UTP Notes 01
UTP Notes 01
Urban issues
No Integration between Land use and Transport while preparing Urban Transport Plan.
No Quantification of Community Impact for Transport Proposals
No consideration of issues like Non-motorized Trips, Mobility for Weaker Section and
Physically Handicapped,
Non-consideration of equity issues
Conventional techniques are used for developing Transport Model
Travel characteristics
(Travel characteristics-i.e. Trip and traveler profile)
There are certain special characteristics of travel demand that require recognition for planning
and design purposes, and these are discussed below:
The spatial orientation of trips has important influence on supply requirements and costs. A few
typical spatial distribution patterns of trips in urban areas are listed below:
Travel along dense corridors, which are usually radial connecting suburbs to central
business district (CBD).
Diffused travel pattern caused by urban sprawl.
Suburb to suburb or circumferential travel.
Travel within large activity centers in CBD and suburbs.
Different modes of transportation may be needed to serve these different travel patterns. For
example, fixed-route public transit service usually is efficient for concentrated travel along a
dense corridor, but it is not ideally suited to serve a diffused travel pattern in a cost-effective
manner.
Choice of domicile and work place, lifestyles and different travel needs of individuals and
families make the comprehension of trip making characteristics of a large metro area very
complex. These complexities may be illustrated through trips made by a typical suburban US
household on a given weekday (Figure 1). Assume that this household has four members,
including two kids who go to a grade school, and two cars. It can be seen that there are at least
11 trips made by this household at different times of day. Most of the trips are auto trips and
two trips are taken in the “walk” mode. Travel demand modeling attempts to capture such
spatial and temporal variations in travel at an aggregate level, such as a zone, in which a
number of households, businesses and offices exist.
Helps planners and Tribal governments make well-informed decisions on how to spend money
set aside for transportation projects;
Involves Tribal communities, Federal government agencies, State and local governments,
metropolitan and regional planning organizations, special interest groups, and others; and
Results in workable strategies to achieve transportation investment goals over both the long
term (20 years or more) and the short term (three to five years).
The demand for travel T is a function of cost C is easy to conceive. The classical approach
defines the supply function as giving the quantity T which would be produced, given a market
price C. Since transport demand is a derived demand, and the benefit of transportation after on
the nonmonetary terms (time in particular), the supply function takes the form in which C is the
unit cost associated with meeting a demand T. Thus, the supply function encapsulates response
of the transport system to a given level of demand. In other words, supply function will answer
the question what will be the level of service of the system, if the estimated demand is loaded
to the system. The most common supply function is the link travel time function which relates
the link volume and travel time.
Travel demand:
Travel demand is expressed as the number of persons or vehicles per unit time that can be expected
to travel on a given segment of a transportation system under a set of given land-use, socioeconomic,
and environmental conditions.
Forecasts of travel demand are used to establish the vehicular volume on future or modified
transportation system alternatives.
Trades Analysis
This approach to demand estimation is based on the extrapolation of past trends.
With the land-use forecasts established in terms of number of jobs, residents, auto ownership,
income, and so forth, the traffic that this land use will add to the highway and transit facility
can be determined.
The urban transportation planning process involves two separate tasks. The first is to
determine the project cost, and the second is to estimate the amount of traffic expected
in the future.
Organization
These are the organizations responsible for the planning and implementation of the plans in
different areas.
– State Metropolitan Planning Organizations, like MSRDC, MMRDA, MAHADA, CIDCO etc.
– To look after the planning and making sure to achieve the goals and objectives reflecting
current community values.
Prospectus
These organizations should prepare plans that are clear in vision and clearly indicate the
responsibilities of different coordinating agencies so that there is no overlap of works and
interference.
– Establishes a multiyear framework for the planning process.
– Defines planning procedures, important issues, responsibilities and elements of planning.
Transportation plan
The transportation plan includes planning at two levels:
a) Long‐range plan
b) Transportation System management Plan
Long Term Strategy plan which examines the traffic implications of alternative land use
options and recommends the best pattern of staging development
Consider and evaluate different strategies for urban development to determine the
optimal urban transport system with maximum benefits to the community at least
investment
To work out a rational balance between residential and work place so that journey to
work trip is contained
To work out a financially feasible transport system that is compatible to environment
and with preferences to the community where the option of Public Transport can also
be examined and developed.
Design and Implement Transport projects that becomes an integral parts of long term transport
plan.
Improve the existing situation by optimizing the transport system with least cost
through development of TSM.
Control the movement of people and goods on the urban transport network in safe
and efficient manner.
No. of measures adopted for preparation of Short Term Transport Plan
Traffic Engineering Techniques
Lorry Routes
Traffic Restraint
Parking Control
Bus Priority
Public Transport Pricing and Marketing
Pedestrian Scheme
Demand function
Necessary understand the where to invest in new facilities and what type of facilities to
invest
Two interrelated elements need to be considered
Overall regional traffic growth/decline
Potential traffic diversions
Travel demand modeling aims to establish the spatial distribution of travel explicitly by means of
an appropriate system of zones
Independent Variables
Travel attributes Travel attributes such as time, cost, frequency, and comfort
Disaggregate Techniques/Modal
– The demand model that uses the data on individual decision making unit as it is and explains
the behavior of the decision making unit when confronted with alternatives is a disaggregate
model
Unit 2
Data Collection and Inventories
Inventories and surveys are made to determine traffic volumes, land uses, origins and destinations of
travelers, population, employment, and economic activity. Inventories are made of existing transportation
facilities, both highway and transit/transportation. Capacity, speed, travel time, and traffic volume are
determined. The information gathered is summarized by geographic areas called traffic analysis zones
(TAZ).
The size of the TAZ will depend on the nature of the transportation study, and it is important that the
number of zones be adequate for the type of problem being investigated. Often, census tracts or census
enumeration districts are used as traffic zones because population data are easily available by this
geographic designation.
Collection of data
The data collection phase provides information about the city and its people that will serve as the basis
for developing travel demand estimates. The data include information about
Economic activity ----- employment, sales volume, income, etc.
Land use ----- type, intensity
Travel characteristics ----trip and traveler profile, and
Transportation facilities ----capacity, travel speed, etc.
