Multivector Review and Training Center
INTEGRAL CALCULUS
Integration Formulas
1. a du a du au C , where a = constant
u n 1
u du C , where n ≠ -1
n
2.
n1
du
3.
u
ln u du C
4. ln u du u ln u u C
e du eu C
u
5.
au
a du C
u
6.
ln a
7. u dv uv v du (Integration by Parts)
8. sin u du cos u C
9. cos u du sin u C
10. tan u du ln sec u C ln cos u C
11. cot u du ln sin u C ln csc u C
12. sec u du ln sec u tan u C
13. csc u du ln csc u cot u C ln csc u cot u C
sec u du tan u C
2
14.
csc u du cot u C
2
15.
16. sec u tan u du sec u C
17. csc u cot u du csc u C
du u
18. arc sin
a
C
a u
2 2
du 1 u
19. u2 a2
a
arc tan C
a
du 1 u
20.
a
arc sec C
a
u u a 2 2
21. sinh u du cosh u C
MRTC - 31
Multivector Review and Training Center
22. cosh u du sinh u C
sech u du tanh u C
2
23.
csc h u du coth u C
2
24.
25. sech u tanh u du sech u C
26. csc h u coth u du csc h u C
du 1 u a
27. u2 a2 ln C , if u2 > a2
2 a u a
du 1 u a
28. a2 u2 ln C , if u2 < a2
2 a u a
ln u u 2 a 2 C
du
29.
u a
2 2
ln u u 2 a 2 C
du
30.
a u
2 2
u 2 a2 u
31. a2 u2
2
a u2
2
arc sin C
a
a2
ln u u 2 a 2 C
u 2
32. u2 a2
2
u a2
2
Walli’s Formula
2 m 1m 32 or 1n 1n 32 or 1
0 sin2 cos n d
m nm n 2m n 42 or 1
where: m and m are non-negative integers (0, 1, 2, 3, 4, ……)
α = π/2, if both m and n are even, or one is zero and the other is even
α = 1, if otherwise
Note: If m and n equals 1 or 0, apply the following:
Rule: If the factor (m – 1) or (n – 1) in the numerator is 0 or –1, replace
the product in which this occurs by unity.
MRTC - 32
Multivector Review and Training Center
Plane Areas in Rectangular Coordinates System
(b, d)
y = f(x)
R
x
0 (a, c) y = g(x)
y
I. Using a vertical rectangular element (vertical stripping)
y y = f(x) y = g(x)
dA y u y L dx (b, d)
A
b
a
y u y L dx dA yu - yL
yu
A f ( x) g( x) dx
b dx yL
a (a, c) x
0
where: U – upper
L – lower
II. Using a horizontal rectangular element (horizontal stripping)
y y = f(x) or
x = f(y) y = g(x) or
(b, d) x = g(y)
dA x R x L dy xL
x R x L dy
d dA dy
A
c
(a, c)
A
d
c
g(y ) f (y ) dy 0
x
xR - xL
xR
Using Polar Coordinates
1 2 2
2 1
A r d
r
d
MRTC - 33
Multivector Review and Training Center
Volume of Solid of Revolution
y
y
x
x
0
Torus
Methods of Finding the Volumes of Solid of Revolution
I. Disk Method
Rules: 1. The axis of rotation is a part of the boundary of the plane area.
2. The element chosen must be parallel to the axis of rotation.
dh
r
Axis of dV
h=a dh h=b Rotation r
dV r 2 dh
b
V r 2 dh
a
II. Ring or Washer Method
Rules: 1. The axis of rotation is not a part of the boundary of the plane area.
2. The element chosen must be parallel to the axis of rotation.
dh
r2 r2
r1 r1
r1
h=a h=b r2
MRTC - 34
Multivector Review and Training Center
dV r22 r12 dh
dV r22 r12 dh
b
V r22 r12 dh
a
III. Cylindrical Shell Method
Rules: 1. The axis of rotation may or may not be a part of the boundary of
the rotated area.
2. The element chosen must be parallel to the axis of rotation.
dr
r = a dr r = b
r
dV 2rh dr
b
V 2 r h dr
a
Pappus Theorem
First Proposition
The surface area of revolution is equal to the length of the generating arc times the
circumference of the circle described by the centroid of the arc, provided the axis
of revolution does not cross the generating arc.
B
A
A s CL c
As 2 c L 0
x
where: L – length of the arc
Second Proposition
The volume of the solid revolution is equal to the generating area times the
circumference of the circle described by the centroid of the area, provided the axis
of revolution does not cross the generating arc.
MRTC - 35
Multivector Review and Training Center
y
V AC A 2 c
V 2 c A c
x
Centroid of a Plane Area
A x xc dA
A y y c dA
where: xc and yc are coordinates of the centroid of rectangular element
x and y are coordinates of the centroid of area A
y
(x, y)
xc x
1 (xc, yc)
y
yc y yc
2 x
0 xc
y
x
1
xc x
2
yc y (x, y)
yc
x
0
xc
y
xL
yc y xc
x xL dy
xc R xL (xc, yc)
2 yc = y
x xL
xc R x
2
xR
MRTC - 36
Multivector Review and Training Center
x
xc
xc x
yu yL
yc yL yu - yL
yu
2
yc
y yL
yc u yL
x
2
Centroid of a Solid of Revolution
V x xc dV
V y y c dV
SHELL
dV DISK
WASHER
Area of Common Polar Curves
r 2asin , A a 2 r 2 a 2 cos , A 2a 2
r 2acos , A a 2
MRTC - 37
Multivector Review and Training Center
r 2 a 2 cos 2, A a 2 r 2 a 2 sin 2, A a 2
a 2 3a 2
r asin 3, A r a1 sin , A
12 2
1 2 1 2
r acos 2, A a r asin 2, A a
2 2
MRTC - 38