DMLmaterial 4
DMLmaterial 4
ChristianV (Homeswinghome@diyAudio)
29 Oct 2022
Abstract
The choice of the material for the membrane of a Distributed Mode Loudspeaker is a key point. This
paper gathers the inputs from the vibrating plate theory encountered in the papers about DML. This paper
proposes also graphical representations of the material properties.
Contents
1 Introduction 2
5 Material chart B
µ = f (T ) with fc and A.f0 scales 4
6 Material table 5
7 To targets? 7
7.1 Target for a home audio application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
7.2 Target for a PA application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
10 Conclusion 8
References 15
Disclaimer : this paper is written in the context of DIY DML building with the target to identify some design
rules to help in the panel construction by the membrane material choice. This document is not written in the
context of any academic or scientific work. Its content is reviewed only by the feedback it can get while posting
1
it in audio DIY forum like diyAudio. It might be too simplistic, nevertheless it proposes an introduction to go to
DML design rules.
The pdf format of the paper is directly extract from a python script used to plot the charts. See Github py2pdf
for more information about this method.
1 Introduction
The key point of DML (Distributed Mode Loudspeaker) is the membrane, its material, its dimensions.
Scientific papers about DML like [1] and many others point to plate vibration theory as a scientific basis.
The important characteristics of the membrane material are:
• ρ : density in kg/m3 (only SI in this paper ;-) )
• E : Young or tensile modulus in Pa (Pascal = N/m2) or more communally in MPa or even GPa
• h : the plate thickness in m
Eh3
B= (1)
12
µ = ρ.h (2)
For a material with a high enough shear resistance G (okay this is something to define!) :
v s
u
u B
ν = 2πf
t (3)
µ
c2
r
µ
fc = (4)
2π B
2.3 Efficiency
For the efficiency the literature like Kerem Ege’s thesis [2] or the patent Heron’s patent WO1992003024A1 [3]
shows it is related to the Young modulus E of the material and its density ρ independently of the thickness
through the parameter R.
R = E/ρ3 (5)
2
T = B/µ3 (6)
T = R/12 (7)
Where, F is the force vector, v is the velocity vector, Zm is the impedance matrix and ω is the angular frequency.
For an infinite plate driven in one point (see [4] or [5]):
Zm = 8 Bµ (9)
p
The theory predicts a first order low pass filter between the voice coil mass mc and the panel mechanical
impedance Zm leading to a reduction of the sound level above the cut off frequency fhigh .
Zm
fhigh = (10)
2πmc
3
s
B
A.f0 = π (11)
µ
5 Material chart B
µ = f (T ) with fc and A.f0 scales
See figure 3
An other graph is possible based on B
µ versus µ3 .
B
In this graph, the “isofc ” and “isoT ” become horizontal and vertical lines. The reading might be a bit simplified.
4
Figure 2: DML material chart
6 Material table
Here is the table of materials used in this script.
One comment on how the Tectonic material parameters were evaluated :
• From the Tectonic DML500 spec sheet in page 2, the hemispherical contour plot and the polar plots show
the beam effect starts around 5 to 6kHz. This gives a Bµ of 12 (fc = 5500Hz)
• The same specification gives an efficiency of 91dB which following the estimation of the efficiency is a µB3
of 40. See DML efficiency with all the caution mentioned in the document.
Ef f = 83 + 5.log(T ) (12)
Ef f in dB
5
Figure 3: DML material chart
So a areal mass of 0.55kg/m2 and a stiffness of 6.6Nm. Does it make sens? It is the point.
6
# µ kg/m2 B Nm material comment
[17] 0.5 3.4 Polyester imp. paper Bx=4.23, By=2.63Nm, Allicante
honeycomb University
https://www.researchgate.net/publication/223223
exciter_distributed_mode_loudspeakers
[18] 0.75 13.5 GF on alu high-performance-loudspeakers-
honeycomb 4mm optimising-high-fidelity-
loudspeaker-systems-7
[EPS20] 0.36 4.95 EPS LM 20mm LM=LeroyMerlin (french DIY
store)
[XPS20] 0.63 9.9 XPS LM 20mm LM=LeroyMerlin (french DIY
store)
[XPS9] 0.3 1.3 XPS Diall 9mm Diall=BricoDepot/Castorama
brand (french DIY store)
[Popl3] 1.57 19.6 Poplar plywood
PWD 3mm
[Acryl3] 3.8 8.3 Acrylic 3mm
[Cardb3] 0.42 2.0 Cardboard E flute
[C&Bal] 0.95 20.0 CF/balsa Veleric
7 To targets?
See figure 4
The 3 criteria listed are not independent so for each application, 2 can be prioritized, the third one will result.