This phase may involve surveys and can be based on previously collected data.
Overview
The four-stage modeling, an important tool for forecasting future demand and performance of
a transportation system, was developed for evaluating large-scale infrastructure projects.
Therefore, the four-stage modeling is less suitable for the management and control of existing
software. Since these models are applied to large systems, they require information about
travelers of the area influenced by the system. Here the data requirement is very high, and may
take years for the data collection, data analysis, and model development. In addition,
meticulous planning and systematic approach are needed for accurate data collection and
processing.
There are three important aspects of data collection namely; Survey design, Household data
collection, and data analysis.
Survey design
Designing the data collection survey for the transportation projects is not easy. It requires
considerable experience, skill, and a sound understanding of the study area. It is also important
to know the purpose of the study and details of the modeling approaches, since data
requirement is influenced by these. Further, many practical considerations like availability of
time and money also has a strong bearing on the survey design.
In this section, we will discuss the basic information required from a data collection, defining
the study area, dividing the area into zones, and transport network characteristics.
Information needed
Typical information required from the data collection can be grouped into four categories,
enumerated as below.
1. Socio-economic data: Information regarding the socio-economic characteristics of the
study area. Important ones include income, vehicle ownership, family size, etc. This
information is essential in building trip generation and modal split models.
2. Travel surveys: Origin-destination travel survey at households and traffic data from
cordon lines and screen lines (defined later). Former data include the number of trips
made by each member of the household, the direction of travel, destination, the cost of
the travel, etc. The latter include the traffic flow, speed, and travel time measurements.
These data will be used primarily for the calibration of the models, especially the trip
distribution models.
3. Land use inventory: This includes data on the housing density at residential zones,
establishments at commercial and industrial zones. This data is especially useful for trip
generation models.
4. Network data: This includes data on the transport network and existing inventories.
Transport network data includes road network, traffic signals, junctions etc. The service
inventories include data on public and private transport networks. These particulars are
useful for the model calibration, especially for the assignment models.
Urban area
1. Population not less than 5,000.
2. Non-agricultural workers not less than 75% of the total workers.
3. Population density not less than 400 per sq. km.
Towns with population of 0.1 million and above are termed as cities.
Transportation Survey
The first stage in the formulation of a transportation plan is to collect data on all factors are
Likely to influence travel pattern. The work involves a number of surveys so as to have:
1. An inventory of existing travel pattern.
2. An inventory of existing transports facilities.
3. An inventory of existing land use and economic activities.
Study area
Transportation planning can be at the national level, regional level or at the urban level.
For planning at the urban level, the study area should embrace the whole conurbation
containing the existing and potential continuously built-up areas of the city.
The imaginary line representing the boundary of the study area is termed as the ‘external
cordon’. The area inside the external cordon line determines the travel pattern to a large extent
and as such is surveyed in great detail.
Selection of External Cordon Line
The selection of the external cordon line for urban transportation planning should be done
carefully with due to consideration to the following factors:
1. The external cordon line should circumscribe all areas, which are already built up, and
those areas, which are considered likely to be developed during the planning period.
2. The external cordon line should contain all areas of systematic daily life of the people
oriented towards the city center and should in effect be the commuter shed.
3. The external cordon line should -be continuous and uniform in its courses so that
movements cross it only once. The line should intersect roads where it is safe and
convenient for carrying out traffic survey.
4. The external cordon line should be compatible with the previous studies of the areas
studies planned for the future.
Zoning
The defined study area is sub-divided into smaller areas called zones or traffic zones.
The purpose of such a subdivision is to facilitate the spatial quantification of land use
and economic factors, which influence travel pattern. Subdivision into zones further
helps in geographically associating the origins and destinations of travel.
Zones within the study area are called internal zones and those outside the study area
are called external zones.
In large study projects, it is convenient to divide the study area into sectors, which are
sub divided into zones. Zones can themselves be sub divided into sub- zones depending
upon the type of land use.
A convenient system of coding of the zones will be useful for the study. One such system
is to divide the study area into 9 sectors. The central sector CBD is designated 0, and the
remaining eight are designated from 1 to 8 in clockwise manner. The prefix 9 is reserved
for the external zones. Each sector is subdivided into 10 zones bearing numbers from 0
to 9.
It would be helpful, if the following points are kept in view when dividing the area into
Zones:
1. The zones should have a homogenous land use so as to reflect accurately the associated
trip making behavior.
2. Anticipated change in land use should be considered when sub- dividing the study area
into zones.
3. It would be advantages, if the subdivision follows closely that adopted by other bodies(
e.g. census department) for data collection. This will facilitate correlation of data.
4. The zones should not too large to cause considerable errors in data. At the sometime,
they should not be too small either to cause difficulty in handling and analyzing the
data.As a general guide, a population of 1000-3000 may be the optimum for a small
area, and a population of 5000- 10000 may be the optimum for large urban areas. In
residential areas, the zones may accommodate roughly 1000 households.
5. The zones should preferably have regular geometric form for easily determining the
centroid, which represent the origin and destination of travel.
6. The sectors should represent the catchment of trips generated on a primary route.
7. Zones should be compatible with screen lines and cordon lines.
8. Zone boundaries should preferably be watersheds of trip making.
9. Natural or physical barriers such as canals, rivers, etc. can form convenient zone
boundaries.
10. In addition to the external cordon lines, there may be a number of internal cordon lines
arranged as concentric rings to check the accuracy of survey data.
Screen lines
Running through the study area are also established to check the accuracy of data collected
from home- interview survey. Screen lines can be convenitally located along physical or natural
barriers having a few crossing points. Examples of such barriers are river, railway lines, canals,
etc.
Types of Movements
The basic movements for which survey data are required are:
1. Internal to internal.
2. External to internal.
3. Internal to external.
4. External to external.
For large urban areas, the internal to internal travel is heavy whereas for small areas having a
small population (say less than 5000) the internal to internal travel is relatively less. Most
details of internal to internal travel can be obtained by home interview survey.
The details of internal- external, external internal and external- external travels can be studied
by cordon surveys.
