (1 + a ) - 1 - na - a is
2
(a)10150 (b) 99 50 + 100 50
= n C 3a 3 + n C 4a 4 +¼ + n C n a n = M (a 3 ) 355
(c) both are equal (d) None of these
8 Sol. (a) We have, 10150 = (100 + 1)50
= 10050 + 50 × 10049 +
50 × 49
1× 2
× 10048 + ¼ …(i)
X Example 28. The greatest integer which
divides the number 101100 - 1 is
Objective Mathematics Vol. 1
2 If n is even positive integer, then the condition 7 If R = ( 2 + 1)2 n + 1 and f = R - [R], where [ ]
that the greatest term in the expansion of (1 + x )n denotes the greatest integer function, then [R]
equals
may have the greatest coefficient also is
1
n n+2 a f +
a < x< f
n+2 n 1
n+1 n b f -
b < x< f
n n+1 1
c -f
n n+ 4 f
c < x<
n+ 4 4 d None of the above
d None of the above
8 If (5 + 2 6 )n = I + f, where I Î N, n Î N and
n
3 If n > 1, then (1 + x ) - nx - 1 is divisible by 0 £ f < 1, then I equals
a x5 b x2 c x3 1 1
a -f b -f
d x4 f 1+ f
1 1
4 The positive integer just greater than c -f d + f
1- f 1- f
(1 + 0.0001)10000 is
a 3 9 If R = (7 + 4 3 )2 n = I + f , where I Î N and
b 4 0 < f < 1, then R(1 - f ) equals
c 5
1
d None of the above a (7 - 4 3 )2n b
(7 + 4 3 )2n
5 If [ x ] denotes the greatest integer less than or c 1 d None of these
equal to x, then [(1 + 0.0001)10000 ] equals
10 The digit at unit’s place in the number
a 3
b 2
171995 + 111995 - 71995 is
c 0 a 0 b 1
d None of the above c 2 d 3
356
Properties of the Binomial Coefficients
X Example 30. If the sum of the coefficients in
8
Binomial Theorem
i. In the expansion of (1 + x ) n the coefficients of
the expansion of ( a 2 x 2 - 2ax + 1) 51 vanishes, then
terms equidistant from the beginning and the the value of a is
end are equal. (a) 2 (b) -1 (c) 1 (d) -2
Proof
Sol. (c) The sum of the coefficients of the polynomial
We have, (a2 x2 - 2 ax + 1)51 is obtained by putting x = 1in
(1 + x ) n = C 0 + C1 x + C 2 x 2 +¼ + C r x r (a2 x2 - 2 ax + 1)51.
n -1 n
+¼ + C n - 1 x + Cn x By hypothesis, (a2 - 2 a + 1)51 = 0
term from the beginning is n C r . The ( r +1)th iii. The sum of the coefficients of the odd terms in
term from the end is ( n - r +1)th term from the the expansion of (1 + x ) n is equal to the sum of
beginning. Therefore, its coefficients is the coefficients of the even terms and each is
n
C n - r . But, we have n C r = n C n - r . equal to 2 n - 1 .
Hence, the coefficients of terms equidistant i.e.
from the beginning and the end are equal. C 0 + C 2 + C 4 +¼ = C1 + C 3 + C 5¼ = 2 n - 1
ii. The sum of the binomial coefficients in the Proof
expansion of (1 + x ) n is 2 n . We have, (1 + x ) n = C 0 + C1 x + C 2 x 2 + C 3 x 3
i.e. C 0 + C1 + C 2 +¼ + C n = 2 n +¼ + C n - 1 x n - 1 + C n x n
n Putting x =1 and -1 respectively in the above
or å n Cr = 2n expansion, we get
r=0 n
2 = C 0 + C1 + C 2 + C 3 +¼ + C n - 1 + C n
Proof
We have, (1 + x ) n = C 0 + C1 x + C 2 x 2 + C 3 x 3 and 0 = C 0 - C1 + C 2 - C 3 +¼ + ( -1) n - 1 C n - 1
+¼ + C n - 1 x n - 1 + C n x n …(i) + ( -1) n C n
equal to
2n - 1 2n å< å (C i + C j ) 2 is equal to
(a) (b) 0£ i j £ n
n! ( n + 1)!
(a) ( n - 1) × 2n C n + 2 2n
n n-2
2 2
(c) (d) (b) n × 2n C n + 2 2n
n! ( n - 1)!
(c) ( n + 1) × 2n C n + 2 2n
Sol. (a) Given expression (d) None of the above
1 n 2n - 1
= [ C 0 + nC 2 + nC 4 + ...] = Sol. (a) 2
n! n! å å(C i + Cj)
0 £ i < j£ n
Binomial Theorem
1 ÷÷ is
é (1 + x ) n + 1 ù é x2 x3
ê ú = C
ê 0 x + C 1 + C 2 k =1 è Ck - 1 ø
ë n +1 û 0 ë 2 3
n( n + 2)( n + 1) 2 n( n + 1)( n + 2) 2
1 (a) (b)
xn +1 ù 12 12
+¼+ C n ú n( n + 1)( n + 2)
n +1û 0 (c) (d) None of these
n +1 12
2 -1 C C C
Þ = C 0 + 1 + 2 +¼ + n æ n ö n
2
2
n +1 2 3 n +1 Sol. (a) å k ç C k ÷ = å k 3 æç n - k + 1ö÷
3
çC ÷
k =1 è k -1ø k =1 è k ø
(ii) Integrating expansion of (1 + x ) n between
é n
C n - k + 1ù
limits -1 to 0, we get êQ n k = ú
0 êë C k - 1 k úû
é (1 + x ) n + 1 ù é x2 x3 n n
ê ú = êC 0 x + C1 + C2 = å k(n - k + 1)
2
= å k [(n + 1)
2
- 2 k(n + 1) + k 2 ]
ë n + 1 û -1 ë 2 3 k =1 k =1
n n n
0 2 2 3
C xn +1 ù = (n + 1) å k - 2(n + 1) å k + åk
+¼+ n ú k =1 k =1 k =1
n + 1 úû n(n + 1) n(n + 1)(2 n + 1) n2 (n + 1)2
-1 = (n + 1)2 × - 2(n + 1) × +
2 6 4
1 C C C ( -1) n C n n(n + 1)2
Þ = C 0 - 1 + 2 - 3 +¼+ = [6(n + 1) - 4(2 n + 1) + 3n]
n +1 2 3 4 n +1 12
2
n(n + 1) n(n + 2 )(n + 1)2
= × (n + 2 ) =
12 12
Some Other Important Properties
X Example 36. If
xi. n C r = n C s , then either r = s or r + s = n
n
(1 + x ) n = C 0 + C1 x + C 2 x 2 + K + C n x n , then
Cr n - r +1
xii. n
= (C 0 + C1 )(C1 + C 2 ) K (C n - 1 + C n )
Cr - 1 r = k × C1C 2C 3 K C n , where k is equal to
n +1
( n +1) n nn
xiii. n
Cr + nCr - 1 = Cr (a) (b)
n! ( n -1)!
n
xiv. C 02 - C12 + C 22 - C 32 +... (c)
( n + 1)
(d) None of these
ì0, if n is odd ( n - 1)!
=í n/2 n n+1 n+1
î(-1) C n / 2 , if n is even Sol. (a) We have, C 0 + C1 = C1,C1 + C 2 = C 2 , ... ,
n+1
Cn - 1 + Cn = Cn
X Example 34. The value of \ Given expression = n + 1C1n + 1C 2 K n + 1C n ...(i)
3 5
(n + 1)! (n + 1)n!
47
C4 + å 50 - j C 3 + å 56 - k C 53 - k is Now, n + 1C r = =
r !(n - r + 1)! r !(n - r + 1)(n - r )!
j=0 k =0
n+1 n+1 n
57 57 57 57 or Cr = Cr ...(ii)
(a) C4 (b) C3 (c) C5 (d) C6 n-r+1
3 5 Putting n = 1, 2, 3, ..., n in Eq. (ii), we get
50 - j 56 - k
Sol. (a) We have, 47C 4 + å C3 + å C 53 - k (C 0 + C1 )(C1 + C 2 ) K (C n - 1 + C n )
j=0 k =0
n+1 n+1 n+1 (n + 1)n
= 47
C 4 + ( 50 C 3 + 49
C3 + 48
C3 + 47
C3 ) + = × C1 × C2 K Cn = C1C 2C 3 K C n
n n-1 1 n!
( 56 C 53 + 55
C 52 + 54
C 51 + 53
C 50 + 52
C 49 + 51
C 48 )
= 47 47
C4 + ( C3 + 48
C3 + 49
C3 + 50
C3 )
X Example 37. The value of
15
+ ( 56 C 3 + 55
C3 + 54
C3 + 53
C3 + 52
C3 + 51
C3 ) C 02
- 15
C12 + C 22 -K - 15C15
15 2
is
[Q n C r = nC n - r ] (a) 15 (b) -15 (c) 0 (d) 51
47 47 48 49 50
= ( C4 + C3 ) + ( C3 + C3 + C3 )
Sol. (c) As we know that,
+ ( 51C 3 + 52
C3 + ¼ + 56
C3 ) C 02 - C12 + C 22 - C 32 + K + (- 1)n C n2 = 0 (if n is odd)
n n n+1
[Q C r + C r -1 = Cr ] Here, n = 15 (odd)
= ( C4 +48 48
C3 ) + 49
C3 + 50
C3 + ¼ + 56
C3 = 57
C4 \ C 02 - C12 + C 22 - K - C15
2
=0 359
8 X Example 38. If
(1 + x - 2x 2 ) 6 = 1 + a1 x + a 2 x 2 + a 3 x 3 +¼,
X Example 40. If
A = 2n C 0 × 2n C1 + 2n C1 × 2n -1 C1 + 2n
C 2 × 2n - 2 C1
Objective Mathematics Vol. 1
Binomial Theorem
a n×2n - 1 b n×2n - 2 chosen again. The number of ways of choosing A
c n( n - 1) 2 n - 1 d None of these and B such that A = B, is
a 2n b 3n
8 If Cr is the coefficient of x r in (1 + x )n , then the c 2nC n d None of these
n
value of å (r + 1)2Cr is 14 P is a set containing n elements. A subset A of P
r =0
is chosen and the set P is reconstructed by
a ( n + 1)( n + 4)2 n - 2 b ( n + 1)( n + 4)2 n - 1
replacing the elements of A. A subset B of P is
c ( n + 1)22 n - 2 d None of these chosen again. The number of ways of choosing A
and B such that B is a subset of A, is
9 If Cr stands for n Cr , then the sum of the series
a 2n b 3n
æ nö æ nö c 2 nC n d None of these
2ç ÷!ç ÷!
è2ø è2ø
[C02 - 2C12 + ¼ + (-1)n (n + 1) Cn2 ] ,
n! 15 P is a set containing n elements. A subset A of P
is chosen and the set P is reconstructed by
where n is an even positive integer, is equal to
replacing the elements of A. A subset B of P is
a 0 b ( -1)n/ 2( n + 1)
chosen again. The number of ways of choosing A
c ( -1)n/ 2( n + 2 ) d ( -1)n n and B such that B contains just one element
more than A, is
10 In the expansion of (1 + x )n (1 + y )n (1 + z )n , the 2n
a Cn - 1 b 3n c (2 n )2 d 2n
Cn
sum of the coefficients of the terms of degree r is
a ( nC r )3 b 3 × nC r 16 P is a set containing n elements. A subset A of P
c 3 nC r d nC 3 r is chosen and the set P is reconstructed by
replacing the elements of A. A subset B of P is
11 There are two bags each of which contains n chosen again. The number of ways of choosing A
balls. A man has to select an equal number of and B such that A and B have equal number of
balls from both the bags. The number of ways in elements, is
which a man can choose atleast one ball from
a 2n b 3n c (2 n )2 d 2n
Cn
each bag is
a 2n
Cn b ( nC n )2 17 If n > 3, then
2n
c C1 d 2nC n - 1 xyC0 - ( x - 1)( y - 1) C1 + ( x - 2 )( y - 2 ) C2
- ( x - 3)( y - 3) C3 +¼+ (-1)n ( x - n )( y - n ) Cn
12 P is a set containing n elements. A subset A of P
is chosen and the set P is reconstructed by equals
replacing the elements of A. A subset B of P is a xy ´ 2 n b n xy
chosen again. The number of ways of choosing A c xy d None of these
and B such that A and B have no common 18 If n > 3, then xyzC0 - ( x - 1)( y - 1)( z - 1) C1
elements is
+ ( x - 2 )( y - 2 )( z - 2 ) C2 - ( x - 3)( y - 3)( z - 3) C3
a 2n
b 3n + ¼ + (-1)n ( x - n )( y - n )( z - n ) Cn equals
c 4n a xyz b 0
d None of the above c - xyz d None of these
n n
iv. Putting n =1, 2, 3 in the expansion of (1 + x ) - n ,
we get
Objective Mathematics Vol. 1
ì æ x öü æ xö
In this case, (x + a)n = í a ç1 + ÷ý = an ç1 + ÷ (1+ x ) -1 = 1 - x + x 2 - x 3 + x 4 -¼+ ( -1) r x r +¼
î è ø
a þ è aø
(1 + x ) -2 = 1 - 2x + 3x 2 - 4x 3 + 5x 4 -¼
2 3
ïì x n(n - 1) æ x ö n(n - 1)(n - 2) æ x ö ïü
+ ( -1) r ( r + 1) x r +¼
= an í1 + n × + ç ÷ + ç ÷ ¼ý
ïî a 2! è aø 3! è aø ï
þ (1 + x ) -3 = 1 - 3x + 6x 2 - 10x 3
● If n is a positive integer, the expansion of (1 + x)n contains ( r + 1)( r + 2) r
(n + 1) terms and coincides with +¼ + ( -1) r x +¼
2
(1 + x)n = nC 0 + nC 1x + nC 2x 2 + ¼ + nC n x n ,
Replacing x by -x in the above expansions,
because n C 0 = 1 , n C 1 = n , we get
n n(n - 1)
C2 = , (1 - x ) -1 = 1 + x + x 2 + x 3 +¼ + x r +¼
2!
n(n - 1)(n - 2) (1 - x ) -2 = 1 + 2x + 3x 2 +¼ + ( r + 1) x r +¼
n
C3 = ,…
3! ( r +1)( r +2) r
(1- x ) -3 = 1 + 3x + 6x 2 +¼ + x +¼
● The general term in the expansion of (1 + x)n is given by 2
n(n - 1)(n - 2)¼{n - (r - 1)} r In all these expansion, it is assumed that | x | <1.
Tr + 1 = x
r! Students are advised to learn these expansions.
1
Some Important Deductions X Example 42. The expansion of ,
( 4 - 3x ) 1/ 2
i. Replacing n by - n in the expansion for binomial theorem will be valid, if
(1 + x ) n , we get (a) x <1 (b) | x| <1
n( n+1) 2 n( n + 1)( n + 2) 3 2 2
(1+ x ) - n = 1 - nx + x - x (c) - <x< (d) None of these
2! 3! 3 3
n( n + 1)( n + 2)¼ ( n + r - 1) r
+¼+( -1) r x +¼ Sol. (d) The given expression can be written as
r! - 1/ 2
3
The general term in this expansion is 4-1/ 2 æç1 - xö÷ and it is valid only when
è 4 ø
n( n + 1)( n + 2)¼ ( n + r - 1) r 3 4 4
Tr + 1 = ( -1) r x x <1 Þ - < x<
r! 4 3 3
= 1 + a1 x + a2 x2 + K Þ ar = r + 1
Thus, if x is so small that its squares and higher
powers may be neglected, then (1 + x ) n = 1 + nx,
approximately. This is an approximate value of
8
Binomial Theorem
(1 + x ) n .
X Example 45. The coefficient of x n in the
1 X Example 47. If x is so small such that its
expansion of is
(1 - x )(1 - 2x )(1 - 3x ) square and higher powers may be neglected, then
1 1 (8 + 3x ) 2/ 3
(a) (2 n + 2 - 3 n + 3 + 1) (b) (3 n + 2 - 2 n + 3 + 1) the value of is
2 2 (2 + 3x )( 4 - 5x )1/ 2
1 n+3 n+2 3 5
(c) (2 -3 + 1) (d) None of these (a)1 - x (b)1 + x
2 2 8
1 5
Sol. (b) We have, (c)1 - x (d) None of these
(1 - x)(1 - 2 x)(1 - 3 x) 8
1 4 9
= - + (8 + 3 x)2 / 3
2(1 - x) 1 - 2 x 2(1 - 3 x) Sol. (c) We have,
(2 + 3 x) (4 - 5 x)
[by resolving into partial fractions] 2/ 3
3xö
1 9
= (1 - x) - 4(1 - 2 x)-1 + (1 - 3 x)-1
-1 82 / 3 æç1 + ÷
è 8ø
2 2 =
3 5xö
1
= [1 + x + x2 + K + xn + ...] 2 æç1 + xö÷ 2 æç1 - ÷
2 è 2 ø è 4ø
- 4[1 + 2 x + (2 x)2 + K + (2 x)n + ...] 3xö
2/ 3
æ1 + 3 xö æ1 - 5 xö
-1 -1/ 2
= æç1 + ÷ ç ÷ ç ÷
9 è 8ø è 2 ø è 4 ø
+ [1 + (3 x) + (3 x)2 + K + (3 x)n + ...]
2 2 3 3 5
1 = æç1 + × x + Kö÷ æç1 - x + Kö÷ æç1 + x + Kö÷
\ Coefficient of xn = [1 - 8 × 2 n + 9 × 3n ] è 3 8 øè 2 øè 8 ø
2 1 3 5 5
1 = 1 + æç - + ö÷ x = 1 - x
= [1 - 2 n + 3 + 3n + 2 ] è 4 2 8ø 8
2
(1 - 3x )1/ 2 + (1 - x ) 5/ 3
X Example 46. If x is nearly equal to one, then X Example 48. If is
mx m - nx n 4-x
the approximate value of is approximately equal to a + bx for all small values
m-n
of x, then
(a) x m (b) x n 35 35
(c) x m+ n (d) None of these (a) a = 1, b = - (b) a = - , b = 1
24 24
Sol. (c) Since, x is very nearly equal to one, let x = 1 + h, 35
(c) a = 1, b = (d) None of these
where h is very nearly equal to zero, so that h2 may be 24
neglected.
Sol. (a) Since, the given expression is equal to a + bx, so we
mxm - nxn m(1 + h)m - n(1 + h)n
Now, = have to neglect the terms x2 and higher powers of x.
m- n m- n
(1 - 3 x)1/ 2 + (1 - x)5 / 3
m(1 + mh) - n(1 + nh) \
= 4- x
m- n
= [(1 - 3 x)1/ 2 + (1 - x)5 / 3 ][4 - x]-1/ 2
[neglecting h2 and higher powers]
-1/ 2
(m - n) [1 + (m + n) h] 1 5 x
= = éê1 + (- 3 x) + 1 + (- x)ùú(4)- 1/ 2 æç1 - ö÷
m- n ë 2 3 û è 4ø
= 1 + (m + n)h = (1 + h)m + n = xm + n 1 3 5xö é æ 1 ö æ x öù
= æç2 - x - ÷ 1 + ç- ÷ ç- ÷ú
2è 2 3 ø êë è 2 ø è 4 øû
1æ 19 ö æ xö
Approximation = ç2 -
2è
x÷ ç1 + ÷
6 øè 8ø
n( n - 1) 2 n( n - 1)( n - 2) 3 1æ x 19 x ö 1 æ 35 x ö 35 x
= ç2 + - ÷ = ç2 - ÷ = 1-
(1 + x ) n = 1 + nx + x + x +¼ 2è 4 6 ø 2è 12 ø 24
1× 2 1× 2 × 3 35 x 35
\ 1- = a + bx Þ a = 1 and b = -
If x <1, the terms of the above expansion go on 24 24
decreasing and if x is very small, a stage may be
reached when we may neglect the terms
X Example 49. Cube root of 217 is
containing higher powers of x in the expansion. (a) 6.01 (b) 6.04
363
(c) 6.02 (d) None of these
8
1/ 3
Sol. (a) Consider, (217 )1/ 3 = (63 + 1)1/ 3 = 6 æç1 + 13 ö÷ 22 24 26
è 6 ø + + 1+
+K
X Example 52. The value of 2 ! 3! 4!
On expanding by binomial theorem, we get
1 2 22
Objective Mathematics Vol. 1
æ 2 ö
(217 )1/ 3 = 6 ç1 +
1 1´ 2 æ 1 ö 1+ + + +K
ç
- ç ÷ + K÷÷ = 6.01 2! 3! 4!
è 3 ´ 216 3 ´ 3 ´ 2 è 216 ø ø
is
X Example 50. The approximate value of (a) e 2 (b) e 2 + 1 (c) e 2 - 1 (d) e +1
( 7.995)1/ 3 correct to four decimal places is 2 4 6
Sol. (c) Numerator = 1 + 2 + 2 + 2 + K
(a) 1.9995 (b) 1.9996 (c) 1.9990 (d) 1.9991 2! 3! 4!
1/ 3
Sol. (a) (7.995) 1/ 3 1/ 3 1/ 3 é 0.005 ù 1 ì 24 26 28 ü
= (8 - 0.005) = (8) êë1 - 8 úû = 2 í2 2 + + + +Ký
2 î 2 ! 3! 4 ! þ
é 1 æ1 ö ù ì 2 2 2 2 3 2 4 ü
ê ç - 1÷ 2 ú 1 (2 ) (2 )
= 2í + +
(2 )
+
(2 )
+ Ký
1 0.005 3 è 3 ø æ 0.005 ö
= 2 ê1 - ´ + ç ÷ - ...ú 2 î 1! 2! 3! 4! þ
ê 3 8 2! è 8 ø ú
êë úû 1 22
= 2 {e - 1}
é 1 1 ù 2
´ 2
ê 0.005 3 3 æ 0.005 ö ú e4 - 1
= 2 ê1 - - ´ç ÷ - K ú = ...(i)
24 1 è 8 ø 4
ê ú
ë û
and denominator
= 2(1 - 0.000208) = 2 ´ 0.999792 = 1.9995
1 2 22 1 ì 22 23 24 ü
= 1+ + + + K = 2 í2 2 + + + + Ký
2 ! 3! 4! 2 î 2! 3! 4!
Exponential Series 1 ïì æ 22 23 24 ö ïü
þ
= í1 + çç1 + 2 + + + + K÷÷ ý
x x2 x3
(a) e x = 1 + + + +¼ , where x may be any 4 ïî è 2! 3! 4! ø ïþ
1! 2! 3! 1
n = {1 + e 2 } ...(ii)
æ 1ö 4
real or complex and e = lim ç1 + ÷
n ®¥ è nø From Eqs. (i) and (ii), we get
22 24 26 1 4
x x2 2 x3 3 1+ + + +K (e - 1)
(e 2 + 1)(e 2 - 1)
(b) a x = 1 + ln a + ln a + ln a +¼ where 2! 3! 4! = 4 =
1! 2! 3! 1 2 2 2 1 2
(e + 1) (e 2 + 1)
1+ + + +K
a >0 2! 3! 4! 4
Ø 1 1 1 = e2 - 1
● e = 1+ + + +¼
1! 2 ! 3 !
● e is an irrational number lying between 2.7 and 2.8. Its value
correct upto 10 places of decimal is 2.7182818284. Logarithmic Series
æ 1 1 1 ö x2 x3 x4
● e + e -1 = 2 ç1 + + + + ¼÷ (a) ln (1 + x ) = x - + - +¼
è 2! 4! 6! ø
2 3 4
-1 æ 1 1 1 ö where, -1 < x £ 1
● e - e = 2 ç1 + + + + ¼ ÷
è 3! 5! 7! ø
x2 x3 x4
● Logarithms to the base e are known as the Napierian system, (b) ln (1 - x ) = - x - - - -¼
so named after Napier, their inventor. They are also called 2 3 4
natural logarithm. where, -1 £ x < 1
X Example 51. If x <1, then find the coefficient (1 + x ) æ x3 x5 ö
(c) ln = 2 çx + + +¼÷ , | x | < 1
ex (1 - x ) è 3 5 ø
of x n in the expansion of .
1- x
x
Remember
Sol. We have, e = e x (1 - x)-1 1 1 1
1- x (a) 1 - + - +¼= ln 2 (b) e ln x = x
2 3 4
æ x x2 xn - 2 xn - 1 xn ö
= çç1 + + + K+ + + +K÷ (c) ln 2 = 0693
. (d) ln 10 = 2.303
è 1! 2 ! (n - 2 )! (n - 1)! n! ø
¥ ¥
(1 + x + x2 + K + xn - 2 + xn - 1 + xn + ...) n n2
(e) å = e (f) å = 2e
ex n = 1 n! n = 1 n!
\ Coefficient of xn in
(1 - x) ¥ ¥
n3 n4
364
= 1+ +
1
1! 2 !
1
+ .. +
1
+
(n - 1)! n!
1 (g) å n! = 5 e (h) å n! = 15e
n =1 n =1
X Example 53. The value of
æ 1 1ö 1 æ 1 1ö 1 æ 1 1 ö 1
=-
1
2
3
loge æç ö÷ + loge (3) = loge 3 - loge
è 4ø
æ 2 ö
= loge 3 + loge ç ÷ = loge ç 3 ׿ 2 ö
3
4
÷ = loge (2 3 )
8
Binomial Theorem
1+ ç + ÷ + ç + ÷ + ç + ÷ +K is è 3ø è 3ø
è 2 3ø 4 è 4 5ø 42 è 6 7ø 43
= loge ( 12 )
1
(a) log e 12 (b) log e 12
3 X Example 54. In the expansion of
1 2 log e x - log e ( x + 1) - log e ( x - 1), the coefficient of
(c) log e 4 (d) None of these
4 x -4 is
Sol. (a) Consider, 1
(a)
1 1 1 1 1 1 1 1 1 2
1 + æç + ö÷ + æç + ö÷ 2 + æç + ö÷ 3 + K
è2 3 ø 4 è 4 5 ø 4 è6 7ø 4 (b) -1
1 1 1 1 1 1
= æç × + × 2 + × 3 + Kö÷
(c) 1
è2 4 4 4 6 4 ø (d) None of the above
1 1 1 1 1 1
æ
+ ç1 + × + × 2 + × 3 + ...ö÷
è 3 4 5 4 7 4 ø Sol. (a) 2 loge x - loge ìíæç1 + 1 ö÷ xüý - loge ìíæç1 - 1 ö÷ xüý
2 3 î è x þ ø î x þ è ø
1 é 1 1 æ 1ö 1 æ 1ö ù
= ê + ç ÷ + ç ÷ + ...ú ì æ 1ö ü
2 êë 4 2 è 4 ø 3 è 4ø úû = 2 loge x - íloge ç1 + ÷ + logexý
î è xø þ
é 1 1 æ 1ö3 1 æ 1ö5 ù ì 1 ü
+ 2 ê + ç ÷ + ç ÷ + Kú - íloge æç1 - ö÷ + loge xý
êë 2 3 2è ø è
5 2 ø úû î è xø þ
æ1 + 1 ö ì æ 1ö æ 1 öü ì 1 1 ü
= - íloge ç1 + ÷ + loge ç1 - ÷ ý = 2 í 2 + + Ký
1ì 1 ü ç ÷ î è xø è x øþ î2 x 4 x4 þ
= í- loge æç1 - ö÷ ý + loge ç 2÷
2î è ø
4 þ ç1 - ÷ 1 -4 1 1
Thus, coefficient of x = 2 × =
è 2ø 4 2
n− r
Ex 2. If (1 − x + x ) = a 0 + a 1 x + a 2 x +...+a 2n x ,
2 n 2 2n = (2 − 1)nC r
where a 0 , a 1 , a 2 , ..., a 2n are in AP, then a n is Hence, (c) is the correct answer.
equal to
1 1 2 1 Ex 4. If k and n are positive integer and
m
sk = 1k + 2 k +.... + n k , then ∑ m + 1C r sr is equal to
(a) (b) (c) (d)
2n + 1 2n − 1 2n − 1 n+1
r=1
Sol. We have, (a) ( n + 1) m + 1 − ( n + 1)
(1 − x + x 2 )n = a0 + a1x + a2 x 2 + ...+ a2n x 2n
(b) ( n + 1) m + 1 + ( n + 1)
Putting x = 1on both sides, we get
(c) ( n − 1) m + 1 − ( n − 1)
a0 + a1 + a2 + ...+ an + ...+ a2n = 1
2n + 1 (d) None of the above
⇒ [ a0 + a2n ] = 1 m
2
[Qa0 , a1 ,..., a2n are in AP]
Sol. We have, ∑ m + 1C r sr
r=1
2 m
⇒ a0 + a2n =
2n + 1 = ∑ m + 1C r (1r + 2r +...+ nr )
r=1
2
⇒ a0 + [ a0 + (2n + 1 − 1)d ] = n m
2n + 1
366
= ∑ ∑ m + 1C r k r
where, d denotes the common difference of the AP. k = 1r = 1
=
n m + 1
k = 1 r = 0
∑ ∑ m + 1C r k r −
m +1
C0 − m +1
C m + 1k m + 1
If the general term in the above expansion contains
x 3 y4z5, then
r + t = 3, r + s = 4 and s + t = 5
8
Binomial Theorem
n n Also, r+ s+t=6
= ∑ {(1 + k )m + 1 − 1 − k m + 1} Q ∑ nC r x r = (1 + x )n On solving these equations, we get
k=1 r=0
n n
r = 1, s = 3, t = 2
= ∑ {(1 + k )m + 1 − k m + 1} − ∑ 1 ∴Coefficient of x y z =
3 4 5 6!
=
6!
= 60
k=1 k=1 1!3!2! 2!3!
n
Hence, (b) is the correct answer.
= ∑ {(1 + k )m + 1 − k m + 1} − n
k=1
Ex 7. If (1 + x ) n = C 0 + C 1 x + C 2 x 2 +...+ C n x n , n ∈ N ,
= [(2m + 1 − 1m + 1 ) + (3m + 1 − 2m + 1 )
then for 2 ≤ m ≤ n,
+ … + {(n + 1)m + 1 − nm+ 1}] − n
m+ 1
C 0 − C 1 + C 2 − C 3 + K + ( −1) m − 1 C m − 1 is
= {(n + 1) − 1} − n = (n + 1)m + 1 − (n + 1)
equal to
Hence, (a) is the correct answer.
(a) ( −1) m − 1 ⋅ n − 1 C m − 1 (b) n− 1
Cm − 1
Ex 5. If C 0 , C 1 , C 2 , K, C n denote the binomial (c) ( −1) ⋅ m n− 1
Cm − 1 (d) None of these
coefficients in the expansion of (1 + x ) n , then
Sol. We have, (1 − x )n (1 − x )−1
n
1 + r log e 10
∑
r=0
( −1) r n C r
(1 + log e 10 n ) r
is equal to = {C 0 − C 1x + C 2x 2 − C 3x 3 + ...+ (−1)m − 1C m − 1x m − 1
+ ...+ (−1)nC nx n}
(a) 0 × {1 + x + x 2 + x 3 + K + x m − 1 + x m + K}
(b) 1
Equating coefficients of x m − 1 on both sides, we get
(c) 2 (−1)m − 1 ⋅ n − 1C m − 1 = C 0 − C 1 + C 2 − C 3
(d) Cannot be discussed
+ K + (−1)m − 1 C m − 1
Sol. Let loge 10 = x. Then, ⇒ C 0 − C 1 + C 2 − C 3 + ... + (−1)m − 1 C m − 1
n
1 + r log 10 n
1 + rx
∑ (−1)r nC r (1 + log 10e n )r = ∑ (−1)r nC r (1 + nx )r = (−1)m − 1
(n − 1)!
r=0 e r=0 (n − m)! (m − 1)!
r
n
1 n
n rx = (−1)m − 1 ⋅n − 1 C m − 1
= ∑ (−1)r nC r 1 + nx + ∑ (−1)r r
n− 1
Cr − 1
(1 + nx )r
r=0 r=0 Hence, (a) is the correct answer.
r
n
1
= ∑ (−1)r n
Cr Ex 8. For any positive integers m, n with n ≥ m, let
1 + nx
r=0 n n
1
r−1 = C m . Then,
m
n
nx
− ⋅ ∑ (−1)r − 1 n− 1
C r − 1
1 + nx r = 1 1 + nx n n − 1 n − 2 m
n n− 1 + + + K + is equal to
= 1 −
1 nx 1 m m m m
− 1 −
1 + nx 1 + nx 1 + nx (a) n C m (b) n C m + 1
n n
nx nx n+ 1
= − =0 (c) Cm + 1 (d) None of these
1 + nx 1 + nx
Hence, (a) is the correct answer. Sol. We know that,
C r = Coefficient of x r in (1 + x )n
n
n n − 1 n − 2
3 4 5
Ex 6. The coefficient of x y z in the expansion of m
∴ + + +K+
( xy + yz + zx )6 is m m m m
(a) 70 = Coefficient of x m in (1 + x )n + Coefficient of x m in
(b) 60 (1 + x )n − 1 + K + Coefficient of x m in (1 + x )m
(c) 50 = Coefficient of x m in
(d) None of the above [(1 + x )n + (1 + x )n − 1 + K + (1 + x )m ]
(1 + x )n − m + 1 − 1
Sol. We have, = Coefficient of x m in (1 + x )m
6! (1 + x ) − 1
(xy + yz + zx )6 = ∑ r ! s ! t !
(xy)r ( yz)s (zx )t
= Coefficient of x m + 1 in {(1 + x )n + 1 − (1 + x )m}
r + s + t =6
6! r + t r + s s + t = Coefficient of x m + 1 in (1 + x )n + 1 = n+ 1
Cm + 1
= ∑ r ! s !t !
x y z
367
r + s + t =6 Hence, (c) is the correct answer.
8 Ex 9. Let n be an even integer and k =
k
3n
2
. Then, the
On adding and subtracting these two, we get
C 0 + C 2 + C 4 + K = 2n − 1
C 1 + C 3 + C 5 + .... = 2n − 1
value of ∑ ( −3) r − 1
...(ii)
Objective Mathematics Vol. 1
3n
C 2r − 1 is
r=1 Putting x = i in Eq. (i), we get
(a) 0 (b) 1 (c) 2 (d) 3 (C 0 −C 2 + C 4 − C6 + ...) + i (C 1 − C 3 + C 5 −...) = (1 + i )n
⇒ (C 0 − C 2 + C 4 − C6 + ...)
Sol. Since, n is an even integer. Therefore, n = 2m, m ∈ N
3n + i (C 1 − C 3 + C 5 − C 7 + ...)
Also, k= ⇒ k = 3m n/ 2 nπ nπ
2 = 2 cos + i sin
k 4 4
∴ ∑ (−3)r − 1 3nC 2r − 1 On equating imaginary parts on both sides, we get
r=1 nπ
3m C 1 − C 3 + C 5 − C 7 + K = 2n/ 2 sin ...(iii)
∑ (−3)r − 1 6 mC 2r − 1
= 4
r=1 On subtracting Eq. (iii) from Eq. (ii), we get
nπ
= 6m
C1 − 6m
C 3 (3) + 6m
C 5 (3)2 − 6m
C 7 (3)3 2 (C 3 + C 7 + C 11 + ...) = 2n − 1 − 2n/ 2 sin
4
+ K + (−3)3m − 1 6m
C6m − 1
1 n− 1 nπ
⇒ C 3 + C 7 + C 11 + K = 2 − 2n/ 2 sin
2 4
6m
Now, (1 + i 3 )6m = ∑ 6mC r (i 3 )r
r=0 Hence, (a) is the correct answer.
6m
π π
⇒ 26m cos + i sin = 6mC 0 + 6m
C 1 (i 3 ) Ex 11. The integer just greater than ( 3 + 1) 2m
3 3
contains
+ 6mC 2 (i 3 )2 + 6m
C 3 (i 3 )3 (a) 2m + 2 as a factor (b) 2m + 1 as a factor
(c) 2m + 3 as a factor (d) None of these
+K+ 6m
C6m (i 3 )6m
⇒ 26m (cos 2mπ + i sin 2mπ ) Sol. Let ( 3 + 1)2m = I + F , where I ∈ N and 0 < F < 1
Let G = ( 3 − 1)2m. Then,
= {6mC 0 − 6mC 2 3 + C 4 32 − ...}
6m
I + F + G = ( 3 + 1)2m + ( 3 − 1)2m
+ i 3 {6mC 1 −6m C 3 (3) + 6mC 5 (3)4 −...}
= 2m (2 + 3 )m + 2m (2 − 3 )m
[using De-Moivre’s theorem on LHS]
= 2m + 1 × an integer ...(i)
Equating imaginary parts on both sides, we get
⇒ I + F + G = an even integer
26m sin 2mπ = 3 {6mC 1 − 6mC 3 (3) + 6mC 5 (3)4 − ...}
⇒ F + G = an even integer − I
⇒ 6m
C 1 − 6mC 3 (3) + 6m
C 5 (3)4 − ... = 0 [Q sin 2mπ = 0 ] ⇒ F + G = an integer
3m ⇒ F + G =1 [Q 0 < F < 1, 0 < G < 1]
⇒ ∑ (−3)r − 1 6mC 2r − 1 = 0 Putting F + G = 1in Eq. (i), we get
r=1
k
I + 1 = 2m + 1 × an integer
⇒ ∑ (−3)r − 1 3nC 2r − 1 = 0, ⇒ 2m + 1 is a factor of the integer just greater than
r=1 ( 3 + 1)2m.
3n
where n = 2m and k= Hence, (b) is the correct answer.
2
2n 2n
Hence, (a) is the correct answer. Ex 12. If ∑
r=0
a r ( x − 2) r = ∑ br ( x − 3) r
r=0
and a k =1 for
Ex 10. The value of C 3 + C 7 + C 11 +K is
n n n
1 n− 1 nπ
all k ≥ n, then bn is equal to
(a) 2 − 2n/ 2 sin (a) n+ 1
C 2n + 1 (b) 2n + 1
Cn + 1
2 4
2n + 1
1 n− 1 nπ (c) Cn + 2 (d) None of these
(b) 2 + 2n/ 2 sin
2 4
Sol. Clearly, bn is the coefficient of (x − 3)n in the expression
1 n+ 1 n π
(c) 2 − 2n/ 2 sin 2n
4 4 ∑ br (x − 3)r . Therefore,
r=0
(d) None of the above 2n
Sol. We have, (1 + x )n = C 0 + C 1x + C 2x 2 + K + C nx n ...(i) bn = Coefficient of (x − 3)n in ∑ ar (x − 2)r ...(i)
r = 0
Putting x = 1and − 1respectively in Eq. (i), we get
= Coefficient of (x − 3)n in
C 0 + C 1 + C 2 + K + C n = 2n
n − 1 2n
C 0 − C 1 + C 2 − C 3 + K + (−1)n C n = 0 ∑ ar (x − 2) + ∑ ar (x − 2)r
r
n− 1 2n
∑ ar (x − 2) + ∑ (x − 2)
r
r
Ex 14. The greatest term in the expansion of (1 + x ) 10 ,
2
when x = , is
8
Binomial Theorem
r = 0 r=n 3
4 4
[Q ak = 1 for all k ≥ n ] 2 2
(a) 210 (b)
2n 3 3
= Coefficient of (x − 3)n in ∑ (x − 2)r 1
4
2
6
r=0
(c) 210 (d) 210
(x − 2)n + 1 − 1
3 3
= Coefficient of (x − 3)n in (x − 2)n
(x − 2) − 1 Sol. Let Tr and Tr + 1 denote the rth and (r + 1)th terms in the
expansion of (1 + x )10. Then,
(x − 2)2n + 1 − (x − 2)n
= Coefficient of (x − 3)n in Tr = 10C r − 1x r − 1 and Tr + 1 = 10C r x r
x−3 10
Tr + 1 C r xr
= Coefficient of (x − 3)n + 1 in {(x − 2)2n + 1 − (x − 2)n} ∴ =
Tr 10
C r − 1x r − 1
= Coefficient of (x − 3)n + 1 in (x − 2)2n + 1 10
Tr + 1 Cr
= Coefficient of (x − 3)n + 1 in [(x − 3) + 1] 2n + 1 ⇒ = 10
⋅x
Tr Cr − 1
2n + 1
= Coefficient of (x − 3) n+ 1
in ∑ 2n + 1C r (x − 3)r Tr + 1 11 − r
⇒ = ⋅x
r = 0 Tr r
2n + 1
= Cn + 1 Tr + 1 11 − r 2 2
⇒ = × Qx =
Tr r 3 3
Hence, (b) is the correct answer.