7
Figure 4: DML material chart : targets
and B
µ and T the target.
s
h0 B 1
htarget = . .
µ0 µ T
10 Conclusion
The idea of the material plot for DML based on the plate vibration theory was detailed in this paper. Hopefully
it makes a link between the DML theory and DML builder experience. If not some changes will be needed. . . in
this paper of course.
A first classification of the material that fits with one can read on the DIY forums was done.
Targets for home application and for PA application are also suggested.
8
Figure 5: DML material plain material tuning
9
Methods for membrane tuning (plain material) or design (sandwich) are also proposed
For now it is more the principle of the use of the chart and the equations below that are highlighted, more than
the values of stiffness for material like XPS or plywood. In addition difference in XPS and plywood may occur
depending of the sourcing, the country.
The next steps are :
• Check the materials data and the sources
• Improve the method to measure the bending stiffness of a given material
And the most important : do the materials fitting to the target areas work?
11.2 Functions
def fcoincidence(X):
# returns the coincidence frequency with X = B/mu
fc = 344**2/2/np.pi/np.sqrt(X)
return fc
10
# long table of µ and B for different materials. Format (#, material, µ kg/m2, B Nm, comment)
material_list1 = [('NXT?', 'NXT', 0.55, 1.2, 'estimation of NXT material'),
('1', 'unknown2', 0.5, 0.33, ''),
('2', 'unknown4', 0.6, 18., ''),
('3', 'balsa 3mm', 0.45, 8.4,''),
('4','plywood std 5mm', 3.5, 19.5,''),
('5', 'plywood light 5mm', 2.5, 13.7,''),
('6', 'aluminium 1mm', 2.7, 6.4,''),
('7', 'foamboard', 0.55, 0.4, ''),
('8', 'paper nomex 5mm', 0.44, 18.4, 'Podium?'),
('9', 'GF nomex 3mm', 0.7, 7., 'Loudspeaker-and-headphone-handbook-third-edition'),
('10', 'unknown3', 0.74, 26.6, 'https://ir.nctu.edu.tw/bitstream/11536/27128/1/000188
('11', '5mm polycarb honeycomb thermoplastic skin?', 0.89, 16.2, '5mm honeycombe like
('12', 'glass on polycarb. core', 0.89, 10.4, 'https://patentimages.storage.googleapi
('13', 'carbon on alu core', 1., 57.6, ''),
('14', 'polycarb. on polycarb. core', 0.64, 1.39, ''),
('15', 'Carbone on Rohacell', 0.65, 3.33, ''),
('Tect?', 'Tectonic BmL500', 0.55, 6.6, 'Extrapolated from Tectonic BmL100/500 tech s
('17', 'Polyester imp. paper honeycomb', 0.5, 3.4, 'Bx=4.23, By=2.63Nm, Allicante Uni
('18', 'GF on alu honeycomb 4mm', 0.75, 13.5, 'high-performance-loudspeakers-optimisi
]
# short table of µ and D for different materials. Format (#, material, µ kg/m2, B Nm, comment)
material_list2 = [('EPS20', 'EPS LM 20mm', 0.36, 4.95, 'LM=LeroyMerlin (french DIY store)'),
('XPS20', 'XPS LM 20mm', 0.63, 9.9, 'LM=LeroyMerlin (french DIY store)'),
('XPS9', 'XPS Diall 9mm', 0.3, 1.3, 'Diall=BricoDepot/Castorama brand (french DIY sto