Data Collection:
The data can be collected:
1. At home.
2. During the trip end.
3. At the destination of the trip.
When collected at home, the data can be wide ranging and can over all the trips made during a
given period. The data collected during the trip is necessary of limited scope since the
procedure yields data only on the particular trip intercepted.
At the destination end, the direct interview types of surveys provide data on demand for
parking facilities and or the trip ends at major traffic attraction centers such as factories, offices
and commercial establishments.
The following are the surveys that are usually carried out:
1. Home- interview survey.
2. Commercial vehicles surveys.
3. Intermediate public transport surveys.
4. Public transport surveys.
5. Road –side – interview surveys.
6. Post- card- questioner surveys.
7. Registration- number surveys.
8. Tag- on- vehicle surveys.
The information to be collected from home-interview survey can be broadly classified in two
Groups:
1. Household information.
2. Journey or trip data.
Journey data will contain information all trips made during the previous 24hr. with regard to:
a. Origin and destination of trip.
b. Purpose of trip.
c. Modes of travel.
d. Time at start of trip.
e. Time at finish of trip.
Sampling Techniques
• But where then does data come from? How is it gathered? How do we ensure its
accurate? Is the data reliable? Is it representative of the population from which it was
drawn? This chapter explores some of these issues.
Sampling Plans…
We will focus our attention on these three methods:
• Simple Random Sampling,
• Stratified Random Sampling, and
• Cluster Sampling
Simple Random Sampling…
A simple random sample is a sample selected in such a way that every possible sample
of the same size is equally likely to be chosen.
Drawing three names from a hat containing all the names of the students in the class is
an example of a simple random sample: any group of three names is as equally likely as picking
any other group of three names.
• Random sample of 100 cokes bottles today at the coke plant.
• Random sample of 50 pine trees in a 1000 acre forest.
• Random sample of 5 deer in a national forest.
Stratified Random Sampling…
• A stratified random sample is obtained by separating the population into mutually
exclusive sets, or strata, and then drawing simple random samples from each stratum.
Cluster Sampling…
• A cluster sample is a simple random sample of groups or clusters of elements (vs. a
simple random sample of individual objects).
• This method is useful when it is difficult or costly to develop a complete list of the
population members or when the population elements are widely dispersed
geographically. Used more in the “old days”.
• Cluster sampling may increase sampling error due to similarities among cluster
members.
Sampling Errors..
Two major types of error can arise when a sample of observations is taken from a population:
• Sampling error refers to differences between the sample and the population that exist
only because of the observations that happened to be selected for the sample. Random
and we have no control over.
Non-Sampling Errors…
Non-sampling errors are more serious and are due to mistakes made in the acquisition of data
or due to the sample observations being selected improperly. Most likely caused be poor
planning, sloppy work, act of the Goddess of Statistics, etc.
1) Errors in data acquisition,
2) Non response errors and Selection bias.
Expansion factors
Sample expansion the second step in the data preparation is to amplify the survey data in order to
represent the total population of the zone. This is done with the help of expansion factor which is
defined as the ratio of the total number of household addressed in the population to that of the
surveyed. A simple expansion factor Fi for the zone i could be of the following form.
where a is the total number of household in the original population list, b is the total number of
addresses selected as the original sample, and d is the number of samples where no response was
obtained.
Accuracy Checks
SURVEY DATA CHECKS: The data collected for transportation planning by any survey can be
check out by following methods:
Accuracy Check
Data accuracy is the foundation dimension of data quality.
Accuracy
Timeliness
Relevance
Completeness
Understood by users
Trusted by users etc.
Screen Line Checks
Traffic counts taken at selected screen lines are useful for comparing model generated
travel pattern with actual volumes of traffic crossing screen line and making
adjustments.
This check is useful for calibration and validation of model
Check is carried out data collected by home interview survey
It is line separating study area.
Consistency check
Data constitutes summarizes the validity, accuracy, usability and integrity of related
data applications.
This confirming the data reliability.
Cordon line checks
Cordon line is the boundary of study area
The data collected from internal to external, external to internal and external to
external
Cordon line points can be use to compare the trips calculated and observed.
This check is very useful for data adjustment for study area
—Income—–Employment—vehicle ownership.
Socio-economic data: Information regarding the socio-economic characteristics of the study area.
Important ones include income, vehicle ownership, family size, etc. This information is essential in
building trip generation and modal split models.
Household characteristics This section includes a set of questions designed to obtain socioeconomic
information about the household. Relevant questions are:number of members in the house, no.of
employed people, number of unemployed people, age and sex of the members in the house etc.,
number of two-wheelers in the house, number of cycles, number of cars in the house etc., house
ownership and family income.
Unit 3
Trip generation and distribution:
UTPS approach
The first phase of the transportation planning process deals with surveys, data collection and
inventory. The next phase is the analysis of the data so collected and building models to
describe the mathematical relationship that can be discerned in the trip‐making behaviour. The
analysis and model building phase starts with the step commonly known as Trip Generation.
Trip Generation:
Trip generation is a general term used in the transportation planning process to calculate the
number of trip ends in a given area. The objective of the trip generation stage is to understand
the reasons behind the trip making behaviour and to produce mathematical relationships to
synthesize the trip‐making pattern on the basis of observed trips, land‐use data, transportation
system characteristics, trip maker characteristics and household characteristics.
Trip Types:
Trips can be defined based on the nature of movement between the zones and across the
cordon lines. They are also categorized based on the location of trip ends. Categorizations in
use are:
• Intra‐zonal trips
• Inter‐zonal trips
• Through trips
• Home‐based trips
• Non‐home based trips
Intra‐zonal, Inter‐zonal and through trips are already defined while discussing transportation
surveys. The first activity in travel‐demand forecasting is to identify the various trip types
important to a particular transport‐planning study. The trip types studied in a particular area
depend on the types of transport‐planning issues to be resolved. The first level of trip
classification used normally is a broad grouping into home‐based and non‐home‐based trips.
Home‐ based trips: Home‐based trips are those trips having one end of the trip (either origin or
destination) at the home of the persons making the trip.
Non‐home‐based trips: Non‐home based trips are those trips having neither end at the home
of the person making the trip. The trip ends are classified into productions and attractions.