Tr + 1
Now, >1
Ex 13. Let f (x ) = a 0 + a 1 x + a 2 x 2 + K + a 2n x 2x and Tr
g (x ) = b0 + b1 x + b2 x 2 + K + bn − 1 x n − 1 11 − r 2
⇒ × >1
r 3
+ x n + x n + 1 + K + x 2n
⇒ 22 > 5r
If f ( x ) = g ( x + 1), then a n in terms of n is equal to 2
⇒ r<4
(a) 2n + 1 C n + 1 (b) 2n − 1 C n − 1 5
(c) 2n − 1
Cn + 1 (d) n+ 1
Cn + 1 ∴ (4 + 1) th i.e. 5th term is the greatest term.
Putting r = 4 in Tr + 1, we get
Sol. We have, f (x ) = g (x + 1) T5 = 10C 4 x 4
2n n− 1 2n 4
2 2
⇒ ∑ a1x r = ∑ br (x + 1)r + ∑ (x + 1)r ⇒ T5 = 10C 4
3
Q x=
3
r=0 r=0 r=n
n− 1 4
2n 2
⇒ T5 = 210
⇒ ∑ ar x r = ∑ br (x + 1)r + (x + 1)n + (x + 1)n + 1 3
r=0 r=0
Hence, (a) is the correct answer.
+ K + (x + 1)2n
n− 1
2n (x + 1)n + 1 − 1 Ex 15. The greatest term in the expansion of (1 + x ) 2n
⇒ ∑ ar x r = ∑ br (x + 1)r + (x + 1)n
r=0 r=0 x + 1−1 has also the greatest coefficient, then
2n n− 1
(x + 1)2n + 1 − (x + 1)n n n + 1 n n − 1
(a) x ∈ (b) x ∈
⇒ ∑ ar x r = ∑ br (x + 1)r + x
,
n − 1 n
,
n − 1 n
r=0 r=0
2n n n + 1 n n + 1
Now, an = Coefficient of x n in ∑ ar x r (c) x ∈ , (d) x ∈ ,
r=0
n + 1 n n − 1 n
= Coefficient of x in n
Sol. Let (r + 1)th term be the greatest term in the expansion
(x + 1)2n + 1 − (x + 1)n
n− 1
of (1 + x )2n. Then,
∑ br (x + 1) +
r
r = 0 x Tr + 1 = 2nC r x 2n − r
(x + 1) 2n + 1
− (x + 1)n The coefficient of Tr + 1 is 2nC r . Clearly, 2nC r will be
= Coefficient of x n in 2n
x greatest, if r = =n
2
= Coefficient of x n + 1 in {(x + 1)2n + 1 − (x + 1)n}
Thus, Tn + 1 = 2nC nx n has the greatest coefficient.
= Coefficient of x n + 1 in (x + 1)2n + 1
2n + 1
Now, Tn + 1 will be the greatest term, if
= Cn + 1 Tn < Tn + 1 > Tn + 2
Hence, (a) is the correct answer. ⇒ Tn + 1 > Tn and Tn + 2 < Tn + 1 369
8 ⇒
Tn + 1
Tn
>1 and
Tn + 2
Tn + 1
<1
C n + 1x n + 1
n
r=0
Ex 17. The value of ∑ (−2) r
Cr
n
r+ 2
is
Cr
Objective Mathematics Vol. 1
2n 2n
C nx n 1 1
⇒ > 1 and <1 (a) , n is odd (b) , n is even
2n
C n − 1x n − 1 2n
C nx n n+1 n+2
n + 1 n 1
⇒ x > 1 and x <1 (c) , n is even (d) None of these
n n + 1 n+1
n n+1
⇒ x> and x< Cr n
n+1 n Sol. For r ≥ 0, we have r+ 2
Cr
n n+1
⇒ <x< n! r ! 2!
n+1 n = ×
(n − r)! r! (r + 2)!
n n + 1 n! × 2!
⇒ x ∈ , =
n+ 1 n (n − r)! (r + 2)!
Hence, (c) is the correct answer. 2 (n + 1) (n + 2) n!
= ×
n n (n + 1) (n + 2) {(n + 2) − (r + 2)}! (r + 2)!
Cr
Ex 16. ∑ (−1) r r+ 3
is equal to =
2
× n + 2C r + 2
r=0 Cr (n + 1) (n + 2)
3! n n
C
(a)
2 ( n − 3)
∴ ∑ (−2)r r + 2Cr
r=0 r
3! 2 n
(b)
2 ( n + 3) = ∑
(n + 1) (n + 2) r = 0
n+ 2
C r + 2 (−2)r
3! n
(c) 1
( n + 3) = ∑ n + 2C r + 2 (−2)r + 2
2(n + 1)(n + 2) r = 0
(d) None of the above n+ 2
1
C n
Sol. We have, ∑ (−1)r r + 3 r
n = ∑ n + 2C s (−2)s
2 (n + 1) (n + 2) s = 2
r=0 Cr
[putting r + 2 = s]
n
n ! ⋅ 3! 1
= ∑ (−1) r
=
r=0
(n − r )! (r + 3)! 2 (n + 1) (n + 2)
n n + 2
= 3! ∑ (−1)
n!r × ∑ n + 2C s (−2)s − n + 2C 0 (−2)0 − n + 2C 1 (−2)1
r=0
(n − r )! (r + 3)! s = 0
1
(−1)r (n + 3)! [(1 − 2)n + 2 − 1 + 2 (n + 2)]
n
3! =
= ∑
(n + 1) (n + 2) (n + 3) r = 0{(n + 3) − (r + 3)}! (r + 3)!
2 (n + 1) (n + 2)
1
(2n + 4 ), if n is even
3! n
2 (n + 1) (n + 2)
= ∑
(n + 1) (n + 2) (n + 3) r = 0
(−1)r n+ 3
Cr + 3 =
1
(2n + 3 − 1), if n is odd
3!
n+ 3 2 (n + 1) (n + 2)
(n + 1) (n + 2) (n + 3) s∑
= (−1)s − 3 n+ 3
Cs
1
=3 , if n is even
n + 1
n+ 3 =
3! (−1)3
(n + 1) (n + 2) (n + 3) s∑
n+ 3
= (−1)s Cs 1 , if n is odd
=3 n + 2
370
Sol. We have,
n
∑ (−1)r r + 2Cr
r=0
n
C
r
Sol. We have,
an = (log 3)n ∑
r=1
n
r2
r! (n − r)!
8
Binomial Theorem
n
n! 2! r !
= ∑ (−1)r (n − r)! r! × (r + 2)! (log 3)n n n!
r=0 = ∑
n! r = 1(n − r)! r!
⋅ r2
n
n!
= 2 ∑ (−1)r
(n − r)! (r + 2)! (log 3)n n n
n! r∑
r=0 = C r ⋅ r2
2 n
(n + 2)! =1
= ∑
(n + 1) (n + 2) r = 0
(−1)r
{(n + 2) − (r + 2)}! (r + 2)! (log 3)n
= [ n (n − 1) 2n − 2 + n ⋅ 2n − 1 ]
n n!
2
= ∑
(n + 1) (n + 2) r = 0
(−1)r + 2 n+ 2
Cr + 2 n
Q ∑ r ⋅ C r = n (n − 1) 2
n− 2
2 n
+ n ⋅ 2n − 1
n+ 2 r = 1
2
(n + 1) (n + 2) s∑
n+ 2
= (−1)s Cs (log 3) n
=2 = [ n (n − 1) + 2n ] 2n − 2
n!
2
= =
1
(log 3)n 2n − 2 +
2
(log 3)n ⋅ 2n − 2
(n + 1) (n + 2) (n − 2)! (n − 1)!
n + 2 (2 log 3)n − 2 (2 log 3)n − 1
∑ (−1)s n+ 2
C s − (n + 2C 0 − n+ 2
C 1 ) = (log 3)2 + (log 3)
s = 0
(n − 2)! (n − 1)!
2 ∴Required sum
= ∞
n+ 2 = ∑ an
Hence, (d) is the correct answer. n= 1
∞
(log 9)n − 2 ∞
(log 9)n − 1
Ex 19. If n C 0 , nC 1 , nC 2 , ..., nC n denote the binomial = (log 3)2 ∑ + (log 3) ∑
n= 2
(n − 2)! n= 1
(n − 1)!
coefficients in the expansion of (1 + x ) n and
n = (log 3)2 elog 9
+ (log 3)elog 9
p + q =1, then ∑ r 2 n
Cr p q r n− r
is ∞ xn − 1 ∞
xn − 2
r=0 Q ∑ = ∑ = ex
(a) np (b) npq n = 1(n − 1)! n = 2(n − 2)!
(c) n 2 p 2 + npq (d) None of these = (1 + log 3) (9 log 3)
n
Hence, (a) is the correct answer.
Sol. We have, ∑ r2 nC r pr qn − r n
C0 2 C1 3
r=0 Ex 21. If (1 + x ) n = ∑ n C r x n , then 2 + 2
n r=0 1⋅ 2 2 ⋅3
= ∑ [ r (r − 1) + r ] nC r pr qn − r C
+ 2 24 + K +
Cn
2 n + 2 is equal to
r=0
n n
3⋅4 ( n + 1) ( n + 2)
= ∑ r (r − 1) nC r pr qn − r + ∑ r ⋅ nC r pr qn − r (a)
3n + 2 + 2n − 5
r=0 r=0
( n + 1) ( n + 2)
n
n n−1
= ∑ r (r − 1) r . r − 1 n − 2C r − 2 pr qn − r 3n + 2 − 2n + 5
r=2 (b)
n ( n + 1) ( n + 2)
n
+ ∑r. r n− 1
C r − 1 pr qn − r
3n + 2 − 2n − 5
r=1 (c)
= n (n − 1) p2 ( p + q)n − 2 + np ( p + q)n − 1 ( n + 1) ( n + 2)
= n (n − 1) p2 + np [Q p + q = 1] (d) None of the above
= n2 p2 − np2 + np Sol. We have,
C0 2 C1 3 C2 4 Cn
= n p + npq
2 2
[Q p + q = 1] 2 + 2 + 2 +K+ 2n + 2
1⋅ 2 2⋅ 3 3⋅ 4 (n + 1) (n + 2)
Hence, (c) is the correct answer. n
1
r n 2 = ∑ (r + 1) (r + 2) nC r ⋅ 2r + 2
Ex 20. Let a n = (log 3) n ∑ , n ∈ N . Then, r=0
r = 1 r ! ( n − r )! 1 n
n+ 2 n+1 n
the sum of the series a 1 + a 2 + a 3 + a 4 +K is
= ∑ ⋅
(n + 1) (n + 2) r = 0 r + 2 r + 1
C r 2r + 2
∑ (C r + C s ) is equal to
Objective Mathematics Vol. 1
1 r=0 s=0
=
(n + 1) (n + 2)
(a) ( n + 1) 2n + 1
n + 2
∑ n + 2C s 2s − {n + 2C 0 20 + n + 2C 1 21} (b) ( n − 1) 2n + 1
s = 0 (c) ( n + 1) 2n
1
= [(1 + 2)n + 2 − {1 + 2 (n + 2)}] (d) None of the above
(n + 1) (n + 2) n n
=
3n + 2 − 2n − 5 Sol. ∑ ∑ (C r + C s )
r=0 s=0
(n + 1) (n + 2)
n n n n
Hence, (c) is the correct answer. = ∑ ∑Cr + ∑ ∑Cs
r=0 s=0 r=0 s=0
Ex 22. The value of n
n n n
n− 1 n− 1 n− 1 = ∑ ∑ C r + ∑ ∑ C s
C0 ⋅ C1 + n
C1 ⋅ C2 + C2 ⋅ C3 n n
s = 0 r = 0 r = 0 s = 0
n− 1
+ .... + C n − 1 ⋅ C n is equal to
n
n n
(a) 2n
Cn
= ∑ 2n + ∑ 2n
s=0 r=0
2n − 1
(b) Cn − 1 = (n + 1) 2n + (n + 1) 2n = (n + 1) 2n + 1
2n
(c) Cn + 1 Hence, (a) is the correct answer.
(d) None of the above Ex 25. If (1 + x ) n = C 0 + C 1 x + K + C n x n , then the
n n
Sol. We have,
n− 1 n− 2 value of ∑ ∑ C r C s is equal to
(C 0 x + C 1 x
n
+ C2 x + K + C n − 1x + C n )
r=0 s=0
n− 1 n− 1 n− 1 n− 1
×( C0 + C 1x + C 2 x2 + K + C n − 1x n − 1 ) (a) 2n (b) 22n (c) 2n + 1 (d) 23n
= (1 + x )n (1 + x )n − 1 n n n n
⇒ ( C 0 x + C 1x
n n n n− 1
+ C2 x
n n− 2
+ K + C n − 1x + C n )
n n Sol. We have, ∑ ∑ C rC s = ∑ C r ∑ C s
r=0 s=0 r = 0 s=0
n− 1 n− 1 n− 1 n− 1
×( C0 + C 1x + C2 x + K +
2
C n − 1x n − 1 ) n n
= (1 + x )2n − 1 = ∑ 2n ⋅ C r = 2n ∑ C r
r=0 r = 0
On equating the coefficient of x n − 1 both sides, we get
n− 1 = 2 ⋅ 2 = (2 ) = 22n
n n n 2
C 0nC 1 + n − 1C 1nC 2 + K+ n − 1C n − 1nC n = 2n − 1C n − 1
Aliter
Hence, (b) is the correct answer. n n n n
Ex 23. The value of ∑ ∑ C rC s = ∑ C r ∑ C s = 2n ⋅ 2n = 22n
r=0 s=0 r = 0 s = 0
n− 1
C 0 ⋅ nC 2 + n − 1 C 1 ⋅ nC 3 + n− 1
C2⋅ n C4 Hence, (b) is the correct answer.
+ K + n − 1C n − 2 ⋅ nC n is
(a) 2n
Cn − 2 Ex 26. If (1 + x ) n = C 0 + C 1 x + K + C n x n , then the
(b) 2n − 1
Cn value of ∑ ∑ C r C s is equal to
0≤ r< s ≤ n
2n − 1
(c) Cn − 2
1 1 2n 2n
(d) None of the above (a) [ 22n − 2n
Cn ] (b) [2 − C n ]
2 4
Sol. We have, 1 1
(C 0 x n + C 1 x n − 1 + C 2 x n − 2 + K + C n − 1 x + C n ) (c) [ 22n + 2n
Cn ] (d) [ 2n − 2nC n ]
2 2
n− 1 n− 1 n− 1 n− 1 n− 1
×( C0 + C1 x + C2 x + K+
2
Cn − 1 x )
n− 1
Sol. We have,
= (1 + x ) (1 + x ) n
n n n
⇒ (nC 0 x n + nC 1 x n − 1 + nC 2 x n − 2 + K + nC n − 1x + nC n ) ∑ ∑ C rC s = ∑ C r2 + 2 ∑ ∑ C rC s
r=0 s=0 r = 0 0≤ r < s ≤ n
× (n − 1C 0 + n− 1
C1 x + n− 1
C 2 x2 + K + n− 1
C n − 1 xn − 1)
⇒ 2 = 2n 2n
Cn + 2 ∑ ∑ C rC s
= (1 + x )2n − 1 0≤ r < s ≤ n
∑ ∑ (r + s) C r C s is equal to
8
Binomial Theorem
0≤ r < s ≤ n r=0 s=0
2
Sol. We have, ∑ ∑ (r + s) C rC s
r=0 s=0
1
(c) n 2 22n − 3 − 2n − 2C n − 1 n n
2 = ∑ ∑ (r ⋅ nC r ⋅ nC s + s ⋅ nC r ⋅ nC s )
r=0 s=0
(d) None of the above n n n n
= ∑ ∑ r ⋅ nC r C s + ∑ ∑ s nC r C s
n n
Sol. We have, ∑ ∑ (r ⋅ s) C rC s = ∑ ∑ (r ⋅ nC r ) (s ⋅ nC s ) r=0 s=0 r=0 s=0
0≤ r < s ≤ n 0≤ r < s ≤ n
n n n n n n
= ∑∑ r⋅
r
n− 1
C r − 1
s⋅
s
n− 1
C s − 1
= ∑ r ⋅ nC r ∑ nC s + ∑ s ⋅ nC s ∑ nC r
0≤ r < s ≤ n r=0 s = 0 s=0 r = 0
1
= n ⋅ [ 22 (n − 1) − 2 (n − 1)C n − 1 ]
2 n n
2 = ∑ r ⋅ nC r ⋅ 2n + ∑ s ⋅ nC s ⋅ 2n
2 2n − 3 1 r=0 s=0
=n 2 − 2n − 2C n − 1
2 n n
= 2n ∑ r ⋅ nC r + 2n ∑ s ⋅ nC s
Hence, (c) is the correct answer.
r = 0 s = 0
Ex 28. If (1 + x ) n = C 0 + C 1 x + C 2 x 2 + K + C n x n , then n n n n
= 2n ∑ r ⋅ n− 1
C r − 1 + 2n ∑ s ⋅ n − 1C s − 1
the value of ∑ ∑ (C r ± C s ) 2 is
r = 0 r
s = 0 s
0 ≤ r< s ≤ n
2 ⇒ ∑ ar = ∑ a2n − r
n r=0 r=0
(c) n 2 ⋅ 2n + [ 2n + 2nC n ]
2 ⇒ a0 + a1 + K + an − 1 = a2n + a2n − 1 + K + an + 1
(d) None of the above 2n
⇒ 2 (a0 + a1 + K + an − 1 ) + an = 3n Q ∑ ar = 3n
Sol. We have, ∑ ∑ (r + s) (C r + C s + C rC s ) r = 0
0≤ r < s ≤ n 1 n
⇒ a0 + a1 + K + an − 1 = (3 − an )
=∑ ∑ (r + s) (C r + C s ) + ∑ ∑ (r + s) C rC s 2
0≤ r < s ≤ n 0≤ r < s ≤ n Hence, (c) is the correct answer.
n
= n ⋅ 2 + [ 22n − 2nC n ]
2 n
2 Ex 37. Let n be a positive integer such that
Hence, (b) is the correct answer. (1 + x + x 2 ) n = a 0 + a 1 x + a 2 x 2 + K + a 2n x 2n ,
Ex 34. Let n be a positive integer such that then ( n − r ) a r + (2n − r + 1) a r − 1 , 0 < r < 2n is
(1 + x + x 2 ) n = a 0 + a 1 x + a 2 x 2 + K + a 2n x 2n , (a) ( r + 1) a r + 1 (b) ( r − 1) a r + 1
(c) ( 2r + 1) a r + 1
2n
then ∑ a r is
(d) None of these
r=0 2n
∑ (−1) r a r nC r = nC n/ 3 , where n is
Binomial Theorem
[multiplying both sides by (1 + x + x )]
2
r=0
2n 2n
⇒ n (1 + 2x ) ∑ ar x r = (1 + x + x 2 ) ∑ r ar x r − 1 (a) 3k + 1 (b) 3k + 2
r = 0 r = 0 (c) 3k (d) None of these
Equating the coefficients of x r (0 < r < 2n) on both Sol. We have,
sides, we get (1 + x + x 2 )n = a0 + a1x + a2x 2 + K + a2nx 2n ...(i)
nar + 2nar − 1 = (r + 1) ar + 1 + rar + (r − 1) ar − 1 and (x − 1)n = nC 0x n − nC 1x n − 1 + nC 2x n − 2
⇒ (r + 1) ar + 1 = (n − r) ar + (2n − r + 1) ar − 1 − K + (−1)n nC n ...(ii)
Hence, (a) is the correct answer. On multiplying Eqs. (i) and (ii), we get
2n − 2 (1 + x + x 2 )n (x − 1)n
Ex 38. The value of C 0 ⋅ C n − C 1 ⋅
n 2n
Cn n
Sol. We have, 3232 = (25 )32 = 2160 = (3 − 1)160 Clearly, coefficient of x n yn on RHS
n
= C 0 3160 − C 1 3159 + K − C 159 3 + = C 03 + C 13 + C 23 + K + C n3 = ∑ C r3
160 160 160 160
C 160 30
( 32 ) r =0
= 3m + 1, where m ∈ N 32(32) = (32)3m + 1
Hence, (b) is the correct answer.
(1 + x ) n⋅ 1 − is
x
8
Binomial Theorem
(a) −2 (b) 1.8
(c) 2 (d) −1.9 (a) 0, if n is odd
n− 1
Sol. Let T5 be numerically the greatest term in the expansion (b) ( −1) 2 ⋅ nC n − 1 , if n is odd
of (1 + x / 3) .
10
2
Then,
T5
≥1 (c) ( −1) n/ 2 n
, C n/ 2 , if n is even
T4 (d) None of the above
T6
and ≤1 (1 − x 2 )n
T5 Sol. Expression = (−1)n ⋅
xn
Tr + 1 10 − r + 1 x
Now, = ⋅ ∴ The term independent of x
Tr r 3 = The coefficient of x n in (−1)n ⋅ (1 − x 2 )n
7 x
⇒ × ≥1 = The coefficient of x n in
4 3
6 x (−1)n {nC 0 + nC 1 (− x 2 ) + nC 2 (− x 2 )2 + K + nC n (− x 2 )n},
and ⋅ ≤1 and the expansion contains only even powers of x.
5 3
12 Hence, (a) and (c) are the correct answers.
⇒ |x| ≥
7
5 Ex 49. Let R = (8 + 3 7 ) 20 and [R ] = The greatest
and |x| ≤ ...(i) integer less than or equal to R. Then,
2
12 5 (a) [ R ] is even
⇒ ≤ |x| ≤
7 2 (b) [ R ] is odd
5 12 12 5 1
⇒ x∈ − ,− ∪ , (c) R − [ R ] = 1 −
2 7 7 2 ( 8 + 3 7 ) 20
Hence, (a), (b), (c) and (d) are the correct answers. (d) None of the above
Ex 47. The coefficient of a 8 b6 c 4 in the expansion of Sol. R = [ R ] + g = (8 + 3 7 )20
( a + b + c) 18 is = 20C 0 820 + C 1 819 (3 7 ) + ..., where 0 < g < 1
20
(a) 18
C 14 ⋅ C 8
14
(b) 18
C 10 ⋅ C610
f = (8 − 3 7 )20 = 20C 0 820 − 20C 1 819 (3 7 ) + ...,
(c) 18
C6 ⋅ C 8
12
(d) 18
C 4 ⋅ C614
where 0 < f < 1
∴ [ R ] + g + f = 2 [ 20C 0 820 + 20
C 2 818 (3 7 )2 + K ]
Sol. Given expression
= an even integer
= {a + (b + c)}18 = C 0a18 +
18
C 1a17 (b + c)
18
∴ g + f = an integer = 1as 0 < g < 1, 0 < f < 1
+K+ 18
C 10a8 (b + c)10 + K ∴ [ R ] = an even integer − 1 = an odd integer
18! Also, R − [ R ] = g = 1 − f
∴ The coefficient of a8 b6c4 = C 10 ⋅ 10C6 =
18
1
8! 6 ! 4 ! = (8 − 3 7 )20 = 1 −
(8 + 3 7 )20
Hence, (a), (b), (c) and (d) are the correct answers.
Hence, (b) and (c) are the correct answers.
∑
15
1
3
1
and p + q =1, then
r 15C r p r q 15 − r = 15 × = 5
Ex 53. Statement I The
40
greatest value of
C 0 ⋅ 60C r + 40C 1 ⋅ 60C r − 1K 40C 40 ⋅ 60C r − 40 is
Objective Mathematics Vol. 1
100
r=0 3 C 50 .
Statement II If p + q = 1, 0 < p < 1, then Statement II The greatest value of 2n
C r occurs
at r = n.
n
∑ r nC r p r q n − r = np
r=0 Sol. The number of ways of selecting committee of r persons
n among 40 women and 60 men = 100C r . This will assume
Sol. ∑ r nC r pr qn − r greatest value at r = 50 .
r=0 Hence, (a) is the correct answer.
n
= np ∑ n − 1C r − 1 pr − 1qn − r = np (q + p)n − 1 = np Ex 54. Statement I If x = nC n − 1 + n + 1C n − 1
r=1
x +1
Hence, (d) is the correct answer. + K + 2nC n − 1 , then is an integer.
2n + 1
n+ 1
Ex 52. Statement I Coefficient of x 51 in the Statement II n
C r + nC r − 1 = Cr
expansion of ( x − 1) ( x 2 − 2) ( x 3 − 3) K n
and C r is divisible by n, if n and r are coprime.
( x 10 − 10) is −1. Sol. 1 + x = nC n + nC n − 1 + n+ 1
Cn − 1 + K + 2n
Cn − 1
n (n + 1)
−4
Statement II Coefficient of x 2 , n ≥ 4, in = 2n + 1C n
the expansion of Since, 2n + 1 and n are coprime for every natural
number n .
( x − 1) ( x 2 − 2) ( x 3 − 3) K ( x n − n ) is ∴ 2n + 1C n is divisible by 2n + 1 .
− 4 + ( −1) ( −3) = − 1 x+1
∴ is an integer.
2n + 1
Sol. Statement II is obviously true and it explains Statement I.
Hence, (a) is the correct answer.
Hence, (a) is the correct answer.
r=0
Ex 57. The value of ∑ (−3) r − 1 6m
C 2r − 1 is
6m r=1
3
(a) (a) 0
2
(b) 1
(b) (1 + 2 ) 3m
(c) depends on m
(c) ( 3 + 2 2 ) 3m
(d) None of the above
(d) None of the above
3m
Sol. ∑
6m
6m
Cr 2 r/ 2
put x = 2 = (1 + 2)6m
= (3 + 2 2 ) 3m Sol. ∑ (−3)r − 1 6mC 2r − 1
r=1
r=0
1
Hence, (c) is the correct answer. = { 3i 6m
C 1 + ( 3i )3 6m
C 3 + ( 3i )5 6mC 5
3i
3m
Ex 56. The value of ∑ (−1) r + K + ( 3i )6m − 1
6m 6m
C 2r is C6m − 1}
r=0
(1 + 3i )6m
= C0 +
6m
3i 6m
C 1 + ( 3i ) 2 6m
C2
(a) 23m + ( 3i )3 6m
C3 + K
(b) 0, if m is odd
(1 − 3i ) 6m
= C 0 − 3i
6m
C 1 + ( 3i )
6m 2 6m
C2
(c) −23m , if m is even
378 − ( 3i )3 6m
C3 + K
(d) None of the above
∴ (1 + 3i )6m − (1 − 3i )6m
∴Given expression
= 2 [ 3i 6mC 1 + ( 3i )3 6m
C3 + K ]
Ex 59. If n is a multiple of 3, then C 0 + C 3 + C6 +K is
equal to
2 +2 2 −2
8
Binomial Theorem
n n
1 (a) (b)
= [(1 + 3i )6m − (1 − 3i )6m ] 3 3
2 3i
26m
2n + 2 ( −1) n 2n − 2 ( −1) n
= (c) (d)
2 3i 3 3
(cos 2mπ + i sin 2mπ − cos 2mπ + i sin 2mπ )
Ex 60. Sum of values of x, which we should substitute
=0
in Eq. (i) to give the sum of the series
Hence, (a) is the correct answer.
C 0 + C 4 + C 8 + C 12 +K is
Passage II (Ex. Nos. 58-60) (a) 2
If (1 + x )n = C 0 + C1x + C 2x 2 + K + Cn x n …(i) (b) 2 (1 + i )
Then, sum of the series C 0 + Ck + C 2k + K can be (c) 2 (1 − i )
obtained by putting all the roots of the equation x k − 1 = 0 (d) 0
in Eq. (i) and then adding vertically. Sol. (Ex. Nos. 58-60) x 3 − 1
For example, Sum of the series C 0 + C 2 + C 4 + K can be x = 1, ω , ω 2 or x = ω , ω 2 , ω 3
obtained by putting roots of the equation x 2 − 1 = 0 x = 1, C 0 + C 1 + C 2 + C 3 + C 4 + K = 2n
⇒ x = ± 1 in Eq. (i) x = ω ,C 0 + C 1 ω + C 2 ω 2 + C 3 ω 3 + C 4ω 4 + K = (1 + ω )n
x = 1, C 0 + C1 + C 2 + C 3 + ... = 2n x = ω 2 , C 0 + C 1 ω 2 + C 2 ω 4 + C 3 ω6 + K = (1 + ω 2 )n
x = − 1, C 0 − C1 + C 2 − C 3 + K = 0 Now, 3 (C 0 + 0 + 0 + C 3 + 0 + 0 + C6 + ...)
2 (C 0 + C 2 + C 4 + ...) = 2n = 2n + (− ω 2 )n + (− ω )n = 2n + (−1)n + (−1)n
C 0 + C 2 + C 4 + K = 2n − 1
2n + 2 (−1)n
∴ C 0 + C 3 + C6 + K =
Ex 58. The values of x, we should substitute in Eq. (i) 3
to get the sum of the series x4 − 1 = 0
C 0 + C 3 + C6 + C 9 +K, are ⇒ x = ± 1, ± i
(a) 1, − 1 , ω (b) ω , ω 2 , ω 3 ∴ Sum of values of x = 1 + (−1) + i + (− i ) = 0
(c) ω , ω 2 , − 1 (d) None of these 58. (b) 59. (c) 60. (d)
= 2 ⋅ 19 [1922 + 23
C 2 ⋅ 1920 ⋅ 4 2 + K + C 22 ⋅ 4 22 ]
23
⇒ E is divisible by 19.
⇒ Remainder = 0
380
Ex 65. The term independent of x in the expansion of 9x −
1
18
Binomial Theorem
coefficient. Then, α is _________ .
(x )−r / 2
Sol. (1) Tr + 1 = 18C r ⋅ (9x )18 − r ⋅ (−1)r ⋅
3r
3r
(−1)r 18 −
Tr + 1 = 18
C r ⋅ 918 − r ⋅ ⋅x 2
3r
3r
∴ 18 − =0
2
⇒ r = 120
6
9
18
C 12 ⋅ 12 = α ⋅ 18C 12
3
∴ α =1
∴ n=6
381
Target Exercises
Type 1. Only One Correct Option
20
9. The coefficient of the ( r + 1)th term of x +
1. The expansion 1
[ x + ( x 3 − 1)1/ 2 ] 5 + [ x − ( x 3 − 1)1/ 2 ] 5
is a x
polynomial of degree when expanded in the descending powers of x, is
(a) 5 (b) 6 equal to the coefficient of the 6th term of
(c) 7 (d) 8 10
2 1
2.The value of x, for which the 6th term in the expansion x + 2 + 2 when expanded in ascending
x
7
(9 x − 1 + 7) 1 powers of x. The value of r is
of 2log 2 + x− 1 is 84, is
2(1/ 5) log 2 (3 + 1) (a) 5
(b) 6
equal to (c) 14
(a) 4 (b) 3 (d) None of the above
(c) −2 (d) 1
10. Let n ∈ N . If (1 + x ) n = a 0 + a1 x + a 2 x 2 + ... + a n x n
3. The 10th term in the expansion of ( x − 1) 11
and a n − 3 , a n − 2 , a n − 1 are in AP, then
(in decreasing powers of x) is (a) a1 , a2 , a3 are in AP
(a) −x (b) −11x (b) a1 , a2 , a3 are in HP
Ta rg e t E x e rc is e s
Binomial Theorem
(a) 100
C 51 (b) 100
C 52 (c) − 100C 53 (d) 100
C 54 (c) 822 (d) None of these
18. If the coefficients of x 2 and x 3 in the expansion of 30 30 30 30
27. The value −
of
( 3 + kx ) 9 are equal, then the value of k is 0 10 1 11
(a) −9/7 (b) 9/7 30 30 30 30
(c) 7/9 (d) None of these + + K + is equal to
2 12 20 30
19. The coefficient of x 6 in (a) 60C 20 (b) 30
C 10
{(1 + x ) 6 + (1 + x ) 7 + ... + (1 + x )15 } is (c) 60C 30 (d) 40
C 30
(a) 16C 9
28. If the coefficient of x n in (1 + x )101 (1 − x + x 2 )100 is
(b) 16C 5 − 6C 5
non-zero, then n cannot be of the form
(c) 16C6 − 1
(a) 3r + 1 (b) 3r
(d) None of the above (c) 3r + 2 (d) None of these
20. The coefficient of x13 in the expansion of n
29. If the expansion of x 2 + for positive n has a
2
(1 − x ) 5 (1 + x + x 2 + x 3 ) 4 is x
(a) 4 (b) − 4 term independent of x, then n is
(c) 0 (d) None of these
(a) 23 (b) 18
21. The coefficient of x 6 ⋅ y −2 in the expansion of (c) 16 (d) 0
10
x2 y
12 x 3
− is 30. The term independent of x in + is
y x 3 2x 2
Targ e t E x e rc is e s
(a) 1
(a) 12C6 (b) − 12C 5
(b) 10C 1
(c) 0 (d) None of these
(c) 5/12
6 (d) None of these
22. Let f ( x ) = x 2 + 1 + x 2 − 1
31. The term independent of x in the expansion of
6
2 [( t −1 − 1) x + ( t −1 + 1) −1 x − 1 ] 8 is
+ . Then,
x 2 + 1 + x 2 − 1
3 3
1 − t 1 + t
(a) 56 (b) 56
1 + t 1 − t
(a) f (x ) is a polynomial of the fourth degree in x 4 4
(b) f (x ) has exactly two terms 1 − t 1 + t
(c) 70 (d) 70
(c) f (x ) is not a polynomial in x 1 + t 1 − t
(d) coefficient of x6 is 46
32. The term that is independent of x, in the expansion of
23. The coefficient of x 4 in the expansion of 3 2 1
9
(1 + x + x 2 + x 3 ) n is x − is
2 3x
(a) nC n (b) nC 4 + nC 2 5 4
3 1
(c) nC 4 + nC 1 + nC 4 − nC 2 (d) nC 4 + nC 2 + nC 1 ⋅ nC 2 (a) 9 C6 −
2 3
3
24. The coefficient of λ n µ n in the expansion of 1
(b) 9 C6
6
(1 + λ ) n (1 + µ ) n ( λ + µ ) n is 4 5
3 1
n n
(c) 9 C 4 −
(a) ∑ n
( Cr ) 2
(b) ∑ ( C r −2)
n 2
2 3
r=0 r=0 6 6
3 1
n n (d) 9 C6 −
(c) ∑ (nC r + 3 )2 (d) ∑ (nC r )3 2 3
r=0 r=0
33. Total number of terms, that are dependent on the
25. If in the expansion of (1 + x ) n , a, b and c are three n
1
consecutive coefficients, then n is equal to value of x, in the expansion of x 2 − 2 + 2 is
x
ac + ab + bc 2ac + ab + bc
(a) (b)
b2 + ac b2 − ac equal to
ab + ac (a) 2n + 1 (b) 2n
(c) 2 (d) None of these (c) n (d) n + 1
b − ac 383
8 34. The range of the values of the term independent of x
in the expansion of x sin −1 α +
cos −1 α
10
,
41. In the expansion of 3 4 +
1
4
6
20
Objective Mathematics Vol. 1
1
n
44. Middle term in the expansion of (1 + 3x + 3x 2 + x 3 ) 6
(1 + x ) n ⋅ 1 − is
x is
(a) 0, if n is odd (a) 4th (b) 3rd
n− 1 (c) 10th (d) None of these
(b) (−1) 2 ⋅ nC n − 1, if n is odd
45. The coefficient of a8b4c9d 9 in
2
(c) (−1) . C n
n/ 2 n
, if n is even
( abc + abd + acd + bcd )10 is
−1 10!
Ta rg e t E x e rc is e s
Binomial Theorem
(b) C4 part, is equal to
(c) n + 4C n + 2 (d) None of these 15 5 19 9
(a) (b) (c) (d)
28 28 28 28
52. If n is an even integer and a, b and c are distinct
numbers, then the number of distinct terms in the 63. p is prime number and n < p < 2n, if N = 2n
C n , then
expansion of ( a + b + c ) n + ( a + b − c ) n is (a) p divides N 2
(b) p divides N
2
n + 2 (c) p cannot divide N (d) None of these
(a) (b) n + 2
2 64. Let f ( n ) = 10n + 3⋅ 4 n + 2 + 5, n ∈ N . The greatest
n+ 4
(c) (d) None of these value of the integer which divides f ( n ) for all n is
2
(a) 27 (b) 9
53. In the expansion of ( x + y + z ) 25 (c) 3 (d) None of these
(a) every term is of the form 25C r⋅ rC k⋅ x 25− r⋅ yr − k⋅ zk 65. 260 when divided by 7 leave the remainder
(b) the coefficient of x 8 y9 z9 is 25C 8 8C 17 (a) 1 (b) 6 (c) 5 (d) 2
(c) the number of terms is 325
66. If sum of coefficients in the expression of
(d) None of the above
(αx 2 − 2x + 1) 35 is equal to sum of coefficients in the
54. The greatest coefficient in the expansion of (1 + x ) 2n expansion of ( x − αy ) 35 , then α is equal to
is (a) 0 (b) 1
1⋅ 3 ⋅ 5 ...(2n − 1) n
(a) ⋅2 (b) 2nC n − 1 (c) any real number (d) None of these
n!