('Popl3', 'Poplar plywood PWD 3mm', 1.57, 19.6, ''),
('Acryl3', 'Acrylic 3mm', 3.8, 8.3, ''),
('Cardb3', 'Cardboard E flute', 0.42, 2., ''),
('C&Bal', 'CF/balsa', 0.95, 20.,'Veleric')
]
# short table of µ and D for different materials. Format (#, material, µ kg/m2, B Nm, comment)
material_list3 = [('XPS14', 'XPS LM 14mm', 0.44, 3.4, ''),
('XPS15', 'XPS LM 15mm', 0.47, 4.2, ''),
('XPS13', 'XPS LM 13mm', 0.41, 2.7, ''),
('XPS16', 'XPS LM 16mm', 0.50, 5.1, ''),
('XPS20', 'XPS LM 20mm', 0.63, 9.9, 'LM=LeroyMerlin (french DIY store)'),
]
# short table of µ and D for different materials. Format (#, material, µ kg/m2, B Nm, comment)
material_list4 = [('Popl3', 'Poplar plywood PWD 3mm', 1.57, 19.6, ''),
('Popl2.5', 'Poplar plywood PWD 2.5mm', 1.3, 11.3, ''),
('Popl2', 'Poplar plywood PWD 2mm', 1.05, 5.8, ''),
('Popl1.5', 'Poplar plywood PWD 1.5mm', 0.78, 2.45, ''),
('Popl1', 'Poplar plywood PWD 1mm', 0.52, 0.72, ''),
11
BFlow_1m2 = BFlow(100, 1., mu_list) # 100Hz, 1m2
# Stiffness for different efficiency coeff T
BT10 = BT(10., mu_list) # T=10 (minimum)
BT100 = BT(100, mu_list) # T=100 (target)
# Stiffness for a given Zm
mms = 0.0001 # exciter voice coil mass in kg
BZ20k = BZm(2*np.pi*mms*20000, mu_list)
BZ15k = BZm(2*np.pi*mms*15000, mu_list)
BZ5k = BZm(2*np.pi*mms*5000, mu_list)
12
p2p.print_twice(logfile,tableline)
plt.loglog(mu, Bm, 'o')
plt.text(mu*1.02, Bm*1.02, index, fontsize=14)
plt.title('DML material chart', fontsize=18) # chart title
## save figure
fig.savefig("./py2pdf_files/DMLmat1.png", bbox_inches="tight", dpi = 200) # this is the key lin
plt.show()
plt.grid(which='major')
plt.grid(which='minor', linestyle=':')
ymin = 1
ymax = 50
host.set_ylim(ymin, ymax)
host.set_xlim(0.2, 200)
par1.set_ylim(fcoincidence(ymin), fcoincidence(ymax))
par2.set_ylim(3.14*ymin**.5, 3.14*ymax**.5)
13
par1.set_yscale('log')
par2.set_yscale('log')
host.yaxis.set_major_formatter(mtick.FormatStrFormatter('%2d'))
host.xaxis.set_major_formatter(mtick.FormatStrFormatter('%2d'))
par1.yaxis.set_major_locator(mtick.FixedLocator(np.arange(3000, 12000, 1000)))
par1.yaxis.set_major_formatter(mtick.FormatStrFormatter('%5d'))
par2.yaxis.set_minor_formatter(mtick.FormatStrFormatter('%2d'))
par2.yaxis.set_major_formatter(mtick.FormatStrFormatter('%2d'))
n = 6
plt.text(BZ20k[n]/mu_list[n]**3, 1.1*BZ20k[n]/mu_list[n], 'ZM20k/0.1g', rotation=ang1)
plt.text(BZ5k[n]/mu_list[n]**3, 1.1*BZ5k[n]/mu_list[n], 'ZM5k/0.1g', rotation=ang1)
plt.text(BZ15k[n]/mu_list[n]**3, 1.1*BZ15k[n]/mu_list[n], 'ZM10k/0.1g', rotation=ang1)
plt.text(1, BFcritic_5k[5]/mu_list[5], 'fc<5kHz')
plt.text(10, 40, 'T=10')
plt.plot((10,10), (ymin,ymax))
host.set_xlabel('B/µ3', fontsize=16)
host.set_ylabel('B/µ with B in N.m', fontsize=16)
par1.set_ylabel("Coincidence frequency fc Hz", fontsize=14)
par2.set_ylabel("Area 1st mode product A.fo Hz.m2", fontsize=14)