Trip Production: A production is the home end of any trip that has one end at the home (i.e. of
a homebase trip), or is the origin of a trip with neither end home based (i.e. of a non – home
based trip).
Trip attraction models
: An attraction is the non‐home end of a home‐based trip, and is the destination of a trip with
neither end home‐based (i.e. of a non‐home‐based trip).
This points towards one aspect related to trips generated, i.e. the total number of trips
produced in any area should be equal to the total number of trips attracted in that area. If trips
produced are Pi in zone ‘i’ and trips attracted are Aj towards zone ‘j’, then
Trip purpose:
Trips are made with different purposes and a classification of trips by purpose is necessary. Trip
classifications that have been used in the major transport‐planning studies for home based trips
are:
Work
Education
Social
Recreational and sports
Shopping
Others
Trip Mode:
Trip mode is the type of vehicle used by a person for traveling between an origin and
destination.
Trip Time:
Trip time is the time taken while moving between a set of origin and destination.
Trip Length:
Trip length is the distance traveled between a set of origin and destination.
Factors influencing trip production
Households may be characterized in many ways, but a large number of trip‐production studies
have shown that the following variables are the most important characteristics with respect to
the major trip types such as work and shopping trips:
1. The number of workers in a household, and
2. The household income or some proxy of income, such as the number of cars per household.
Various factors that create an effect on the production of the trips are discussed below:
Population and its characteristics: The size of the population in an area obviously has an effect
on the total number of trips supposed to be produced from that area. This further can be
looked at in terms of:
a. Number of households in an area: More are the households more will be the trips.
b. Size and composition of the household: Bigger is the size of the household, it is
possible that more trips will be produced by that household. The composition defines
the members of a household involved in different activities that necessitates travel. This
may be related to work, education, shopping, recreation, etc and thus produces
different types of trips from a single household.
c. Population density: This is one factor that is discussed in detail with respect to the use
of different modes or travel. In general, if the density is more, more will be the trips
from that area.
Household Income: Disposable household income will define the possibility of trip making
by the members of a household.
1. Land use activities: Land use activities in an area define the type of the trips that will be
attracted towards that area. If the area is homogeneous in nature then the trips made to that
area will be of same nature but heterogeneous activities will attract different types of trips.
2. Employment opportunities: The employment potentiality of any area is defined by the type
of activity undertaken in that area. The industrial, shopping unit or an office establishment
directly governs the trip attraction rate.
3. Floor area allotted for the activities: Another factor to which the trip attraction rate can be
related is the floor space in the premises of industries, shops and offices. This will allow the
estimation of different trips which can be made to an area.
Category Analysis
Category Analysis or cross‐classification technique is simply a technique for estimation of the
trip production characteristics of households which have been sorted in a number of separate
categories according to a set of properties that characterize the household. The method was
developed by Wotton and Pick and has been used in some transportation studies in U.K. A
multidimensional matrix defines the categories, each dimension in the matrix representing one
independent variable. The independent variables themselves are classified into a definite
number of discrete class intervals. Category analysis may also be used for estimating trip
attractions.
Assumptions
The technique is based on the following assumptions:
(i) The household is the fundamental unit in the trip generation process, and most journeys
begin or end in response to the requirements of the family.
(ii) The trips generated by the household depend upon the characteristics of that household
and its location relative to its required facilities or activities.
(iii) Households with one set of characteristics generate different rates of trips from households
with other set of characteristics.
(iv) Trip generation rates are stable over a time so long as factors external to the household are
the same as when the trips were first measured.
Trip attraction
Trip attraction rates can be made by analyzing the urban activities that attract trips.
Trips are attracted to various locations, depending on the character of, location, and
amount of activities taking place in a zone.
Three tools are used for this end too, but obviously types of independent variables used
are different.
Zonal Models
Trip Distribution
Introduction
Once estimate of the trips generated, i.e. produced from and attracted to the various zones, are
made the next step is to determine the direction of travel of these trips. The number of trips
produced in any zone of the study area has to be apportioned to the zones to which these trips
are attracted. Say, there are pi trips produced from zone i by trip maker’s category ‘q’ and aj is
the number of trip ends attracted to zone j, then the number of trips between zone ‘i’ and zone
‘j’ (i.e. tq
i‐j) would be estimated using trip distribution technique. This can be represented in a matrix
form as given below:
The horizontal axis of the trip matrix shown represents the zones of attractions (i.e.
destinations) and the vertical axis represents the zones of production (i.e. origin) numbered
from 1 to n. The total of any individual row, i, represents the total number of trips produced in
zone i (pi) and the total of any individual column, j, represents the number of trips attracted to
zone j (aj). Therefore,
Based on the future land uses in the zones and the area, the future trips going to be produced
or attracted from or to any zone are computed. These may be denoted as Pi and Aj
respectively.
Methods of trip distribution
There are two categories of trip distribution methods, namely,
(i) Growth factor methods
(ii) Synthetic methods
Growth factor methods have been used in earlier studies and have yielded now to the more
rational synthetic models. Both of these categories are further divided as follows:
Synthetic methods:
(i) Gravity Model
(ii) Tanner Model
(iii) Intervening opportunities model
(iv) Competing opportunities model
Growth Factor Methods The growth factor methods are based on the assumption that the
present travel patterns can be projected to the design year in the future by using expansion
factors. This can be represented by the
general formula as given below:
Ti‐j = ti‐j x F
Where, Ti‐j = number of trips from zone I to zone j in design year (future) ti‐j = number of trips
from zone I to zone j in observed base year F = growth factor
This is the oldest of the growth factor methods and considers the growth rate for the whole
area. A single growth factor, F, for the entire study area is calculated by dividing the future
estimated number of trip ends for the design year by the trip ends in the base year. The future
trips between zone i and j, Ti‐j, are then calculated by applying the uniform growth factor F to
the base year trips between zones i and j, as,
Ti‐j = ti‐j x F
Let us take one example: An O‐D trip matrix for three zones in an area is given below. The
future trips produced and attracted from or towards these zones are 360, 1260 and 3120
respectively. It is required to distribute the future trips among these zones.