2n
(c) C n + 1 (d) None of these 67. The sum of the coefficient of the binomial expansion
n
of + 2x is equal to 6561. The constant term in
1
Targ e t E x e rc is e s
55. The largest term in the expansion of ( 3 + 2x ) 50 , x
where x = 1/ 5, is the expansion is
(a) 15th (b) 51st (c) 7th (d) 6th (a) 8 C 4 (b) 16 ⋅ 8C 4
2n + 1 (c) 6C 4 ⋅ 24
56. If n is positive integer and ( 3 3 + 5) = α + β, (d) None of these
where α is an integer and 0 < β < 1 , then
68. The sum of the numerical coefficients in the
(a) α is an even integer 12
(b) (α + β )2 is divisible by 22n + 1 x 2 y
expansion of 1 + + is
(c) α is an odd integer 3 3
(d) None of the above
(a) 1 (b) 2
57. If x = ( 2 + 3 ) n , then the value of x − x 2 + x [ x] , (c) 212 (d) None of these
where [ ] denotes the greatest integer function, is 69. The sum of the coefficients x 2r , r = 1, 2, 3, ... , in the
equal to
expansion of (1 + x ) n is
(a) 1 (b) 2
(c) 22n (d) 2n (a) 2n (b) 2n − 1 − 1
(c) 2n − 1 (d) 2n − 1 + 1
58. The last digit of ( 2137) 754 is
(a) 2 (b) 3 70. The sum of the coefficients in the polynomial
(c) 7 (d) 9 expansion of (1 + x − 3x 2 ) 2163 is
(a) 1 (b) −1
59. The remainder when 337 is divided by 80 is
(c) 0 (d) None of these
(a) 78 (b) 3
(c) 2 (d) 35 71. If (1 + x − 2x 2 ) 8 = a 0 + a1 x + a 2 x 2 + ... + a16 x16 ,
60. The remainder when 4101 is divided by 101 is then the sum a1 + a 3 + a 5 + ...+ a15 is equal to
(a) 4 (b) 64 (a) −27 (b) 27
(c) 84 (d) 36 (c) 28 (d) None of these
61. The remainder obtained when 1! + 2 ! + 3! + ... + 95! 72. If (1 + x )10 = a 0 + a1 x + a 2 x 2 + ....+ a10 x10 , then
is divided by 15, is ( a 0 − a 2 + a 4 − a 6 + a 8 − a10 ) 2
(a) 3 + (a1 − a3 + a5 − a7 + a9 )2 is equal to
(b) 14
(c) 1 (a) 310 (b) 210
(d) None of the above (c) 29 (d) None of these
385
8 73. In the expansion of (1 + x ) 50 , let S be the sum of
coefficients of odd power of x, then S is
(b) 249 (c) 250 (d) 251
82. The sum of the series
n
∑ ( − 1)r − 1 . nC r
r =1
( a − r ) is
Objective Mathematics Vol. 1
(a) 0 equal to
74. If (1 + x − 2x 2 ) 20 = a 0 + a1 x + a 2 x 2 + a 3 x 3 (a) n ⋅ 2n − 1 + a (b) 0
(c) a (d) None of these
+ ... + a 40 x 40 , then a1 + a 3 + a 5 + ... + a 39 is equal
n
to 83. The sum ∑ r ⋅ 2n
C r is equal to
(a) − 2 19
(b) − 2 20
(c) − 2 21
(d) − 2 18
r =1
75. If n ∈ N and n is not a multiple of three and (a) n ⋅ 22n − 1 (b) 22n − 1
2n (c) 2n − 1 + 1 (d) None of these
(1+ x + x 2 ) n = ∑ a r x r , then the value of
r =0 84. If (1 − x + x 2 ) n = a 0 + a1 x + a 2 x 2 + ... + a 2n x 2n ,
n then a 0 + a 2 + a 4 + ... + a 2n is equal to
∑ ( −1)r ⋅ a r ⋅ n C r is equal to 3n + 1 3n − 1
r =0 (a) (b)
2 2
(a) 2 (b) −2 (c) 1 (d) None of these 1 1
(c) 3 −
n
(d) 3 +
n
∑ nCr a r ⋅ b n − r ⋅ cos {rB − ( n − r ) A} is equal to 91. The value of ∑ (100 C r ⋅ 200C150 + r ) is equal to
r=0 r=0
(a) c n
(b) zero (a) 300
C 50 (b) 100C 50 ⋅ 200C 150
(c) an (d) bn (c) 100
C 50 (d) None of these
386
92. The value of
2n
∑ ( −1 )r ⋅ ( 2n C r )2 is equal to
r=0
102. ∑ ∑ n C i is equal to
0 ≤i < j ≤n
n− 1
(b) (n + 1) 2 n− 1
8
Binomial Theorem
(a) n 2
(a) 4nC 2n (b) 2nC n
(c) (n + 1) 2n (d) n 2n
(c) (− 1)n ⋅ 2nC n (d) None of these
2n 103. The value of ∑ ∑ ∑ ∑ 2 is equal to
93. The value of ∑ r ⋅ ( 2n C r )2 is equal to 0 ≤i < j < k < l ≤ n
r=0
(a) 2 (n + 1)3 (b) 2 n + 1C 4
(a) n ⋅ C 2n
4n
(b) 4 n ⋅ C 2n4n
(c) 2 (n + 1)4 (d) None of these
(c) 2n ⋅ 4nC 2n (d) None of these
104. The value of ∑ ∑ ( i ⋅ j )n C i ⋅ nC j is equal to
n− r
94. The value of ∑ n− i
C r , r ∈ [1, n] is equal to 1 ≤i < j ≤n − 1
2
i=0 n
(a) (22n − 2 − 2n − 2C n − 1 )
n+ 1 n n n+ 1 2
(a) Cr (b) C r (c) C r + 1 (d) Cr + 1
n2 2n − 2 2n − 2
(b) (2 + Cn − 1)
95. If C 0 , C1 , C 2 ,... , C n are the coefficients of the 2
n (c) n2 (22n − 2 + 2n − 2C n − 1 )
Ck
expansion of (1 + x ) n , then the value of ∑ is (d) n2 (22n − 2 − 2n − 2
Cn − 1)
k =0 k +1
2n − 1 n C 0 + nC1 + nC 2 + ... + n C n
∞
(a) 0 (b)
n
105. If S = ∑ n
Pn
, then S
n=1
2n + 1 − 1
(c) (d) None of these is equal to
n+1
(a) 2e (b) 2e − 1
(c) 2e + 1 (d) None of these
96. If (1 + x ) 2n
= a 0 + a1 x + a 2 x + ... + a 2n x , then
2 2n
Targ e t E x e rc is e s
n
a1 a 2 a 3 a 2n 106. The value of ∑ r ( n − r ) ⋅ ( n C r )2 is equal to
1 + 1 + 1 + ... 1 + is equal to
a0 a1 a 2 a 2n − 1 r=0
2n − 1
(a) n2 ⋅ Cn (b) n2 ⋅ 2nC n − 1
nn (2n + 1)2n
(a) (b) 2n − 1 2n − 2
(2n)! (2n)! (c) n2 ⋅ Cn− 1 (d) n2 ⋅ Cn
nn + 1 n+1 n−1
(c) (d) None of these 107. If C r + 1 : nC r : C r − 1 = 11: 6 : 3, then nr is
(2n + 1) !
equal to
97. The value of ∑ ∑ i ⋅ nC j is equal to (a) 20 (b) 30 (c) 40 (d) 50
0≤ i < j ≤ n
f 1 (1) f 2 (1)
(a) n (n + 1) ⋅ 2n − 3 (b) n2 ⋅ 2n − 3 108. If f ( x ) = x n , then the value of f (1) + +
(c) n (n − 1) ⋅ 2n − 3 (d) None of these 1! 2!
f n (1)
98. The value of ∑ +K+ , where f r ( x ) denotes the r th order
∑ j⋅ n
C j is equal to n!
0 ≤i ≤ j ≤n
derivative of f ( x ) with respect to x, is
(a) n ⋅ 2n − 3 (b) n (n + 3) ⋅ 2n − 3 (a) n (b) 2n
(c) (n + 3) ⋅ 2n − 3 (d) None of these (c) 2n − 1 (d) None of these
n
99. The value of ∑ ( − 1)r ⋅ r 2 ⋅ nC r is equal to 109. The value of ∑ ∑
∞ k
1
( k C r ) is
r=0 k
k =1 r = 0 3
(a) n (b) − n
(c) (n + 1) (d) None of these 2 4
(a) (b) (c) 2 (d) 1
3 3
100. If (1 + x ) = C 0 + C1 x + C 2 x + ... + C n x ,
n 2 n
then
1 1× 4 2 1× 4 × 7 3
110. 1 + x+ x + x + ... is equal to
∑ ∑ (C i − C j ) 2
3 3× 6 3× 6× 9
0 ≤i < j ≤n
(a) x (b) (1 + x )1/ 3 (c) (1 − x )1/ 3 (d) (1 − x )−1/ 3
(a) (n + 1) 2nC n − 22n (b) (n + 1)2 × 2nC n − 2n
(c) (n + 1) × 2nC n + 2n (d) None of these 5 5⋅ 7 5⋅ 7⋅ 9
111. If α = + 2
+ 3
+ ... , then α 2 + 4α is
2! 3 3! 3 4!3
101. If A = 2nC 0 2nC1 + 2n
C1 2 n − 1 C1 + 2n
C 2 2n − 2C1 + ... ,
then A is equal to
(a) 0 (b) 2n (c) n ⋅ 22n (d) 1 (a) 21 (b) 23 (c) 25 (d) 27 387
8 Type 2. More than One Correct Option
112. For the expansion ( x sin p + x −1 cos p )10 , ( p ∈ R )
n
118. If f ( n ) = ∑ [ r ( n n − 1C r − 1 − r nC r −1 ) + ( 2r + 1)
Objective Mathematics Vol. 1
388
125. Statement I Any positive integral power of
( 2 − 1) can be expressed as N − N − 1 for some
127. Statement I
( − 1)
If S n = nC1 −
n n−1
C2
2
+
nn
C3
3 8
Binomial Theorem
Cn 1 1 1
natural number N > 1. − ... + and Tn = 1 + + + ... + ,
n 2 3 n
Statement II Any positive integral power of 2 − 1 then S n = Tn for all n.
can be expressed as A + B 2, where A and B are
Statement II S n + 1 − S n = Tn + 1 − Tn
integers.
126. Two integers n and m are such that m = n 2 − n, where i j
128. Statement I ∑ ∑
nC
+ n is equal to
C j
n ≥ 3. 0≤i < j ≤n i
Targ e t E x e rc is e s
If θ remains constant and r varies, then i j
value of ∑ ∑
nC
+ n
is equal to
dC dS 0 ≤i ≤n 0 ≤ j ≤n C j
129.The expression C +S is equal to i
dr dr n2
(a) C + S 2 2
(b) (C + S ) cosθ
2 2 (a) n2a (b)
2a
(c) (C 2 + S 2 ) sin 2 θ (d) 1 n
(c) a (d) None of these
2
dS dC n
−S
130.The expression C
dr dr
is equal to Passage III (Q. Nos. 136-138) If (1 + x )n = ∑ n Cr x r ,
r =0
(a) C 2 + S 2 (b) (C 2 + S 2 ) cosθ
then the sum of the binomial coefficients can be
(c) (C 2 + S 2 ) sin θ (d) CS obtained by substituting x = 1. But in case we have to
2 2 find the sum of coefficients in some particular order, we
dC dS can substitute x by ± ix or ± ω x or ± ω 2 x depending
131. + is equal to
dr dr upon certain requirements.
(a) C 2 + S 2 (b) (C 2 + S 2 ) cos2 θ 136. The sum of binomial coefficients
(c) (C 2 + S 2 ) sin 2 θ (d) 1 n
C 0 + nC 4 + nC 8 + ... must be
Passage II (Q. Nos. 132-135) π nπ
(a) 2n/ 2 cos (b) 2n/ 2 sin
n 8 8
If ( x + y )n = ∑ Cr x n − r y r , where Cr = nCr .
n
nπ −1 nπ
r =0
(c) 2n + 2n/ 2 cos (d) 2n − 2 + 2 2 cos
4 4
C1 C 3 C 5 C 7
132. + + + + ... is equal to 137. The sum of the binomial coefficients
2 4 6 8 n
C 0 + nC 3 + nC 6 + ... must be
2n − 1 2n + 1 2n
(a) (b) (a)
n+1 n+1 3
2n + 1 − 1 1 n nπ
(c) (d) None of these (b) 2 + cos
n+1 3 3
1 nπ
n
r + 2 28 − 1 (c) 2n + 2 cos
133. If ∑ C r = , then n is equal to 3 3
r = 0 r + 1 6 1 n nπ
(d) 2 + 2 sin
(a) 8 (b) 6 (c) 5 (d) 4 3 3
389
8 138. If n is an even positive integer and k =
n
3n
2
, then the 140. The value of
s n
∑ ∑ n C s ⋅ sC r (when r ≤ s) is
r = 0 s=1
∑ ( − 3) r − 1
Objective Mathematics Vol. 1
3n
value of C 2r − 1 is (a) 3n
r =1 (b) n 3n − 1
(a) 3 n
(b) 3n − 1 (c) 6n (d) zero (c) n 3n − 1 − 1
(d) 3n − 1
Passage IV (Q. Nos. 139-141) Let n be positive
integer such that n n n n
(1 + x )n = C 0 + C1x + C 2 x 2 + K + Cn x n . 141. The value of ∑ ∑ ∑ ∑ (1) is
r =0 s=0 t =0 u=0
n n
139. The value of ∑ ∑ (C r + C s ) is (a) nC 4
(b) n + 1C 4
r =0 s=0
proper integer λ which depends on n. Now, in B. The largest real value for x such that q. 4
4
3 4 − k x k 32
Ta rg e t E x e rc is e s
143. Match the following. 145. Match the statements of Column I with values of
Column I Column II Column II.
390
Type 6 Single Integer Answer Type Questions
1
151. If the middle term in the expansion of + 2
x
8
8
Binomial Theorem
146. Let a = 3 223 + 1, for all n ≥ 3 and let is
n−1
2
f (x ) = C 0 a
n
− nC1 a n − 2 + nC 2 a n − 3 − ...
1120, then the sum of possible real values of x is ___.
+ ( −1) n − 1 nC n − 1 a 0 .
If the value of f ( 2007) + f ( 2008) = 3k , where k ∈ N , 152. The number formed by last two digits of the number
then the value of k is _______ . (17) 256 is ab, then ( a + b ) is _______ .
147. The sum of roots of x for which the sixth term of
m
153. The remainder, if 1 + 2 + 22 + 23 + ... + 21999 is
log (10 − 3x ) (x − 2) log 3
2 + 5 2 is equal to 21 and divided by 5, is _______ .
binomial coefficients of second, third and fourth 154. The largest real value for x = 2 2 − λ such that
terms are the first, third and fifth terms of an 4
54 − k x k 8
arithmetic progression, is _______ . ∑ = , then λ is _______ .
(4 − k )! k ! 3
k=0
148. The fractional part of the sum of all the rational terms
in the expansion of ( 31/ 4 + 41/ 3 )12 , is _______ . 155. The value of
149. The coefficient of x in (1 + x + x + x + x )
83 2 3 4 n (1 + x ) (1 + 2x )
C 0 − C1 + C2 ⋅ −
( x − 1) n + 3 , is − nC 2λ , then λ is _______ . (1 + nx ) (1 + nx ) 2
150. The coefficient of x 4 in the expansion of (1 + 3x )
(1 + x + x 2 + x 3 )11 is λ. Then, the number of divisors C3 ⋅ + K = 1, then λ is ….
(1 + nx ) 3
of λ of the form 9 k, is _______ .
Targ e t E x e rc is e s
Entrances Gallery
JEE Advanced/IIT JEE
1. Coefficient of x11 in the expansion of 3. For r = 0, 1, ... , 10, let A r , B r and C r denote,
(1 + x 2 ) 4 (1 + x 3 ) 7 (1 + x 4 )12 is [2014] respectively the coefficient of x r in the expansions of
(a) 1051 (b) 1106 (1 + x )10 , (1 + x ) 20 and (1 + x 30 ). Then,
(c) 1113 (d) 1120 10
∑ A r ( B10 B r − C10 A r ) is equal to [2010]
2. The coefficients of three consecutive terms of r =1
(1 + x ) n+ 5 are in the ratio 5 : 10 : 14. Then, n is…. (a) B10 − C 10 2
(b) A10 ( B10 − C 10 A10 )
[2013] (c) 0 (d) C 10 − B10
JEE Main/AIEEE
4. The sum of coefficients of integral powers of x in the 6. If X = {4 n − 3n − 1: n ∈ N } and Y = {9 ( n − 1) : n ∈ N },
binomial expansion of (1 − 2 x ) 50 is [2015] where N is the set of natural numbers, then
(a)
1 50
(3 + 1)
1
(b) (350 ) X ∪ Y is equal to [2014]
2 2 (a) N
1
(c) (350 − 1)
1
(d) (250 + 1) (b) Y − X
2 2 (c) X
(d) Y
5. If the coefficients of x 3 and x 4 in the expansion of
(1 + ax + bx 2 ) (1 − 2x )18 in powers of x are both zero, 7. The term independent of x in expansion of
10
then ( a, b ) is equal to [2014] x+1 x−1
2/ 3 − is [2014]
251 251 x − x1 / 3 + 1 x − x1 / 2
(a) 16, (b) 14 ,
3 3
(a) 4 (b) 120
272 272
(c) 14 , (d) 16, (c) 210 (d) 310
3 3
391
8 8. If n is a positive integer, then ( 3 + 1) 2n − ( 3 − 1) 2n
is [2012]
15. If the expansion in powers of x of the function
1
(1 − ax ) (1 − bx )
is a 0 + a1 x + a 2 x 2 + a 3 x 3 + ... , then
Objective Mathematics Vol. 1
Binomial Theorem
(a) 7th term (b) 5th term
(c) (−1)n − 1 (n − 1)2 (d) (−1)n − 1 n (c) 8th term (d) 6th term
n
1 n
r tn 26. The coefficient of x 5 in (1 + 2x + 3x 2 + K ) −3/ 2 is
23. If sn = ∑ nC and t n = ∑ nC , then
sn
is equal [2002]
r=0 r r=0 r (a) 21
to [2004] (b) 25
n n 2n − 1 (c) 26
(a) (b) − 1 (c) n − 1 (d) (d) None of the above
2 2 2
27. If | x| < 1, then the coefficient of x n in expansion of
24. The number of integral terms in the expansion of (1 + x + x 2 + x 3 + K ) 2 is [2002]
( 3 + 8 5 ) 256 is [2003] (a) n (b) n − 1 (c) n + 2 (d) n + 1
(a) 32 (b) 33 (c) 34 (d) 35
x− is [EAMCET 2014]
[BITSAT 2014] x
(a) 0 (b) n (c) 1 (d) −1
(a) − 18 C 9 29 (b) 18
C 9 212
29. If 21st and 22nd terms in the expansion of (1 + x ) 44 (c) 18 C6 26 (d) 18
C 9 28
are equal, then x is equal to [Karnataka CET 2014]
(a) 8/7 (b) 21/22 (c) 7/8 (d) 23/24 36. The value of the sum ( n C1 ) 2 + ( n C 2 ) 2 + ( n C 3 ) 2
Targ e t E x e rc is e s
13
+ K + ( n C n ) 2 is
30. If the coefficient of x 8 in ax 2 + is equal to the
1 [WB JEE 2014]
bx (a) (2nC n )2 (b) 2nC n
13
1 (c) 2nC n + 1 (d) 2nC n − 1
coefficient of x −8 in ax − 2 , then a and b will
bx 2 n 22 23 2n + 1 n
satisfy the relation [WB JEE 2014] 37. Let S = C0 + n
C1 + n
C 2 +K+ Cn.
(a) ab + 1 = 0 (b) ab = 1 1 2 3 n+1
(c) a = 1 − b (d) a + b = − 1
Then, S equals [WB JEE 2014]
31. The coefficient of x 3 in the infinite series expansion 2n + 1 − 1 3n + 1 − 1
(a) (b)
2 n+1 n+1
of , for | x| < 1is [WB JEE 2014]
(1 − x ) ( 2 − x ) 3n − 1 2n − 1
(c) (d)
1 15 1 15 n n
(a) − (b) (c) − (d)
16 8 8 16 n
32. If ( a + bx ) −3 =
1 1
+ x + ... , then the ordered pair
38. m
Cr + 1 + ∑ k C r is equal to [AMU 2014]
k =m
27 3
( a, b ) equals [EAMCET 2014] (a) nC r + 1
n+ 1
1 (b) Cr + 1
(a) (3, − 27) (b) 1, (c) (3, 9) (d) (3, − 9)
3 n
(c) C r
(d) None of the above
33. If the term free from x in the expansion of
10 C1 C C C
k 39. + 2 2 + 3 3 + K + n n is equal to
x − is 405, then the value of k is
x2 [Manipal 2014]
C0 C1 C2 Cn − 1 [AMU 2014]
(a) ± 1 (b) ± 3 n (n − 1) n (n + 1)
(a) (b)
(c) ± 4 (d) ± 2 2 2
n (n + 1) (n + 2)
(c) (d) None of these
1
34. Middle term in the expansion of x 2 + 2 + 2 is 2
x
40. If n is an integer with 0 ≤ n ≤ 11, then the minimum
[Manipal 2014]
n! (2n)! value of n ! (11 − n )! is attained when a value of n
(a) (b) equals [EAMCET 2014]
(n!)2 (n!)2
(2n − 1)! (2n)! (a) 11 (b) 5
(c) (d) (c) 7 (d) 9
n! n! 393
8 41. If the 6th term in the expansion of the binomial
x
[ 2log (10 − 3 ) + 5 2(x − 2) log 3 ] m is equal to 21 and it is
49. The 13th term in the expansion of x 2 + is
2
x
n
Objective Mathematics Vol. 1
known that the binomial coefficient of 2nd, 3rd and independent of x, then the sum of the divisors of n is
4th terms in the expansion represent, respectively the [Karnataka CET 2012]
(a) 36 (b) 37 (c) 38 (d) 39
first, third and fifth terms of an AP, then x is equal to
10 7
∑ C r x r and (1 + x )7 = ∑ dr xr .
[BITSAT 2013]
50. Let (1 + x )10 = If
(a) 0 (b) 1 (c) − 2 (d) 3
r=0 r=0
n
42. If the 4th term in the expansion of ax + is
1 5 3
P
x
P= ∑ C 2r and Q = ∑ d 2r + 1 , then Q is equal to
r=0 r=0 [WB JEE 2012]
5
, ∀ x ∈ R, then the values of a and n are [AMU 2013] (a) 4 (b) 8 (c) 16 (d) 32
2
1 1 51. If the binomial coefficients of ( 3r ) th and ( r + 2) th
(a)
2
,6 (b) 6,
2 terms in the binomial expansion of (1 + x ) 2 n are
(c) 2, 6 (d) None of these equal, then [AMU 2012]
(a) n = r (b) n = r + 1
43. ∑ ( n C r + nC s ) is equal to [Manipal 2013] (c) n = 2r (d) n = 2r − 1
0≤r <s≤n
52. If A and B are coefficients of x n in the expansions of
(a) 2n + 1 (b) 2n + 1 − 1
(1 + x ) 2n and (1 + x ) 2n − 1 respectively, then A / B is
(c) n2n (d) (n + 1) 2n
equal to [WB JEE 2011; AMU 2011]
C C C Cn (a) 4 (b) 2
44. 1 + 1 1 + 2 1 + 3 K 1 + is equal
C 0 C1 C 2 C n − 1
(c) 9 (d) 6
n
1
to [Manipal 2013] 53. In the expansion of x 3 − 2 , n ∈ N , if the sum of
n+1 (n + 1)n x
Ta rg e t E x e rc is e s
(a) (b)
n! (n − 1)!
5
the coefficients of x and x10 is 0, then n is
[GGSIPU 2011]
(n + 1)n (n − 1)n
(c) (d) (a) 25 (b) 20
n! n! (c) 15 (d) None of these
ex
45. If = B 0 + B1 x + B 2 x 2 + K + B n x n + K, then 54. 5th term from the end in the expansion of
1− x 12
x3 2
B n − B n − 1 equals [Manipal 2012] − 2 is [GGSIPU 2011]
1 1 2 x
(a) (b)
n! (n − 1) ! (a) − 7920x −4 (b) 7920x 4
1
(c) −
1
(d) 1 (c) 7920x −4 (d) −7920x 4
n! (n − 1) !
55. The coefficient of p n q n in the expansion of
10
46. The coefficient of x in the expansion of [(1 + p ) (1 + q ) ( p + q )] n is [J&K CET 2011]
1 + (1 + x ) + K + (1 + x ) 20 is [WB JEE 2012] n n
(a) 19
C9 (b) 20
C 10
(a) ∑ [C (n, k )]2 (b) ∑ [C (n, k + 2)] 2
21 22 k=0 k=0
(c) C 11 (d) C 12 n n
Binomial Theorem
(a) 6C 3
[UP SEE 2011] (b) 8 6C 3
(a) 2n (b) 2−n (c) 8 6C 5
(c) 0 (d) 1
(d) 6C 4
60. The expression n
C 0 + 2⋅ nC1 + 3⋅ n C1 + ... (e) 8 6C 4
+ ( n + 1) ⋅ nC n is equal to [AMU 2011]
63. Let (1 + x ) n = 1 + a1 x + a 2 x 2 + K + a n x n . If a1 , a 2
(a) (n + 1) 2n (b) 2n (n + 2)
and a 3 are in AP, then the value of n is [BITSAT 2010]
(c) (n + 2) 2n − 1 (d) (n + 2) 2n + 1
(a) 4
61. If in the expansion of ( a − 2b ) n , the sum of the 5th (b) 5
(c) 6
a
and 6th terms is zero, then the value of is (d) 7
b
[WB JEE 2010] 64. If the sum of the coefficients in the expansion of
n−4 2 (n − 4 ) ( a 2 x 2 − 6ax + 11)10 , where a is constant is 1024, then
(a) (b)
5 5 the value of a is [Kerala CEE 2010]
5 5 (a) 5 (b) 1 (c) 2
(c) (d)
n−4 2 (n − 4 ) (d) 3 (e) 4
Targ e t E x e rc is e s
395
Answers
Work Book Exercise 8.1
1. (b) 2. (c) 3. (b) 4. (b) 5. (b) 6. (b) 7. (c) 8. (b) 9. (d) 10. (a)
Target Exercises
1. (c) 2. (d) 3. (d) 4. (c) 5. (b) 6. (d) 7. (b) 8. (d) 9. (a) 10. (a)
11. (c) 12. (c) 13. (d) 14. (b) 15. (c) 16. (c) 17. (c) 18. (b) 19. (a) 20. (a)
21. (c) 22. (b) 23. (d) 24. (d) 25. (b) 26. (b) 27. (b) 28. (c) 29. (b) 30. (d)
31. (c) 32. (b) 33. (c) 34. (a) 35. (a) 36. (a) 37. (c) 38. (b) 39. (d) 40. (c)
41. (b) 42. (b) 43. (b) 44. (c) 45. (c) 46. (d) 47. (c) 48. (b) 49. (b) 50. (d)
51. (d) 52. (d) 53. (a) 54. (a) 55. (c) 56. (a) 57. (a) 58. (d) 59. (b) 60. (a)
61. (a) 62. (c) 63. (a) 64. (b) 65. (a) 66. (b) 67. (b) 68. (c) 69. (b) 70. (b)
Ta rg e t E x e rc is e s
71. (a) 72. (b) 73. (b) 74. (a) 75. (d) 76. (c) 77. (a) 78. (a) 79. (a) 80. (b)
81. (a) 82. (c) 83. (a) 84. (a) 85. (b) 86. (c) 87. (b) 88. (d) 89. (a) 90. (c)
91. (a) 92. (c) 93. (a) 94. (d) 95. (c) 96. (b) 97. (c) 98. (b) 99. (d) 100. (a)
101. (c) 102. (a) 103. (b) 104. (a) 105. (d) 106. (d) 107. (d) 108. (b) 109. (c) 110. (d)
111. (b) 112. (a,b,c) 113. (a,b,d) 114. (a,b) 115. (a,b,c) 116. (a,b) 117. (a,b) 118. (b, c) 119. (a,b) 120. (c,d)
121. (a,b,c) 122. (a,b,d) 123. (b) 124. (a) 125. (b) 126. (a) 127. (a) 128. (a) 129. (b) 130. (c)
131. (a) 132. (a) 133. (c) 134. (d) 135. (d) 136. (d) 137. (c) 138. (d) 139. (a) 140. (d)
141. (d) 142. (*) 143. (**) 144. (***) 145. (****) 146. (9) 147. (2) 148. (0) 149. (8) 150. (8)
151. (0) 152. (9) 153. (0) 154. (5) 155. (0)
* A → p; B → p,r; C → p, q; D → p, q, s
** A → r; B → q; C → p; D → s
*** A → q; B → r; C → p; D → p
**** A → q; B → s; C → p; D → r
Entrances Gallery
1. (c) 2. (6) 3. (d) 4. (a) 5. (d) 6. (d) 7. (c) 8. (a) 9. (b) 10. (b)
11. (b) 12. (b) 13. (d) 14. (b) 15. (c) 16. (c) 17. (a) 18. (b) 19. (a) 20. (b)
21. (c) 22. (b) 23. (a) 24. (b) 25. (c) 26. (d) 27. (d) 28. (c) 29. (c) 30. (a)
31. (b) 32. (d) 33. (b) 34. (b) 35. (a) 36. (d) 37. (b) 38. (b) 39. (b) 40. (b)
41. (a) 42. (a) 43. (c) 44. (c) 45. (a) 46. (c) 47. (b) 48. (c) 49. (d) 50. (b)
51. (c) 52. (b) 53. (c) 54. (c) 55. (d) 56. (c) 57. (a) 58. (b) 59. (c) 60. (c)
61. (b) 62. (b) 63. (d) 64. (d)
396
Explanations
Target Exercises
5 5 2n 2n
1. x + x 3 − 1 + x − x 3 − 1 7. Since, C1, C2 , 2 n C3 are in AP.
∴ 2 2 n C2 = 2 nC1 + 2 nC3
2 4
= 2 5 C0 x 5 + 5C2 x 3 x 3 − 1 + 5C4 x x 3 − 1 ⇒ 2n − 9 n + 7 = 0
2
8. Tp = T( p − 1) + 1 = 6Cp − 1(2 x )6 − ( p − 1) 3 p − 1
= 2 [ x 5 + 10 x 3 ( x 3 − 1) + 5 x( x 3 − 1)2 ]
This is a polynomial of degree 7. = 6 Cp − 1 2 7 − p 3 p − 1 x 7 − p
7 ∴ Coefficient of Tp = 6Cp − 1 2 7 − p 3 p − 1 = 4860 [given]
1
2. Given expression = 9 x − 1 + 7 + Clearly, p = 5 is the solution.
(3 x − 1 + 1)1/ 5
r
9. Tr + 1 = x 20 ⋅20 Cr
7− 5
5 1
1 in descending powers of x.
∴ T6 = T5 + 1 = C5 9 x − 1 + 7
7
x −1 x2
(3 + 1)
1/ 5
1
1 T6 = ⋅ 20
C5 ( x 2 )15 in ascending powers of x
= 21(9 x − 1 + 7 )⋅ x − 1 x 20
3 +1 ⇒ 20
Cr = 20C5
2x − 2
21(3 + 7) ∴ r =5
= = 84 [given]
3x − 1 + 1
10. In an expansion, binomial coefficients equidistance
⇒ 32 x − 2 + 7 = 4 (3 x − 1 + 1) from the beginning and the end are equal.
⇒ y 2 + 7 − 4 y − 4 = 0 , where y = 3 x − 1 ∴ an − 1 = a1, an − 2 = a2, an − 3 = a3
∴ y = 1 ⇒ 3x − 1 = 1 Thus, a1, a2 , a3 are in AP.
⇒ x − 1= 0 ⇒ x = 1 ⇒ 2 ⋅n C2 = nC1 + nC3
Targ e t E x e rc is e s
and y = 3 ⇒ 3x − 1 = 3 n
C n
C
⇒ 2= n 1 + n 3
⇒ x − 1= 1 ⇒ x = 2 C2 C2
3. T10 = T9 + 1 = 11C9 ( x )11 − 9 (− 1)9 = − 11C9 x 2 2 n −2
⇒ 2= +
n −1 3
4. T3 = T2 + 1 = 5C2 x 5 − 2 ( xlog10 x )2 ⇒ n − 9 n + 14 = 0
2
2 x 2
∴ 15 − 4 r = 3
Since, independent of x. ⇒ r =3
⇒ n − 6 = 0 or n = 6 ∴ Tr + 1 = T3 + 1 = 6C3 (3)3 x15 − 4( 3 )
3
α
α3 = 20 × 27 × x 3
∴ 6
C3 = 20 ⇒ 20 ⋅ 3 = 20
2 2 = 540 x 3
⇒ α =2 ∴Coefficient of x = 540
3 397
8
12 − r
2n − r r
n r
14. Tr + 1 in 2 + = nCr 2 n − r = nCr x2
x x r
y
x 21. Tr + 1 = 12Cr −
3 3
r
3 y x
n−r
2 = 12Cr x 24 − 3 r ⋅ y 2 r − 12 (− 1)r
Objective Mathematics Vol. 1
∴ Coefficient of x r = nCr r
3 ∴ Coefficient of x 6 y − 2 is obtained,
2n − 7 n 2n − 8 when 24 − 3 r = 6 and 2 r − 12 = − 2
∴ n
C7 ⋅ 7 = C8 ⋅ 8
3 3 ⇒ r = 6 and r = 5, which is not possible.
2 1
⇒ = 22. f ( x ) = ( x 2 + 1 + x 2 − 1)6 + ( x 2 + 1 − x 2 − 1)6
n −7 8× 3
⇒ n − 7 = 48 After expansion and simplification
⇒ n = 55 f ( x ) = 64 x 6 − 48 x 2
2n
23. (1 + x + x 2 + x 3 ) n = [(1 + x )(1 + x 2 )]n = (1 + x )n (1 + x 2 ) n
15. We have, (1 + 2 x + x 2 )n = ∑ ar x r = (n C0 + nC1 x + nC2 x 2 + nC3 x 3 + nC4 x 4 + ... )
r =0
2n × (n C0 + nC1 x 2 + nC2 x 4 + ... )
⇒ (1 + x )2 n = ∑ ar xr ∴ Coefficient of x = C0 ⋅n C2 + nC2 ⋅n C1 + nC4 ⋅n C0
4 n
r =0
= nC2 + nC1 ⋅n C2 + nC4
Comparing the coefficients of x r , we get
2n
Cr = ar 24. Coefficient of λnµ n in (1 + λ )n (1 + µ)n (λ + µ)n
⇒ Coefficient of λnµ n in
m(m − 1) 2
16. (1 + x ) (1 − x ) = 1 + mx +
m n
x + K
{(n C0 + nC1λ + nC2 λ2 +...+ n Cn λn )
2
− (n C0µ n + nC1µ n − 1 +...+ nCn )
n( n 1) 2
× 1 − nx + x + K (n C0 λn + nC0 λn − 1 µ + ... + nCnµ n )}
2
∴ Coefficient of x = m − n = 3 [given] Clearly, coefficient of λnµ n is (C03 + C13 + C23 + ... + Cn3 )
n(n − 1) m(m − 1) 25. Here, a = nCr , b = nCr + 1 and c = nCr + 2
Coefficient of x =2
− mn + =−6
Ta rg e t E x e rc is e s
2 2
Put n = 2, r = 0, then option (b) holds the condition
[given] 2 ac + ab + bc
⇒ n 2 − n − 2 mn + m2 − m = − 12 i.e. n=
b2 − ac
⇒ (m − n )2 − (m + n ) = − 12
⇒ (3)2 − (m + n ) = − 12 26. f ( x ) = 1 − x + x 2 − x 3 + ... − x15 + x16 − x17
1 − x18
⇒ m + n = 21 =
∴ Solving m − n = 3, m + n = 21, we get 1+ x
m = 12 1 − ( x − 1)18
⇒ f ( x − 1) =
n=9 x
100 Therefore, required coefficient of x 2 is equal to
17. ∑ 100Cr ( x − 3)100 − r 2 r coefficient of x 3 in 1 − ( x − 1)18 , which is given by
r =0 18
C3 = 816.
= {( x − 3) + 2}100 = ( x − 1)100 = (1 − x )100
100
27. (1 − x )30 = 30C0 x 0 − 30C1 x1 + 30
C2 x 2
∴ Coefficient of x 53 = (−1)53 C53 = – 100C53 30
− ... + (− 1)30 C30 x 30 …(i)
18. Coefficient of x 2 = Coefficient of x 3 ( x + 1)30 = 30
C0 x 30 + C1 x + 30C2 x 28
30 29
9−2 9 −3
∴ 9
C2 3 k = C3 3
2 9
k 3
+ ... + 30C10 x 20 + ... + 30C30 x 0 …(ii)
⇒ 36 = 28k On multiplying Eqs. (i) and (ii) and equating the
9
⇒ k= coefficient of x 20 on both sides, we get required sum is
7
equal to coefficient of x 20 in (1 + x 2 )30 , which is given
(1 + x )6 {1 − (1 + x )10 }
19. Expression = by 30
C10 .
1 − (1 + x )
[sum of 10 terms of GP] 28. We have,
(1 + x )101 (1 − x + x 2 )100 = (1 + x ) {(1 + x ) (1 − x + x 2 )}100
(1 + x )16 − (1 + x )6
= = (1 + x ) (1 + x 3 )100 = (1 + x ) {C0 + C1 x 3 + C2 x 6
x
∴Required coefficient + ... + C100 x 300}
n n n
= Coefficient of x 7 in {(1 + x )16 − (1 + x )6 } = (1 + x ) ∑ nCr x 3r = ∑ nCr x 3r + ∑ nCr x 3r + 1
= 16C7 = 16C9 r =0 r =0 r =0
20. (1 − x ) (1 + x ) (1 + x )
5 4 2 4 Hence, there will be no term containing 3 r + 2.
= (1 − x 2 )4 (1 + x 2 )4 (1 – x ) 29. n Cr 2 r ⋅ x 2 n − 3 r ⇒ 2 n − 3 r = 0
= (1 − x 4 )4 (1 − x ) ⇒ 2n = 3 r
398 n is multiple of 3/2.
∴Coefficient of x13 in {(1 − x )(1 − 4 x 4 + 6 x 8 − 4 x12 )} = 4
8
10 − r r 5
x 3 9π 2 − π 2 − 10C5 π 10
30. Tr + 1 = 10Cr ⇒ Minimum value is − 10C5 =
3 2 x2 16 25
− π 10
Binomial Theorem
1
10 − r r
3 5 − 2
r
−r
10
C5 π 10
Targ e t E x e rc is e s
8−4 −4
1 1 8 − 2( 4 ) = C02 + C12 + C22 + ... + Cn2
∴ Tr + 1 = T4 + 1 = 8C4 − 1 + 1 x
t t n 6
1 1
4 4 38. Tn in 6 3 2 + = nC6 (21/ 2 31/ 6 )n − 6 1/ 3
1− t t 1− t
4
3 3
= 70 = 70 3
t 1+ t 1+ t n
1
7th term from the end in 6 3 2 + 3
9 9 9−r r 3
32. x 2 − = ∑ 9 Cr x 2 1
3 1 3
− n n−6
2 3x 2 3x 1 1
r =0 = Tn in + 3 2 = nC6 1/ 3
6
(31/ 621/ 2 )6
3 3 3
For the term that is independent of x, we must have 6
18 − 2 r − r = 0 1
n
C6 [21/ 2 31/ 6 ]n − 6 1/ 3
⇒ r =6 3 1
3 6 ∴ n−6
=
3 1 1 6
Thus, required term = 9C6 x 2 − n
C6 1/ 3 [21/ 2 31/ 6 ]6
2 3x 3
3 6 3
3 1 1 n−6 n−6
i.e. 9
C6 = 9C6 2 2 3 6 × [3 ]
−2
2 3 6
1
n ⇒ =
33. x 2 − 2 + 2 = 2 n ( x 4 − 2 x 2 + 1)n
1 1 n − 6 6
−
x x 3 3 2 3 ⋅ 31
n−6 n−6
( x 2 − 1)2 n
= 2 2 3 6 1 1
x 2n ⇒ 6−n
⋅ =
32 6
Total number of terms that are dependent on 3 3 23 ⋅ 31
x = number of terms in the expansion of ( x 2 − 1)2 n n−6
=
63 13
a −
63 14 63
a = (8 − a) a13 48. (1 + x − 2 x 2 )7 = ∑ 7Cr (1 + x )7 − r (− 2 x 2 )r
4 32 32 r =0
40. As the index = 20 , the 11th term is the middle term. So, Thus, required coefficient
we have to find the 14th term. = 7C0 ⋅7 C4 + 7C1(− 2 )⋅6 C2 + 7C2 ⋅ (− 2 )2 ⋅ 5C0
13 = 1⋅ 35 − 7 ⋅ 2 ⋅ 15 + 21⋅ 4 ⋅ 1 = − 91
1
T14 = C13 ( x 2 )20 − 13 −
20
49. Total number of different terms in the expansion of
2 x
1 ( x1 + x2 + K + xn )m is same as the number of
= − C13 x ⋅ 13 13
20 14
non-negative integral solutions of y1 + y2 +…+ yn = m
2 x n + m −1
1 20 i.e. Cn − 1
= − 13 C13 x
2 50. (1 + a − b + c )9
20 − r r 40 − 2 r r r
− − − 9!
41. Tr + 1 = 20Cr ⋅4 3 ⋅6 4 = 20
Cr ⋅2 3 ⋅2 4 ⋅3 4 =∑ ⋅ (1)x1 (a)x2 (− b)x3 (c )x4
x1 ! x2 ! x3 ! x4 !
160 − 11r r
− 9! 9!
=
Cr ⋅ 2 12 ⋅ 3 4
20
⇒ Coefficient of a3 b4c = =
1! 3 ! 4 !1! 3 ! 4 !
r 160 − 11r
For rational terms, and must be integers 51. Number of terms = n + 5 −1
C5 − 1 = n+ 4
C4
4 12
and 0 < r < 20.
r 52. (a + b + c ) + (a + b − c ) = 2{ C0 c (a + b)n
n n n 0
4
160 − 11r Number of terms = (n + 1) + (n − 1) + (n − 3) + K + 1
Clearly, for r = 8, 16 and 20, is also an
12 n + 2 (n + 2 )2
= [1 + (n + 1)] =
integer. 2 2
∴ Only three terms are rational. So, 21 − 3, i.e. 18
terms are irrational. 53. ( x + y + z )25 = { x + ( y + z )} 25
n ! (21 − n )! 21! = 25C0 x 25 + 25C1 x 24 ( y + z ) + K+ 25Cr x 25 − r ( y + z )r + K
42. n ! (21 − n )! = 21! = 21 , which is minimum
21! Cn = K + 25Cr x 25 − r (K + r Ck y r − k z k + K ) + K
when Cn is maximum, which occurs when n = 10.
21 8 + 9 + 9 ≠ 25. So, there is no term like x 8 y 9 z 9 .
The number of terms
43. Since, n is even, therefore + 1 th term is middle term.
n
2 = 1 + 2 + 3 + K + 26
26 × 27
n/ 2 =
1 2
Hence, n Cn / 2 ( x 2 )n / 2 = 924 x 6
x = 351
⇒ x n/ 2 = x 6 ⇒ n = 12 54. The greatest coefficient
44. (1 + 3 x + 3 x + x ) = {(1 + x ) } = (1 + x )
2 3 6 3 6 18 = Coefficient of the middle term
(2n )!