plt.plot((190., 9.9, 9.9, 190.), (5.25, 1.2, 14.5, 14.5), 'm--', lw=5)
host.axis["left"].label.set_color(p1.get_color())
if i==0:
plt.title('DML material chart', fontsize=18)
# save figure
fig.savefig("./py2pdf_files/DMLmat2.png", bbox_inches="tight", dpi = 200) # this is the key lin
if i==1:
host.loglog(BFcritic_6d5k/mu_list**3, BFcritic_6d5k/mu_list)
host.loglog(BFcritic_7d5k/mu_list**3, BFcritic_7d5k/mu_list)
plt.plot((15., 28., 50., 28., 15.), (6.3, 6.3, 8.4, 8.4, 6.3), 'b', lw=3)
plt.plot((80., 110., 110., 80., 80.), (14., 16., 20., 17., 14.), 'g', lw=3)
plt.title('DML material chart : targets', fontsize=18)
# save figure
fig.savefig("./py2pdf_files/DMLmat3.png", bbox_inches="tight", dpi = 200) # this is the key lin
if i==2:
host.loglog(BFcritic_6d5k/mu_list**3, BFcritic_6d5k/mu_list)
host.loglog(BFcritic_7d5k/mu_list**3, BFcritic_7d5k/mu_list)
# plt.plot((15., 28., 50., 28., 15.), (6.3, 6.3, 8.4, 8.4, 6.3), 'b', lw=3)
# plt.plot((80., 110., 110., 80., 80.), (14., 16., 20., 17., 14.), 'g', lw=3)
plt.title('DML material chart : XPS', fontsize=18)
# save figure
fig.savefig("./py2pdf_files/DMLmat4.png", bbox_inches="tight", dpi = 200) # this is the key lin
if i==3:
host.loglog(BFcritic_6d5k/mu_list**3, BFcritic_6d5k/mu_list)
host.loglog(BFcritic_7d5k/mu_list**3, BFcritic_7d5k/mu_list)
# plt.plot((15., 28., 50., 28., 15.), (6.3, 6.3, 8.4, 8.4, 6.3), 'b', lw=3)
# plt.plot((80., 110., 110., 80., 80.), (14., 16., 20., 17., 14.), 'g', lw=3)
plt.title('DML material chart : plywood', fontsize=18)
# save figure
fig.savefig("./py2pdf_files/DMLmat5.png", bbox_inches="tight", dpi = 200) # this is the key lin
plt.show()
11.8 py2pdf
print("start py2pdf")
cmd = "py2pdf " + scriptname # alias
subprocess.call(['/bin/bash', '-i', '-c', cmd]) # to launch the bash file (alias)
14
References
[1] R. Martinez Redondo, “Optimization of bending wave loudspeakers,” Master’s thesis, 2007. Available:
https://odr.chalmers.se/bitstream/20.500.12380/61709/1/61709.pdf
[2] K. Ege, “La table d’harmonie du piano – études modales en basses et moyennes fréquences,” PhD thesis,
2009. Available: https://www.researchgate.net/publication/41663333_La_table_d%27harmonie_du_
piano_-_Etudes_modales_en_basses_et_moyennes_frequences
[3] K. H. Heron, “Panel-form loudspeaker.” Google Patents, 1992. Available: https://patents.google.com/
patent/WO1992003024A1/fi%20US4325121.pdf
[4] G. Bank and N. Harris, “The distributed mode loudspeaker-theory and practice.” Mar. 1998. Available:
http://www.aes.org/e-lib/browse.cfm?elib=7985
[5] C. Ellis and N. P. R. Hill, “Loudspeakers.” Google Patents, 2005. Available: https://patents.google.com/
patent/US6839444B2/en
[6] B. Pueo, J. Lopez, G. Ramos, and J. Escolano, “Efficient equalization of multi-exciter distributed mode
loudspeakers,” Applied Acoustics, vol. 70, pp. 737–746, May 2009, doi: 10.1016/j.apacoust.2008.09.005.
15