Detroit method
This method is the further improvement on average factor method and takes into account the
growth factor for zones and average growth factor for the entire study area. The trips are
computed as:
The trips for zone connectivity 2‐1, 3‐1 and 3‐2 will remain same as the reverse flow. The new
O‐D trip matrix would be as given below:
New growth factor for the whole study area F1 = 4740/4491 = 1.055
As the growth factors of zones are not either 1.0 or near to 1.0, the next interaction starts till
the desired accuracy is reached.
Fratar method
According to this method, the total trips for each zone are distributed to the inter‐zonal
movements, as a first approximation, according to the relative attractiveness of each
movement. This relative attractiveness is considered in the form of Locational factor (L). The
trips distributed can be computed as follows:
Furness method
The method requires the estimates of future traffic originating and terminating at each zone,
thus yielding origin growth factor and destination growth factors for each zone. The traffic
movements are made to agree alternately with the future traffic originating in each zone and
the estimated future traffic terminating in each zone, until both these conditions are roughly
satisfied. Thus,
This method assumes that the trip distance is influenced by the journey time and row and
column totals are nothing but trip ends. The method starts with converting the given O‐D trip
matrix into a unity matrix and finding the growth factors for different production zones for the
given future trips produced from these zones. The procedure after this remains the same as
that of Furness method. Final trip matrix is then converted into travel time index matrix, which
provides the effect of travel time between the zones. The method can be understood from the
example taken below.
Example: The trip frequency observed in actual for the given O‐D trip matrix is as below:
Iteration‐3: Scale trip O‐D matrix using attraction growth factors.
The procedure will continue till equilibrium is achieved. Now, the final O‐D trip matrix is used to
compute the travel time index matrix. This can be computed as follows:
Cell value of travel time index matrix = ti‐j from original matrix / Ti‐j from final matrix
Say, the travel time index matrix is:
The values obtained as such can be termed as friction factor or deterrent factor. This can be
represented as:
Friction factor = f (1/Travel time)
This can help in identifying settlement pattern.
Trips computed for different travel times are as follows:
The trip frequency data, observed and calculated, is presented as a frequency polygon. If the
two data sets do not match then new O‐D adjustment factors are calculated and further these
are used to compute the final origin and destination trip values.
Gravity Models
The gravity model gets its name from the fact that it is conceptually based on Newton’s law of
gravitation. Accordingly it is heuristically derived for synthesizing trip interchanges. It states
that the trip interchange between zone ‘i’ and zone ‘j’ is directly proportional to the product of
the population of the two zones and is inversely proportional to a function of spatial separation
of zones under consideration.
This can be represented by the relationship given as below:
Further, the constrained gravity models were proposed so as to take into consideration the
effect of production or attraction zones. Accordingly, these were termed as Production
constrained Gravity model or attraction constrained gravity model. The formulation is given
below:
Calibration Process:
1. Assume values for Bj and α, say Bj = 1.0 and α = 2. Now calculate Ai.
2. Calculate Bj for calculated Ai values and α.
3. Re‐iterate till the new Ai and Bj values are very near to the Ai and Bj values of previous iteration.
4. Use final values of Ai and Bj with value of α to compute Ti,p and Tj,a.
5. Form an O‐D trip matrix.
Limitation:
The limitation of procedure described is it requires that two criteria be satisfied by a base year
calibration. These two criteria are: agreement between observed and simulated trip length
constraint equation .A principal difficulty wit this calibration procedure is that the travel time
factor function and associated trip length frequency distribution are assumed to be constant for
each zone of a study area.
Opportunity Models
Opportunity model are based on the statistical theory of probability as the theoretical
foundation. The concept has been pioneered by Schneider and developed by subsequent
studies. The two well known models are:
(i) The intervening opportunities models ;
(ii) The competing opportunities model.
Schneider Modification
Modified hypothesis states that the probability that a trip will terminate in some destination
point is equal to the product of the probability that the destination met is acceptable and the
probability that an acceptable destination closer to the origin has not been found. This can be
formulated for a small destination zone ‘dv’ as:
Pr(dv) = [1 – Pr(v)] . l. dv
Where Pr(dv) = probability that a trip will terminate when dv destination opportunities are
considered
Pr(v) = Cumulative probability that a trip will terminate by the time ‘v’ possible destinations are
considered
v = Cumulative total of the destinations already considered
l = a constant probability of a destination being accepted it is considered
The integration of this will yield the following:
Pr(v) = [1 – ki . exp(‐l.v)]
Where ki = a constant for zone ‘i’, which ensures that all the trips produced at zone ‘i’ are
distributed
In the intervening opportunities model, it is assumed that the trip interchange between an
origin and a destination zone is equal to the total trips emanating from the origin zone
multiplied by the probability that each trip will find an acceptable terminal at the destination. It
is further assumed that the probability that a destination will be acceptable is determined by
two zonal characteristics, namely the size of the destination zone and the order in which it is
encountered as trips proceed from the origin. The probability function in above may then be
expressed as the difference between the probability that the trip origins at i will find a suitable
terminal in one of the destinations, ordered by closeness to i, up to and including j, and the
probability that they will find a suitable terminal in the destinations up to but excluding j. The
following equation represents mathematically this concept as:
Unit 4
Mode choice and traffic assignment:
Mode choice
The choice of transport mode is probably one of the most important classic models in transport
planning. This is because of the key role played by public transport in policy making. Public
transport modes make use of road space more efficiently than private transport. Also they have
more social benefits like if more people begin to use public transport, there will be less
congestion on the roads and the accidents will be less. Again in public transport, we can travel
with low cost. In addition, the fuel is used more efficiently. Main characteristics of public
transport is that they will have some particular schedule, frequency etc.
On the other hand, private transport is highly flexible. It provides more comfortable and
convenient travel. It has better accessibility also. The issue of mode choice, therefore, is
probably the single most important element in transport planning and policy making. It affects
the general efficiency with which we can travel in urban areas. It is important then to develop
and use models which are sensitive to those travel attributes that influence individual choices
of mode.
1. Characteristics of the trip maker : The following features are found to be important:
(a) car availability and/or ownership;
(b) possession of a driving license;
(c) household structure (young couple, couple with children, retired people etc.);
(d) income;
(e) decisions made elsewhere, for example the need to use a car at work, take children to
school, etc;
(f) residential density.