= 2nCn =
Hence, the middle term is 10th. n!n!
10 (2 n )(2 n − 1)(2 n − 2 )(2 n − 3)(2 n − 4) K 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1
45. a10 b10c 10d 10 +
1 1 1 1 =
+ + n!n!
a b c d
2 n{ n ⋅ ( n − 1) K 2 ⋅ 1}{(2 n − 1)(2 n − 3)(2 n − 5) K 5 ⋅ 3 ⋅ 1}
Therefore, the required coefficient is equal to the =
10 n! n!
1 1 1 1
coefficient of a− 2 b− 6c − 1d − 1 in + + + , 2 n ⋅ n !⋅ {(2 n − 1)(2 n − 3)(2 n − 5) K 5 ⋅ 3 ⋅ 1}
a b c d =
n!n!
10 ! 10 × 9 × 8 × 7
which is given by = = 2520 2 n {1⋅ 3 ⋅ 5 ⋅ K ⋅ (2 n − 1)}
2 ! 6 !1!1! 2 =
n!
46. The general term in the expansion of (1 − x + y )20 is n−r +1 y
55. For largest term ⋅ >1
20 ! r r x
1 (− x )s ( y ) t , where r + s + t = 20
r ! s !t ! 51 − r 2 x 51 − r 2 1
⇒ ⋅ ≥ 1; if ⋅ ≥1
For x 2 y 3 , we have the term r 3 r 3 5
20 ! 15
1 (− x )2 ( y )3 if 102 − 2 r ≥ 15 r; if 17 r ≤ 102
15 !2 ! 3 ! if r ≤ 6
Hence, the coefficient of x 2 y 3 is
20 !
. ∴ We take r = 6
400
15 !2 ! 3 ! ∴ Largest term = Tr + 1 = T6 + 1 = T7
56. α + β = (3 3 + 5)2 n + 1
β1 = (3 3 − 5)
⇒
2n + 1
, where β1 < 1
α + β + β1 = Even integer, β − β1 = 0
65. 2 60 = (1 + 7 )20
= 20C0 + 20C1 ⋅ 7 + 20C2 ⋅ 7 2 + ... +
∴ The remainder = 20C0 = 1
20
C20 ⋅ 7 20 8
Binomial Theorem
⇒ α = Even integer
66. (α − 2 + 1)35 = (1 − α )35
57. x − x 2 + x[ x ] = x − x( x − [ x ]), = x − x{ x} ⇒ (α − 1)35 = − (α − 1)35 ⇒ α =1
= x (1 − { x})
x = (2 + 3 )n = nC0 2 n + nC12 n − 1 3 67. The sum of all the coefficients in an expansion is
obtained by putting x = 1in the expression.
+ nC2 2 n − 2 ( 3 )2 + K n
1
Let x1 = (2 − 3 )n ∴ + 2 ⋅ 1 = 6561
1
= nC0 2 n − nC12 n − 1 3 + nC2 2 n − 2 ( 3 )2 + K
∴ 3n = 38 ⇒ n = 8
x + x1 = 2(n C0 2 n + nC2 2 n − 2 ( 3 )2 + K ) 8 8−r
1 1
= Even integer In + 2 x , Tr + 1 = 8Cr ⋅ ⋅ (2 x )r
x x
` Clearly, x1 ∈ (0, 1), ∀ n ∈ N This is a constant, if 8 − 2 r = 0 i.e. r = 4
⇒ [ x ] + { x} + x1 = Even integer ∴The constant term = T5 = 8C4 ⋅ 2 4
⇒ { x} + x1 = Integer
{ x} ∈ (0, 1,) x1 ∈(0, 1) 68. The sum of all the numerical coefficients in the
⇒ { x} + x1 ∈ (0, 2 ) expansion is obtained by putting x = 1, y = 1
⇒ { x} + x1 = 1 1 2
12
1 + + = (2 )
12
⇒ x1 = 1 − { x} i.e.
3 3
⇒ x(1 − { x}) = x ⋅ x1 = (2 + 3 )n (2 − 3 )n = 1
69. Sum of coefficient of x 2 , x 4 , x 6 , x 8 , …, is
58. End digit of 7 4 n + 1 is 7 of 7 4 n + 2 is 9, n
C2 + nC4 + nC6 + K = 2 n − 1 − 1
4n + 3
of 7 = 1 and 7 4n
= 7n ∈ N
70. The sum of coefficient is obtained by putting variable
Now,754 = 4 ⋅ 188 + 2. Thus, end digit of(2137 )754 will be term as 1.
Targ e t E x e rc is e s
4n + 2 ∴ (1 + x − 3 x 2 )2163 = (1 + 1 − 3)2163 = − 1,
same as that of 7 i.e. 9.
4 ⋅9
as sum of coefficient.
59. 3 = 3
37
⋅ 3 = 3 ⋅ (81) = 3 (80 + 1)9
9
71. Putting x = 1, x = − 1 and adding, we get
= 3 ( C0 80 9 + 9C1 80 8 + K + 9C9 )
9
1
Thus, required remainder is equal to 3. Sum = {(a0 + a1 + a2 + ... + a16 )
2
60. 4101 = 4100 ⋅ 4, clearly 101 ÷ 4100 − (a0 − a1 + a2 − ... + a16 )}
∴ a1 + a3 + a5 + .... + a15
Thus, required remainder is 4. 1 −1 8
= {(1 + 1 − 2 )8 − (1 − 1 − 2 )8 } = (2 ) = − 2 7
61. 1! + 2 ! + 3 ! + 4 ! = 1 + 2 + 6 + 24 = 33 2 2
⇒ Remainder = 3 72. Putting x = i , − i and multiplying both the results, we get
62. 32003 = 32001 ⋅ 32 = 9 (27 )667 = 9 (28 − 1)667 the value of the required expression as,
= 9 [ C0 28 + C1(28) + K + C667(−1)
667 667 667 666 667 667
] (a0 − a2 + a4 − a6 + a8 − a10 )2 + (a1 − a3 + a5 − a7 + a9 )2
When 32003 is divided by 28, remainder is 19. = (1 + i )10 (1 − i )10 = (1 + 1)10 = 210
32003 19 73. Sum of coefficients of odd powers of x.
Thus, =
28 28
50
C1 + C3 + ...+
50
C49 = 2 50 − 1 = 2 49
50
number which is not divisible by any odd number for Since, n ≠ M(3)
n n
all n.
∴ The expression is divisible by 9.
∴ ∑ (− 1)− r ⋅ ar ⋅n Cr =0 ⇒ ∑ (− 1) r ⋅ ar ⋅n Cr =0
401
r =0 r =0
8 76. a0 + a1 + a2 + ... = 2 2 n and a0 + a2 + a4 + ... = 2 2 n − 1 n n
82. Sum = a ∑ (−1 )r − 1 ⋅ nCr − ∑ (−1 )r − 1 ⋅ r ⋅ nCr
an = Cn = The greatest coefficient, being the middle
2n
r =1 r =1
coefficients.
Objective Mathematics Vol. 1
= a { C1 − C 2 + C 3 − K } − n{ n − 1C 0 −
n n n n−1
C1 + K }
an − 3 = 2n
Cn − 3 = 2n
C2 n − ( n − 3 ) = 2n
Cn + 3 = an + 3 n −1
[Q r ⋅ Cr = n ⋅
n
Cr − 1 and C0 − C1 + C2 − … = 0]
n n n
n
= a ⋅ nC0 = a
77. I = ∑ nCr sin r x ⋅ cos(n − r )x
r =0
n
83. r ⋅ 2 nCr = 2 n ⋅ 2 n − 1Cr − 1
= ∑ nCn − r sin(n − r )x ⋅ cos r x n
r =0 ∴ ∑ r ⋅ 2r Cr = 2 n { 2 n − 1C0 + 2n − 1
C1 + K + 2n − 1
Cn − 1}
n r =1
⇒ 2I = ∑ nCr ⋅ sin nx = sin nx ⋅ 2 n = 2 n ⋅ 2( 2 n − 1) − 1 = n ⋅ 2 2 n − 1
r =0
⇒ I =2 n −1
⋅ sin nx 84. Putting x = 1and − 1, we get
n n 1 = a0 + a1 + a2 + a3 + K + a2 n
78. ∑ n
Cr sin r x = Im ∑ n Cr e irx
and 3n = a0 − a1 + a2 − a3 + K + a2 n
r =0 r = 0 Adding, we get 1 + 3n = 2 (a0 + a2 + a4 + K + a2 n )
n 3n + 1
= Im ∑ n Cr (e ix )r = Im((1 + e ix )n ) ∴ a0 + a2 + a4 + K + a2 n =
r = 0 2
n n
= Im(1 + cos x + i sin x )n n
n
85. ∑ (a + rb) nCr = a (2 n ) + b ∑ r ⋅ ⋅ n − 1Cr − 1
r
x x x r =0 r =0
= Im 2 cos 2 + 2 i sin ⋅ cos
2 2 2 = a ⋅ 2 n + nb ⋅ 2 n − 1 = (2 a + nb) 2 n − 1
n
x x x 86. (1 + x )2 n = C0 + C1 x + C2 x 2 + K + C2 n x 2 n
= Im 2 cos cos + i sin
2 2 2 On differentiating w.r.t. x, we get
Ta rg e t E x e rc is e s
x nx
= 2 n ⋅ cos n ⋅ sin 2 n(1 + x )2 n − 1 = C1 + 2C2 x + K + 2 nC2 n x 2 n − 1 …(i)
2 2
n
r ⋅n Cr n
n−r +1 Also, (1 − x )2 n = C0 − C1 x + C2 x 2 − K + C2 n x 2 n
79. ∑ n
= ∑r⋅
Cr − 1 r = 1 r 1
r =1 Replacing x by , we get
n n x
= (n + 1)∑ 1 − ∑ r 2n
1 C1 C2 C
r =1 r =1 ∴ 1 − = C0 − + 2 − K + 22 nn …(ii)
n(n + 1) n(n + 1) x x x x
= n(n + 1) − =
2 2 On multiplying Eqs. (i) and (ii), we get
2n 2n 2n 2n
1 C 1
80. ∑ r. 2nCr ⋅ r + 2 = ∑ (r + 2 − 2 )⋅ r + 2r 2 n(1 + x )2 n − 1 1 −
r =0 r =0 x
2n 2n 2n
Cr = (C1 + 2C2 x + K + 2 nC2 n x 2 n − 1 )
= ∑ 2nCr − 2⋅∑
+
r =0 r =0
r 2 C C C
× C0 − 1 + 22 − K + 22 nn
1 x x x
=2 2n
− 2⋅∫ x(1 + x ) dx2n
0 1
Coefficient of on RHS
(1 + x )2 n + 1 1 (1 + x )2 n + 2 1
x
= 2 2 n − 2 x ⋅ − (2 n + 1)(2 n + 2 )
2 n + 1 = − C12 + 2 C22 − 3 C32 + K + 2 nC22n
0 0
2n + 1
= − (C12 − 2 C22 + 3 C32 − K − 2 nC22n )
2 (2 n − n + 1) − 2
2
= 1
(2 n + 1)(2 n + 2 ) Also, coefficient of on LHS
x
n
81. ∑ nCr ar ⋅ bn − r ⋅ cos{ rB − (n − r )A} 1 2 n(1 + x )2 n − 1( x − 1)2 n
= Coefficient of in
r =0 x x 2n
n
= Re ∑ n Cr ar ⋅ bn − r ⋅ e i{ rB − ( n − r )A} = Coefficient of x 2 n − 1 in 2 n(1 − x 2 )2 n − 1(1 − x )
r = 0 = 2n 2 n −1
Cn (−1)n −1
n 2n − 1
= Re ∑ n Cr (a ⋅ e iB )r ⋅ (b ⋅ e − iA )n − r ∴ C12 − 2 C22 + 3 C32 − K − 2 nC22n = 2 n Cn (−1)n − 1
r = 0 87. (1 + x )10 = 10C0 + 10C1 x + 10C2 x 2 + K + 10C10 x10 …(i)
= Re (ae iB + be − iA )n
Also,
= Re (a cos B + ia sin B + b cos A − ib sin A)n
(1 − x )10 = 10C0 − 10C1 x + 10
C2 x 2 − K + 10
C10 x10 …(ii)
402 = (a cos B + b cos A)n = c n
8
n−r
On multiplying, we get
(1 − x ) = ( C0 +
2 10 10 10
C1 x + 10
C2 x + K +
2 10 10
C10 x )
94. ∑ n −i
Cr = nCr + n −1
Cr + n−2
Cr + ... + r + 1 Cr + r Cr
i=0
n+1
=
Binomial Theorem
× ( C0 − C1 x +
10 10 10
C2 x − K +
2 10 10
C10 x ) Cr + 1
Equating the coefficients of x10 , we get Cr 1 nn
95. Here, Tr + 1 = = ⋅ Cr
10
C5 (−1) = C0 C10 − C1 C9 +
5 10 10 10 10 10 10
C2 C8 r +1 r +1
1 n+1
− K + 10C10 10C0 = Cr + 1
n+1
⇒ − C5 = ( C0 ) − ( C1 ) + ( C2 ) − K + (10 C10 )2
10 10 2 10 2 10 2
Putting r = 0, 1, 2, …, n and adding, we get
88. (1 − x )n = C0 − C1 x + C2 x 2 − C3 x 3 + K n terms n
C n
1
∴ x(1 − x )n = C0 x − C1 x 2 + C2 x 3 − C3 x 4 + K ∑ k +k 1 = ∑ n + 1 n+ 1Ck + 1
k=0 k=0
1
∴ ∫0 x(1 − x )n dx =
1 n+1
[ C1 + n + 1C2 + n + 1C3 + K + n+1
Cn + 1 ]
1 n+1
= ∫ (C0 x − C1 x 2 + C2 x 3 − C3 x 4 + ... )dx 1 2n + 1 − 1
0
= [2 n + 1 − n + 1C0 ] =
0 n+1 n+1
⇒ − ∫ (1 − t )t ndt
1
1 96. Clearly, ar = 2n
Cr
x2 x3 x4 x5
= C0 − C1 + C2 − C3 + ... ar 2n
Cr (2 n − r + 1)
2 3 4 5 ⇒ = =
0 ar − 1 2n
Cr − 1 r
(where t = 1 − x) ar 2n + 1
tn +1 tn + 2
0
C C C C ⇒ 1+ =
⇒ − − = 0 − 1 + 2 − 3 + .... ar − 1 r
n + 1 n + 2 2 3 4 5
1 2n a 2 n (2 n + 1) (2 n + 1)2 n
C C C C
∴ 0 − 1 + 2 − 3 +K
⇒ ∏ 1 + a r = ∏ =
r =1 r − 1 r =1 r (2 n )!
2 3 4 5
Targ e t E x e rc is e s
1 1 n
= −
n+1 n+2 97. ∑ ∑ i ⋅ nC j = ∑ n
Cr (0 + 1 + 2 + ...+ r − 1)
0 ≤ i< j ≤ n r =1
1
= 1
(n + 1)(n + 2 ) = { n(n − 1)⋅ 2 n − 2 + n ⋅ 2 n − 1 − n ⋅ 2 n − 1}
2
89. In (1 + x )n = C0 + C1 x + C2 x 2 + ... + Cn x n = n(n − 1)⋅ 2 n − 3
On differentiating both sides w.r.t. x, we get n −1
n(1 + x )n − 1 = C1 + 2C2 x + K + nCn x n − 1 98. ∑ ∑ j ⋅ nCi = ∑ n
Cr [(r + 1) + (r + 2 ) + ... + (n )]
0 ≤ i< j ≤ n r =0
Put x =1
n −1
n ⋅ 2 n − 1 = C1 + 2C2 + .... + nCn (n − r )
= ∑ n
Cr
2
(r + 1 + n )
90. In (1 + x 2 )n x = C0 x + C1 x 3 + C2 x 5 + .... + Cn x 2 n + 1 r =0
n −1
On differentiating both sides w.r.t. x and putting x = 1 (n + 1) r ( n − r )
(n + 1)⋅ 2 n = C0 + 3 C1 + 5 C2 + .... + (2 n + 1) Cn
= ∑ n
Cr
2
(n − r ) +
2
r =0
100
Cr ⋅ 200
C150 + r = 100
Cr ⋅ 200 n+1 n n n 1 n
91. C50 − r = ∑
2 r=0
( n − r ) ⋅ nC r − ∑ r ⋅ nC r + ∑ r 2 ⋅ nC r
2r=0 2r=0
50
Thus, ∑ 100Cr ⋅200 C50 − r = 300
C50 n+1 n n n 1 n
r =0 = ∑
2 r =0
r ⋅ nCr − ∑ r ⋅ nCr + ∑ r 2 ⋅ nCr
2r =0 2 r =0
2n 2n
92. ∑ (−1)r ⋅ (2nCr )2 = ∑ (−1)r ⋅2n Cr ⋅2n Cr 1 n n
2 r∑ ∑
r =0 r =0 = r ⋅ nCr + r 2 ⋅ nCr = n(n + 3)⋅ 2 n − 3
2n =0 r =0
= ∑ (−1)r ⋅2n Cr ⋅2n C2n − r n
r =0 99. ∑ (−1)r ⋅ r 2 ⋅ nCr
= Coefficient of x 2n
in (1 − x ) ⋅ (1 + x )
2n 2n
r =0
n
= Coefficient of x 2 n in (1 − x 2 )2 n = (−1)n ⋅2 n Cn
2n 2n
Since, (1 − x )n = ∑ (−1)r ⋅ nCr xr
2n r =0
93. I = ∑ r ⋅ (2nCr )2 = ∑ r ⋅ r
2n − 1
Cr − 1 ⋅2 n Cr On differentiating both sides w.r.t. x, we get
r =0 r =0 n
= 2n ∑
2n
2n − 1
Cr − 1 ⋅ 2n
Cr
− n(1 − x )n − 1 = ∑ (−1)r ⋅ nCr ⋅ r ⋅ x r − 1
r =0
r =0 n
∑ (−1)r ⋅ nCr ⋅ r ⋅ x r
4n − 1
= 2n ⋅ C2 n ⇒ − nx(1 − x )n − 1 =
⇒ I = n ⋅ C2 n 4n r =0 403
8 On differentiating both sides again w.r.t. x, we get
n
2n − 2
Now, putting x = 1on both sides, we get = n2 ⋅ Cn
n
=
∑∑ Ci2 + ∑∑ C j2 − 2 ∑ ∑ Ci C j
n −1
Cr
=
6
2 Cr − 1 3
= (n + 1) 2 nCn − 2 2 n n n −1
× Cr − 1
r 6
101. Coefficient of x in ⇒ n −1
=
Cr − 1 3
{ 2nC 0(1 + x )2n + 2n
C1(1 + x )2n − 1 + C 2(1 + x )2n − 2 + ...}
2n
⇒ n = 2r …(ii)
⇒ Coefficient of x in (2 + x ) 2n
= n ⋅ 22n From Eqs. (i) and (ii),
n −1 r = 5 and n = 10
102. ∑ ∑ n
Ci = ∑ nCr (1
1 + 1 + 1 + .... + 1)
4442444 3 ∴ nr = 50
0≤i< j≤n r =0 ( n − r ) times
n −1
108. We have, f ( x ) = x n . So,
f 1( x ) = nx n − 1 ⇒ f 1(1) = n
= ∑ (n − r )⋅n Cr
r =0 f 2 ( x ) = n(n − 1 )x n − 2 ⇒ f 2 (1) = n(n − 1)
n n
f ( x ) = n(n − 1) (n − 2 )x n − 3 ⇒ f 3 (1) = n(n − 1) (n − 2 )
3
= ∑ (n − r )⋅ nCr = ∑ { n − (n − r )} ⋅ nCn − r
Ta rg e t E x e rc is e s
r =0 r =0
KKKK
n f n ( x ) = n(n − 1)(n − 2 ) K 1
= ∑ r ⋅n Cr = n ⋅ 2n − 1 ⇒ f n (1) = n(n − 1) (n − 2 ) K 1
r =0
f 1(1) f 2 (1) f n (1)
⇒ f (1) + + +K+
103. ∑ ∑ ∑ ∑ 2 = 2 n + 1C4 1 2! n!
0 ≤ i< j < k < l ≤ n n n(n − 1) n(n − 1)(n − 2 )
= 1+ + +
104. ∑ ∑ (i ⋅n Ci ) ( j ⋅n C j ) 1 2! 3!
n(n − 1) (n − 2 ) K 1
1≤ i < j ≤ n −1 +K+
n!
= n2 ∑ ∑ n − 1Ci − 1 ⋅n − 1 C j − 1 = nC0 + nC1 + nC2 + K + nC = 2 n
1≤ i < j ≤ n −1
∞ k
2 2( n − 1) − 2( n − 1)Cn − 1 1
= n 2 ⋅
109. ∑ ∑ 3k (k Cr )
2 k =1r = 0
∞ 1 k
105. Q n C0 + nC1 + nC2 + ... + nCn = 2 n = ∑ 3k ∑ k Cr
and n
Pn = n ! k = 1 r = 0
∞
∞
C0 + C1 + C2 + K + Cn
n n n n 2k
= ∑ k
∴ S = ∑ n
Pn
k = 1 3
n =1
2
∞
2 n 21 2 2 2 3 2 2
= ∑ = + + + ... + +K
=
3 3
n = 1
n ! 1! 2 ! 3 !
2/ 3
= =2
x x2 x3 2
Q e = 1 + 1! + 2 ! + 3 ! + K
x
1−
= e2 − 1 3
2 22 23 1 1× 4 2 1× 4 × 7 3
so e = 1 + 1! + 2 ! + 3 ! + K
2
110. Let (1 + y )n = 1 + x + x + x +K
3 3× 6 3× 6× 9
n n n(n − 1) 2
= 1 + ny + y +K
106. ∑ r(n − r )(nCr )2 = ∑ r ⋅ nCr (n − r )⋅ nCn − r 2!
r =0 r =0
Comparing the terms, we get
n
1 n(n − 1) 2 1 × 4 2
=∑ n⋅ n −1
Cr − 1 ⋅ n ⋅ n −1
Cn − r − 1 ny = x, y = x
r =0
3 2! 3× 6
n Solving, n = − 1 / 3, y = − x
= n2 ∑ n −1
Cr − 1 ⋅ n −1
Cn − r − 1 Hence, the given series is (1 − x )− 1/ 3 .
404 r =0
8
n
113. The general term of x +
111. Given that, a
5 5⋅ 7 5⋅ 7 ⋅ 9 is
α= + + +K …(i) x2
2 ! 3 3 ! 32 4 ! 33 r
a
Binomial Theorem
Tr + 1 = nCr 2 x n − r = nCr ar x n − 3 r
We know that, x
nx n(n − 1) 2
(1 + x )n = 1 + + x If the term independent of x does not exist, then n − 3 r
1! 2! must not be zero for positive integers n and r.
n(n − 1) (n − 2 ) 3
+ x + K …(ii) n
⇒ r = must not be an integer. Now, the integers
3! 3
On comparing Eqs. (i) and (ii), with respect to factorial given in options (a), (b) and (d) are not divisible by 3.
5
n(n − 1)x 2 = …(iii) Options (a), (b) and (d) are correct options.
3 Since, 15 is divisible by 3, so option (c) is not true.
5⋅ 7
n(n − 1)(n − 2 ) x 3 = 2 …(iv) α
n
3 114. In x + ,
5⋅ 7 ⋅ 9 x
and n(n − 1)(n − 2 ) (n − 3)x 4 = …(v) r
33 α
Tr + 1 = nCr x n − r
On dividing Eq. (iv) by Eq. (iii) and Eq. (v) by Eq. (iv), x
7
we get (n − 2 )x = ... (vi) = nCr x n − 2 r α r
3
Tr + 1 is independent of x, if n − 2 r = 0
and (n − 3)x = 3 …(vii)
⇒ 2r ⇒ n is divisible by 2.
Again, dividing Eq. (vi) by Eq.(vii), we get n
n −2 7 β
= Again, in x + 2
x
n−3 9
r
⇒ 9 n − 18 = 7 n − 21 β
Tr + 1 = nCr x n − r 2 = nCr x n − 3 r − β r
3 x
⇒ 2n = − 3 ⇒ n = −
2 Tr + 1 is independent of x, if n − 3 r = 0 i.e. n = 3 r
On putting the value of n in Eq. (vi), we get n is divisible by 3.
Targ e t E x e rc is e s
3 7 115. ( x 2 + 2 x + 2 )n = {2 + x(2 + x )} n
− − 2 x =
2 3
= 2 n + nC1 2 n − 1 x(2 + x ) + nC2 2 n − 2 x 2 (2 + x )2
2
⇒ x=− + nC3 2 n − 3 x 3 (2 + x )3 + ...
3
∴ From Eq. (ii), we get It is easy to observe that coefficient of x = n ⋅2 n and the
− 3/ 2
5⋅ 7 coefficient of x 2
2 5
1 − = 1+ 1+ + +K n(n − 1) 2 n − 2
3 2 ! 3 3 ! 32 = n ⋅ 2n − 1 + = n2 ⋅ 2n − 1
5 5⋅ 7 2
⇒ 33 / 2 − 2 = + +K Coefficient of x 3 = nC2 ⋅ 2 n − 2 ⋅ 4 + nC3 ⋅ 2 n − 3 ⋅ 2 3
2 ! 3 3 ! 32
⇒ α = 33 / 2 − 2 [from Eq. (i)] = 2 n ⋅ n + 1C3
Now, α + 4 α = (33 / 2 − 2 )2 + 4(33 / 2 − 2 )
2
116. (a) 3100 = 950 = (10 − 1)50
= 27 + 4 − 4 ⋅ 33 / 2 + 4 ⋅ 33 / 2 − 8 = 10 50 − 50C1 10 49 + K − 50 C49 101 + 50C50
= 23 ⇒ A multiple of 100 + 1.
112. ( x sin p + x − 1 cos p)10 ⇒ Last two digits of 3100 are 01.
⇒ Choice (a) is wrong.
The general term in the expansion is
Again, 350 = 925 = (10 − 1)25
Tr + 1 = 10Cr ( x sin p)10 − r ( x − 1 cos p)r
= 10 25 − 25C1 10 24 + K + 25C24 10 − 25C25
For the term independent of x, we have 10 − 2 r = 0 = A multiple of 100 + 249
or r = 5.
⇒ The remainder when 350 divided by 100 is 49
Hence, the independent term is
⇒ Last two digits of 350 are 49.
sin 5 2 p
10
C5 sin 5 p cos 5 p = 10C5 ⇒ Option (b) is false and option (c) becomes true.
32 (d) From the same expansion, we get
which is the greatest when sin 2 p = 1 350 = A multiple of 1000 + 249
sin 5 2 p 10 ! ⇒ The remainder when 350 is divided by 1000 is
The least value of 10 C5 is − 5 ,
32 2 (5 !)2 249.
π ∴The last three digits are 249.
when sin 2 p = − 1or p = (4n − 1) , n ∈ Z.
4 117. Sum of coefficients in (aα 2 x 2 + 2 bαx + c )n is
Sum of coefficients is (sin p + cos p)10 , when x = 1 (aα 2 + 2 bα + c )
or (1 + sin 2 p) , which is least, when sin 2 p = − 1
5
Let f (α ) = aα 2 + 2 bα + c
Hence, least sum of coefficients is zero. Greatest sum Such that sum = { f (α )} n
of coefficients occurs, when sin 2 p = 1. Now, f (α ) > 0, ∀ n and α ∈ R, then a > 0
Hence, the greatest sum is 2 5 = 32. 405
Also, f (α ) < 0, ∀ n ∈odd and α ∈ R, if a < 0
8
n
124. Let( 5 + 2 )n = N + f, where N is an integer and 0 < f < 1
118. f (n ) = ∑ {(r + 1)2 Cr − r 2 nCr − 1}
n
Let ( 5 − 2 )n = f ′, then 0 < f ′ < 1
r =1
= (n + 1)2 nCn − 1 = (n + 1)2 − 1 Let ( 5 + 2 )n − ( 5 − 2 )n = integer [Q n is odd]
Objective Mathematics Vol. 1
10 where N = ( 5 + 2 )n − ( 5 − 2 )n [Q f = f ′]
Now, ∑ f (n ) = (2 2 − 1) + (32 − 1) + (42 − 1) + (52 − 1) n − 1 n − 3
n =1 = 2 nC1 ⋅ 2 ⋅ 5 2 + nC3 ⋅ 2 3 ⋅ 5 2 + ...
+ (62 − 1) + (7 2 − 1) + (82 − 1) + (92 − 1)
+ (10 2 − 1) + (112 − 1) ⇒ N is divisible by 20n on using Statement II.
11⋅ (11 + 1)(22 + 1) [if n is prime and r < n, then there is no factor
= − 11 = 495
6 which will cut n, so nCr will be divisible by n]
119. The given expression is the coefficient of x n in 125. Statement I is true, since
(1 + x )n + (1 + x )n + 1 + K + (1 + x )n + k ( 2 − 1)2 = 3 − 2 2 = 9 − 8
(1 + x )k + 1 − 1 ( 2 − 1)3 = 5 2 − 7 = 50 − 49
⇒ Coefficient of x n in (1 + x )n
1+ x − 1 [this could be proved by induction]
(1 + x )n (1 + x )k + 1 − (1 + x )n Statement II is also true, since any integral power of
= ( 2 − 1) will have rational and irrational parts. The
x
⇒ Coefficient of x n + 1 in [(1 + x )n + k + 1 − (1 + x )n ] irrational part will have only one surd 2. Thus,
n+ k+1 ( 2 − 1)n = A + B 2 , where A and B are integers.
i.e. Cn + 1 or n + k + 1Ck
But, Statement II does not explain the Statement I.
120. Given, 69
C3 r − 1 + 69
C3 r = Cr 2 − 1 +
69 69
Cr 2 , 70
C3 r = 70
Cr 2 126. X = (n 2 − n )(n 2 − n − 2 ) = n(n − 1)(n − 2 )(n + 1)
Either 3 r = r or r + 3 r = 70
2 2 = (n − 2 )(n − 1)n(n + 1)
X n+1
i.e. either r = 0, 3 or r = 7, −10 ⇒ = C4 ∈ I
24
But the given equation is not defined for
Hence, m(m − 2 ) is divisible by 24.
r = 0, −10
Ta rg e t E x e rc is e s
50 2 3
Also, Cm is not divisible by 50 for any m as 50 is not a n −1
(−1) (−1)n
prime number. −… + ( n + 1Cn − nCn ) +
50 n n+1
∑ (f (m))2 = (50C0 )2 + (50C1)2 + K + (50C50 )2 = 100C50 −
n n n n
C C ( 1) C
= nC0 − 1
+ 2
−K+ n
m=0 2 2 n+1
12 − r + 1 11
1 1
123.
Tr + 1
= ⋅ = ∫ (1 − x )n dx =
Tr r 10
0 n+1
Let Tr + 1 ≥ Tr ⇒ 13 − r ≥ 11.x Thus, Statement II is true.
⇒ 13 ≥ 2.1r ⇒ r ≤ 6.19 i j n−i n−j
128. S = ∑ ∑ n + n = ∑ ∑ n + n
Hence, the greatest term occurs for r = 6. Hence, 7th 0 ≤ i < j ≤ n Ci C j 0 ≤ i < j ≤ n Cn − i Cn − j
term is the greatest term. Also, the binomial coefficient 1 1
of 7th term is 12 C6 , which is the greatest binomial = n ∑ ∑ n + n − S
coefficient. 0 ≤ i < j ≤ n Ci Cj
But this is not the reason for which T7 is the greatest. n 1 1
⇒ S = ∑ ∑ n + n
Here, it is coincident that the greatest term has the 2 0 ≤ i < j ≤ n Ci Cj
greatest binomial coefficient.
n r n n n n2
n − 1
n−r n
Hence, Statement I is true, Statement II is true; but = ∑ n + ∑ n = ∑ n = a
406 Statement II is not a correct explanation of Statement I. 2 r = 0 Cr r = 1 Cr
2
r = 0 Cr 2
r + 1 + 1 n
8
n n n
Solutions (Q. Nos. 129-131) 1
We have,
133. Now, ∑ r + 1
Cr = ∑ Cr +
n
( n + 1 )
∑ n+1
Cr + 1
r =0 r =0 r =0
r 2e 2 iθ r 3e 3 iθ
iθ iθ 1
Binomial Theorem
C + iS = 1 + re + + + K = e re …(i) = 2n + (2 n + 1 − 1)
2! 3! (n + 1)
r 2e −2 iθ r 3e −3 iθ − iθ n
r + 2 n 28 − 1
and C − iS = 1 + re −iθ + + + K = e re Since, ∑
2! 3! Cr = [given]
r =0
r + 1 6
…(ii)
Clearly, C 2 + S 2 2 n +1 − 1 2 8 − 1
∴ 2n + =
iθ − iθ iθ − iθ n+1 6
= e re ⋅ e re = e r (e + e ) = e 2 r cos θ …(iii)
⇒ n=5
On differentiating Eqs. (i) and (ii) w.r.t. r, we get
dC dS r 2e 3 iθ iθ
134. Using, (1 + x )n = C0 + C1 x + C2 x 2 + C3 x 3 + C4 x 4 + K
+i = e iθ + re 2 iθ + + K = e iθe re …(iv) On putting x = i , we get
dr dr 2!
(1 + i )n = (C0 − C2 + C4 − C6 + ... )
dC i dS r 2e −3 iθ
− = e −iθ + re −2 iθ + +… + i (C1 − C3 + C5 − C7 + ... )
dr dr 2!
n nπ nπ
r 2e −2 iθ ( 2 ) cos + i sin = (C0 − C2 + C4 − C6 + ... )
= e − iθ 1 + r ⋅ e − iθ + + … 4 4
2! + i (C1 − C3 + C5 − C7 + ... )
− iθ
= e − iθ ⋅ e re …(v) On equating the real part, we get
n
On multiplying Eqs. (iv) and (v), we get nπ
C0 − C2 + C4 − C6 + K = 2 2 ⋅ cos
dC
2
dS
2 4
− iθ re − iθ iθ
+ = e ⋅e ⋅ e iθ ⋅ e re n
dr dr 1
( − iθ + iθ ) − iθ
+e iθ
135. Given, a = ∑ nC
=e ⋅e r (e )
r =0 r
= e 2 r cos θ = C 2 + S 2 i j
Let y= ∑
∑ n
+ n
C j
Targ e t E x e rc is e s
Now, on multiplying Eqs. (ii) and (iv), we get 0≤i≤n0≤ j≤n Ci
dC dS iθ r ( e iθ + e − iθ ) n−i n−j
+i (C − iS ) = e e
dr dr = ∑ ∑ + n
0≤i≤n0≤ j≤n
n
Cn − i Cn − j
= e i θe 2 r cos θ
1 1
= (cos θ + i sin θ )e 2 r cos θ …(vi) =n ∑ ∑ + −y
n Cn − j
n
0 ≤ i ≤ n 0 ≤ j ≤ n Cn − i
On equating real and imaginary parts from Eq. (vi)
dC dS ⇒ 2 y = n{ a ⋅ (n + 1) + a ⋅ (n + 1)} ⇒ y = na(n + 1)
C +S = (C 2 + S 2 )cos θ
dr dr 136. Since, (1 + x )n = C0 + C1 x + C2 x 2 + K + Cn x n
dS dC
and C −S = (C 2 + S 2 )sin θ Replace x by ix, we get
dr dr
(1 + ix )n = C0 + iC1 x − C2 x 2 − iC3 x 3 + C4 x 4 + iC5 x 5 − K
n
⇒ (1 + ix )n = (C0 − C2 x 2 + C4 x 4 + K )
132. Given, ( x + y )n = ∑ n
Cr x n − r y r , where Cr = nCr
r =0 + i (C1 x − C3 x 3 + C5 x 5 + K ) …(i)
n
Similarly, (1 − ix ) = (C0 − C2 x 2 + C4 x 4 + K )
n
Using (1 + x )n = ∑ n
Cr x r …(i)
− i (C1 x − C3 x 3 + C5 x 5 + K ) …(ii)
r =0
n n n n n n n n Cn − 1}
141. ∑ ∑ ∑ ∑ (1) = ∑ (1) ∑ (1) ∑ (1) ∑ (1) For n = 10, we have
r =0 s=0 t =0 u =0 r =0 s=0 t =0 u =0
2S = 100{218 − 18C9 } × 100
= (n + 1) (n + 1) (n + 1) (n + 1)
= (n + 1)4 Last digit in 218 is 4 and that the last digit in 18
C9 is
n+1 zero (0).
142. Given, f ( x ) = x + x n
Hence, last non-zero digit in 218 − 18C9 is 4.
n! (n + 1)!
f k( x) = xn − k + xn + 1 − k 4
34 − k x k
(n − k )! (n + 1 − k )! B. ∑ (4 − k )! k !
⇒ (1 + x )f k ( x ) k=0
n! (n + 1)! 4
34 − k x k 4 !
= xn − k + x n + 1 − k (1 + x ) = g( x ) = ∑ (4 − k )! k ! 4 !
(n − k )! (n + 1 − k )! k=0
[say] 4 4
Ck ⋅ 34 − k ⋅ x k (3 + x )4
g ( n + 1 − k) (n + 1)!
( x) =
(n + 2 − k )! x
= ∑ 4!
=
4!
k=0
(n + 1 − k )!
According to the question,
n! (n + 1)!
+ + (n + 1 − k )! (3 + x )4 32
(n − k )! (n + 1 − k )! =
4! 3
(n + 1)! ⇒ (3 + x )4 = 256
∴ A−B= (n + 2 − k )!
(n + 1 − k )! ⇒ x + 3= 4
n! (n + 1)! ⇒ x =1
− + (n + 1 − k )!
(n − k )! (n + 1 − k )! C. Since, (1 + x + x 2 )n
= (n !) n(n + 1 − k ) = a0 + a1 x + a2 x 2 + K + a2 n x 2 n …(i)
143. A. Since, xyz = 3 5
On substituting x = ω, ω 2 and 1 and then adding them
Number of solutions of (x, y, z) = 3 + 5 − 1C5 = 21 together
B. Number of terms = 6 + 3 − 1C3 − 1 = 28 a0 + a3 + a6 + K = 3n − 1
C. Since, x 2 + x − 400 ≤ 0 On multiplying Eq. (i) by x 2 and then repeating the
⇒ x( x + 1) ≤ 400 same process again, we get
Solutions are 1, 2, 3, …, 19. a1 + a4 + a7 + K = 3n − 1
Number of solutions = 19 ⇒ a0 + a3 + a6 + K = a1 + a4 + a7 + K
D. Since,x + y + z = 10 = a2 + a5 + a8 + K
Number of solutions 2 ⋅ 3n − 1
∴The required ratio is n − 1 = 2
408 = Coefficient of t 10 in ( t + t 2 + K + t 8 )3 3
D. Let E =
C4 + ∑
47
57
3
1
C4
j=0
50 − j
5
j=0
C3 + ∑ 56 − k C53 − k
147. The sixth term of the given binomial expansion is
m
x
C5 2log(10 − 3 )
m−5
⋅( 5 2 x − 2 log 3 )5 = 21 …(i) 8
Binomial Theorem
1
⇒ E = 57 47C4 + (47C4 + 48C4 + 49C4 + 50C4 ) The other given condition is mC1 + mC3 = 2 ⋅ mC2
C4
Q m ≠ 0, so m2 − 9 m + 14 = 0 ⇒ (m − 7 )(m − 2 ) = 0
5
Q m = 2 is not possible.
+ ∑ 56 − k C53 − k Putting m = 7 in Eq. (i), we get x = 0, 2
j=0
1 Hence, the sum of roots = 0 + 2 = 2
⇒ E = 57 [47C4 + (47C4 + 48
C4 + C4 +
49 50
C4 ) 12 − r
C4 1
148. Tr + 1 = Cr 34
12
⋅ (4)r / 3
+ (51C3 + 52
C3 + 53
C3 + 54
C3 + 55
C3 + 56
C3 )]
= 12Cr ⋅ 3 ( 3 − r / 4 ) ⋅ (4)r / 3
57
C
∴ E = 57 4 = 1
C4 For rational term, r = 0 or 12
⇒ 2E = 2 ∴ Sum = T1 + T13 = 12C0 ⋅ 33 + 12C12 ⋅ 44
145. We know that n C02 + nC12 + ... + nCn2 = 2n
Cn = 33 + 44 = 27 + 256 = 283
⇒ {283} = 0
and n
C02 − n
C12 + ...+ (− 1)n nCn2
0 , if n is odd 149. We have, (1 + x + x 2 + x 3 + x 4 ) n ( x − 1)n + 3
= n 1 − x5
n
Cn / 2 (−1) , if n is even
n
= (1 − x )n + 3 = (1 − x 5 )n (1 − x )3
1− x
From this,
n
C02 − 31C12 + − ... − 31C31 =0 = (− x 3 + 3 x 2 − 3 x + 1) ∑ n Cr (−1)r x 5 r
31 31 2 2
C2
r =0
32
C02 − 32
C12 + 32
C22 − ... + 32 2
C32 = 32
C16 n n
32
C02 + 32
C12 + 32
C22 + ... + 32 2
C32 = 64
C32 =− ∑ nCr (−1)r x 5r + 3 + 3 ∑ nCr (−1)r x 5r + 2
r =0 r =0
Targ e t E x e rc is e s
Also, (1 / 32 ) (1 × 32
C12 +2× 32
C22 + ... + 32 × 32 2
C32 ) n n
32 32
− 3 ∑ n Cr (−1)r x 5 r + 1 + 3 ∑ n Cr (−1)r x 5 r
1 1
=
32 ∑ r (32Cr )2 = 32 ∑ r 32Cr32C32 − r r =0
r =1 r =1
1 32 5 r + 3 = 83
=
32 ∑ 32 31
Cr − 132C32 − r ⇒ r = 16
r =1 whereas 5 r + 2 = 83, 5 r + 1 = 83 and 5 r = 83 give no
= 63
C31 = 63
C32 integral value of r.
n −1 Hence, their is only one term containing x 83 whose
146. f (n ) = C0 a
n
− C1 an − 2 + n C2 an − 3
n
coefficient
− K+ (− 1)n − 1 nCn − 1a0 = − nC16 = − nC2 λ
1 n ⇒ 2 λ = 16
= ( C0 an − nC1 an − 1 + nC2 an − 2
a ∴ λ=8
− K+ (− 1)n − 1 nCn − 1 a)
150. We have, coefficient of x 4 in (1 + x + x 2 + x 3 )11
1
1
1
= {(a − 1)n − (− 1)n nCn } = (3223 )n − (− 1)n = Coefficient of x 4 in (1 + x 2 )11 (1 + x )11
a a = Coefficient of x 4 in (1 + x )11 + Coefficient of x 2 in
n
11⋅ (1 + x )11 + Constant term in 11C2 ⋅ (1 + x )11
3223 − (− 1)n = C4 + 11⋅ 11C2 + 11C2
11
∴ f (n ) = 1
3223 + 1 = 990 = 2 × 32 × 5 × 11
2007 2008 ∴ Number of divisors of the form 9k is
3 223 + 1 3 223 − 1 2 × 2 × 2 × 1= 8
⇒ f (2007 ) + f (2008) = +
151. Middle term is + 1 th
n
1 1
3223 +1 3223 + 1 2
2007 2008 1
9+
3 223 + 3 223 39 + 3 223 i.e. (4 + 1)th i.e. T5
= = x
4
1 1
∴ T5 = 8C4 ⋅ 2 4 = 1120
3223 +1 3223 +1 2
1 8⋅ 7 ⋅ 6⋅ 5 4
⇒ ⋅ x = 1120
39 1 + 3223 4⋅ 3⋅ 2 ⋅ 1
⇒ x4 =
1120
= 16
= = 39
1 70
1 + 3223 ⇒ ( x + 4) ( x − 4) = 0
2 2
∴ x = ± 2 only as x ∈ R
⇒ 39 = 3k ⇒ k=9 409
Thus, the sum of possible real values of x is 0.
8 152. (17 )256 = (289)128
= (300 − 11) 128
= C0 −
C1
+ C2
+
(1 + 2 x )
(1 + nx )
C2
2
− C3
−
(1 + 3 x )
(1 + nx )3
C3
+ K
+K
Objective Mathematics Vol. 1
(1 + nx )
144444444244444444 + 2
+ 3
3
= 11128 + 100 m (1 nx ) (1 nx )
= (10 + 1)128 + 100 m I1
x 2C2 3 C3
= 128C0 1128 + 128C110 + 100 m1 + 100 m + − C1 + 1 + nx − + K …(i)
1 + nx 144444 (1 + nx )2
for some integer m1 42444444 3
= 1 + 1280 + 100 k, m + m1 = k I2
⇒ (5 + x ) = 64
4 = − ⋅n⋅
1 + nx 1 + nx 1 + nx
⇒ x + 5 = 23/ 2 = 2 2 n n
⇒ x =2 2 − 5 nx nx
= − =0 ⇒ λ=0
∴ λ=5 1 + nx 1 + nx
Entrances Gallery
1. 2 x1 + 3 x2 + 4 x3 = 11 10
Possibilities are (0, 1, 2); (1, 3, 0); (2, 1, 1); (4, 1, 0).
3. Let y = ∑ A r (B10 Br − C10 A r )
r =1
∴ Required coefficients 10
n+ 5 n+ 5
∴Sum of coefficients = ∑ 50
C2 r (2 )2 r
Cr − 2 Cr − 1 n+ 5
Cr r =0
∴ = =
5 10 14 1
n+ 5 n+ 5
= [(1 + 2 )50 + (1 − 2 )50 ]
Cr − 2 Cr − 1 2
Now, = 1
5 10 = [30 50 + 1]
2
⇒ n − 3r = − 9 …(i)
n+ 5 Aliter
Cr − 1 n + 5 Cr
and = We have, (1 − 2 x )50 = C0 − C12 x + C2 (2 x )2
10 14 − ... + C50 (2 x )50 …(i)
⇒ 5 n − 12 r = − 30 …(ii)
and (1 + 2 x )50 = C0 + C12 x + C2 (2 x )2
From Eqs. (i) and (ii), n = 6 + ... + C50 (2 x )50 …(ii)
410
On adding Eqs. (i) and (ii), we get
(1 − 2 x )50 + (1 + 2 x )50 = 2[C0 + C2 (2 x )2
+ ... + C50 (2 x )50 ]
For independent of x, put
10 − r r
3
− = 0 ⇒ 20 − 2 r − 3 r = 0
2
8
Binomial Theorem
⇒ 20 = 5 r ⇒ r = 4
(1 − 2 x ) + (1 + 2 x )
50 50
⇒ = C0 + C2 (2 x )2 10 × 9 × 8 × 7
2 ∴ T5 = 10C4 = = 210
+ ... + C50 (2 x )50 4× 3×2 ×1
On putting x = 1, we get 8. ( 3 + 1)2 n = 2n
C0 ( 3 )2 n + 2n
C1 ( 3 )2 n − 1
(1 − 2 1)50 + (1 + 2 1)50 + C2 ( 3 )2 n − 2 + ... +
2n 2n
C2 n ( 3 )2 n − 2 n
= C0 + C2 (2 )2 + ... + C50 (2 )50
2
⇒ ( 3 − 1) 2n
= 2n
C0 ( 3 ) 2n
(− 1) + 0 2n
C1 ( 3 )2 n − 1 (− 1)1
(−1)50 + (3)50
⇒ = C0 + C2 (2 )2 + ... + C50 (2 )50 + 2n
C2 ( 3 )2 n − 2 (− 1)2 + ... + C2 n ( 3 )2 n − 2 n (− 1)2 n
2n
2
1 + 350 On subtracting both the binomial expansions, we get
⇒ = C0 + C2 (2 )2 + ... + C50 (2 )50
2 ( 3 + 1)2 n − ( 3 − 1)2 n
5. Consider, (1 + ax + bx 2 ) (1 − 2 x )18 = 2 [2 n C1 ( 3 )2 n − 1 + C3 ( 3 )2 n − 3
2n
= 11
( − 2 x )18 + ax(1 − 2 x )18 + bx 2 (1 − 2 x )18 + 2n
C5 ( 3 )2 n − 5 + ... + 2n
C2 n − 1 ( 3 )2 n − ( 2 n − 1) ]
Targ e t E x e rc is e s
From Eqs. (i) and (ii), we get r =0 s=0
17 × 8 16 17 Now, consider r + 2 s = 7
4 − 20 + 2 a − = 0
3 3 2 i.e. (s = 1, r = 5)
17 × 8 − 60 2 a (−19) or (s = 2, r = 3) or (s = 3, r = 1)
⇒ 4 + =0 ∴Coefficient of x 7 is
3 6
4 × 76 × 6 {(− 1)5 + 1 ⋅ 6C5 ⋅ 6C1} + {(− 1)3 + 2 ⋅ 6C3 ⋅ 6C2 }
⇒ a= ⇒ a = 16 + {(− 1)1 + 3 ⋅ 6C1 ⋅ 6C3 }
3 × 2 × 19
2 × 16 × 16 = (36) − (20 )(15) + 6(20 )
⇒ b= − 80
3 = 36 − 300 + 120 = − 144
272 10
= 10. QS1 = ∑ j ( j − 1)
10 !
3 j ( j − 1) ( j − 2 )! (10 − j )!
j =1
6. Set X contains elements of the form 10
8!
4n − 3 n − 1 = (1 + 3)n − 3 n − 1 = 90 ∑ ( j − 2 )! { 8 − ( j − 2 )} ! = 90 ⋅ 2 8
= 3n + nCn − 1 3n − 1 + K + nC2 32 j=2
10
n−2 n−3 10 !
= 9 (3 + Cn − 1 3
n
+ K + C2 )
n
and S2 = ∑j j ( j − 1)! { 9 − ( j − 1)} !
Set X has natural numbers which are multiples of 9 j =1
(not all) 10
9!
Set Y has all multiples of 9 = 10 ∑ ( j − 1)! { 9 − ( j − 1)} ! = 10 ⋅ 2 9
j =1
X∪Y=Y
10
10 !
∑ [ j ( j − 1) +
10
x+1 x −1 Also, S 3 = j]
7. Consider, 2 / 3 − j =1
j ! (10 − j )!
x − x1/ 3 + 1 x − x1/ 2
10 10
∑ j ( j − 1) 10C j = ∑ j10C j
10
( x1/ 3 )3 + 13 {( x )2 − 1} =
= 2/ 3 − j =1 j =1
x −x +1
1/ 3
x ( x − 1)
10 = 90 ⋅ 2 8 + 10 ⋅ 2 9
( x + 1)
= ( x1/ 3 + 1) − = 90 ⋅ 2 8 + 20 ⋅ 2 8 = 110 ⋅ 2 8 = 55 ⋅ 2 9
x
− 1/ 2 10 11. 82 n − (62 )2 n + 1 = (1 + 63)n − (63 − 1)2 n + 1
= (x − x
1/ 3
)
= (1 + 63)n + (1 − 63)2 n + 1
∴ The general term is
= [1 + nC1 63 + nC2 (63)2 + ... + (63)n ]
Tr + 1 = 10Cr ( x1/ 3 )10 − r (− x − 1/ 2 )r
10 − r r + [1 − ( 2 n + 1)C1 63 + ( 2 n + 1)
C2 (63)2
−
= 10Cr (− 1)r x 3 2
+ ... + (− 1) (63)( 2 n + 1) ] 411
8 = 2 + 63 [n C1 + nC2 (63) + ... + (63)n − 1 − ( 2 n + 1)C1
∴ Remainder is 2.
+ ( 2 n + 1)C2 (63) − ... − (63)( 2 n ) ]
16. (1 − y )m (1 + y )n = 1 + a1 y + a2 y 2 + a3 y 3 + ...
On differentiating w.r.t. y, we get
− m (1 − y )m − 1 (1 + y )n + (1 − y )m n(1 + y )n − 1
Objective Mathematics Vol. 1
n
= a1 + 2 a2 y + 3a3 y 2 + ... …(i)
12. Since, ∑ nCr ⋅ x r = (1 + x )n
r =0 On putting y = 0 in Eq. (i), we get
On multiplying by x, we get − m + n = a1 = 10 …(ii)
n [Q a1 = 10, given ]
∑ nCr ⋅ x r + 1 = x(1 + x )n On again differentiating Eq. (i), we get
r =0
− m [− (m − 1) (1 − y )m − 2 (1 + y )n
On differentiating w.r.t. x, we get
n + (1 − y )m − 1 n(1 + y )n − 1 ] + n[− m(1 − y )m − 1(1 + y )n − 1
∑ (r + 1)⋅ n
Cr ⋅ x = (1 + x ) + nx(1 + x )
r n n −1
+ (1 − y )m(n − 1) (1 + y )n − 2 ]
r =0
= 2 a2 + 6 a3 y + ... …(iii)
Statement II is true. On putting y = 0 in Eq. (iii), we get
If x = 1, then − m [− (m − 1) + n ] + n[− m + (n − 1)] = 2 a2 = 20
n
n!
⇒ an − 5 ⋅ b4 − =0
(n − 5)! 4 ! n − 4 5 [Q nCr + nCr − 1 = n + 1Cr ]
a n−4 = 52
C4 + 52
C3 + 53
C3 + 54
C3 + 55
C3
⇒ =
b 5 = 53
C4 + 53
C3 + 54
C3 + 55
C3
14. We know that, = 54
C4 + 54
C3 + 55
C3 = 55
C4 + C3 =
55 56
C4
(1 + x )20 = C0 +
20 20
C1 x + ... + 20
C10 x10
18. Since, the coefficient of given terms are
+ ... + 20C20 x 20 m
Cr − 1, mCr , mCr + 1 respectively and they also in AP.
On putting x = − 1in the above expansion, we get
0 = 20C0 − 20C1 + ... − 20C9 ∴ m
Cr − 1 + mCr + 1 = 2 mCr
+ 20C10 − 20C11 + ... + 20C20 m! m!
⇒ +
⇒ 0 = C0 − C1 + ... − 20C9 + 20C10
20 20 (r − 1)! (m − r + 1)! (r + 1)! (m − r − 1)!
− 20C9 + ... + 20C10 m!
= 2⋅
⇒ 0 = 2 (20 C0 − 20C1 + ... − 20C9 ) + 20 C10 r ! (m − r )!
⇒ 20
C10 = 2 (20 C0 − 20C1 + ... + 20C10 ) 1 1 2
⇒ + =
1 (m − r + 1) (m − r ) (r + 1) r r (m − r )
⇒ 20
C0 − 20C1 + ... + 20C10 = 20C10 r (r + 1) + (m − r + 1) (m − r ) 2
2 ⇒ =
r (r + 1) (m − r + 1) (m − r ) r (m − r )
15. Now, (1 − ax )− 1 (1 − bx )− 1
= (1 + ax + a2 x 2 + ... ) (1 + bx + b2 x 2 + ... ) ⇒ r 2 + r + m2 + r 2 − 2 mr + m − r
Hence, an = Coefficient of x n in (1 − ax )− 1 (1 − bx )− 1 = 2(mr − r 2 + r + m − r + 1)
= a0 bn + abn − 1 + ... + an b0 ⇒ 4 r 2 − 4 mr − m − 2 + m2 = 0
a a
2 ⇒ m2 − m(4 r + 1) + 4 r 2 − 2 = 0
= a0 bn 1 + + + ...
b b 19. Let x 7 is contained in (r + 1) th term in the expansion of
a n + 1 2 1
11
− 1 ax + .
b bx
= a0 bn
a
a11 − r 22 − 3 r
r
−1 1
∴ Tr + 1 = 11Cr (ax 2 )11 − r = 11Cr ⋅x
b bx br
bn (an + 1 − bn + 1 ) b For coefficient of x 7, put
= ⋅ n+1
a−b b 22 − 3 r = 7 ⇒ r = 5
an + 1 − bn + 1 a6
= ∴ T6 = 11C5 5 ⋅ x 7
412 a−b b
8
n
1
11
n−r n
r
∴ Coefficient of x 7 in the expansion of ax 2 +
is
bx
⇒ nsn = ∑ nC + ∑ nC
r =0 n−r r =0 r
a6 n 1
Binomial Theorem
11 n −1 n
r
C5 5 .
b ⇒ nsn = n
Cn
+ n
Cn − 1
+ ...+ n +
C1
∑ nC
r =0 r
Similarly, coefficient of x − 7 in the expansion of
11 n
r
1 a5
ax − 2 is C6 6 .
11 ⇒ nsn = t n + t n Q t n = ∑ n , given
bx b r = 0 Cr
According to the given condition, tn n
⇒ nsn = 2 t n ⇒ =
a6 a5 sn 2
11
C5 5 = 11C6 6
b b 24. The general term of ( 3 + 8 5 )256 is
a6 a5
⇒ = ⇒ ab = 1 Tr + 1 = Cr (3)( 256 − r )/ 2 (5)r / 8
256
b5 b6
256 − r r
3 For integral terms, and are both positive
1 2 8
(1 + x ) − 1 + x
3/ 2
2 integers.
20.
(1 − x )1/ 2 i.e. r = 0,8, 16, 24, 32, ..., 256
3 1 Hence, total number of terms are 33.
⋅
2 x 2 − 1 + 3 x + 3 ⋅ 2 ⋅ x
2
3
1 + x + 2 25. Since, (r + 1)th term in the expansion of (1 + x )27/ 5
2 2 2 2 4 27 27 27
− 1 ...
− r + 1
=
5 5 5 r
(1 − x )1/ 2 = x
r!
[neglecting higher powers of x] Now, this term will be negative, if the last factor in
3x 2 − 1/ 2 numerator is the only one negative factor.
=− (1 − x ) 27
8 ⇒ − r + 1< 0
5
Targ e t E x e rc is e s
1 3
⋅
3x 2 1 2 2
3x 2 ⇒
32
<r
=− 1 + x + ⋅x =−
2
5
8 2 2 8
⇒ 6.4 < r ⇒ least value of r is 7.
[Q higher powers of x 2 can be neglected] Thus, first negative term will be 8th.
21. The coefficient of the middle term in powers of x of 26. (1 + 2 x + 3 x 2 + ... )− 3 / 2 = [(1 − x )− 2 ]− 3 / 2
(1 + αx )4 = 4C2α 2 = (1 − x )3
The coefficient of the middle term in powers of x of ∴Coefficient of x in (1 + 2 x + 3 x 2 + ... )− 3 / 2
5
(1 − αx )6 = 6C3 (− α )3 = Coefficient of x 5 in (1 − x )3 = 0
According to the given condition,
4
C2α 2 = 6C3 (− α)3
27. (1 + x + x 2 + x 3 + ... )2 = [(1 − x )− 1 ]2
4! 2 6! 3 = (1 − x )− 2
⇒ α =− α ⇒ 6 α 2 = − 20α 3
2 !2 ! 3! 3! Coefficient of x in (1 + x + x 2 + ... )2
n
⇒ α=−
6
⇒ α=−
3 = Coefficient of x n in (1 − x )− 2
20 10 = n + 2 − 1C2 − 1 = n + 1C1 = n + 1
22. The coefficient of x n in the expansion of (1 + x ) (1 − x )n
28. Using binomial theorem,
= Coefficient of x n in (1 − x )n (5 x − 4 y )n = nC0 (5 x )n + nC1(5 x )n − 1(− 4 y )
+ Coefficient of x n − 1 in (1 − x )n + nC2 (5 x )n − 2 (− 4 y )2 + ... + nCn (− 4 y )n
= (− 1)n nCn + (− 1)n − 1 nCn − 1 Sum of coefficients
n! = nC0 5n + nC1 5n − 1(− 4) + nC2 5n − 2 ⋅ (− 4)2
= (− 1)n 1 − = (− 1) (1 − n )
n
1! (n − 1)! + ... + nCn (− 4)n
n = (5 − 4) = 1 = 1
n n
1
23. Given that, sn = ∑ nC 29. Given, in the expansion of (1 + x )44 , 21st and 22nd terms
r =0 r
n
are equal.
1 T21 = T22
sn = ∑ n [Q Cr = Cn − r ]
n n i.e.
44
r = 0 Cn − r C20
44
C20 x 20
= 44
C21 x 21 ⇒ x = 44
n
n C21
⇒ nsn = ∑ nC 44 !
r =0 n−r
20 ! × 24 ! 21! × 23 ! 21 7
n−r ⇒ x= = = =
n
r 44 ! 20 ! × 24 ! 24 8
⇒ nsn = ∑
nC
n−r
+ n
Cn − r 21! × 23 !
r =0
413
8 ⇒ a=3
13
30. The general term in ax 2 +
1
is 1 1
bx and − 3C1 4 × b =
r 3 3
1
Objective Mathematics Vol. 1
∴ 13
C6 a7b− 6 = − 13C7 a6 b− 7 x x x
a7 a6
⇒ 13
C7 6 = − 13C7 7 The binomial contains (2 n + 1) terms in its expansion.
b b The middle term is Tn + 1.
a7 b6 1 n
⇒ =− 7 ⇒ a=− ⇒ ab + 1 = 0 1
a6 b b ∴ Tn + 1 = 2 nCn ( x )2 n − n
x
31. Given expression can be rewritten as (2 n )! (2 n )!
−1 = Cn =
2n
=
x (2 n − n )! n ! (n !)2
2 (1 − x )− 1 × 2 − 1 1 −
2 18
2
= [1 + x + x 2 + x 3 + ... ] 35. General term in the expansion of x − is
x
x x
2
x
3 r
1 + + + + ... 2
Tr + 1 = 18Cr ( x )18 − r −
2 2 2
x
∴Coefficient of x in the above expression
3
18 − r
−
r
1 3 1 2 1 = 18Cr ( x ) 2 (− 2 )r ( x ) 2 = 18Cr (− 2 )r x 9 − r
= + + + 1
2 2 2 For independent of x, put
1 1 1 1 + 2 + 4 + 8 15 9− r = 0 ⇒ r = 9
= + + + 1 = = ∴ T10 = 18C9 (− 2 )9 = − 18C9 2 9
8 4 2 8 8
−3 36. We know that,
32. Now, (a + bx )− 3 = a− 3 1 +
bx
(1 + x )n = nC0 + nC1 x + nC2 x 2 + ... + nCn x n …(i)
a
1 bx and ( x − 1)n = nC0 x n + nC1 x n − 1 + nC2 x n − 2
=1 − C1 + ...
3
+ ... + n Cn …(ii)
a3 a
1 3 1 bx On multiplying Eqs. (i) and (ii), we get
= 3 − C1 3 + ... (1 + x )2 n = (n C0 + nC1 x + nC2 x 2 + ... + nCn x n )
a a a
1 1 × (n C0 x n + nC1 x n − 1 + nC2 x n − 2 + ... + nCn )
= + x + ... [given]
27 3 Coefficient of x n in RHS
On equating constant terms and coefficients of x both = (n C0 )2 + (n C1 )2 + ... + (n Cn )2
sides, we get and coefficient of x n in LHS = 2n Cn
1 1
= 2n !
a3 27 ∴ (n C0 )2 + (n C1 )2 + ... + (n Cn )2 =
1 b 1 n!n!
and − 3C1 3 = (2 n )!
a a 3 ⇒ (n C1 )2 + ... + (n Cn )2 = − 1 = 2 nCn − 1
414 n!n!
37. We know that,
(1 − x ) = C0 + x C1 + x C2 + ... + x Cn
n n n
Binomial Theorem
2
(1 + x )n + 1 ⇒ ( t − 1)( t − 9) = 0
n+1 ∴ t = 1 or 9
0
2 ⇒ 3 x = 1 or 3 x = 9
x2 n x3 n xn + 1 n ⇒ x = 0 or x = 2
= x nC0 + C1 + C2 + ... + Cn
2 3 n+1 0 n
42. Given expression is ax + .
1
(3)n + 1 1 2 2
2 3
x
= − + 2 n C0 = n
C1 + n
C2
n+1 n+1 2 3 3
1 5
2n + 1 n Here, T4 = T( 3 + 1) = nC3 (ax )n − 3 = [given]
+ ... + Cn − 0 x 2
n+1 5
⇒ n
C3 ⋅ an − 3 ⋅ x n − 6 = …(i)
2 22 n 23 n 2n + 1 n 2
= nC0 + C1 + C2 + ... + Cn
1 2 3 n+1 Since, x ∈ R
∴ n − 6= 0 ⇒ n = 6
3n + 1 − 1
= Now, for a, on substituting the value of n in Eq. (i),
n+1 we get
n 5 5 3×2 ×1
6
C3 a3 = ⇒ a3 = ×
38. mCr + 1 + ∑ k Cr = (mCr + 1 + mCr ) + m+1
Cr 2 2 6× 5× 4
k=m
3
+ m+ 2
Cr + ... + nCr 1 1 1
⇒ a3 = = ⇒ a=
=( m+1
Cr + 1 + m+1
Cr ) + m+ 2
Cr + ... + Cr n 8 2 2
= (m + 2 Cr + 1 + m+ 2
Cr ) + ... + nCr 43. We have,
n n n
M
n+1
M M ∑ ∑ (Cr + Cs ) = ∑ (Cr + Cr ) + 2 ∑ ∑ (Cr + Cs )
=
Targ e t E x e rc is e s
Cr + 1 r =0 s=0 r =0 0 ≤ r< s≤ n
C1 C C C n
39. + 2 2 + 3 3 + ... + n n ⇒ (n + 1)⋅ 2 n + 1 = 2 ∑ Cr + 2 ∑ ∑ (Cr + C s )
C0 C1 C2 Cn − 1 r = 0 0 ≤ r< s≤ n
(n + 1)⋅ 2 n + 1 = 2 ⋅ 2 n + 2 ∑ ∑ (Cr
n n n n
=
C1 C C
+ 2 n 2 + 3 n 3 + ... + n n n
C + Cs )
n 0 ≤ r< s≤ n
C0 C1 C2 Cn − 1
n(n − 1) n(n − 1) (n − 2 ) ⇒ ∑ ∑ (Cr + C s ) = n2 n
0 ≤ r< s≤ n
n 2 3×2 1
= +2× + 3× + ... + n ×
1 n n( n − 1 ) n C1 C C Cn
44. 1 + 1 + 2 1 + 3 L 1 +
2 C0 C1 C2 Cn − 1
n(n + 1)
= n + (n − 1) + (n − 2 ) + ... + 1 = Σn = n n(n − 1) 1
2 = 1 + 1 + L 1 +
1 2n n
40. We know that, 11Cn is maximum when n = 5
1 + n 1 + n 1 + n (1 + n )
n
11! = ... =
Q 11
Cn = 1 2 n n!
n ! (11 − n )!
∴ n ! (11 − n )! is minimum, when n = 5. ex
45. We have, = B0 + B1 x + B2 x 2 + ... + Bn x n + ...
1− x
41. By given condition, 2 ⋅ mC2 = mC1 + mC3
m (m − 1) (m − 2 ) ⇒ e x (1 − x )− 1 = B0 + B1 x + B2 x 2 + ... + Bn x n + ...
⇒ m (m − 1) = m +
1⋅ 2 ⋅ 3 x x2
⇒ 1 + + + ... (1 + x + x 2 + ... )
⇒ m2 − 9 m + 14 = 0 1 ! 2 !
⇒ (m − 2 ) (m − 7 ) = 0 = B0 + B1 x + B2 x 2 + ...
⇒ m = 2, 7 x x2
Since, 6th term is 21, m = 2 is ruled out, so we have ⇒ (1 + x + x 2 + ... ) + + + ...
1! 1!
x
T6 = 21 = 7C5 [ 2log (10 − 3 ) ]7 − 5 × [5 2( x − 2 ) log 3 ]5 x2 x3
7 × 6 log (10 − 3 x ) ( x − 2 ) log 3 + + + ... + ... = B0 + B1 x + B2 x 2 + ...
⇒ 21 = 2 ⋅2 2! 2!
2 ×1 1 1 1
⇒ 1 + 1 + x + 1 + + x 2 + ...
⇒ 2 log (10 − 3
x
) + ( x − 2 ) log 3
= 1 = 20 1! 1! 2 !
⇒ log (10 − 3 x ) = (2 − x ) log 3 = B0 + B1 x + B2 x 2 + ...
On comparing, we get
⇒ log (10 − 3 x ) = log 32 − x 1 1 1
B0 = 1, B1 = 1 + , B2 = 1 + + + ...
⇒ 10 − 3 x = 32 − x ⇒ 3 x ⋅ 10 − 32 x = 9 1! 1! 2 ! 415
8 1 1 1 5
∴ Bn = 1 ++ + ... + 210
1! 2 ! n! 50. P = ∑ C2r = 10C0 + 10
C2 + ... + 10
C10 =
2
= 29
r =0
1 1
Now, Bn − Bn − 1 = 1 + + ... + 3
Objective Mathematics Vol. 1
n !
1! Q= ∑ d 2 r + 1 = d1 + d 3 + d 5 + d 7
1 1 1 r =0
− 1 + + ... + = 27
1! (n − 1)! n ! = C1 + 7C3 + 7C5 + 7C7 =
7
= 26
2
46. The given series is in GP. P 29
Hence, its sum ∴ = = 23 = 8
Q 26
1 {(1 + x )20 + 1 − 1}
S = [Q a = 1, r = 1 + x] 51. Given expansion is (1 + x )2 n .
(1 + x ) − 1
According to the given condition,
(1 + x )21 − 1
=
2n
C3 r −1 = 2 nCr + 1
x
⇒ (2 n − 3 r + 1) = (r + 1)
Therefore, the required coefficient of x10 in the
⇒ 2 n = 4r ⇒ n = 2 r
(1 + x )21 − 1
expansion of = Coefficient of x11 in the 52. Here, A = 2n
Cn and B = 2 n − 1Cn
x
2n
expansion of (1 + x )21 − 1 = 21C11 A C 2n
∴ = 2n − 1 n = =2
B Cn n
47. We have, Tr = Tr + 1 r
− 1
⇒ n
Cr − 1 pn − r + 1 ⋅ q r − 1 = nCr pn − r q r 53. Tr + 1 = nCr ( x 3 )n − r
x2
⇒ n
Cr − 1 pn − r ⋅ pq r ⋅ q −1 = nCr pn − r q r
= nCr x 3 n − 3 r (− 1)r x − 2 r = nCr x 3 n − 5 r (− 1)r
n
Cr p
⇒ n
= For coefficient of x 5 and x10 , substitute 3 n − 5 r = 5 and
Cr − 1 q
10 respectively, we get coefficient of
(r − 1)! (n − r + 1)! p 3n − 5
⇒ =
Ta rg e t E x e rc is e s
n(n − 1) 5 5
48. Here, (1 + ax )n = 1 + nax + (ax )2 + ... 3n − 5 3n − 5
2! ⇒ n
C3 n − 5 (− 1) 5 = C3 n − 10 (− 1)
n 5
On comparing the coefficients of like powers in the 5 5
given equation, we get
27 n(n − 1) 2 ⇒ n
C3 n − 5 = nC3 n − 10
na = 6 and = ⋅a 5 5
2 2 3 n − 5 3 n − 10
9 ⇒ + =n
⇒ (n − 1) a = [Q na = 6] 5 5
2 6 n − 15
(n − 1)6 9 ⇒ =n
⇒ = 5
n 2
3 ⇒ 6 n − 15 = 5 n
∴ n = 4 and a = ∴ n = 15
2
n 54. 5th term from end = (12 − 5 + 2 ) th term from beginning
49. 13th term in the expansion of x 2 + is given by
2
x = 9th term
12 − 8
2
12
212 x3 − 2
8
T13 = nC12 ( x 2 )n − 12 = nC12 x 2 n − 24 12 = 12C8 −4
2 = C8 x (2 )
12 4
x x 2 x
= nC12 x 2 n − 24 −12 (212 ) 12 × 11 × 10 × 9
= × 2 4 × x − 4 = 7920 x − 4
= nC12 x 2 n − 36 (212 ) 4× 3×2 ×1
If the 13th term will be independent of x, then x 2 n − 36 55. For n = 1, we have
must be 1.
= [(1 + p) (1 + q ) ( p + q )] n
i.e. 2 n − 36 = 0
⇒ 2 n = 36 = (1 + q + p + pq ) ( p + q )
⇒ n = 18 = p + q + pq + q 2 + p2 + pq + p2q + pq 2
The divisors of n = 18 are 1, 2, 3, 6, 9, 18 and their sum = p + q + 2 pq + q 2 + p2 + p2q + pq 2
416 is 1 + 2 + 3 + 6 + 9 + 18 = 39. ∴ Coefficient of p′ q′ = 2 = 1 + 1 = [C (1, 0 )]3 + [C (1, 1)]3
For n = 2, we have
[(1 + p) (1 + q ) ( p + q )]2 = (1 + p)2 (1 + q )2 ( p + q )2
= (1 + p2 + 2 p) (1 + q 2 + 2q ) ( p2 + q 2 + 2 pq )
60. We know, (1 + x )n = nC0 + nC1 x + nC2 x 2 + ... + nCn x n
⇒ x(1 + x )n = nC0 x + nC1 x 2 + nC2 x 3 + ... + nCn x n + 1 8
Binomial Theorem
On differentiating w.r.t. x, we get
= (1 + q 2 + 2q + q 2 + p2q 2 + 2 p2q
(1 + x )n + nx(1 + x )n − 1 = nC0 + 2 n C1 x +... + (n + 1)n Cn x n
+ 2 p + 2 pq 2 + 4 pq ) ( p2 + q 2 + 2 pq )
Put x = 1, we get
∴Coefficient of p2q 2 = 1 + 1 + 8 = 10
2 n + n 2 n − 1 = nC0 + 2 n C1 + ... + (n + 1)n Cn
= [C (2, 0 )]3 [C (2, 2 )]3 + [C (2, 1)]3
2 ⇒ 2 n − 1 (n + 2 ) = nC0 + 2 ⋅ nC1 + ... + (n + 1) nCn
= ∑ [C (2, k )]3 61. Here, T5 + T6 = 0
k=0
⇒ n C4 an − 4 (− 2 b)4 + nC5 an − 5 (− 2 b)5 = 0
Thus, the coefficient of pnq n in [(1 + p) (1 + q ) ( p + q )]n is
n ⇒ 16 ⋅ nC4 an − 4 b4 = 32 nC5 an − 5 b5
∑ [(n, k )] . 3
⇒
n
C5 an − 5 b5 1
⋅ n−4 4 = ⇒
b 1 n C4
= ⋅
k=0 n
C4 a b 2 a 2 n C5
56. Given expansion is (1 − 3 x + 3 x 2 − x 3 )2 n = [(1 − x )3 ]2 n n!
2⋅
= (1 − x )6 n a 5 ! (n − 5)! 4 ! (n − 4)! 2(n − 4)
(6 n + 2 )th ⇒ = = ×2 =
∴ Middle term = term = (3 n + 1)th term b n! 5 ! (n − 5)! 5
2 4 ! (n − 4)!
[Q here, 6 n is even]
62. In the expansion of ( x + 2 y )6 , + 1 th term is the
6
57. Since, n C4 , nC5 and n C6 are in AP. 2
∴ 2 n C5 = nC4 + nC6
middle term.
2 1 1
⇒ = + So, T4 = T3 + 1 = 6C3 x 6 − 3 (2 y )3 = 8 (6 C3 ) ( xy )3
5 (n − 5) (n − 4) (n − 5) 30
2 30 + n 2 − 9 n + 20 ∴ Coefficient of middle term = 8 (6 C3 )
⇒ =
Targ e t E x e rc is e s
5 (n − 5) 30 (n − 4) (n − 5) 63. a1 = nC1, a2 = nC2 , a3 = nC3
⇒ 12 (n − 4) = 30 + n 2 − 9 n + 20 Q a1, a2 and a3 are in AP.
⇒ 12 n − 48 = n 2 − 9 n + 50 ∴ 2 a2 = a1 + a3
⇒ n 2 − 21 n + 98 = 0 ⇒ 2 ⋅ nC2 = nC1 + nC3
⇒ (n − 14) (n − 7 ) = 0 n(n − 1) n(n − 1) (n − 2 )
⇒ n = 14 or 7 ⇒ 2⋅ =n+
2! 3!
58. Consider, 15 C3 + 15C5 + ... + 15C15 ⇒ n 2 − 9 n + 14 = 0
= (15 C1 + ... + 15C15 ) − 15C1 ⇒ (n − 2 ) (n − 7 ) = 0
215 ∴ n = 7 [Q n = 2 is not possible]
= − 15 = 214 − 15
2 64. (a2 − 6 a + 11)10 = 1024
59. Since, (1 + x )n = C0 + C1 x + C2 x 2 + ... + Cn x n ⇒ (a2 − 6 a + 11)10 = 210
On differentiating w.r.t. x, we get ⇒ a2 − 6 a + 11 = 2
n(1 + x )n − 1 = C1 + 2C2 x + ... + nCn x n − 1 ⇒ a2 − 6 a + 9 = 0
On putting x = − 1, we get ⇒ (a − 3)2 = 0
0 = C1 − 2C2 + ... + n(− 1)n − 1Cn ∴ a=3
417
9
Trigonometric
Functions
and Equations
Chapter Snapshot
Introduction
● Introduction
Trigonometry is a branch of Mathematics in which we study triangles and relationships
between the lengths of their sides and the angles between the sides. ● Measure of Angles
The word ‘Trigonometry’ is derived from two Greek words ‘trigonon’ and ‘metron’. ● Systems of Measurement of
The word ‘trigonon’ means a triangle and the word ‘metron’ means a measure. i.e. Angles
trigonometry means measuring the angles and sides of a triangle. Trigonometry defines ● Trigonometric Ratios
the trigonometric functions, which describe the relationships and have applicability to ● Trigonometric Function
physical phenomena such as waves.
● Graph of Trigonometric
Functions
Measure of Angles ● Trigonometrical Identities
The measure of angle is the amount of rotation from the direction of one ray of the ● Trigonometric Ratios of Allied
angle to the other. The initial and final positions of the revolving rays are respectively Angles
called the initial and terminal sides. If initial and final positions of the revolving ray are
Trigonometrical Ratios of
OP and OQ, then the angle formed will be ∠POQ.
●
Compound Angles
Q ● Trigonometric Ratios of
Multiples of an Angle
● Maximum and Minimum
Values of Trigonometrical
Expressions
O P ● Trigonometric Equations
● General Solution of
If the rotation is in clockwise direction, then the angle measured is negative and if the Trigonometric Equations
rotation is in anti-clockwise direction, then the angle measured is positive. ● Solution of Trigonometric
Inequality
Systems of Measurement of
Angles
Ø ● When an angle is expressed in radians, the word radian is
generally omitted.
e.g. Ic = 1, 22 c = 22
9
90
Second angle = 60g = 60 × = 54°
100 i.e. ver sin θ = 1 − cos θ
5π
Third angle = radian and cover sin θ = 1 − sin θ
6
5 × 180° Ø Trigonometric ratios of any angle is always constant.
= = 150°
6
Fourth angle = 360° − (60° + 54° + 150° ) X Example 3. In a right angled ∆ABC, if base is
= 360° − 264° 6 and perpendicular height is 8, then the
= 96° trigonometric ratios sin A, cos A and tan A,
respectively are
X Example 2. The angle between the hour hand 4 3 4 2 3 4
and the minute hand of a clock at half past three, (a) , , (b) , ,
is 5 5 3 5 5 5
4 1 2
(a) 75° (c) , , (d) None of these
(b) 60° 5 5 3
(c) 30° Sol. (a) By Pythagoras theorem,
(d) 175° C
Trigonometric Functions
Let X ′ OX and YOY ′ be the coordinate axes.
θ Taking O as the centre and a unit radius, draw a circle,
A B cutting the coordinate axes at A, B, A′ and B ′, as shown
in the figure.
Let ∠CAB = θ, then
Y
Perpendicular BC
sin θ = =
Hypotenuse AC B
P(x, y)
Base AB
cos θ = = 1 y
Hypotenuse AC X'
q A
X
A' O x M
Perpendicular BC
tan θ = =
Base AB
B'
1 Base AB
cot θ = = =
tan θ Perpendicular BC Y'
1 Hypotenuse AC
sec θ = = = Let ∠AOP = θ
cos θ Base AB
arc AP θ l
Q ∠AOP = radius OP = 1 = θ , using θ = r
1 Hypotenuse AC c
420 cosec θ = = =
sin θ Perpendicular BC
Now, the six trigonometric functions may be
defined as under:
OM
Facts related to sin x
(a) Period = 2π 9
OM x
(vi) cot θ = = , y≠0 Facts related to cos x
PM y
(a) Period = 2π
Domain and Range of Trigonometrical (b) Graph of cos x is continuous for all real
values of x.