3. Characteristics of the transport facility: There are two types of factors.One is quantitative
and the other is qualitative. Quantitative factors are:
(a) relative travel time: in-vehicle, waiting and walking times by each mode;
(b) relative monetary costs (fares, fuel and direct costs);
(c) availability and cost of parking
Qualitative factors which are less easy to measure are:
(a) comfort and convenience
(b) reliability and regularity
(c) protection, security
A good mode choice should include the most important of these factors.
Trip Assignment
Traffic assignment is the stage in the transport planning process wherein the trip interchanges
are allocated to different parts of the network forming the transportation system. In this stage:
Transportation Networks
Transportation Network primarily consists of two elements:
• Links
• Nodes
Link is defined as connectivity between two nodes. The links may have traffic movements either
in both the directions or in one direction only. Sometimes the links on which direction of travel
is marked are also known as an Arc.
The nodes are the location in space which provides an opportunity to the vehicle to enter or
leave a system or facilitate the movements in different directions. The node from which an arc
is diverted is termed it’s A‐node and the node to which it is diverted is termed its B‐node. A
representative map of the network system is shown in the figure below.
The above network is represented in the form of links and nodes showing the direction of
movement of the traffic along the links along with the travel attribute value written on the side
of the link. The travel attribute values may be in terms of travel time, travel cost, travel
distance, etc. usually numbers are used to specify the nodes in the network from the point of
view of computational ease. One such network is represented in the figure below.
Connection Matrix:
A connection matrix defines the connectivity between different nodes available in a
transportation network. This helps in building a network in a systematic way. It has rows and
columns. Rows define the originating nodes and columns define the destination nodes. The
numbers 0, 1 and ‐1 denotes no flow along the link, flow along the link and reverse direction
flow along the link, respectively. A connection matrix is shown in the figure below.
Moore’s Algorithm
For each origin centroid, a label is assigned to each node in the network of the following form:
Node ‘j’ label = [i, d(j)]
Where,
i = the node nearest to zone ‘j’ which is on the travel time path back to the origin
d(j) = the minimum travel time from node ‘j’ back to the origin centroid
Initially, each node is assigned a d(j) magnitude which is very large, say, 999, with the exception of the
origin node where it is set to ‘0’. As the tree is built out from the origin, the following sum is formed for
each node
Node: Node ‘j’ sum = [d(i) + l(i,j)]
Where,
d(i) = travel time from the origin to node ‘i’ which has just been connected to the origin
l(i.j) = travel time along the link which connects node ‘j’ to node ‘i’
If the sum just formed is greater than the d(j) already recorded for node ‘j’, then the node is by‐paased.
If the sum is less than the d(j) existing, then the d(j) is replaced by the newly formed sum and ‘i’ is
changed in the label to reflect the new connecting link for j back to the origin.
This process is continued until all nodes have been reached.
Tree Table: It shows the sequence of node that defines the minimum path from any particular centroid
back to the origin centroid.
Link Table: It defines all the links in the network in terms of other nodes at either end or the travel time
along the link.
List: A table in which all of the links emerging from a specified node are entered along the travel times
or the links.
Network coding:
Ideally the network should be the smallest possible, in terms of links and nodes,
adequate for the purpose for which it is required.
All redundant links and nodes should be removed beforehand. Dead end links apart
from centroid and gateway connectors should be removed.
For some purposes, especially if minimum path costs only are required, the use of
spider network, in which groups of two or more links from the original network are
combined into a single link representing minimum cost paths between their end nodes,
may be appropriate, to reduce CPU time.
Numbering the network nodes, including centroids, sequentially without gaps, as
suggested saves time in the initialization process and uses less computers core storage
It may be assumed that the real network nodes start at node number Ncent+1 and
hence, at step 2(b)(ii), node k is entered into L and ensuring that paths do not pass
through centroids or gateways en route to other nodes.
It is possible to avoid completely the need for tests to prevent centroids and gateways
from entering the loose ends table by separating their connector links from the real
network links.
The most fundamental element of any traffic assignment is to select a criterion which explains
the choice by driver of one route between an origin-destination pair from among the number of
potential paths available.
All-or-Nothing assignment
All or Nothing assignment technique allocates the entire volume interchanging between pairs
of zones to the minimum path calculated on the basis of free‐flow link impedances. This is the
simplest technique and is based on the premise that the route followed by traffic is the one
having the least travel resistance. The resistance itself can be measured in terms of travel time,
distance, cost or a suitable combination of these parameters. The traffic flows are assigned to
the minimum path tree. The assignment algorithm loads the matrix ‘T’ to the shortest path tree
and produces flows VAB on links between node A and B. two basic variations of the algorithm
are given as follows:
Smock Method
In this method, the all‐or‐nothing assignment is first worked out. In an iterative procedure, the
link travel ties are modified according to the function:
Where To = Original travel time or the travel time on a link when volume equals capacity
TA= adjusted travel time
V = assigned volume
C = computed link capacity
In the second iteration, the adjusted travel times TA are used to determine the minimum paths
or trees. The resulting link volumes are averaged and these are again used to calculate the
adjusted travel time for the next iteration.
Where, RI = Average assigned volume (from previous iteration) / capacity of the link
Average assigned volume = (Vi‐1 + Vi‐2)/2
To = original travel time on the link
4. Go to step 1 and repeat upto step 3 until equilibrium is reached i.e. Ti / Ti+1 ≈ 1.0 The
limitations of this method are: variations in travel time are taken into consideration, and A‐O‐N
assignment technique is used for assigning the volume to the network.
Multiple Route Assignment
All road users may not be able to judge the minimum path for themselves. It may also happen
that all road users may not have the same criteria for judging the shortest route. These
limitations of the all‐or‐nothing approach are recognized in the multiple route assignment
technique. The method consists of assigning inter‐zonal flow to a series of routes, the
proportion of the total flow assigned to each being a function of the length of the route in
relation to the shortest route. In an interesting approach suggested by Burell, it is assumed that
a driver does not know the actual travel times, but that he associates with each link a supposed
time. This supposed time is drawn from link time. The driver is then assumed to select the route
which minimizes the sum of his supposed link times. Multiple route models have been found to
yield more accurate assignment than all‐or‐nothing assignments
where fk is the flow on path k, ck is the travel cost on path k, and u is the minimum cost.