Functions
(iii) Graph of tan x
The domain of a trigonometric ratio is the set of all
values of angle θ for which it is meaningful and the Y
range is the set of all values of the trigonometric ratio
for different values of θ for which it is meaningful. 1
The following are domain and ranges of
X' –p X
trigonometric ratios defined in the above section: – 3p –p –p 0 p p p 3p
2 2 4 4 2 2
Trigonometric ratio Domain Range –1
sinθ R [−1, 1]
cosθ R [−1, 1] Y'
π
tan θ R − (2 n + 1) , n ∈ I R
2 Facts related to tan x
cosec θ R − { nπ, n ∈ I} R − ( −1, 1) (a) Period = π
sec θ π
R − (2 n + 1) , n ∈ I R − ( −1, 1) mπ
(b) Graph of tan x is discontinuous at x = ,
2 2
cot θ R − { nπ, n ∈ I} R where m is an odd integer.
(iv) Graph of cot x
Ø | sin θ | ≤ 1 , | cos θ | ≤ 1 , | sec θ | ≥ 1 , | cosec θ | ≥ 1 for all values of θ
for which these functions are defined. Y
Y 2 2 2 2
( )
– 3p , 1
2 ( p2,1)
y=1
B D Y'
h1 h1
X' 0 X
A p C Facts related to cot x
–2p – 3p –p –p p 3p
2p
2 2 2
2
y=–1 (a) Period = π
(– 2p , –1) ( )
3p , –1 (b) Graph of cot x is discontinuous at x = mπ,
2
Y' where m is an integer.
421
9 (v) Graph of sec x
Y
(iv) tan θ =
sin θ
cos θ
cos θ
Objective Mathematics Vol. 1
(1 + sin θ)2
=
Trigonometrical Identities 1 − sin2 θ
(1 + sin θ)2
An equation involving trigonometric functions =
cos 2 θ
which is true for all those angles for which the functions
1 + sin θ
are defined, is called a trigonometrical identity. =
cos θ
Following are some fundamental trigonometrical 1 sin θ
= +
identities: cos θ cos θ
1 1 = sec θ + tan θ = RHS
(i) sin θ = or cosec θ = Hence proved.
cosec θ sin θ
1 1 Signs of Trigonometrical Ratios
(ii) cos θ = or sec θ = We have introduced six trigonometric ratios. Signs
sec θ cos θ
of these ratios depend on the quadrant in which the
1 1
(iii) cot θ = or tan θ = terminal side of the angle lies. We always take the
422 tan θ cot θ length OP = r to be positive.
Thus, sin θ =
y
r
x
has the sign of y, cos θ = has the
r
sign of x. The sign of tan θ depends on the signs of x
cos θ =
x
r
y
< 0,
9
423
Y
9 II Quadrant I Quadrant
Objective Mathematics Vol. 1
X¢ X
O
III Quadrant IV Quadrant
tan, cot are cos, sec are
positive and the rest positive and the rest
are negative are negative
Y¢
X′ X
III O IV
sine decreases from 0 to –1 sine increases from −1 to 0
cosine increases from −1 to 0 cosine increases from 0 to 1
tangent increases from 0 to ∞ tangent increases from −∞ to 0
cotangent decreases from ∞ to 0 cotangent decreases from 0 to −∞
secant decreases from −1 to −∞ secant decreases from ∞ to 1
cosecant increases from −∞ to −1 cosecant decreases from −1 to −∞
Y′
Trigonometric Ratios of π
sin − θ = cos θ
π
cos − θ = sin θ
2 2
Allied Angles
π π
Two angles are said to be allied when their sum or tan − θ = cot θ cot − θ = tan θ
difference is either zero or a multiple of 90°. 2 2
The angles −θ, 90° ± θ, 180° ± θ, 360° ± θ, etc., are π π
sec − θ = cosec θ cosec − θ = sec θ
angles allied to the angle θ, if θ is measured in degree. 2 2
However, if θ is measured in radian, then the angles
π π π
sin + θ = cos θ cos + θ = − sin θ
allied to θ are − θ, ± θ, π ± θ, 2π ± θ, etc. 2 2
2
Using trigonometric ratios of allied angles, we can π π
tan + θ = − cot θ cot + θ = − tan θ
find the trigonometric ratios of angles of any 2 2
magnitude.
π π
Following are the trigonometrical ratios of allied sec + θ = − cosec θ cosec + θ = sec θ
2 2
angles:
sin ( − θ ) = − sin θ cos ( − θ ) = cos θ sin ( π − θ ) = sin θ cos ( π − θ ) = − cos θ
tan ( − θ ) = − tan θ cot ( − θ ) = − cot θ tan ( π − θ ) = − tan θ cot ( π − θ ) = − cot θ
cosec ( − θ ) = − cosec θ sec ( − θ ) = sec θ sec ( π − θ ) = − sec θ cosec ( π − θ ) = cosec θ
424
sin ( π + θ ) = − sin θ
tan ( π + θ ) = tan θ
sec ( π + θ ) = − sec θ
cos ( π + θ ) = − cos θ
cot ( π + θ ) = cot θ
cosec ( π + θ ) = − cosec θ
X Example 6. The value of cosec (−1410° ) is
(a) 3 (b) 2 (c) −3 (d) −1
9
c 1 d ∞ c
1
d None of these
e
10 If 1 + sin x + sin 2 x + ... = 4 + 2 3, 0 < x < π, then
x is equal to 12 If (sec A − tan A) (sec B − tan B) (sec C − tan C )
a
π
b
π = (sec A + tan A) (sec B + tan B) (sec C + tan C ),
6 4 then each side is equal to
π π π 2π a 0 b 1
c or d or
3 6 3 3 c −1 d ±1
Angles Ø Above formula is true for all values of angles A and B whether
positive, zero or negative.
(i) cos ( A − B ) = cos A cos B + sin A sin B
(ii) cos ( A + B ) = cos A cos B − sin A sin B for all (ii) We have,
angles A and B. cos ( A + B ) = cos [ A − ( −B )]
= cos A cos ( −B ) + sin A sin ( −B )
Proof (i) Let X ′ OX and YOY ′ be the coordinate axes. [from part (i)]
Consider a unit circle with O as the centre. = cos A cos B − sin A sin B
Let P1 , P2 and P3 be three points on the circles such Hence, cos ( A + B ) = cos A cos B − sin A sin B
that ∠XOP1 = A, ∠XOP2 = B and ∠XOP3 = A − B .
Using above formula, a list of formula is formed:
The terminal side of any angle intersects the circle
(i) sin ( A + B ) = sin A cos B + cos A sin B
with centre O and unit radius at a point whose coordinates
are respectively the cosine and sine of the angle. (ii) sin ( A − B ) = sin A cos B − cos A sin B
Therefore, coordinates of P1 , P2 and P3 are (cos A, sin A ), (iii) cos ( A + B ) = cos A cos B − sin A sin B
(cos B , sin B ) and [cos ( A − B ), sin ( A − B )], respectively. (iv) cos ( A − B ) = cos A cos B + sin A sin B
We know that equal chords of a circle make equal tan A + tan B
tan ( A + B ) =
angles at its centre. Since, chords P0 P3 and P1 P2 1 − tan A tan B
subtend equal angles at O. Therefore, (v)
tan A − tan B
Chord P0 P3 = Chord P1 P2 tan ( A − B ) =
Y
1 + tan A tan B
P1(cos A, sin A)
π π
P3[cos (A – B), sin (A – B)] where, A ≠ nπ + , B ≠ nπ +
2 2
P2 (cos B, sin B) π
A and A ± B ≠ mπ +
B 2
X' X
O P0 (1, 0) cot A cot B − 1
cot ( A + B ) =
cot A + cot B
(vi)
cot A cot B + 1
cot ( A − B ) =
Y'
cot B − cot A
where, A ≠ nπ , B ≠ nπ and A ± B ≠ nπ
⇒ {cos ( A − B ) − 1}2 + {sin ( A − B ) − 0}2
(vii) sin ( A + B )sin ( A − B ) = sin 2 A − sin 2 B
= (cos B − cos A ) 2 + (sin B − sin A ) 2 = cos 2 B − cos 2 A
⇒ {cos ( A − B ) − 1}2 + sin 2 ( A − B )
(viii) cos ( A + B )cos ( A − B ) = cos 2 A − sin 2 B
= (cos B − cos A ) + (sin B − sin A )
2 2
= cos 2 B − sin 2 A
426
(ix) sin ( A + B + C ) = sin A cos B cos C
+ cos A sin B cos C + cos A cos B sin C
X Example 10. If cos θ + sin φ = m and
1
sin θ + cos φ = n, then ( m 2 + n 2 − 2) is equal to
9
Sol. Consider,
On subtracting Eq. (ii) from Eq. (i), we get cos 18° − sin18° = cos 18° − sin (90° − 72 ° )
2cos A sin B = sin ( A + B ) − sin ( A − B ) = cos 18° − cos 72 °
18° + 72 ° 72 ° − 18°
On adding Eqs. (iii) and (iv), we get = 2 sin sin
2 2
2cos A cos B = cos ( A + B ) + cos ( A − B ) = 2 sin 45° sin 27 °
On subtracting Eq. (iii) from Eq. (iv), we get =2⋅
1
⋅ sin 27 °
2sin A sin B = cos ( A − B ) − cos ( A + B ) 2
= 2 sin 27 ° Hence proved.
Thus, we obtain the following formulae:
2sin A cos B = sin ( A + B ) + sin ( A − B ) π
X Example 15. If α, β, γ ∈ 0, , then
2
2cos A sin B = sin ( A + B ) − sin ( A − B )
sin α + sin β + sin γ
2cos A cos B = cos ( A + B ) + cos ( A − B )
(a) > sin (α + β + γ ) (b) < sin (α + β + γ )
2sin A sin B = cos ( A − B ) − cos ( A + B ) (c) = sin (α + β + γ ) (d) ≤ sin (α + β + γ )
These four formulae convert the product of two
Sol. (a) We have,
sines or two cosines or one sine and one cosine into the
sin α + sin β + sin γ − sin (α + β + γ )
sum or difference of two sines or two cosines. α+β α −β α+β α + β + 2γ
= 2 sin cos − 2 sin cos
In the above formulae, if we substitute A + B = C 2 2 2 2
and A − B = D, we obtain the following formulae to α + β α −β α + β + 2γ
= 2 sin cos − cos
convert the sum into the product. 2 2 2
α + β α+ γ β + γ
C + D C − D = 2 sin 2 sin sin
sin C + sin D = 2 sin cos 2 2 2
2 2 α+β β+ γ γ+α
= 4sin sin sin
C − D C + D 2 2 2
sin C − sin D = 2 sin cos We have, α, β, γ ∈ 0, π
2 2 2
C + D C − D α + β β + γ γ + α π
⇒ , , ∈ 0,
cos C + cos D = 2 cos cos 2 2 2 2
2 2
α + β β + γ , sin γ + α > 0
⇒ sin , sin
C + D C − D 2 2 2
cos C − cos D = − 2 sin sin α + β
2 2 ⇒ 4sin β + γ sin γ + α > 0
sin
2 2 2
or ⇒ sin α + sin β + sin γ − sin (α + β + γ ) > 0
C + D D −C ∴ sin α + sin β + sin γ > sin (α + β + γ )
cos C − cos D = 2 sin sin
2 2
Trigonometric Ratios of
X Example 13. The value of
π
2 cos cos
9π
+ cos
3π
+ cos
5π
is
Multiples of an Angle
13 13 13 13 2 tan θ
(a) 2 (b) 0 (i) sin 2θ = 2 sin θ cos θ =
1 + tan 2 θ
(c)1 (d) 3
(ii) cos 2θ = cos 2 θ − sin 2 θ = 1 − 2 sin 2 θ
Sol. (b) We have,
π 9π
+ cos
3π
+ cos
5π 1 − tan 2 θ
2 cos cos = 2 cos 2 θ − 1 =
13 13 13 13 1 + tan 2 θ
9π π 9π π 3π 5π
= cos + + cos − + cos + cos
13 13 13 13 1 1
13 13
(iii) cos 2 θ = (1 + cos 2θ ), sin 2 θ = (1 − cos 2θ )
10 π 8π 3π 5π 2 2
= cos + cos + cos + cos
13 13 13 13 2 tan θ
= cos π −
3π 5π 3π 5π (iv) tan 2θ =
+ cos π − + cos + cos
1 − tan 2 θ
13 13 13 13
3π 5π 3π 5π cot 2 θ − 1
= − cos − cos + cos + cos
13 13 13 13 (v) cot 2θ =
=0
2 cot θ
428
(vi) sin 3θ = 3 sin θ − 4 sin 3 θ
(vii) cos 3θ = 4 cos θ − 3 cos θ
3
X Example 16. Prove that
(i)
1 + sin 2θ + cos 2θ
= cot θ.
9
A A
3 tan − tan 3 X Example 17. The value of
3 3
(vii) tan A = π
A
2 2 + 2 + 2 + 2 cos 8θ , where 0 < θ < , is
1 − 3 tan 8
3
(a) 2cos θ (b) cos θ
Ø ● sin(α) + sin (α + β) + sin (α + 2β) +… + sin [α + (n − 1)β] (c) 2sin θ (d) −2cos θ
Sol. (a) We have,
β nβ
sin α + (n − 1) sin
2 2 2+ 2+ 2 + 2 cos 8θ
=
β Q1 + cos 8θ = 2 cos 2 8θ
sin = 2+ 2+ (4cos 2 4θ)
2 2
● cos(α) + cos(α + β) + cos (α + 2β)+… + cos [α + (n − 1)β] = 2+ 2 + 2 cos 4θ = 2 + 2(1 + cos 4θ)
tan 2θ tan 8θ
sec 8θ − 1
sec 4θ − 1
tan 8θ
is
tan 6θ
Sol. (d) We have, cos2 θ
=
1 − tan2 θ
1 + tan2 θ
Objective Mathematics Vol. 1
2 2 4 4−2 2 2 4 2 2
sec θ 1 5 −1 2 2 4+2 2 5+1 ∞
3+1 10 + 2 5 3 10 − 2 5 3 −1
2 2 4+2 2 4 2 4 2 2 1
cosec θ ∞ 5+1 2 2 5 −1 4−2 2
3 −1 10 − 2 5 3 10 + 2 5 3+1
3 3
2
sinθ + 3 ≤ 7 + 3, ∀ θ
π
⇒ −4 ≤ 5 cos θ + 3 cos θ + + 3 ≤ 10, ∀ θ [from Eq.(i)]
3
Objective Mathematics Vol. 1
a Hence proved.
∴ y = r cos α cos θ ± r sin α sin θ
⇒ y = r cos (θ m α ) X Example 33. Find a and b such that the
We know that, inequality holds good for all θ,
π
−1 ≤ cos (θ m α) ≤ 1, ∀ θ a ≤ 3 cos θ + 5 sin θ − ≤ b.
6
⇒ −r ≤ r cos (θ m α ) ≤ r, ∀ θ
⇒ − a 2 + b2 ≤ y ≤ a 2 + b2 , ∀ θ Sol. We have, 3cos θ + 5sin θ − π
6
⇒ − a + b ≤ a cos θ ± b cos θ π π
= 3cos θ + 5 sin θcos − cos θsin
2 2
6 6
≤ a 2 + b 2 for all θ. 3 1
= 3 cos θ + 5 sin θ − cos θ
If follows from the above discussion that 2 2
1 5 3
− a 2 + b 2 and a 2 + b 2 are minimum and maximum = cos θ + sin θ
2 2
values of a cos θ ± b sin θ for varying values of θ. 2 2
1 + 5 3 ≤ 1 cosθ + 5 3
We have,
2 2
Ø The maximum and minimum values of a cos θ ± b sin θ + c are 2 2
c + a2 + b 2 and c − a2 + b 2 respectively i . e. 2 2
sinθ ≤ 1 + 5 3 , ∀ θ
2 2
c − a2 + b 2 ≤ a cos θ ± b sin θ + c ≤ c + a2 + b 2 .
π
⇒ − 19 ≤ 3cos θ + 5sin θ − ≤ 19, ∀ θ
6
X Example 31. The maximum and minimum
values of 7 cos θ + 24 sin θ are Hence, a = − 19 and b = 19.
(a) 25 and − 25 (b) 24 and – 24 X Example 34. Show that for all real value θ,
(c) 5 and – 5 (d) None of these the expression a sin 2 θ + b sin θ cos θ + c cos 2 θ lies
Sol. (a) We know that the maximum and minimum values of 1
acos θ + b sin θ are a2 + b 2 and − a2 + b 2 respectively.
between {( a + c) − b 2 + ( a − c) 2 } and
2
So, the maximum and minimum values of 1
{( a + c) + b 2 + ( a − c) 2 }.
7 cos θ + 24 sin θ are 7 2 + 242 = 25 2
and − 7 2 + 242 = − 25 respectively. Sol. Let y = asin2 θ + b sin θcos θ + c cos 2 θ. Then,
1 − cos 2θ b 1 + cos 2θ
y = a + sin2θ + c
X Example 32. Prove that 2 2 2
π a+c 1
5 cos θ + 3 cos θ + + 3 lies between −4 and 10. ⇒ y= + {(c − a)cos 2θ + b sin2θ}
3 2 2
Now, − (c − a)2 + b 2 ≤ (c − a)cos 2θ + b sin2θ
Sol. We have, 5cos θ + 3cos θ + π + 3 ≤ (c − a)2 + b 2 , ∀ θ ∈ R
3
1 1
π π ⇒ − (c − a)2 + b 2 ≤ {(c − a)cos 2θ + b sin2θ}
= 5cos θ + 3 cos θcos − sin θsin + 3 2 2
3 3
1
3 3 3 ≤ (c − a)2 + b 2 , ∀ θ ∈ R
= 5cos θ + cos θ − sin θ + 3 2
2 2 a+c 1 a+c
⇒ − (c − a)2 + b 2 ≤
13 3 3
= cos θ − sin θ + 3 …(i) 2 2 2
2 2 1
+ {(c − a)cos 2θ + b sin2θ}
2 2 2
− 13 + 3 3 ≤ 13 cos θ − 3 3 sin θ a+c 1
Now,
2 2 2 2 ≤ + (c − a)2 + b 2 , ∀ θ ∈ R
2 2
2 2 1
≤ 13 + 3 3 ⇒ {(a + c ) − b 2 + (c − a)2 }
2 2 2
≤ asin2 θ + b sin θ cos θ + c cos 2 θ
13 3 3
⇒ −7 ≤ cos θ − sinθ ≤ 7, ∀ θ 1
2 2 ≤ [(a + c ) + b 2 + (c − a)2 ], ∀ θ ∈ R Hence proved.
2
434
X Example 35. Show that for varying θ and fixed
α, the expression cos θ (sin θ + sin θ + sin α ) 2 2
X Example 36. If in a ∆ABC,
A B C
tan , tan and tan are in HP, then find the
9
3 If θ lies in the first quadrant, then which of the 9 If tan 2 θ = 2 tan 2 φ + 1, then cos 2θ + sin 2 φ equals
following is not true?
a −1
θ θ θ θ
a < tan b < sin b 0
2 2 2 2
θ θ θ c 1
c θ cos 2 < sinθ d θ sin < 2 sin d None of the above
2 2 2
2 ax a b 2 + ( a − c )2
a cos α + cos β =
x + y
2 2
b a 2 + ( b − c )2
2 a 2 − y2
b cos α cos β = c c 2 + ( a − b )2
x 2 + y2
d None of the above
c y = 4a(α − x )
2
d cos α + cos β = 2 cos α cos β 17 If α, β, γ and δ are the smallest positive angles in
12 If sin θ − cos θ < 0, then θ lies between ascending order of magnitude which have their
3π π sines equal to the positive quantity λ, then the
a nπ − and nπ + , n ∈ I α β γ δ
4 4 value of 4 sin + 3 sin + 2 sin + sin is
π π 2 2 2 2
b nπ − and nπ + , n ∈ I
4 4 a 1+ λ
3π π
c 2 nπ − and 2 nπ − , n ∈ I b 2 1+ λ
4 4
3π π c 1− λ
d 2 nπ − and 2 nπ + , n ∈ I
4 4 d 2 1− λ
θ φ
18 If tan = and tan = , then the value of
A A 5 3
13 If 2 cos = 1 + sin A + 1 − sin A, then lies
2 2 2 2 2 4
between (n ∈ I ) cos(θ + φ ) is
π 3π 364
a 2 nπ + and 2 nπ + a −
4 4 725
π π
b 2 nπ − and 2 nπ + 627
4 4 b −
3π π 725
c 2 nπ − and 2 nπ − 240
4 4 c −
d − ∞ and + ∞ 339
d None of the above
14 The angle θ whose cosine equals to its tangent,
π
is given by 19 If α, β, γ ∈ 0, , then the value of
2
a cos θ = 2 cos 18° b cos θ = 2 sin18°
c sinθ = 2 sin18° d sinθ = 2 cos 18° sin(α + β + γ )
is
sin α + sin β + sin γ
15 The value of tan 5θ is
a <1 b >1
5 tanθ − 10 tan3 θ + tan5 θ
a c =1 d None of these
1 − 10 tan2 θ + 5 tan4 θ
5 tanθ + 10 tan3 θ − tan5 θ 20 If cos x = tan y, cos y = tan z,cos z = tan x, then
b the value of sin x is
1 + 10 tan2 θ − 5 tan4 θ
a 2 cos 18°
5 tan5 θ − 10 tan3 θ + tanθ
c b cos18°
1 − 10 tan2 θ + 5 tan4 θ c sin18°
d None of the above d 2 sin18°
Trigonometric Equations
An equation involving one or more trigonometrical Solutions or Roots of a Trigonometric
ratios of unknown angle is called a trigonometric Equation
equation.
A value of the unknown angle which satisfies the
e.g. sin 2 x − 4 sin x = 1
given equation, is called a solution or root of the
It is to be noted that a trigonometrical identity is
satisfied for every value of the unknown angle, whereas equation.
trigonometric equation is satisfied only for some values The trigonometric equation may have infinite
(finite or infinite) of unknown angle.
number of solutions and can be classified as
e.g. sin 2 x + cos 2 x = 1 is a trigonometrical identity
(i) Principal solution (ii) General solution
as it is satisfied for every value of x ∈ R .
436
(i) Principal solution The value of unknown angle
which satisfies the given equation and lies in the
interval [0, 2π ) , is called a principal solution of
X Example 37. If the equation sin 2 θ − cos θ = ,
1
4
then the values of θ lying in the interval 0 ≤ θ ≤ 2π
9
81 a
π π π and cos α =
(a) (b) (c) (d) 0 a 2 + b2
6 2 4
2 2 From Eq. (i), we get
Sol. (a) Given, 81 sin x
+ 81cos x
= 30
c
⇒ 81sin
2
+ 811−sin x = 30
x 2
cos θ cos α + sin θ sin α =
2 81 a 2 + b2
⇒ 81sin x + 2
= 30
81sin x c
sin 2 x ⇒ cos (θ − α ) =
Let 81 = y
a 2 + b2
81
∴ y+ = 30
y If | c | > a 2 + b 2
⇒ y − 30 y + 81 = 0
2
1 π
Q x ∈ 0,
3
⇒ sin x = or sin x = ⇒ cos(θ − α ) = cos φ
2 2 2
π π ⇒ θ − α = 2nπ ± φ
⇒ x= or x =
3 6 ⇒ θ = 2nπ ± φ + α, n ∈ I
tan 3θ − 1
X Example 41. If = 3, then the Ø ● While solving a trigonometric equation, squaring the
tan 3θ + 1 equation at any step should be avoided as far as possible.
● If squaring is necessary, check the solution for extraneous
general value of θ is values.
nπ π 7π nπ 7π π Never cancel terms containing unknown terms on the two
− (b) nπ + + (d) nπ +
●
(a) (c) sides, which are in product. It may cause loss of genuine
3 12 12 3 36 12 solution.
Sol. (c) Given, tan 3θ − 1 = 3 ● The answer should not contain such values of angles which
tan 3θ + 1 make any of the terms undefined or infinite.
● Domain should not change. If it changes, necessary
⇒ tan 3θ − 1 = 3 tan 3θ + 3 corrections must be made.
⇒ tan 3θ − 1 − 3 tan 3θ − 3 = 0 ● Check that denominator is not zero at any stage while
⇒ tan 3θ (1 − 3 ) − (1 + 3 ) = 0 solving equations.
1+ 3
⇒ tan3θ =
1− 3 X Example 42. If sin x + 3 cos x = 2, then x is
7π
⇒ tan 3θ = tan105° = tan equal to
12 π π 5π π
∴ 3θ = nπ +
7π
⇒ θ=
nπ 7 π
+ (a) 2nπ + , 2nπ − (b) 2nπ + , 2 nπ −
12 3 36 12 3 12 12
π π
(c) 2nπ − , 2nπ − (d) None of the above
Solution of Trigonometric Equation of the 12 12
Form a cos θ + b sin θ = c Sol. (b) Given, 3 cos x + sin x = 2
Let the equation be ⇒
3 1
cos x + sin x =
2
a cos θ + b sin θ = c 2 2 2
π π
⇒ cos x − = cos
On dividing both sides by a 2 + b 2 , we get 6 4
π π
a b c ⇒ x− = 2 nπ ±
cos θ + sin θ = …(i) 6 4
a 2 + b2 a 2 + b2 a 2 + b2 ⇒
π
x = 2 nπ ± +
π
4 6
b 5π π
Let tan α = ⇒ x = 2 nπ + , 2 nπ − , where n ∈ I
a 12 12
438
X Example 43. General solution of
sin x + cos x = min {1, a 2 − 4a + 6} is
a ∈R
X Example 45. If the equation tan θ + sec θ = 3,
then the value of θ ∈(0, 2π ) is
9
a π
3 c nπ ± , n∈I d None of these
π , 5π 4
b
3 3 9 The number of solutions of 2 sin 2 x + sin 2 2 x = 2,
π 5π 3
c , , cos −1 − x ∈[0, 2π ] is
3 3 2
a 4 b 5
d None of the above c 7 d 6
7 The most general value of θ which satisfies both sin
x x
+ cos − i tan x
1 2 2
the equations tan θ = − 1and cos θ = , will be 10 If the expression is real,
2 x
1 + 2 i sin
7π 2
a nπ +
4 then x is equal to
7π
b nπ + ( −1)n a 2 nπ + 2 tan−1 k, k ∈ R, n ∈ Z
4
7π b 2 nπ + 2 tan−1 k, where k ∈ ( 0, 1), n ∈ Z
c 2 nπ +
4 c 2 nπ + 2 tan−1 k, where k ∈ (1, 2 ), n ∈ Z
d None of the above d 2 nπ + 2 tan−1 k, k ∈ (2, 3), n ∈ Z
1
sin x ≥ − 1 –π π
y = 1/2
2 X' –3π –2π 2π 3π 4π
π 5π X
0 0 6 6
–1
–1
–1 2 Y'
2
1 π 5π
–1 sin x > for < x <
2 6 6
From the figure, 1 π 5π
11π 7π Hence, sin x > ⇒ 2 nπ + < x < 2 nπ +
≤ x ≤ 2 π or 0 ≤ x ≤ 2 6 6
π 5π
The required solution set is U 2 nπ + , 2 nπ +
6 6
7 π 11π .
∴
x ∈ 0, ∪ ,2π n ∈I 6 6
6 6
Problems on Extremum Values
X Example 50. If cos x − sin x ≥1 and 0 ≤ x ≤ 2π,
then the solution set for x is
X Example 52. If equation sin 4 x = 1 + tan 8 x,
π 7π 3π 7π then x is equal to
(a) 0, ∪ , 2π (b) , ∪ {0} π π π
4 4 2 4 (a) φ (b) (c) (d)
2 6 4
3π
(c) , 2π ∪ {0} (d) None of these Sol. (a) sin4 x = 1 + tan8 x only when
2 sin4 x = 1 and 1 + tan8 x = 1
Sol. (c) cos x + π ≥ 1 ⇒ sin2 x = 1 and tan8 x = 0
4 2 which is never possible, since sin x and tan x vanish
The value scheme for this is shown below: simultaneously. Therefore, the given equation has no
0 solution.
1
√2 X Example 53. If sin 2 x + cos 2 y = 2 sec 2 z, then
π
–1 1
(a) x = (2m + 1) , y = nπ and z = tπ
2
π
1 (b) x = ( m + 1) , y = 2nπ and z = tπ
√2 2
π
0 (c) x = (2m − 1) , y = nπ and z = 2tπ
π π π 2
From the figure, − ≤ x+ ≤
4 4 4 (d) None of the above
π π π Sol. (a) sin2 x + cos 2 y = 2 sec 2 z only when
and in general, 2 nπ − ≤ x + ≤ 2 nπ +
4 4 4 sin2 x = 1, cos 2 y = 1, sec 2 z = 1
π
∴ 2 nπ − ≤ x ≤ 2 nπ ⇒ cos 2 x = 0, sin2 y = 0, cos 2 z = 1
2
π 3π ⇒ cos x = 0, sin y = 0, sin z = 0
For n = 0, − ≤ x ≤ 0; for n = 1, ≤ x≤ 2π π
2 2 ∴ x = (2 m + 1) , y = nπ and z = tπ
2
where, m, n and t are integers. 441
9 X Example 54. The number of solutions of the
equation x 3 + x 2 + 4x + 2 sin x = 0 in 0 ≤ x ≤ 2π, is
Sol. (a) LHS = 2 cos 2 x sin2 x
2
= (1 + cos x)sin2 x < 2 [Q1 + cos x < 2, sin2 x ≤ 1]
Objective Mathematics Vol. 1
3 The number of pairs (x, y) satisfying the 6 The number of distinct roots of the equation
equations sin x + sin y = sin( x + y ) and A sin 3 x + B cos 3 x + C = 0 no two of which differ
| x | + | y | = 1is by 2π, is
a 2 a 3
b 4 b 4
c 6 c infinite
d infinite d 6
442
WorkedOut Examples
Type 1. Only One Correct Option
= 2cos
Ex 1. The maximum value of x x
Sol. Q 1 + cos x = 2 cos2
x x 2 2
4 sin 2 x + 3 cos 2 x + sin + cos is
and 1 − cos x = 2 sin 2 = 2 sin
2 2 x x
(a) 4 + 2 (b) 3 + 2 2 2
(c) 9 (d) 4 1 + cos x + 1 − cos x
∴
1 + cos x − 1 − cos x
Sol. Maximum value of 4 sin 2 x + 3 cos2 x i.e. sin 2 x + 3 is 4
cos x + sin x x x
x x
+ cos is
1
+
1
= 2, both − cos + sin
and that of sin 2 2 2 2
2 2 2 2 = =
π cos x − sin x − cos x − sin x
attained at x = . So, the given function has maximum 2 2 2 2
4
value 4 + 2. x x
cos − sin
= 2 2
Hence, (a) is the correct answer. x x
cos + sin
Ex 2. If in a ∆ABC, ∠C = 90°, then the maximum 2 2
x
value of sin A sin B is 1 − tan
1 = 2 = tan π − x
(a) (b) 1 x 4 2
2 1 + tan
2
(c) 2 (d) None of these π π x π x
= cot − + = cot +
1 2 4 2 4 2
Sol. sin A sin B = × 2 sin A sin B
2 π
1 ∴ a=
= [cos ( A − B ) − cos ( A + B )] 4
2 Hence, (a) is the correct answer.
1
= [cos ( A − B ) − cos 90° ] π
2 Ex 5. Let 0 < A, B < satisfying the equation
1 1 2
= cos ( A − B ) ≤
2 2 3sin 2 A + 2 sin 2 B = 1 and 3 sin 2 A −2 sin 2B = 0,
∴ Maximum value of sin A sin B =
1 then A + 2B is equal to
2 π
Hence, (a) is the correct answer. (a) π (b)
2
Ex 3. The maximum value of sin (cos x ) is π
(c) (d) 2π
(a) sin 1 (b) 1 4
1 3 Sol. From the second equation, we have
(c) sin (d) sin 3
2 2 sin 2 B = sin 2 A …(i)
2
Sol. cos x ∈ [ −1, 1], ∀ x ∈ R and sin x is increasing in and from the first equality,
π π 3 sin 2 A = 1 − 2 sin 2 B = cos 2 B …(ii)
− , .
2 2 Now, cos ( A + 2 B ) = cos A cos 2 B − sin A sin 2 B
∴ Maximum value of sin (cos x ) = sin 1 3
= 3 cos A sin 2 A − ⋅ sin A sin 2 A
Hence, (a) is the correct answer. 2
= 3 cos A sin 2 A − 3 sin 2 A cos A = 0
Ex 4. If x ∈(π, 2π ) and π 3π
⇒ A + 2B = or
1 + cos x + 1 − cos x x 2 2
= cot a + , then a π π
1 + cos x − 1 − cos x 2 Given that, 0 < A < and 0 < B <
2 2
is equal to π
⇒ 0 < A + 2B < + π
π π 2
(a) (b) π 3π
4 2 So, A + 2 B = , neglecting
π 2 2
(c) (d) None of these Hence, (b) is the correct answer. 443
3
9 Ex 6. If α, β, γ and δ are the solutions of the equation
π
tan θ + = 3 tan 3θ, no two of which have
⇒
⇒
π
2 2p
p≥
π
π
= cos x ± ≤ 1
4
4
Objective Mathematics Vol. 1
2 2
equal tangents, then the value of π
Now, the smallest value of p =
tan α + tan β + tan γ + tan δ is 2 2
(a) 1 (b) −1 Hence, (d) is the correct answer.
(c) 2 (d) 0
Ex 9. If α and β are solutions of
Sol. We have,
π sin x + a sin x + b = 0 as well that of
2
tan θ + = 3 tan 3θ
4 cos 2 x + c cos x + d = 0, then (α + β) is equal to
1 + tan θ 3 tan θ − tan 3 θ 2bd a2 + c2
⇒ = 3⋅ (a) (b)
1 − tan θ 1 − 3 tan 2 θ b2 + d 2 2ac
1+ t 3t − t 3
b2 + d 2 2ac
⇒ = 3 [putting t = tanθ] (c) (d)
1− t 1 − 3t 2 2bd a + c2
2
⇒ 3t 4 − 6t 2 + 8t − 1 = 0
0 Sol. According to the given condition,
So, t1 + t2 + t3 + t4 = = 0 sin α + sin β = − a and cosα + cosβ = − c
3
α+β α −β
∴ tan α + tan β + tan γ + tan δ = 0 ⇒ 2 sin cos = −a
Hence, (d) is the correct answer. 2 2
α+β α −β
= −c
π and 2 cos cos
Ex 7. For all θ in 0, , cos (sin θ ) is 2 2
2 α+β a
⇒ tan =
(a) < sin (cos θ ) (b) > sin (cos θ ) 2 c
α+β
(c) = sin (cos θ ) (d) None of these 2 tan
2ac
⇒ sin (α + β ) = 2 = 2
Sol. We have, α + β a + c2
1 + tan 2
1 1 2
cosθ + sin θ = 2 cos θ + sin θ
2 2 Hence, (d) is the correct answer.
π π π 2π ( n − 1) π
= 2 cos cos θ + sin sin θ Ex 10. If S = cos 2 + cos 2 +… + cos 2
4 4
n n n
,
π
= 2 cos θ − then S equals
4 n 1
π (a) ( n + 1) (b) ( n − 1)
⇒ cos θ + sin θ ≤ 2 < 2 2
2 1 n
π (c) ( n − 2) (d)
⇒ cos θ < − sin θ 2 2
2
π π 2π π
⇒ sin (cosθ ) < sin − sin θ Sol. S = cos2 + cos2 + … + cos2 (n − 1)
2 n n n
⇒ sin (cos θ ) < cos (sin θ ) 1 2π 4π 6π
= 1 + cos + 1 + cos + 1 + cos
⇒ cos (sin θ ) > sin (cos θ ) 2 n n n
Hence, (b) is the correct answer. π
+ … + 1 + cos 2(n − 1)
n
Ex 8. The smallest positive number p for which the
1 2k π
n− 1
equation cos ( p sin x ) = sin ( p cos x ) has a =n − 1 + ∑ cos
2 n
solution x ∈[0, 2π ], is equal to k=1
π π π 1 1
(a) π (b) (c) (d) = [ n − 1 − 1] = (n − 2)
2 2 2 2 2 2
Hence, (c) is the correct answer.
Sol. We have, cos ( p sin x ) = sin ( p cos x )
⇒
π
sin ± p sin x = sin ( p cos x )
Ex 11. If sin θ = 3 sin (θ + 2α ), then the value of
2 tan (θ + α ) + 2 tan α is
π (a) 3 (b) 2 (c) 1 (d) 0
⇒ ± p sin x = p cos x
2
Sol. Given, sin θ = 3 sin (θ + 2α )
π
⇒ = p cos x ± p sin x ⇒ sin (θ + α − α ) = 3 sin (θ + α + α )
2 ⇒ sin (θ + α )cosα − cos (θ + α )sin α
π 1 1
⇒ = cos x ± sin x = 2 cos x ± sin x = 3 sin (θ + α )cosα + 3 cos (θ + α )sin α
444 2p 2 2 ⇒ −2 sin (θ + α )cosα = 4 cos (θ + α )sin α
sin (θ + α ) 2 sin α 2 cos y − 1
⇒ − =
cos (θ + α ) cosα
⇒ tan (θ + α ) + 2 tan α = 0
Ex 15. If cos x =
x y
2 − cos y
, where x, y ∈ (0, π ), then
9
⇒ 4θ + 3θ = nπ 2π 6π 4π 12π
= cos − cos + cos − cos
⇒ tan 4θ = tan (nπ − 3θ ) 7 7 7 7
⇒ tan 4θ = − tan 3θ 6π 10π
+ cos − cos
4 tan θ − 4 tan 3 θ 3 tan θ − tan 3 θ 7 7
⇒ =−
1 − 6 tan θ + tan θ
2 4
1 − 3 tan 2 θ 2π 4π 2π
= cos + cos − cos 2π −
4 z − 4 z3 3z − z3 7 7 7
⇒ = −
1 − 6z2 + z4 1 − 3z2 4π
− cos 2π −
[where, tanθ = z (say)]
7
⇒ (4 − 4 z2 )(1 − 3z2 ) = − (3 − z2 )(1 − 6z2 + z4 ) 2π 4π 2π 4π
= cos + cos − cos − cos =0
7 7 7 7
⇒ z6 − 21z4 + 35z2 − 7 = 0 …(i)
2π 4π 8π
This is a cubic equation in z i.e. in tan θ. Therefore,
2 2 ⇒ x 2 = sin 2 + sin 2 + sin 2
π 2π 7 7 7
the roots of this equation are tan 2 , tan 2 and 4π 8π 16π
7 7 1 − cos 1 − cos 1 − cos
3π = 7 + 7 + 7
tan 2 . 2 2 2
7 1 4π 8π 16π
− (−21) = 3 − cos + cos + cos
From Eq. (i), sum of the roots = = 21 2 7 7 7
1
π 2π 3π
⇒ tan 2 + tan 2 + tan 2 = 21 …(ii) 1 1 π 2π π 4π
7 7 7 = 3 − 2 sin cos + 2 sin cos
π
1 2
2 sin 7 7 7 7
On putting in place of z in Eq. (i), we get
y 7
π 6π
−7 y6 + 35 y4 − 21 y2 + 1 = 0 + 2 sin cos
7 7
⇒ 7 y6 − 35 y4 − 21 y2 + 1 = 0 …(iii)
This is a cubic equation in y2 i.e. in cot 2 θ. Therefore, 1 1 3π π
= 3 − sin − sin
π 2π 2 π 7 7
the roots of this equation are, cot 2 , cot 2 and 2 sin
7 7 7
3π 5π 3π 7π 5π
cot 2 . + sin − sin + sin − sin
7 7 7 7 7
35
From Eq. (iii), sum of the roots = 1 1 7 7
7 = 3 + = ⇒ x=
2 2 4
2π 2 2π 2 3π
2
⇒ cot + cot + cot =5 …(iv)
7 7 7 Hence, (a) is the correct answer.
By multiplying Eqs. (ii) and (iv), we get
Ex 29. If 3 sin θ + 5 cos θ = 5, then the value of
2π 2π 3π
tan + tan 2 + tan 2 5 sin θ − 3 cos θ is
7 7 7
(a) 5 (b) 3
2π 2π 3π
cot + cot 2 + cot 2 = 21 × 5 = 105 (c) 4 (d) None of these
7 7 7
Hence, (b) is the correct answer. θ θ 3
Sol. 3 sin θ = 5(1 − cosθ ) = 5 × 2 sin 2 ⇒ tan =
2π 4π 8π 2 2 5
Ex 28. sin + sin + sin is equal to θ 2 θ
2 tan 1 − tan
7 7 7 2 2
∴ 5 sin θ − 3 cosθ = 5 × −3
7 2θ 2θ
(a) 1 + tan 1 + tan
2 2 2
3 9
(b) 7 2× 3 × 1 −
5 − 25
(c) 2 =5× =3
9 9
7 1+ 1+
(d) 25 25
4 Hence, (b) is the correct answer.
2π 4π 8π
Sol. Let x = sin + sin + sin Ex 30. In a ∆ABC, the maximum value of
7 7 7
A B C
On squaring both sides, we get a cos 2 + b cos 2 + c cos 2
2π 4π 8π 2π 4π 2 2 2 is
x 2 = sin 2 + sin 2 + sin 2 + 2 sin sin a +b+c
7 7 7 7 7
4π 8π 8π 2π 1 3
448 + 2 sin sin + 2 sin sin (a) (b) 2 (c) (d) 1
7 7 7 7 4 4
cos ( B + C ) 1 − p
Sol.
A
a cos2
2
a+ b+ c
B
+ b cos2 + c cos2
2
C
2
⇒
⇒
1+ p
=
cos ( B − C ) 1 + p
= cos ( B − C ) …(i)
9
cos x
1 , 0 < x < , is
(a) [tan 3n θ − tan 3n−1 θ] cos x + sin x 2
2
3−1
(b) [tan 3n θ − tan θ] (a) 3 + 1 (b)
1 2
(c) [tan 3n θ − tan θ] (c) 3 − 1 (d) None of these
2
(d) None of the above sin 2 x
Sol. sin 2 x + sin 4 x + sin6 x + …∞ = = tan 2 x
Sol. Here, sin θ sec 3θ + sin 3θ sec 32θ + sin 32θ sec 33θ 1 − sin 2 x
tan 2 x
+ … n terms
2
x + sin 4 x + …) ln 2] 2
⇒ exp[(sin = etan x ln 2
= eln 2
n n
sin 3r − 1θ Given equation, y2 − 9 y + 8 = 0
= ∑ sin 3r − 1θ ⋅ sec 3r θ = ∑
r = 1 cos 3 θ
r
r=1 ⇒ ( y − 1)( y − 8) = 0
r−1 r−1 2
n
2 cos 3 θ ⋅ sin 3 θ Either y = 1, then 2tan = 1 = 20
x
= ∑ 2 cos 3r − 1θ ⋅ cos 3r θ
r=1 π
⇒ tan 2 x = 0, but x ∈ 0,
2
1 n
sin(2 ⋅ 3r − 1θ )
` =
2 ∑ cos 3r − 1θ ⋅ cos 3r θ ∴ Neglecting x = 0
r=1
or y = 23 ⇒ tan 2 x = 3
1 n
sin(3r θ − 3r − 1θ )
=
2 ∑ cos 3r − 1θ ⋅ cos 3r θ ⇒ tan x = ± 3
r=1 π π
⇒ x = , as 0 < x <
1 n
sin 3r θ ⋅ cos 3r − 1θ − cos 3r θ ⋅ sin 3r − 1θ
=
2 ∑ cos 3r − 1θ ⋅ cos 3r θ
3
cos x
2
1/ 2 1 3 −1
r=1
⇒ = = =
1 n cos x + sin x 1/ 2 + 3 / 2 3+1 2
=
2 ∑ (tan 3r θ − tan 3r − 1θ ) Hence, (b) is the correct answer.
r=1
1
= [(tan 3θ − tan θ ) + (tan 32θ − tan 3θ ) Ex 37. If tan (π cos θ ) = cot (π sin θ ), then the value(s)
2
π
+ … + (tan 3nθ − tan 3n − 1θ )] of cos θ − is/are
1
4
= [tan 3nθ − tan θ ] 1 1
2 (a) (b)
Hence, (c) is the correct answer. 2 2
1
Ex 35. The set of values of x for which (c) ± (d) None of these
2 2
tan 3x − tan 2x
= 1, is Sol. We have, tan (π cos θ ) = cot (π sin θ )
1 + tan 3x tan 2x
π
(a) φ ⇒ tan (π cos θ ) = tan − π sin θ
2
π
(b) π
4 ⇒ π cosθ = − π sin θ + nπ , n ∈ Z
2
π 2n + 1
(c) nπ + , n = 1, 2, 3, … ⇒
1
cosθ +
1
sin θ = , n ∈Z
4 2 2 2 2
π π 2n + 1
(d) 2nπ + , n = 1, 2, 3, … ⇒ cos θ − = , n ∈Z
4 4 2 2
π 1
tan 3x − tan 2x ⇒ cos θ − = ±
Sol. We have, =1 4 2 2
1 + tan 3x tan 2x
[for n = 0 and n = − 1]
⇒ tan(3x − 2x ) = 1 ⇒ tan x = 1
Hence, (c) is the correct answer.
π
⇒ tan x = tan
4 Ex 38. The set of all x in (−π, π ) satisfying
π
⇒ x = nπ + | 4 sin x − 1| < 5 is given by
4
π π 3π π 3π
But for this value of x, tan 2x = tan 2nπ + = ∞ (a) − , (b) ,
2 10 10 10 10
which does not satisfy the given equation as it π 3π
(c) , − (d) None of these
450 reduces to indeterminate form. 10 10
Hence, (a) is the correct answer.
Sol. We have, | 4 sin x − 1 | < 5
⇒ − 5 < 4 sin x − 1 < 5
5 − 1 5 + 1
Ex 41. The equation p cos x − q sin x = r admits of a
solution for x only, if
(a) r < max{ p, q}
9
Ex 39. Total number of solutions of Thus, equation p cos x − q sin x = r admits solution
for
cos x = 1 − sin 2x in [0, 2π ], is
− p 2 + q2 ≤ r ≤ p 2 + q2
(a) 2 (b) 3
Hence, (b) is the correct answer.
(c) 5 (d) None of these
Sol. cos x = 1 − sin 2x = | sin x − cos x | Ex 42. If 4 cos 2 x sin x − 2 sin 2 x = 3 sin x, then x is
Case I sin x ≤ cos x equal to
⇒ cos x = cos x − sin x 3π 3π
(a) nπ + (b) nπ + ( −1) n + 1
⇒ sin x = 0 10 10
π 5π 3π
where, x ∈ 0, ∪ , 2π (c) nπ −
4 4 (d) None of these
10
∴ sin x = 0
⇒ x = 0, 2π Sol. We have, [ 4 cos2 x − 2 sin x − 3 ]sin x = 0
Case II sin x > cos x Either sin x = 0 ⇒ x = nπ
⇒ tan x = 2 or 4 (1 − sin 2 x ) − 2 sin x − 3 = 0
π 5π ⇒ 4 sin 2 x + 2 sin x − 1 = 0
where, x ∈ ,
4 4
−2 ± 4 + 16
∴ tan x = 2 ⇒ sin x =
8
⇒ x = tan −1 (2)
−1 ± 5 5 −1 1+ 5
Thus, the given equation has three solutions. = = ,−
4 4 4
Hence, (b) is the correct answer. π
⇒ sin x = sin
Ex 40. Total number of solutions of 10
π
1 ⇒ x = nπ + (−1)n
| cot x | = cot x + , x ∈[0, 3π ] , is 10
sin x π π
or sin x = − cos = sin −
(a) 1 (b) 2 5 10
(c) 3 (d) 0 3π
⇒ x = nπ + (−1)n + 1
1 10
Sol. | cot x | = cot x +
sin x Hence, (b) is the correct answer.
1
Let cot x > 0 ⇒ cot x = cot x + =0 3x x
sin x Ex 43. If cos 3x + cos 2x = sin + sin , 0 ≤ x ≤ 2π,
1 2 2
⇒ = 0, which is not possible. then the number of values of x is
sin x
1 (a) 6 (b) 7
Let cot x ≤ 0 ⇒ − cot x = cot x +
sin x (c) 4 (d) 5
1 5x x x
⇒ −2 cot x = Sol. We have, 2 cos cos = 2 sin x cos
sin x 2 2 2
1 x
⇒ cos x = − Either cos =0
2 2
2π 8π x π
⇒ x= , ⇒ = (2n + 1) ⇒ x = (2n + 1)π
3 3 2 2
So, the number of solutions is 2. 5x π
or cos = sin x = cos − x 451
Hence, (b) is the correct answer. 2 2
9 ⇒
⇒
5x
7x
2
= 2nπ +
π
= 2nπ ± − x
2
π
⇒ x=
4 nπ π
+
Ex 46. The general solution of the equation
x
cos − 2 sin x sin x
Objective Mathematics Vol. 1
2 2 7 7 4
3x π 4 nπ π x
or = 2nπ − ⇒ x= − + 1 + sin − 2 cos x cos x = 0 is
2 2 3 3 4
π 5π 9π 13π
For 0 ≤ x ≤ 2π, x = , , , ,π (a) 2π + 8mπ (b) 2π + mπ
7 7 7 7
Hence, (d) is the correct answer. (c) 2π + 4mπ (d) None of these
Sol. The given equation can be simplified to
Ex 44. The number of points of intersection of the 5x
π π sin + cos x = 2
curves y = cos x, y = sin 3x, if − ≤ x ≤ , is 4
2 2 5x
(a) 3 (b) 4 Since, the greatest value of sin and cos x is 1,
4
(c) 5 (d) 6 5x
their sum is equal to 2 only, if sin = 1 and
Sol. The point of intersection is given by 4
π 5x π
sin 3x = cos x = sin − x cos x = 1 simultaneously i.e. = 2nπ + and
2 4 2
π x = 2kπ ; n, k ∈ I .
⇒ 3x = nπ + (−1)n − x
2 Since, we have to choose those values of x which
satisfy both of these equations, we have
π 8nπ 2π 4n + 1
Case I Let n be even i.e. n = 2 m ⇒ 3x = 2mπ + − x
2 2kπ = + ⇒ k=
5 5 5
mπ π
⇒ x= + where, k and n are integers.
2 8 n−1
We write k =n−
Case II Let n be odd i.e. n = 2m + 1 5
π π n−1
⇒ 3x = (2m + 1)π − − x = 2mπ + + x For = m, we have k = 1 + 4 m (m ∈ I )
2 2 5
π Therefore, x = 2π + 8mπ (m ∈ I )
⇒ x = mπ + Hence, (a) is the correct answer.
4
π π
Now, − ≤x≤ Ex 47. The values of x between 0 and 2π which
2 2
π π −3π satisfy the equation sin x 8 cos 2 x = 1 are in
⇒ x= , ,
8 4 8 AP with common difference
Points of intersection are π π 3π 5π
(a) (b) (c) (d)
π π π π 3π 3π 4 8 8 8
, cos , cos , − , cos .
8 8 4 4 8 8
Hence, (a) is the correct answer.
Sol. We have, sin x 8 cos2 x = 1
1
⇒ sin x | cos x | =
Ex 45. The number of values of θ in the interval 2 2
π π Case I When cos x > 0
− , , satisfying the equation
2 2 In this case, sin x cos x =
1
2 2 2
(1 − tan θ )(1 + tan θ ) sec 2 θ + 2 tan θ = 0 is 1
⇒ sin 2x =
(a) 2 (b) 3 2
(c) 4 (d) None of these π 3π 9π 11π
⇒ 2x = , , ,
2 4 4 4 4
θ
Sol. (1 − tan θ )(1 + tan θ ) sec2 θ + 2tan =0 π 3π 9π 11π
⇒ x= , , ,
tan 2 θ 8 8 8 8
⇒ (1 − tan θ )(1 + tan θ ) + 2
2 2
=0
π 3π
tan 2 θ As x lies between 0 and 2π and cos x > 0, x = , .
⇒ 1+ 2 = tan 4 θ 8 8
By observation, we have tan 2 θ = 3 Case II When cos x < 0
1
π In this case, sin x | cos x | =
⇒ θ = nπ ± 2 2
3 1 1
Moreover there will be values of θ, satisfying, ⇒ sin x cos x = − or sin 2x = −
2 2 2
3 < tan 2 θ < 4 and satisfying the given equation as if 5π 7π 13π 15π
f (x ) = x 2 − 2x − 1, then f (3+ ) f (4 − ) < 0. ⇒ x= , , ,
8 8 8 8
So, the number of values of θ is 4. 5π 7π
⇒ x= ,
Hence, (c) is the correct answer. 8 8
452
Thus, the values of x satisfying the given equation
which lie between 0 and 2π are ,
π 3π 5π 7π
,
8 8 8 8
, .
Ex 50. The equation
2 2
3 sin 2x + 2 cos x + 31 − sin 2x + 2 sin x = 28
9
or
x = (2n1 + 1)
cos 2x = −
1
= ,
8 8 8 8 8
⇒ 2x = 2n2π ±
,
2π
, Sol. We have, x + 2 tan x =
Y
π
2
π x
⇒ tan x = −
4 2
Objective Mathematics Vol. 1
y = tanx
2 3
π π 2π π/4
⇒ x = n2π ± ⇒ x= ,
3 3 3
Thus, there are six solutions. X
Hence, (b) is the correct answer. 0 π 2π
⇒
−13 ≤
1
a
< 0 and
1
0<
0 < 5 cos x + 12 sin x ≤ 13
≤ 13
Objective Mathematics Vol. 1
a
(a) x + y + z = 0 (b) x + y − z = 0 1 1
∴ a≤− and a ≥
(c) y + z − x = 0 (d) x 3 + y 3 + z 3 = 3xyz 13 13
Hence, (a) and (b) are the correct answers.
Sol. 2x = cos (α − β − γ + δ ) − cos (α − β + γ − δ )
2 y = cos (β − γ − α + δ ) − cos (β − γ + α − δ ) Ex 67. Let [x ] be the greatest integer less than or
and similarly for 2z,
equal to x. The equation
On adding, we get 2x + 2 y + 2z = 0
sin x = [1 + sin x ] + [1 − cos x ] has
⇒ x + y+ z=0
π π
Hence, (a) and (d) are the correct answers. (a) no solution in − ,
2 2
15π 7π 3π
Ex 65. sin sin sin is equal to π
32 16 8 (b) no solution in , π
1 1 2
(a)
15π
(b)
π 3π
(c) no solution in π ,
8 2 cos 8sin 2
32 32
1 π 1 π (d) no solution for x ∈ R
(c) cosec (d) cosec
4 2 16 8 2 32 π 3π
Sol. At x = − , ; [1 + sin x ] = 0, [1 − cos x ] = 1
2 2
15π 7π 3π
Sol. sin sin sin ∴ sin x = 0 + 1 ⇒ −1 = 1 [absurd]
32 16 8
At x = 0, [1 + sin x ] = 1, [1 − cos x ] = 0
π 15π π 7π π 3π
= cos − cos − cos − ∴ sin x = 1 + 0 ⇒ 0 = 1 [absurd]
2 32 2 16 2 8
π
π π π At x = , [1 + sin x ] = 2, [1 − cos x ] = 1
= cos cos cos 2
32 16 8
π π π π ∴ sin x = 2 + 1 = 3 [absurd]
2 sin cos cos cos At x = π , [1 + sin x ] = 1, [1 − cos x ] = 2
32 32 16 8
= ∴ sin x = 1 + 2 = 3 [absurd]
π
2 sin π
32 In − , 0 , [1 + sin x ] = 0, [1 − cos x ] = 0
2
π π π π π
2 sin cos cos 2 sin cos ∴ sin x = 0 + 0 = 0 [absurd]
= 16 16 8 = 8 8
π π π
4 sin 8 sin In 0, , [1 + sin x ] = 1, [1 − cos x ] = 0
32 32 2
π ∴ sin x = 1 + 0 = 1 [absurd]
sin
= 4 = 1
=
1 π
π π 15π In , π , [1 + sin x ] = 1, [1 − cos x ] = 1
8 sin 8 2 sin 8 2 cos 2
32 32 32 ∴ sin x = 1 + 1 = 2 [absurd]
Hence, (a) and (d) are the correct answers. 3π
In π , , [1 + sin x ] = 0, [1 − cos x ] = 1
1 2
Ex 66. If a = , then for all real x
5 cos x + 12 sin x ∴ sin x = 0 + 1 = 1 [absurd]
1 Hence, (a), (b), (c) and (d) are the correct answers.
(a) the least positive value of a is
13 7π
1 Ex 68. If sin θ = a for exactly one value of θ ∈ 0, ,
(b) the greatest negative value of a is − 3
13 then the value of a is
1
(c) a ≤ 3
13 (a) (b) 1
1 1 2
(d) − ≤ a ≤ (c) 0 (d) −1
13 13
Sol. Clearly, −1 ≤ a ≤ 1
Sol. We know that, For any value of a other than 1, − 1 we know sinθ has
− 52 + 122 ≤ 5 cos x + 12 sin x ≤ 52 + 122 two values (in quadrants I, II or III, IV).
∴ −13 ≤ 5 cos x + 12 sin x < 0 Hence, (b) and (d) are the correct answers.
456
Type 3. Assertion and Reason
Directions (Ex. Nos. 69-77) In the following Statement II
9
tan α tan β − a !
tan β tan γ − b!
+ ∴ sin x = 1, tan x = 3, but sin x = 1is not possible as
π
6 2 tan x is not defined at x = (2n + 1) .
2
c! π
+ tan γ tan α − ≤ 0, where n! = 1 ⋅ 2… n, i.e. domain of Eq. (i) is R − (2n + 1) .
3 2
then tan α tan β, tan β tan γ , tan γ tan α are in π
∴ tan x = 3 = tan
AP. 3 457
π
9 ⇒ x = nπ +
3
, n ∈I
∴ Statement I is true and Statement II is false.
Also,
⇒
⇒
logsin x (sec x + 8) > 0
sec x + 8 < 1
sec x < −7 …(ii)
Objective Mathematics Vol. 1
2 sin x
2 cos x
+
1
=0 3 −1 1 3 −1 1
sin x sin x = + + ×
3+1 3 3+1 3
2π
⇒ 1 + 2 cos x = 0 and sin x ≠ 0 ⇒ x =
3 3 − 1 1 1
= + 1 +
1
B. Since, sin φ + sin θ = and cos θ + cos φ = 2 has 3 + 1 3 3
2
no solution. 3 −1 3+1 1
= × + =1
π π 3+1 3 3
C. sin 2 α + sin − α sin + α
3 3
A → r; B → p; C → s; D → q
π 3
= sin 2 α + sin 2 − sin 2 α =
3 4 Ex 97. Match the statements of Column I with values
D. tan θ = 3 tan φ of Column II.
tan θ − tan φ 2 tan φ
tan (θ − φ ) = = Column I Column II
1 + tan θ tan φ 1 + 3 tan 2 φ
2
= [maximum, if tanθ > 0] A. Maximum value of − x 2 − 2 x + 2 is p. 3
cot φ + 3 tan φ
cot φ + 3 tan φ
≥ 3 [using AM ≥ GM] B. Number of real solutions of q. 2
2 cos (e x ) = 2 x + 2 − x is
1
⇒ (cot φ + 3 tan φ )2 ≥ 12 ⇒ tan 2 (θ − φ ) ≤
3 C. Number of solutions of equation r. 1
A → r; B → p; C → s; D → q | x | = cos x is
Sol. A. cos1° cos 2° cos 3°… cos 170° = 0 B. LHS ≤ 1, whereas RHS ≥ 2
So, no solution.
B. 3 cosec 20° − sec 20°
C. Number of solutions = 2
3 1 3 cos 20° − sin 20°
= − = D 12
sin 20° cos 20° cos 20° sin 20° D. Minimum value = − =− − =3
4a 4
4[sin 60° cos 20°− cos 60° sin 20° ] 4 sin 40°
= = =4 A → p; B → s; C → q; D → p
2 cos 20° sin 20° sin 40°
⇒ log|x − 1 | | x 2 − 1 | = 1
Using a sin θ + b sin θ ≤ a2 + b2 , ∀ θ ∈ R
cos α cos x − sin x ≤ 1 + cos2 α ⇒ |x2 − 1 | = |x − 1 |
⇒ x = 1, 0, − 2, but x ≠ 0, 1
∴ 1 + cos2 α ≤ 1
∴ Number of solutions is one.
⇒ cos α = 0
⇒ sin y + cos α = 1 π π
Ex 108. For a given sector OABC, if θ ∈ , , then
6 3
Ex 105. If 0 ≤ A, B , C ≤ π and A + B + C = π, then the
minimum area of segment ABCA is
minimum value of sin 3 A + sin 3B + sin 3C is
______. π 3
r2 − , then λ is _______.
Sol. (−2) Let y = sin 3 A + sin 3 B + sin 3C for sin 3A to be 6 λ
non-positive. O
We have, 2π ≤ 3 A ≤ 3π
2π 2θ
⇒ <A<π
3
Since, A+ B+C =π
All of sin 3 A , sin 3 B , sin 3C can not be negative.
Let us take sin 3 A = − 1 A C
π π
⇒ A= ⇒ sin 3 B = − 1 ⇒ B = B
2 2
∴ C =0 Sol. (4) Area of segment ABCA
i.e. sin 3 A = − 1, sin 3 B = − 1, sin 3C = 0 = Area of sector AOC − Area of ∆AOC
2θ r2
Hence, minimum value of = × πr2 − sin 2θ
sin 3 A + sin 3 B + sin 3C = − 2 360° 2
2 1 π π
= r θ − sin 2θ , θ ∈ , …(i)
Ex 106. If θ 1 , θ 2 and θ 3 are three values lying in [0, 2π ] 2 6 3
for which tan θ = λ, then 1
Let f (θ ) = θ − sin 2θ
2
θ1 θ θ θ θ θ ⇒ f ′ (θ ) = 1 − cos 2θ > 0
tan tan 2 + tan 2 tan 3 + tan 1 tan 3 i [increasing]
3 3 3 3 3 3 2π 1 2π
Hence, area of segment ABCA = r − sin
s equal to _______. 6 2 3
π 3
2 π 3
θ θ = r2 − =r − ⇒ λ=4
3 tan − tan 3 λ
3 3 6 4 6
Sol. (3) tan θ =
θ
1 − 3 tan 2 Ex 109. The number of solutions for
3
θ θ θ 2 sin 2 x + sin 2 2x = 2 when −π < x < π, is ____.
⇒ tan 3 − 3λ tan − 3 tan + λ = 0
3 3 3
θ1 θ2 θ2 θ3 θ3 θ Sol. (6) We have, 2 sin 2 x + sin 2 2x = 2
∴ tan tan + tan tan + tan tan 1 = − 3 ⇒ 1 − cos 2x + 1 − cos2 2x = 2
3 3 3 3 3 3
θ1 θ2 θ2 θ3 θ1 θ 3 ⇒ cos 2x + cos2 2x = 0
⇒ tan tan + tan tan + tan tan =3
3 3 3 3 3 3 ⇒ cos 2x (1 + cos 2x ) = 0
⇒ cos 2x = 0, cos 2x = − 1
Ex 107. The number of solutions of the equation π 3π
⇒ 2x = ± , ± , 2x = ± π
log | x − 1 | | x 2 − 1 | = [|sin x | + |cos x | ] 2 2
π 3π π
where, [ ] denotes greatest integer function, ⇒ x=± ,± ,±
4 4 2
is ______. Hence, the number of solutions is six.
464
Target Exercises
Type 1. Only One Correct Option
1. The numerical value of 11. The value of
p 2p 4p 8p 6 (sin 6 q + cos 6 q ) - 9 (sin 4 q + cos 4 q ) + 4 is
tan + 2 tan + 4 tan + 8 tan is
3 3 3 3 (a) - 3 (b) 0 (c) 1 (d) 3
5
(a) - 5 3 (b) - 2sin a 1 - cos a - sin a
3 12. If = x, then is equal
5 1 + cos a + sin a cos a
(c) 5 3 (d)
3 to
1
2. A quadratic equation whose roots are cosec 2 q and (a)
x
(b) x
sec 2 q, can be (c) 1 - x (d) None of these
(a) x 2 - 2x + 2 = 0 (b) x 2 - 3x + 3 = 0
13. Which of the following is not correct?
(c) x 2 - 5x + 5 = 0 (d) None of these 1
(a) sin q = - (b) cos q = 1
3p 4p 5
3. cos 2 + cos 2 is equal to 1
5 5 (c) secq = (d) tan q = 20
2
4 5 5 3
(a) (b) (c) (d)
5 2 4 4 14. log (sin 1° ) log (sin 2° ) log (sin 3° ) ¼ log (sin 179° )
Targ e t E x e rc is e s
4. The value of sin 600° cos 330°+ cos 120° sin 150° is is equal to
(a) 1 (b) 0 (c) 2 (d) - 1
1 3
(a) -1 (b) 1 (c) (d)
2 2 é æ 3p ö ù
15. The value of 3 êsin 4 ç - a ÷ + sin 4 ( 3p + a )ú
1 - 4 sin 10° sin 70° ë è 2 ø û
5. The value of expression is
2sin 10° é æp ö ù
1 -2 êsin 6 ç + a ÷ + sin 6 ( 5p - a )ú is
(a) (b) 1 ë è 2 ø û
2
(c) 2 (d) None of these (a) 0 (b) 1
(c) 3 (d) sin 4 a + sin 6 a
6. The value of the expression ( 3 sin 75° - cos 75° ) is
16. If tan x + cot x = 2 , then sin 2n x + cos 2n x is equal to
(a) 2 sin 15° (b) 1 + 3 (c) 2 sin 105° (d) 2 1
(a) 2n (b) -
1 3 2
7. If sin a = and sin b = , then b - a lies in the 1
5 5 (c) (d) None of these
2
interval
æ p ö æ 3p ö é p 3p ù p 3p 15 12
(a) ç 0, ÷ È ç , p÷ (b) ê , 17. If < a < p , p < b < ; sin a = and tan b = ,
è 4ø è 4 ø ë 2 4 úû 2 2 17 5
æp pö æ 5p ù then the value of sin (b - a ) is
(c) ç , ÷ (d) ç p,
è 4 2ø è 4 úû 171 21 21 171
(a) - (b) - (c) (d)
221 221 221 221
8. The numerical value of 3 cosec 20° - sec 20° is
(a) 2 (b) 4 18. If cos (q - a ) = a and sin (q - b ) = b, then
(c) 6 (d) None of these cos 2 (a - b ) + 2ab sin (a - b ) is equal to
(a) 4 a2b2 (b) a2 - b2
9. Which of the following numbers is rational?
(c) a2 + b2 (d) - a2b2
(a) sin 15° (b) cos 15°
(c) sin 15° cos 15° (d) sin 15° cos 75° cos 6x + 6cos 4x + 15cos 2x + 10
19. The expression is
p 4p 5p cos 5x + 5cos 3x + 10cos x
10. The value of cos cos cos is
7 7 7 equal to
1 1 1 1 (a) cos 2x (b) 2cos x
(a) (b) (c) - (d)
2 4 8 8 (c) cos2 x (d) 1 + cos x 465
9 20. sin 47° + sin 61° - sin 11° - sin 25° is equal to
(a) sin 36°
(c) sin 7°
(b) cos 36°
(d) cos 7°
p
29. If A + B = , where A , B Î R + , then the minimum
4
value of (1 + tan A ) (1 + tan B ) is
Objective Mathematics Vol. 1
(a) 2 (b) 4
æp ö æp ö (c) 1 (d) None of these
21. The value of cos y cos ç - x÷ - cos ç - y÷ cos x
è2 ø è2 ø
sin x 1 cos x 3 æ pö
æp ö æp ö 30. If = , = , where x, y Î ç 0, ÷, then the
+ sin y cos ç - x÷ + cos x sin ç - y÷ is zero, if sin y 2 cos y 2 è 2ø
è2 ø è2 ø
value of tan ( x + y ) is
(a) x = 0 (b) y = 0
p (a) 13 (b) 14 (c) 17 (d) 15
(c) x = y (d) x = np - + y
4 2p
31. In DABC , if ÐC = , then the value of
11 3
22. If cosec A + cot A = , then tan A is equal to
2 cos 2 A + cos 2 B - cos A cos B is
21 15 44 117 3 3 1 1
(a) (b) (c) (d) (a) (b) (c) (d)
22 16 117 43 4 2 2 4
sin 3 x cos 3 x 10
pr
23. The value of the expression +
1 + cos x 1 - sin x
is 32. The value of å cos 3 3
is
r=0
ép ù ép ù 9 7 9 1
(a) 2 cos ê - x ú (b) 2 cos ê + x ú (a) - (b) - (c) - (d) -
ë4 û ë4 û 2 2 8 8
ép ù
(c) 2 sin ê - x ú (d) None of these 33. If in any DABC, the value of ÐA is obtained from the
ë4 û
equation 3cos A + 2 = 0, then the equation whose
24. In D ABC, the value of the expression roots are sin A and tan A, is
cosec A (sin B cos C + cos B sin C ) is (a) 6x 2 + 5x - 5 = 0 (b) 6x 2 + 5x - 5 = 0
Ta rg e t E x e rc is e s
Targ e t E x e rc is e s
52. If 3sin a = 5sin b, then 2 is equal to
è 3 ø è 3 ø
a -b
x + y + z is equal to tan
2
(a) 1 (b) 0
(c) -1 (d) None of these (a) 1 (b) 2 (c) 3 (d) 4
1æ 1ö 1æ 2 1ö cos ( A + C )
43. If cos q = çx + ÷, then ç x + 2 ÷ is equal to 53. If cos 2B = , then
2è x ø 2 è x ø cos ( A - C )
(a) sin 2q (b) cos 2q (a) tan A , tan B and t an C are in AP
(c) tan 2q (d) None of these (b) tan A , tan B and tan C are in GP
(c) tan A , tan B and tan C are in HP
44. If - p £ x £ p, - p £ y £ p and cos x + cos y = 2 , then (d) None of the above
the value of cos ( x - y ) is b
(a) -1 (b) 0 54. If tan x = , then the value of a cos 2x + b sin 2x is
a
(c) 1 (d) None of these
(a) a (b) a - b
45. If cos x + cos y + cos a = 0 and (c) a + b (d) b
æ x + yö 55. The graph of the function
sin x + sin y + sin a = 0, then cot ç ÷ is equal to 2
è 2 ø cos x cos ( x + 2) - cos ( x + 1) is
(a) sin a (b) cos a (a) a straight line passing through (0, - sin 2 q) with slope 2
æx + yö
(b) a straight line passing through (0, 0)
(c) cot a (d) sin ç ÷
è 2 ø (c) a parabola with vertex (1, - sin 2 1)
æp ö
(d) a straight line passing through the point ç , - sin 2 1÷
46. If a + b - g = p, then sin 2 a + sin 2 b - sin 2 g is è2 ø
and parallel to the X-axis
equal to
(a) 2sin a sin b cos g (b) 2cos a cosb cos g 56. If a cos 2 3q + b cos 4 q = 16cos 6 q + 9cos 2 q is an
(c) 2sin a sin b sin g (d) None of these identity, then
47. If a + b + g = 2p , then (a) a = 1, b = 18 (b) a = 1, b = 24
(c) a = 3, b = 24 (d) a = 4, b = 2
a b g a b g
(a) tan + tan + tan = tan tan tan n
2 2 2 2 2 2
a b b g g a
57. Let n be an odd integer. If sin n q = å br sin r q for
(b) tan tan + tan tan + tan tan = 1 r=0
2 2 2 2 2 2
a b g a b g every value of q, then
(c) tan + tan + tan = - tan tan tan (a) b0 = 1, b1 = 3 (b) b0 = 0, b1 = n
2 2 2 2 2 2 467
(d) None of the above (c) b0 = - 1, b1 = n (d) b0 = 0, b1 = n2 - n + 3
9 58. If 0£q £
p
2
y = X sin q - Y cos q
and x = X cos q + Y sin q,
such that
67. If
2
x=a , b satisfies both
2
cos x + a cos x + b = 0 and sin x + p sin x + q = 0,
the equation
Objective Mathematics Vol. 1
Targ e t E x e rc is e s
a 92. If a, b Î [ 0, p ] and the equation
81. If sin q = x + , " x Î R ~ {0}, then x 2 + 4 + 3 sin ( ax + b ) - 2x = 0 has atleast one
x
1 1 solution, then the value of ( a + b ) can be
(a) a ³ (b) a ³ 7p 3p
4 2 (a) (b)
1 1 2 2
(c) a £ (d) a £ 9p
4 2 (c) (d) None of these
2
2
82. If sin x + a sin x + 1 = 0 has no real number solution, 1
then 93. If sin q, cos q and tan q are in GP, then the general
6
(a) | a | ³ 2 (b) | a | ³ 1 value(s) of q is/are
(c) | a | < 2 (d) None of these p p
(a) 2np ± , n ÎI (b) 2np ± , n ÎI
83. If sin q 1 - sin q 2 = a and cos q 1 + cos q 2 = b, then 3 6
p p
(a) a2 + b2 ³ 4 (b) a2 + b2 £ 4 (c) 2np + (-1)n , n Î I (d) np + , n Î I
3 3
(c) a2 + b2 ³ 3 (d) a2 + b2 £ 2
1
94. The general values of x for which cos 2x, and sin 2x
84. If 0 £ a £ 3, 0£ b £ 3 and the equation 2
x 2 + 4 + 3cos ( ax + b ) = 2x has atleast one solution, are in AP, are given by
p p
then the value of a + b is (a) np, np + (b) np, np +
2 4
p p
(a) 0 (b) (c) np + (d) np
2 4
(c) p (d) None of these
95. The most general values of q satisfying
85. If tan 2 x + sec x - a = 0 has atleast one solution, then
æ 3p ö
the complete set of values of a is tan q + tan ç + q ÷ = 2 are
è 4 ø
(a) (- ¥ , 1] (b) [1, 1]
(c) [ - 1, 1] (d) [ -1, ¥ ) p
(a) np ± , n ÎI
3
4xy p
86. sec 2 q = is true if and only if (b) 2np ± , n Î I
(x + y )2 6
p
(a) x + y ¹ 0 (c) 2np ± , n Î I
(b) x = y, x ¹ 0 3
(c) x = y p
(d) 2np + (-1)n , n Î I 469
(d) x ¹ 0, y ¹ 0 3
9 96. The most general solutions of the equation
sec x - 1 = ( 2 - 1) tan x are given by
p p
105. If x, y Î [ 0, 2p ] , then total number of ordered pairs
( x, y ) satisfying sin x cos y = 1is
Objective Mathematics Vol. 1
p p æ pö
(a) np - (b) np + (a) (0, p) (b) ç 0, ÷
4 4 è 4ø
(c) np (d) None of these æp ö
(c) ç , p ÷ (d) None of these
100. The number of solutions of the equation è4 ø
x
1 + sin x sin 2 = 0 in [ - p , p ] is 110. If x1 and x 2 are two positive values of x for which
2
2cos x, | cos x | and 3sin 2 x - 2 are in GP. The
(a) 0 (b) 1
(c) 2 (d) 3 minimum value of | x1 - x 2 | is
4p p
(a) (b)
101. The number of solutions of cos x = | 1 + sin x | , 3 3
0 £ x £ 3p is æ 2ö æ 2ö
(c) 2 cos-1 ç ÷ (d) cos-1 ç ÷
(a) 3 (b) 2 è 3ø è 3ø
(c) 4 (d) None of these
111. If 3sin x + 4 cos ax = 7 has atleast one solution, then a
102. The most general solutions of has to be necessarily a/an
2
x + |cos x |3 + ¼ ¥ (a) odd integer
21 + |cos x | + cos = 4 are given by (b) even integer
p p (c) rational number
(a) np ± ,n Î I (b) 2np ± ,n Î I
3 3 (d) irrational number
2p
(c) 2np ± ,n Î I (d) None of these 112. If the equation a1 + a 2 cos 2x + a 3 sin 2 x = 1 is
3 satisfied by every real value of x, then the number of
np 2 possible values of the triplet ( a1 , a 2 , a 3 ) is
103. If x ¹ and (cos x ) sin x - 3 sin x + 2 = 1, then all (a) 0 (b) 1 (c) 3 (d) infinite
2
solutions of x is/are given by 2
113. If sin q - 2 sin q - 1 = 0 is to be satisfied for exactly
p p
(a) 2np + (b) (2n + 1) p - 4 distinct values of q Î [ 0, np ], n Î N, then the least
2 2 value of n is
p
(c) 2np + (-1)n (d) None of these (a) 2 (b) 6 (c) 4 (d) 15
2
114. If 2 tan 2 x - 5sec x is equal to 1 for exactly 7 distinct
104. If 0 £ x £ 3p, 0 £ y £ 3p and cos x sin y = 1, then the
é np ù
possible number of values of the ordered pair ( x, y ) is values of x Î ê 0, ú, n Î N , then the greatest value
ë 2û
of n is
470 (a) 6 (b) 12
(c) 8 (d) 15 (a) 6 (b) 12 (c) 13 (d) 15
115. If sin a, 1 and cos 2a are in GP, then a is equal to
p
(a) np + (-1)n , n Î I
2
(b) np + (-1)n - 1
p
2
, n ÎI
123. If sin 2 (q - a ) cos a = cos 2 (q - a )sin a
= m sin a cos a , then 9
Targ e t E x e rc is e s
sin p ( x 2 + x ) - sin px 2 = 0 is cos 2 q - 1
(a) rational expression y = is
(b) irrational of the form p
cos 2 q + cos q
p -1 (a) 1 £ y £ 2
(c) irrational of the form , where p is an odd integer (b) y < 0 and y > 2
4 (c) - 1 £ y £ 1
p+1 (d) y ³ 1
(d) irrational of the form , where pis an even integer
4
127. Solution of equation [sin x] = [1 + sin x] + [1 - cos x],
120. If q Î[ 0, 5p ] r Î R such that
and 0 £ x £ 2p is
4 2
2sin q = r - 2r + 3, then the maximum number of 3p
(a) x =
values of the pair ( r, q ) is 2
(a) 8 3p
(b) x =
(b) 10 4
(c) 6 (c) no real solution
(d) None of the above (d) None of the above
121. Total number of solutions of [sin x] = cos x, where [ ] 128. The general solution of the equation
denotes the greatest integer function in [ 0, 3p ] , is sin 50 x - cos 50 x = 1 is
(a) 2 p
(b) 6 (a) 2np +
2
(c) 5 p
(d) None of the above (b) 2np +
3
3 p p
(c) np +
122. If 1 - sin x = x - + a has no solution, where 2
2 2 p
(d) np +
a Î R + , then 3
(a) a Î R +
129. Number of ordered pairs ( a, x ) satisfying the
3 p
(b) a > - equation sec 2 ( a + 2) x + a 2 - 1 = 0 , - p < x < p is
2 3
(a) 2
æ 3 p ö
(c) a Î ç 0, + ÷ (b) 1
è 2 3ø (c) 3
(d) None of the above (d) infinite
471
9 Type 2. More than One Correct Option
130. If f n (q ) = tan
q
(1 + sec q ) (1 + sec 2q )(1 + sec 4q ) ¼ 138. If tan a and tan b are the roots of the equation
Objective Mathematics Vol. 1
2 x 2 + px + q = 0 with p ¹ 0, then
(1 + sec 2n q ) , then
(a) sin 2 (a + b ) + p sin (a + b )cos (a + b ) + q cos2 (a + b ) = q
æpö æpö p
(a) f2 ç ÷ = 1 (b) f3 ç ÷ = 1 (b) tan (a + b ) =
è 16 ø è 32 ø q-1
æ p ö æ p ö (c) cos (a + b ) = 1 - q
(c) f4 ç ÷ = 1 (d) f5 ç ÷ =1
è 64 ø è 128 ø (d) sin (a + b ) = - p
p 139. If y = sin 2 x + cos 4 x , then for all real x
131. Let 0 £ q £ and x = X cos q + Y sin q ,
2 (a) the maximum value of y is 2
y = X sin q - Y cos q such that 3
(b) the minimum value of y is
x 2 + 4xy + y 2 = aX 2 + bY 2 , where a and b are 4
(c) y £ 1
constants. Then, 1
(d) y ³
p 4
(a) a = - 1, b = 3 (b) q =
4
p 140. If k1 = sin x cos 3 x and k 2 = cos x sin 3 x, then
(c) a = 3, b = - 1 (d) q =
3 æ pö
(a) k 1 - k 2 > 0, x Î ç 0, ÷
2 2 2 è 4ø
sin x + a - 2 a
132. = has a solution, if æ pö
cos 2x 1 - tan 2 x (b) k 1 - k 2 < 0, x Î ç 0, ÷
è 4ø
(a) a £ - 1 (b) a ³ 1 æ pö
(c) a = 1/ 2 (d) a is any real number (c) k 1 + k 2 > 0, x Î ç 0, ÷
è 2ø
Ta rg e t E x e rc is e s
n æ pö
133. If cos 3 x sin 2x = (d) k 1 + k 2 < 0, x Î ç 0, ÷
å a m sin mx is identity in x. Then, è 4ø
m=1
3 1 141. If a Î [ - 2p , 2p ] and
(a) a3 = , a2 = 0 (b) n = 6, a1=
8 2 a a
1 3 cos + sin = 2 (cos 36° - sin 18° ) , then a value
(c) n = 5, a1 = (d) San = 2 2
4 4 of a is
7p p
134. If 0 £ x, y £ 180° and sin ( x - y ) = cos ( x + y ) = 1/ 2, (a) (b)
6 6
then x and y are given by 5p p
(c) (d) -
(a) x = 45° , y = 15° (b) x = 45° , y = 135° 6 6
(c) x = 165° , y = 15° (d) x = 165° , y = 135°
142. If cos x = 1- sin 2x , where 0 £ x £ p, then a value of
x x
135. If tan = cosec x - sin x, then tan 2 is equal to x is
2 2 (a) p
(a) 2 - 5 (b) 5 - 2 (b) 0
(c) (9 - 4 5 ) (2 + 5) (d) (9 + 4 5 ) (2 - 5 ) (c) tan -1 2
(d) None of the above
1 - sin 4 A + 1 143. If sin q + 3 cos q = 6x - x 2 - 11, 0 £ q £ 4p, x Î R,
136. If y = , then one of the values of y is
1 + sin 4 A - 1 then holds for
(a) - tan A (b) cot A (a) no value of x and q
æp ö æp ö (b) one value of x and two values of q
(c) tan ç + A ÷ (d) - cot ç + A ÷ (c) two values of x and two values of q
è4 ø è4 ø
(d) two pairs of values of (x , q)
137. If x = a 2 cos 2 a + b 2 sin 2 a + a 2 sin 2 a + b 2 cos 2 a 144. If 0 £ x £ 2p and | cos x | £ sin x, then
2 2 2 2 2 2 ép pù
, then x = a + b + 2 p ( a + b ) - p , where p (a) the set of values of x is ê , ú
is equal to ë 4 2û
p
(a) a2 cos2 a + b2 sin 2 a (b) the number of solutions that are integral multiples of
4
(b) a2 sin 2 a + b2 cos2 a is three
1 3p
(c) [ a2 + b2 + (a2 - b2 ) cos 2a ] (c) the sum of the largest and the smallest solution is
2 4
1 é p p ù é p 3p ù
(d) [ a2 + b2 - (a2 - b2 )cos 2a ] (d) x Î ê , ú È ê ,
472 2 ë 4 2 û ë 2 4 úû
Type 3. Assertion and Reason
Directions (Q. Nos. 145-151) In the following 147. Statement I The numbers sin 18° and - sin 54°
9
Targ e t E x e rc is e s
Statement II If runs from to , then sin > 0. Statement II If a 2 + b 2 = 0, then a, b = 0.