Equation labelqueue2 can have two states.
1. If ck - u = 0, from equation 10.1 fk > 0. This means that all used paths will have same travel
time.
2. If ck - u > 0, then from equation 10.1 fk = 0.
This means that all unused paths will have travel time greater than the minimum cost path.
where fk is the flow on path k, ck is the travel cost on path k, and u is the minimum cost.
Where k is the path, xa equilibrium flows in link a, ta travel time on link a, frs k flow on path k
connecting
O-D pair r-s, qrs trip rate between r and sand frs a;k is a definitional constraint and is given by
The equations above are simply flow conservation equations and non negativity constraints,
respectively. These constraints naturally hold the point that minimizes the objective function.
These equations state user equilibrium principle .The path connecting O-D pair can be divided
into two categories : those carrying the flow and those not carrying the flow on which the travel
time is greater than (or equal to)the minimum O-D travel time. If the flow pattern satistices
these equations no motorist can better o_ by unilaterally changing routes. All other routes have
either equal or heavy travel times. The user equilibrium criteria is thus met for every O-D pair.
The UE problem is convex because the link travel time functions are monotonically increasing
function, and the link travel time a particular link is independent of the flow and other links of
the networks. To solve such convex problem Frank Wolfe algorithm is useful.
Diversion Curves
One of the frequently used assignment techniques in initial years was the development and use
of diversion curves. These curves represent empirically derived relationships showing the
proportion of traffic that is likely to be diverted on a new facility (by pass, new expressway, new
arterial street etc.), once such a facility is constructed. The data collected on the pattern of
travel in the past years serve to build up such curves. Diversion curves can be constructed using
a variety of variables such as:
(i) Travel time saved
(ii) Distance saved
(iii) Travel time ratio
(iv) Distance ratio
(v) Travel time and distance saved
(vi) Distance and speed ratio
(vii) Travel cost ratio
Some of the diversion curve methods used in different parts of the world are discussed in the
following paragraphs.
Diversion curve assignments have the drawback that only two alternative routes for each pair
of zones are considered. The technique is, therefore, eminently suitable for new bypasses, new
motorways and such new facilities, but is of limited use in a complex urban network. Diversion
curves reflect the travel resistance as measured by present day travel, but their use for future
travel when the pattern can undergo radical changes is doubtful.
UNIT 5
Corridor Identification
Initially, the study area was broadly defined to enable a regional assessment of alternative routes.
The study area was bounded by US 287 on the west, WCR 23 on the east, Harmony Road/WCR
74 on the north, and Crossroads Boulevard/WCR 62 on the south. The study area is contained in
both Larimer and Weld counties. While this broad study area was used to assess mobility and
potential effects at a regional level, the study’s logical termini were subsequently refined as
described in Section 2.3 of this report.
SH 392 provides regional access to the towns of Windsor, Severance, and Timnath, and the cities
of Loveland, Greeley, and Fort Collins. The SH 392 corridor crosses through both long-standing
rural farming communities and emerging suburban development. Some of the features present in
the study area include open spaces, trails, and golf courses. Commercial districts are developing
not only along the SH 392 corridor, but also at the I-25/US 34 Interchange, and along Crossroads
Boulevard. Other features of regional significance include the Cache La Poudre River
(commonly referred to as the Poudre River), the Fort Collins-Loveland Municipal Airport, the
Great Western Railway, the Union Pacific Railroad (UPRR), the Budweiser Events Center, and
Fossil Creek Reservoir.
Regional Transportation Plan Vision
The NFRMPO has identified several highways as being “Regionally Significant Corridors” and SH
392 is one of them. The NFRMPO defines a Regionally Significant Corridor as, “A multimodal,
regional system comprised of transportation corridors that connect communities by facilitating
the movement of people, goods, information, and services” (NFRMPO, 2003). Three criteria are
considered in the identification of regionally significant corridors: connectivity, functional
classification, and trip length.
The NFRMPO 2030 Transportation Plan contains the following Corridor Vision for SH 392:
“The vision of the SH 392 Urban corridor is primarily to increase mobility as well as maintain
system quality and improve safety. This corridor serves as a local facility, provides commuter
access, and makes east-west connections within the south Fort
Collins, Windsor, Lucerne and Severance areas. SH 392 serves as Main Street through Windsor.
Future travel modes to be planned for in the corridor include passenger vehicle, bus service,
truck freight, and bicycle and pedestrian facilities. Transportation Demand Management (TDM)
would likely be effective in this corridor. The transportation system
in the area serves towns, cities, and destinations within the corridor as well as destinations
outside of the corridor. The communities along the corridor value high levels of mobility,
transportation choices, connections to other areas, safety, and system preservation…Users of
this corridor want to support the movement of commuters,
Current Planning Efforts
Local jurisdictions are conducting the following transportation planning efforts related to the
SH 392 EOS.
The NFRMPO is in the process of preparing the NFRMPO 2035 Transportation Plan. A
draft plan is anticipated to be submitted to CDOT in 2007.
Larimer County is actively coordinating with Fort Collins on the Growth Management
Area (GMA) expansion and on the airport master planning efforts.
Weld County is currently planning improvements to both WCR 7 and WCR 13.
Fort Collins recently approved a proposal to expand the boundary of the City's GMA to
include the Fossil Creek Cooperative Planning Area, an area generally located
immediately west of I-25, both north and south of Carpenter Road. Once Larimer County
and the City sign a revised Intergovernmental Agreement (IGA), the City will formally
amend the City's Comprehensive Plan and the Structure Plan Map to depict the
amended GMA boundary. In addition to approving the GMA boundary amendment, the
City is pursuing annexation of the enclave and working with property owners (in
particular, those with properties near the I-25 interchange) regarding the appropriate
land uses on the current Structure Plan Map.
The Fort Collins/Loveland Municipal Airport updated their Master Plan in April 2006.
On March 23, 2005, the Timnath Board of Trustees approved a resolution adopting the
North Area Comprehensive Plan Amendment for the Town. This Plan provides the
principles, goals, policies, and future land use plan. The intent of the Comprehensive
Plan is to preserve and enhance the Town’s identity, while still allowing for it to grow
and flourish in a manner that is acceptable to its residents.
Project Purpose
A primary goal of this study was to identify ROW needs for future transportation improvements
to meet travel demand in 2030. Based on the project need as described below, the project
purpose was to identify the mobility needs in 2030 and develop solutions that meet this need.
This study will guide future roadway improvement projects and ongoing development for the
SH 392 corridor. The primary goal of the transportation improvement was to ensure that
adequate provisions were made to the SH 392 corridor to meet regional transportation mobility
needs for 2030 and beyond.
In addition to the primary purpose of the EOS, other factors were also considered. These
include making provisions for transportation solutions that minimize effects to the natural,
cultural, and social environment of the surrounding communities, that provide for the safe
movement of people and goods, and that make full use of the EOS to identify other
opportunities to address the needs of SH 392.
The EOS allowed CDOT to examine various alternatives for meeting those mobility needs on this
major east-west connection between Loveland/Fort Collins and Windsor/Greeley. The study
incorporated a context sensitive solutions approach to balance mobility needs with potential
environmental and socio-economic effects.
The EOS served as a planning document that identified the ROW necessary for future
transportation needs resulting in a recommended “footprint” characterized by each alignment.
This footprint may be used by local planning agencies and CDOT to preserve a roadway corridor
for future improvement projects and guide ongoing development.
Linear regression analysis is a well‐known statistical technique for fitting mathematical relationships
between dependent and independent variables. This technique has been exploited fruitfully in a number
of transportation planning studies carried out so far and has become a very powerful tool in the hands
of the transportation planner. In the case of trip generation equations, the dependent variables are the
various measurable factors that influence trip generation. The general from of the equation obtained is :
Yp = a + b1X1 + b2X2 + b3X3 ,…..+ bn Xn
Where Yp = number of trips for specified purpose p (dependent variable)
X1, X2, X3…… Xn = independent variables relating to various trip influencing factors
b1, b2, b3…, bn = multiplicative coefficients of the respective independent variables X1, X2, X3,…Xn
obtained by linear regression analysis, representing the relative influence of the
variables on the trips generated
a = Disturbance term, which is a constant, and represent that portion of the value of Yp not
explained by the independent variables and is additive in nature
The majority of trip-generation studies performed have used multiple regression analysis
to develop the prediction equations for the trips generated by various types of land use.
Most of these regression equations have been developed using a stepwise regression
analysis computer program. Stepwise regression –analysis programs allow the analyst to
develop and test a large number of potential regression equations using various
combinations and transformations of both the dependent and independent variables. The
planner may then select the most appropriate prediction equation using certain statistical
criteria. In formulating and testing various regression equations, the analyst must have a
thorough understanding of the theoretical basis of the regression analysis.
Toronto Modal
Trip interchange modal split models allocate trips between public transport and private transport after
trip distribution stage. The split between two modes is assumed to be a function of the following
variables between each pair of zones:
1. Measures of system characteristics, like
• Relative Travel Time (RTT)
• Relative Travel Cost (RTC)
• Relative Travel Service (RTS)
2. Economic status of the Trip maker, like
a. Low‐income group
b. Medium income group
c. High income group
The basic idea underlying modern approaches to travel demand modeling is that travel is the
result of choices made by individuals or collective decision-making units such as households.
Individuals choose which activities to do during the day and whether to travel to perform them,
and, if so, at which locations to perform the activities, when to perform them, which modes to
use, and which routes to take. Many of these choice situations are discrete, meaning the
individual has to choose from a set of mutually exclusive and collectively exhaustive
alternatives.
The mathematical transformation of logit model is as given below:
Pi=exp(Vi)/{exp(Vi)+ exp(Vj)}
Where, Vi and Vj are measured utilities of options i and j respectively.
These are the simplest type of mode choice models. These models compare the travel choices between
two modes. Say,cijm is the generalized cost of travel between zone ‘i’ and zone ‘j’ using a mode ‘m’, then
If cij2- cij1= positive, then mode‐1 would be chosen
If cij2- cij1 = negative, then mode‐2 would be chosen
If cij2- cij1= zero, then both the modes have equal probability of being chosen
The probability of choosing mode for a trip between zones ‘i’ and ‘j’ is given by:
Where the utility functions usually have the linear in the parameters form and parameter β is related
to the common standard deviation of the Gumbel variate by:
β2 = π2/6 σ2
Aggregate Model
Modal split models of 1960’s and early 1970’s in most cases were based on an ‘aggregate’
approach, which examined the mode choice of trip makers and their trips in groups based on
similar socioeconomic and/or trip characteristics. These mode choice models usually involved
two modes only - auto and transit. A detailed stratification scheme was used, and the share of
each mode was determined for each stratified group of trips, which then was correlated with
selected independent variables. The dependent variable was ‘percent transit’ applicable to a
group of trips of similar characteristics made by similar trip makers. Commonly used
independent variables include: the ratio of travel time by transit to that by automobile; the
ratio of travel cost by transit to that by automobile; and the ratio of accessibility by transit to
that by automobile. The relationship of the dependent variable, percent transit, with the
independent variable, say ratio of travel times, commonly was expressed by a set of curves.
These curves sometimes were referred to as modal diversion curves.
During late 1970’s a new approach known as disaggregate behavioral method was developed
and refined by a number of researchers. This approach recognized each individual’s choice of
mode for each trip instead of combining the trips in homogeneous groups. The underlying
premise of this modeling approach is that an individual trip maker’s choice of a mode of
travel is based on the principle called ‘utility maximization’. Another premise is that the
utility of using one mode of travel for a trip can be estimated using a mathematical function
referred to as the ‘utility function’, which generates a numerical utility value/score based on
several attributes of the mode (for the trip) as well as the characteristics of the trip maker.
Examples of a mode’s attributes for a trip include travel time and costs. The utilities of
alternative modes also can be calculated in a similar manner. A trip maker chooses the mode
from all alternatives that has the highest utility value for him/her.