2 4 4 2
(a) q = np : n Î I
np which is the required solution of equation. To solve the
(b) q = : n ÎI Eq. (i), we have used the boundedness of sin x rather
2
(c) q = 2np : n Î I than using conventional methods of solving equations.
(d) q is any real In general, we employ one or more of the following
Passage III (Q. Nos. 158-160) If A, B and C are angles extreme value conditions
of a triangle such that tan A + tan B + tan C = k , then find (i) - 1 £ sin x £ 1 Þ |sin x | £ 1 and sin2 x £ 1
the interval in which k should lie. (ii) - 1 £ cos x £ 1 Þ |cos x | £ 1 and cos 2 x £ 1
158. There exists exactly one isosceles DABC, if (iii) - a 2 + b 2 £ a sin x + b cos x £ a 2 + b 2
(a) k < 0 or k = 3 3
Þ | a sin x + b cos x | £ a 2 + b 2
(b) k > 0
(c) - 1 < k < 0
(d) 0 < k < 3 161. The minimum value of 27cos 2x × 81sin 2x is
1 1 1
159. There exist exactly two isosceles DABC, if (a) 1 (b) (c) (d)
9 81 243
(a) k < 3
(b) k > 3 3 162. Number of roots of the equation cos 7 x + sin 4 x = 1in
(c) k < 3 3 the interval [ 0, 2p ] is
(d) 0 < k < 3 3 (a) 0 (b) 1 (c) 2 (d) 4
160. There exist three or more non-similar isosceles 163. The smallest positive number p for which the
triangles for equation cos ( p sin x ) = sin ( p cos x ) has a solution in
(a) no value of k [ a, 2p ] , is
Ta rg e t E x e rc is e s
474
166. Match the items of Column I with that of Column II.
Column I Column II
168. Match the items of Column I with that of Column II.
Column I Column II
9
167. Match the items of Column I with that of Column II. 169. Match the items of Column I with that of Column II.
Column I Column II
Column I Column II
A. sin x cos 3 x > cos x p. é - p,- 3p ù
êë 4 úû 3 p. 0
sin3 x, 0 £ x £ 2 p, is A. If cos A = , then the value of
p p 4
È é- , ù A 5A
êë 4 4 úû sin sin is
3p 2 2
È é , pù
Targ e t E x e rc is e s
êë 4 úû
p 2p 3p q. 11
B. The value of sin + sin + sin is
B. 2
4 sin x - 8 sin x + 3 £ 0, q. é 3p , 2 p ù È { 0} 7 7 7 32
0 £ x £ 2 p, is êë 2 úû
C. If tan2 q = 2 tan2 f + 1, then r. 1 p
cot
C. |tan x | £ 1and x Î [- p, p ], is r. æ 0, p ö
ç ÷ cos 2 q + sin2 f equals 2 14
è 4ø
1 tan( A + B) s. 3
D. cos x - sin x ³ 1 and s. é p , 5p ù D. If sin B = sin(2 A + B), then
êë 6 6 úû 5 tan A 2
0 £ x £ 2 p, is
is equal to
________.
176. For any real value of q ¹ p, the value of the 183. If the smallest positive values of x and y satisfying
2 p lp mp
cos q - 1 x - y = and cot x + cot y = 2are x = and y = ,
expression y = , y Î R - [ a, b] , then 4 12 6
cos 2 q + cos q then l + m is equal to ______.
the value of ( b - a ) is _______.
184. The system of simultaneous equations for x and y,
177. The number of solutions of equation 1
æ pö
[sin x] = [1 + sin x] + [1 - cos x], 0 £ x £ 2p, is _____. where x, y Î ç 0, ÷ , are 4 sin x + 3 cos y = 11 and
è 2ø
p 1
178. In a DABC, ÐB = and sin A sin C = l, then the set
3 5× 16sin x - 2× 3 cos y = 2 .
of all possible values of l Î[ a, b], then ( b - a ) is p
_______. If x + y = , then l is equal to _______.
l
A B C
179. In a DABC, cot cot cot ³ l 3, then the value 185. The number of solutions for
2 2 2
æ pö æ 3p ö ü
of l is _____. sin ç x - ÷ - cos ç x + ÷ = 1ï
è 4ø è 4 ø ï in (0, 2p ) is _____ .
A B C ý
180. If in a DABC, tan , tan , tan are in HP and 2cos 7x cos 2x
2 2 2 >2 ï
B cos 3 + sin 3 ïþ
cot ³ l , then the value of l is _______.
2 186. The integral value of p for which
Ta rg e t E x e rc is e s
Entrances Gallery
JEE Advanced/IIT JEE
1. For x Î ( 0, p ), the equation sin x + 2sin 2x - sin 3x = 3 4. Let f : ( -1, 1) ® IR be such that
has [2014] 2 æ pö æp pö
f (cos 4q ) = for q Î ç 0, ÷ È ç , ÷.
(a) infinitely many solutions 2 - sec q2 è 4 ø è 4 2ø
(b) three solutions
(c) one solution æ 1ö
Then, the value(s) of f ç ÷ is/are [2012]
(d) no solution è 3ø
3 3 2 2
2. The number of points in ( - ¥ , ¥ ) , for which (a) 1 - (b) 1 + (c) 1 - (d) 1 +
2 2 3 3
x 2 - x sin x - cos x = 0, is [2013]
5. The positive integer value of n > 3 satisfying the
(a) 6 (b) 4
(c) 2 (d) 0 1 1 1
equation = + is ______.
æpö æ 2p ö æ 3p ö
3. Let q, f Î[ 0, 2p ] be such that sin ç ÷ sin ç ÷ sin ç ÷
ènø è nø è nø [2011]
2 æ q qö
2cos q (1 - sin f ) = sin q ç tan + cot ÷ cos f - 1,
è 2 2ø 6. Let f ( x ) = x 2 and g ( x ) = sin x, for all x Î R. Then, the
3 set of all x satisfying ( fogogof) ( x ) = (gogof) ( x ),
tan ( 2p - q ) > 0 and - 1 < sin q < - . Then, f where ( fog) ( x ) = f [ g ( x )] , is [2011]
2
(a) ± np , n Î {0, 1, 2, ¼}
cannot satisfy [2012]
p p 4p (b) ± np , n Î { 1, 2, ¼}
(a) 0 < f < (b) < f < p
2 2 3 (c) + 2np , n Î {..., - 2, - 1, 0, 1, 2, ¼}
4p 3p 3p 2
(c) <f< (d) < f < 2p (d) 2np , n Î {..., - 2, - 1, 0, 1, 2, ¼}
3 2 2
476
7. The number of all possible values of q, where
0 < q < p, for which the system of equations
æ p pö
8. The number of values of q in the interval ç - , ÷
np
è 2 2ø 9
JEE Main/AIEEE
1 17. The number of values of x in the interval [ 0, 3p ]
10. Let f k ( x ) = (sin k x + cos k x ) , where, x Î R and
k satisfying the equation 2sin 2 x + 5sin x - 3 = 0 is
k ³ 1. Then, f 4 ( x ) - f 6 ( x ) equals [2014]
[2006]
1 1 1 1
(a) (b) (c) (d) (a) 6 (b) 1 (c) 2 (d) 4
6 3 4 12
tan A cot A 18. A triangular park is enclosed on two sides by a fence
11. The expression + can be written and on the third side by a straight river bank. The
1 - cot A 1 - tan A
two sides having fence are of same length x. The
as [2013]
maximum area enclosed by the park is [2006]
(a) sin A cos A + 1 (b) sec A cosec A + 1
(c) tan A + cot A (d) sec A + cosec A x3 1 3
(a) (b) x 2 (c) px 2 (d) x 2
8 2 2
12. In a DPQR, if 3sin P + 4 cos Q = 6 and
Targ e t E x e rc is e s
4 sin Q + 3cos P = 1, then ÐR is equal to [2012]
1
19. If 0 < x < p and cos x + sin x = , then tan x is equal to
5p p p 3p 2
(a) (b) (c) (d)
6 6 4 4 [2006]
(4 - 7 ) (4 + 7 )
13. If A = sin 2 x + cos 4 x, then for all real x [2011] (a)
3
(b) -
3
13 (1 + 7 ) (1 - 7 )
(a) £ A £1 (b) 1 £ A £ 2 (c) (d)
16 4 4
3 13 3
(c) £ A £ (d) £ A £1
4 16 4 20. Let a and b be such that p < a - b < 3p. If
21 27
14. The possible values of q Î ( 0, p ) such that sin a + sin b = - and cos a + cos b = - , then
65 65
sin q + sin 4q + sin 7q = 0 are [2011]
æa - b ö
2p p 4 p p 3p 8p the value of cos ç ÷ is [2004]
(a) , , , , , è 2 ø
9 4 9 2 4 9
p 5p p 2p 3p 8p 3 3
(b) , , , , , (a) - (b)
4 12 2 3 4 9 130 130
2p p p 2p 3p 35p 6 6
(c) , , , , , (c) (d) -
9 4 2 3 4 36 65 65
2p p p 2p 3p 8p
(d) , , , , ,
9 4 2 3 4 9 21. If f : R ® S , defined by f ( x ) = sin x - 3 cos x + 1, is
4 5 onto, then the interval of S is [2004]
15. Let cos (a + b ) = and sin (a - b ) = , where (a) [ 0, 3 ] (b) [ -1, 1]
5 13 (c) [ 0, 1] (d) [ -1, 3 ]
p
0 £ a ,b £ . Then, tan 2a is equal to [2010] 4xy
25
4
56 19 20
22. sin 2 q = is true if and only if [2002]
(a) (b) (c) (d) (x + y )2
16 33 12 7
(a) x - y ¹ 0
16. Let A and B denote the statements (b) x = - y
A :cos a + cos b + cos g = 0 (c) x + y ¹ 0
B :sin a + sin b + sin g = 0 (d) x ¹ 0, y ¹ 0
3
If cos (b - g ) + cos ( g - a ) + cos (a - b ) = - , then 1 - tan 2 15°
2 [2009] 23. The value of is [2002]
1 + tan 2 15°
(a) A is true and B is false (b) A is false and B is true
(c) both A and B are true (d) both A and B are false (a) 1 (b) 3 (c) 3 / 2 (d) 2 477
9 4
4
24. If tan q = - , then sin q is
3
4
[2002] 26. If y = sin 2 q + cosec 2 q, q ¹ 0, then
(a) y = 0
(c) y ³ - 2
(b) y £ 2
(d) y ³ 2
[2002]
Objective Mathematics Vol. 1
è 6ø è 30 ø è 120 ø è 360 ø
(a) 2 (b) 1/2 (c) 4 (d) -1
æpö æpö æ p ö
(c) sin ç ÷ + sin ç ÷ + sin ç ÷
è 6ø è 30 ø è 120 ø a b
36. If tan and tan are the roots of 8x 2 - 26x + 15 = 0 ,
æ p ö æ p ö 2 2
+ sin ç ÷ + sin ç ÷
è 360 ø è 720 ø then cos (a + b ) is equal to [Manipal 2014]
æ p ö æ p ö 627 627
(d) sin ç ÷ + sin ç ÷ (a) (b) -
è 180 ø è 360 ø 726 725
(c) -1 (d) None of these
30. If cos x = tan y, cot y = tan z and cot z = tan x, then
3 3p x
sin x is equal to [EAMCET 2014] 37. If tan x = , p < x < , then the value of cos is
4 2 2
5+1 5 -1 5+1 5 -1
(a) (b) (c) (d) [Karnataka CET 2014]
4 4 2 2 1 3 1 3
(a) - (b) (c) (d) -
31. The value of 10 10 10 10
2cot 2 ( p / 6) + 4 tan 2 ( p / 6) - 3cosec ( p / 6) is 2p 4p 6p
38. cos + cos + cos [WB JEE 2014]
[J&K CET 2014] 7 7 7
(a) 2 (b) 4 (c) 4/3 (d) 3/4 (a) is equal to zero (b) lies between 0 and 3
(c) is a negative number (d) lies between 3 and 6
32. Find the value of cos (29 p / 3). [J&K CET 2014]
p 2p 4p
(a) 1 (b) 0 (c) 3 / 2 (d) 1 / 2 39. The value of tan + 2 tan + 4 cot is
5 5 5
33. If sin q = sin a , then [Karnataka CET 2014] [WB JEE 2014]
q+ a p q-a p 2p 4p 3p
(a) is any odd multiple of and is any (a) cot (b) cot (c) cot (d) cot
2 2 2 5 5 5 5
multiple of p 3
q+ a q-a 40. If x and y are acute angles such that cos x + cos y =
(b) is any odd multiple of p and is any 2
2 2
multiple of p
3
and sin x + sin y = , then sin ( x + y ) equals
q+ a p q-a 4
(c) is any multiple of and is any even
2 2 2 [Karnataka CET 2014]
multiple of p 2 3
q+ a p q-a (a) (b)
(d) is any even multiple of and is any odd 5 4
2 2 2 3 4
multiple of p (c) (d)
478 5 5
41. Find the value of cos ( x / 2), if tan x = 5 / 12 and x lies
in third quadrant. [J&K CET 2014]
1
52. If cos a + 2cos b + 3cos g = 0, sin a + 2sin b
+ 3sin g = 0 and a + b + g = p, then 9
Targ e t E x e rc is e s
(a) 0 (b) 1 (a) 0 (b) 1
(c) 2 (d) None of these (c) 2 (d) 3
46. The most general solutions of the equation 57. The value of q satisfying cos q + 3 sin q = 2 is
sec 2 x = 2 (1 - tan 2 x ) are given by [BITSAT 2013] [OJEE 2012]
p p (a) 30° (b) 60°
(a) np ± (b) 2np +
4 4 (c) 45° (d) 90°
p
(c) np ± (d) None of these 2t
8 58. If sin q = and q lies in second quadrant, then
1+ t 2
47. The number of solutions of the equation (1 - cos 2x ) cos q is equal to [WB JEE 2011]
(cos 2x + cos 2 x ) = 0, 0 £ x £ 2p is [Manipal 2013] 1 - t2 t2 - 1
(a) (b)
(a) 3 (b) 2 (c) 1 (d) 0 1 + t2 1 + t2
48. If log cos x tan x + log sin x cot x = 0, then the most - |1 - t 2 | 1 + t2
(c) (d)
general solution of x is [UP SEE 2013] 1 + t2 |1 - t 2 |
3p p
(a) 2np - , n ÎZ (b) 2np + , n ÎZ 59. If sin q = 3sin(q + 2a ), then the value of
4 4
p tan(q + a ) + 2 tan a is [Kerala CEE 2011]
(c) np - , n Î Z (d) None of these
4 (a) 3 (b) 2 (c) -1
(d) 0 (e) 1
49. The number of real solutions of the equation
x 3 + x 2 + 4x + 2sin x = 0 in 0 £ x £ 2p is [OJEE 2013] 60. If a , b , g Î [ 0, p ] and a , b , g are in AP, then
(a) 4 (b) 2 (c) 1 (d) 0 sin a - sin g
is equal to [Kerala CEE 2011]
cos g - cos a
50. The general solution of sin 3x + sin x - 3sin 2x
(a) sinb (b) cosb (c) cotb
= cos 3x + cos x - 3cos 2x is [AMU 2013]
(d) cosec b (e) 2cosb
np p np p
(a) + for n integer (b) - for n integer
2 8 2 8 61. If A , B and C are the angles of a triangle such that
p p
(c) np + for n integer (d) np - for n integer sec ( A - B ), sec A and sec( A + B ) are in AP, then
6 6 [UP SEE 2011]
2 B 2 B
51. If sin A + sin B + sin C = 3, then (a) cosec A = 2cosec (b) 2sec A = sec2
2
2 2
cos A + cos B + cos C is equal to [MP PET 2012] B A
(a) 3 (b) 2 (c) 1 (d) 0 (c) 2cosec2 A = cosec2 (d) 2sec2 B = sec2 479
2 2
9 62. If
1
sin q =
2
and tan q =
general value of q is
1
3
, " n Î I, then most
[BITSAT 2011]
71. The value of
1
sin 55° - cos 55°
sin 10°
is [VITEEE 2010]
Objective Mathematics Vol. 1
(a) (b) 2
p p 2
(a) 2np + ," n Î I (b) 2np + ," n Î I
6 4 (c) 1 (d) 2
p p
(c) 2np + ," n Î I (d) 2np + ," n Î I æ pö 4 12
3 5 72. If a , b Î ç 0, ÷, sin a = and cos (a + b ) = - ,
è 2ø 5 13
63. A value of q satisfying sin 5q - sin 3q + sin q = 0
then sin b is equal to [Kerala CEE 2010]
p 63 61
such that 0 < q < is [Karnataka CET 2011] (a) (b)
2 65 65
p p p p 3 5
(a) (b) (c) (d) (c) (d)
12 6 4 2 5 13
8
64. The number of solutions of 2sin x + cos x = 3 is (e)
65
[WB JEE 2011] b p
(a) 1 (b) 2 73. If tan a = , a > b > 0 and 0<a < , then
(c) infinite (d) no solution a 4
a+b a-b
65. If sin q + cos q = 0 and 0 < q < p, then q is equal to - is equal to [Kerala CEE 2010]
a-b a+b
[WB JEE 2011] 2 sin a 2 cos a
p p 3p (a) (b)
(a) 0 (b) (c) (d) cos 2a cos 2a
4 2 4
2 sin a 2 cos a
(c) (d)
66. The solution of trigonometric equation sin 2a sin 2a
cos 4 x + sin 4 x = 2cos ( 2x + p )cos ( 2x - p ) is 2 tan a
Ta rg e t E x e rc is e s
(e)
[UP SEE 2011] cos 2a
np æ 1ö cot x - tan x
(a) x = ± sin -1 ç ÷ 74. The value of is [WB JEE 2010]
2 è 5ø
cot 2x
np (-1)n æ ±2 2ö (c) -1
(b) x = + sin -1 ç ÷ (a) 1 (b) 2 (d) 4
4 4 è 3 ø
np -1 1
75. The number of points of intersection of 2 y = 1 and
(c) x = ± cos
2 5 y = sin x in - 2p £ x £ 2p is [VITEEE 2010]
np (-1)n æ 1ö (a) 1 (b) 2 (c) 3 (d) 4
(d) x = - cos-1 ç ÷
4 4 è 5ø
æ pö
76. The value of x in ç 0 , ÷ satisfying the equation
sin x cos x cos x è 2ø
67. If cos x sin x cos x = 0 , then the number of 1
sin x cos x = is [Kerala CEE 2010]
cos x cos x sin x 4
p p p p
distinct real roots of this equation in the interval (a) (b) (c) (d)
6 3 8 4
- p / 2 < x < p / 2 is [AMU 2011] p
(e)
(a) 1 (b) 3 (c) 2 (d) 4 12
cos A cos B 1 p p 77. The number of solutions of cos 2q = sin q in ( 0, 2p ) is
68. If = = - < A < 0 and - < B < 0,
3 4 5 2 2 [Kerala CEE 2010]
then the value of 2sin A + 4 sin B is [BITSAT 2010] (a) 1 (b) 2 (c) 3 (d) 4
(a) 4 (b) -2 (c) -4 (d) 0 (e) 0
cot 54° tan 20° 78. If sin 6q + sin 4q + sin 2q = 0, then the general values
69. The value of + is [VITEEE 2010]
tan 36° cot 70° of q are [WB JEE 2010]
(a) 0 (b) 2 np p
(c) 3 (d) 1 (a) , np ±
4 3
np p
70. The value of tan 40° + tan 20° + 3 tan 20° tan 40° (b) , np ±
4 6
is [BITSAT 2010] np p
1 (c) , 2np ±
(a) 12 (b) 4 3
3 np p
(d) , 2np ±
(c) 2 (d) 3 4 6
480
Answers
Work Book Exercise 9.1
1. (a) 2. (b) 3. (b) 4. (a) 5. (a) 6. (b) 7. (b) 8. (a) 9. (a) 10. (d)
11. (d) 12. (d)
Target Exercises
1. (a) 2. (c) 3. (d) 4. (a) 5. (b) 6. (d) 7. (a) 8. (b) 9. (c) 10. (d)
11. (c) 12. (d) 13. (c) 14. (b) 15. (b) 16. (d) 17. (d) 18. (c) 19. (b) 20. (d)
21. (d) 22. (c) 23. (a) 24. (a) 25. (a) 26. (b) 27. (b) 28. (b) 29. (a) 30. (d)
Targ e t E x e rc is e s
31. (a) 32. (d) 33. (a) 34. (b) 35. (c) 36. (b) 37. (b) 38. (c) 39. (b) 40. (a)
41. (c) 42. (b) 43. (b) 44. (c) 45. (c) 46. (a) 47. (a) 48. (b) 49. (c) 50. (a)
51. (c) 52. (d) 53. (b) 54. (a) 55. (d) 56. (b) 57. (b) 58. (c) 59. (b) 60. (a)
61. (c) 62. (a) 63. (c) 64. (b) 65. (b) 66. (d) 67. (c) 68. (d) 69. (c) 70. (a)
71. (a) 72. (a) 73. (b) 74. (b) 75. (c) 76. (d) 77. (a) 78. (c) 79. (a) 80. (a)
81. (c) 82. (c) 83. (b) 84. (c) 85. (d) 86. (b) 87. (c) 88. (c) 89. (a) 90. (c)
91. (c) 92. (b) 93. (a) 94. (b) 95. (a) 96. (b) 97. (d) 98. (d) 99. (a) 100. (a)
101. (a) 102. (a) 103. (d) 104. (a) 105. (b) 106. (a) 107. (a) 108. (d) 109. (b) 110. (c)
111. (c) 112. (d) 113. (c) 114. (d) 115. (b) 116. (a) 117. (b) 118. (a) 119. (c) 120. (c)
121. (d) 122. (b) 123. (b) 124. (a) 125. (b) 126. (b) 127. (c) 128. (c) 129. (c) 130. (all)
131. (b,c) 132. (a,b) 133. (a,c,d) 134. (a,c,d) 135. (b,c) 136. (all) 137. (all) 138. (a,b) 139. (b,c) 140. (a,c)
141. (a,d) 142. (b,c) 143. (b,d) 144. (b,d) 145. (d) 146. (b) 147. (a) 148. (b) 149. (c) 150. (d)
151. (c) 152. (b) 153. (a) 154. (c) 155. (a) 156. (b) 157. (d) 158. (a) 159. (b) 160. (a)
161. (d) 162. (d) 163. (d) 164. (*) 165. (*) 166. (*) 167. (*) 168. (*) 169. (*) 170. (*)
171. (1) 172. (1) 173. (4) 174. (3) 175. (2) 176. (2) 177. (0) 178. (1) 179. (3) 180. (3)
181. (0) 182. (6) 183. (6) 184. (2) 185. (1) 186. (2)
* 164. A ® s; B ® r; C ® p; D ® q 165. A ® p; B ® r; C ® q; D ® q 166. A ® r; B ® s; C ® s; D ® q
167. A ® r; B ® s; C ® p; D ® q 168. A ® r; B ® s; C ® s; D ® q 169. A ® q; B ® r; C ® p; D ® s
170. A ® q; B ® s; C ® p; D ® p,r
Entrances Gallery
1. (d) 2. (c) 3. (a,c,d) 4. (a,b) 5. (7) 6. (a) 7. (3) 8. (3) 9. (2) 10. (d)
11. (b) 12. (b) 13. (d) 14. (a) 15. (b) 16. (c) 17. (d) 18. (b) 19. (b) 20. (a)
21. (d) 22. (c) 23. (c) 24. (b) 25. (a) 26. (d) 27. (c) 28. (b) 29. (c) 30. (d)
31. (c) 32. (d) 33. (a) 34. (d) 35. (b) 36. (b) 37. (a) 38. (c) 39. (a) 40. (d)
41. (d) 42. (d) 43. (c) 44. (c) 45. (b) 46. (c) 47. (d) 48. (b) 49. (c) 50. (a)
51. (d) 52. (b) 53. (c) 54. (b) 55. (d) 56. (c) 57. (b) 58. (c) 59. (d) 60. (c)
61. (b) 62. (a) 63. (b) 64. (d) 65. (d) 66. (b) 67. (c) 68. (c) 69. (b) 70. (d)
71. (d) 72. (a) 73. (a) 74. (b) 75. (d) 76. (e) 77. (c) 78. (a)
481
Explanations
Target Exercises
π 2π 4π 8π π 3π
1. tan + 2 tan + 4 tan + 8 tan ⇒ 0 < (β − α) < ⇒ < (β − α) < π
3 3 3 3 4 4
π π π π 3π
= tan + 2 tan π − + 4 tan π + ⇒ ( β − α ) ∈ 0, ⇒ ( β − α) ∈ , π
3 3 3 4 4
π 3 cos 20 ° − sin 20 °
+ 8 tan 3π − 8. 3 cosec 20 ° − sec 20 ° =
3 sin 20 ° cos 20 °
π π π π 4 ( 3 / 2 cos 20 ° − 1 / 2 sin 20 ° ) 4 ⋅ sin 40 °
= tan − 2 tan + 4 tan − 8 tan = = =4
3 3 3 3 2 ⋅ sin 20 ° cos 20 ° sin 40 °
π
= − 5 tan = − 5 3 1
3 9. We have, sin 15° = (1 − cos 30 ° )
1 1 4 2
2. sec 2 θ + cosec 2 θ = + = ≥4
cos θ sin θ sin 2 2θ
2 2 1 3 1
= 1 − = 2− 3
4 2 2 2
Also, sec 2 θ cosec 2 θ = ≥4
sin 2 2θ which is an irrational number.
Thus, required quadratic equation will be 1
cos 15° = 2 + 3 is also an irrational number.
x 2 − t x + t = 0, where t ≥ 4 2
Hence, x 2 − 5 x + 5 = 0 can be the required equation. 1
sin 15° cos 15° = sin 30 ° =
1
3π 4π 2 4
3. cos 2 + cos 2 = cos 2 108° + cos 2 144°. which is a rational number.
5 5
Further, sin 15° cos 75° = sin 15° cos(90 ° − 15° )
Ta rg e t E x e rc is e s
2 2
5 − 1 5 + 1 1
= sin 2 18° + cos 2 36° = + = sin 15° sin 15° = (2 − 3 )
4 4 4
2(5 + 1) 3 which is an irrational number.
= =
16 4 10. We have,
4. sin (2 × 360 ° − 120 ° )cos (360 ° − 30 ° ) π 4π 5π π 2π 4π
cos cos cos = − cos cos cos
+ cos 120 ° sin (180 ° − 30 ° ) 7 7 7 7 7 7
5π 2π 2π
= − sin 120 ° cos 30 ° + cos 120 ° sin 30 ° As cos = cos π − = − cos
7 7 7
= − sin (90 ° + 30 ° )cos 30 ° + cos (90 ° + 30 ° )sin 30 °
= − cos 2 30 ° − sin 2 30 ° 1 π π 2π 4π
=− 2 sin cos cos cos
π 7
= −1 2 sin 7 7 7
7
5. Given expression 1 4π 4π 1 8π
1 =− sin cos =− sin
1 − 2 − cos 80 ° π π 7
1 − 2(cos 60 ° − cos 80 ° ) 2
2
2 sin 7 7 8 sin
= = 7 7
2 sin 10 ° 2 sin 10 ° 1 π 1 π 1
2 cos 80 ° cos(90 ° − 10 ° ) sin 10 ° =− sin π + = − − sin =
= = = =1 π 7 π 7 8
2 sin 10 ° sin 10 ° sin 10 ° 8 sin 8 sin
7 7
6. Given expression 11. 6 (sin 6 θ + cos 6 θ ) − 9 (sin 4 θ + cos 4 θ ) + 4
3 1
= 2 sin 75° − cos 75° = 6 [(sin 2 θ + cos 2 θ )3 − 3 sin 2 θ cos 2 θ (sin 2 θ + cos 2 θ )]
2 2
− 9 [(sin 2 θ + cos 2 θ )2 − 2 sin 2 θ cos 2 θ ] + 4
= 2(cos 30 ° sin 75° − sin 30 ° cos 75° )
1 = 6 [1 − 3 sin 2 θ cos 2 θ ] − 9 [1 − 2 sin 2 θ cos 2 θ ] + 4
= 2 sin (75° − 30 ° ) = 2 sin 45° = 2 × = 2 = 6− 9+ 4=1
2
2 sin α
7. Given, sin α =
1
and sin β =
3 12. Given, =x
5 5 1 + cos α + sin α
2 4 2 sin α (1 − cos α − sin α )
⇒ cos α = and cos β = ⇒ =x
5 5 (1 + cos α + sin α )(1 − cos α − sin α )
∴ sin(β − α ) = sin β cos α − cos β sin α 2 sin α (1 − cos α − sin α )
3 2 4 1 2 ⇒ =x
= − = 1 − sin 2 α − cos 2 α − 2 sin α cos α
5 5 5 5 5 5
1 1 − cos α − sin α
Clearly, 0 < sin( β − α ) < ⇒ =−x
482 2 cos α
13. Since, sec θ ∉ (− 1, 1)
∴ sec θ ≠
1
2
2
π
21. cos y cos π
2
π
− x − cos − y cos x
π
+ sin y cos − x + cos x sin − y = 0
9
Targ e t E x e rc is e s
15 12 (sin x + cos x ){(1 − sin x cos x )
17. Given, sin α = , tan β =
17 5 + (cos x − sin x )}
π 3π ⇒ A=
Since, < α < π , π < β < 1 + cos x − sin x − sin x cos x
2 2
8 12 ⇒ A = sin x + cos x
∴ cos α = − , sin β = − 1 1
17 13 ⇒ A= 2 sin x + cos x ...(i)
2 2
5
and cos β = − π π
13 ⇒ A = 2 cos sin x + sin cos x
4 4
Now, sin(β − α ) = sin β cos α − cos β sin α
12 −8 −5 15 π
=− = 2 sin + x
− 4
13 17 13 17
96 75 171 Again, by Eq. (i), we get
= + = π π π
221 221 221 A = 2 sin sin x + cos cos x = 2 cos −x
4 4
4
18. cos 2 (α − β) + 2 ab sin(α − β)
= cos 2 (α − β ) + 2 cos(θ − α )sin(θ − β )sin(α − β ) 24. Given expression = cosec A sin(B + C )
= cos (α − β ) + [sin{2θ − (α + β )}
2 = cosec A ⋅ sin(π − A) [Q A + B + C = π]
= cosec A ⋅ sin A = 1
+ sin (α − β )]sin(α − β )
3 4
= 1 + sin{2θ − (α + β )} sin(α − β ) 25. cos( A − B) = ⇒ tan( A − B) =
= 1 + sin{(θ − α ) + (θ − β )} sin{(θ − β ) − (θ − α )} 5 3
tan A − tan B 4
= 1 + sin 2 (θ − β ) − sin 2 (θ − α ) ⇒ =
1 + tan A tan B 3
= cos 2 (θ − α ) + sin 2 (θ − β ) = a2 + b2
⇒ tan A − tan B = 4
19. Put x = 60 °, then expression reduces to 1, therefore (b) Now, (tan A + tan B)2 = (tan A − tan B)2
is the appropriate choice. + 4 tan A tan B = 24
20. sin 47 ° + sin 61° − sin 11° − sin 25° ⇒ tan A + tan B = 2 6
∴ tan A = 2 + 6 and tan B = 6 − 2
= 2 sin 54° cos 7 ° − 2 sin 18° cos 7 ° 1
cos A =
= 2 cos 7 ° (sin 54° − sin 18° ) 11 + 4 6
= 2 cos 7 ° (cos 36° − sin 18° ) 1
5 + 1 5 − 1 cos B =
= 2 cos 7 ° − 11 − 4 6
4 4 1 1
∴ cos A cos B = =
= cos 7 ° 121 − 96 5 483
9 sin A sin B =
(2 + 6 )( 6 − 2 ) 2
5
∴ cos( A + B) = cos A cos B − sin A sin B
=
5
31. Given, ∠C =
2π
3
⇒ A+ B=
π
3
Now, cos 2 A + cos 2 B − cos A cos B
Objective Mathematics Vol. 1
1 2 1 1
= − =− = [2 + cos 2 A + cos 2 B − cos( A + B) − cos( A − B)]
5 5 5 2
2π 4π 1
26. f(θ ) = sin 2 θ + sin 2 θ + + sin 2 θ +
1
= 2 + 2 cos( A + B)cos( A − B) − − cos( A − B)
3 3 2 2
1 4π 8π 1 3 3
= 3 − cos 2θ − cos + 2θ − cos + 2θ = + cos( A − B) − cos( A − B) =
2 3 3 2 2 4
1
2 π 10
1 πr πr
= 3 − cos 2θ − 2 cos(2 π + 2θ )cos
2 3 32. Let I = ∑ 4 cos 3 3
+ 3 cos
3
r =0
1 3 10
= (3 − cos 2θ + cos 2θ ) = 1 πr 1
2 2 = ∑ 4 cos πr + 3 cos = (I1 + I2 )
3 4
π 3 r =0
⇒ f = 10
15 2
2 1 1
∴ I1 = ∑ cos πr = 1 − 1 + 1 − 1 + K − 1 + 1 = 1
r =0
27. We have, = +
cos x cos( x − y ) cos( x + y ) 10 π 11 π
10 cos ⋅ ⋅ sin
πr 2 3 6 1
=
2 cos x cos y and I2 = ∑ cos = =−
3 π 2
cos 2 x − sin 2 y r =0 sin
6
⇒ 2 cos 2 x − 2 sin 2 y = 2 cos 2 x cos y 1 3 1
⇒ 2 cos 2 x(1 − cos y ) = 2 sin 2 y ∴ I = 1 − = −
4 2 8
y y y
⇒ 2 cos 2 x 2 sin 2 = 8 sin 2 cos 2 33. The given equation is
2 2 2 −2
y 3 cos A + 2 = 0 ⇒ cos A =
Ta rg e t E x e rc is e s
⇒ cos 2 x = 2 cos 2 3
2
y Since, A is angle of triangle.
⇒ cos 2 x sec 2 = 2
2 ∴ A < π ⇒ sin A is positive.
y 5
⇒ cos x sec = ± 2 ∴ sin A = (1 − cos 2 A) =
2 3
1 sin A − 5
28. sin 3 x sin 3 x = sin 2 x(cos 2 x − cos 4 x ) ⇒ tan A ==
2 cos A 2
1
= (1 − cos 2 x )(cos 2 x − cos 4 x ) − 5
4 sin A + tan A =
1 6
= (cos 2 x − cos 4 x − cos 2 2 x + cos 2 x cos 4 x ) −5
4 sin A tan A =
1 1 + cos 4 x 1 6
= cos 2 x − cos 4 x − + (cos 6 x + cos 2 x ) Hence, the equation whose roots are sin A and tan A, is
4 2 2
x 2 − (sin A + tan A)x + sin A tan A = 0
13 3 1 1
= cos 2 x − cos 4 x + cos 6 x − 5 −5
4 2 2 2 2 ⇒ x2 + x+ =0
1 3 3 1 6 6
= − + cos 2 x − cos 4 x + cos 6 x ⇒ n = 6
8 8 8 8 ⇒ 6x 2 + 5x − 5 = 0
π 34. cot 2 x = cot( x − y )⋅ cot( x − z )
29. A + B = ⇒ tan( A + B) = 1
4 cot x cot y + 1 cot x cot z + 1
⇒ tan A + tan B = 1 − tan A tan B ⇒ cot 2 x =
cot y − cot x cot z − cot x
⇒ tan A + tan B + tan A tan B + 1 = 2
⇒ cot 2 x cot y cot z − cot 3 x cot y − cot 3 x cot z
⇒ (1 + tan A)(1 + tan B) = 2
+ cot 4 x = 0
sin x 1 cos x 3 tan x 1
30. = , = ⇒ = ⇒ cot x cot y cot z + cot x cot y + cot x cot z + 1 = 0
2
sin y 2 cos y 2 tan y 3
tan x + tan y 4 tan x ⇒ cot x cot y(1 + cot 2 x ) + cot x cot z(1 + cot 2 x )
tan( x + y ) = =
1 − tan x tan y 1 − 3 tan 2 x + 1 − cot 4 x = 0
2 ⇒ cot x(cot y + cot z )(1 + cot x ) + (1 − cot 2 x )
2
Also, sin y = 2 sin x and cos y = cos x
3 (1 + cot 2 x ) = 0
4 cos 2 x ⇒ cot x(cot y + cot z ) + (1 − cot 2 x ) = 0
⇒ sin y + cos y = 4 sin x +
2 2 2
=1
9 cot 2 x − 1 1
⇒ = (cot y + cot z )
5 2 cot x 2
⇒ 27 tan 2 x = 5 ⇒ tan x =
3 3 1
484 ⇒ (cot y + cot z ) = cot 2 x
⇒ tan( x + y ) = 15 2
π
35. Since, α + β = , then
2
π
tan β = tan − α = cot α
Now,
⇒
x 2 + y 2 = a2 + b2
x −a
x 2 − a2 = − ( y 2 − b2 )
2 2
9
Targ e t E x e rc is e s
and ...(iii)
a2 b2 + – + –
From Eqs. (i) and (ii), we get
sin α − sin β cos β − cos α 0 π
— 3π
— π
— π
x=a and y = b 4 2 4
sin(α − β ) sin(α − β )
a2 (sin α − sin β )2 + b2 (cos β − cos α )2 π π 3π
Now, x 2 + y 2 = ∴ x ∈ 0, ∪ ,
4 2 4
sin 2 (α − β )
a2 (sin 2 α + sin 2 β ) + b2 (cos 2 α + cos 2 β ) 41. We have,
∞
=
− 2(a2 sin α sin β + b2 cos α cos β ) x= ∑ cos 2n φ = 1 + cos 2 φ + cos 4 φ + ...
sin 2 (α − β ) n=0
⇒ x+
1