0% found this document useful (0 votes)
70 views14 pages

Lecture Electromagnetic Waves

The document discusses electromagnetic waves and Maxwell's equations. It begins by outlining the lecture topics of Maxwell's equations predicting waves, deriving the wave equation, and solving the wave equation. It then shows how Maxwell's equations in source-free media lead to curl equations that predict propagating electric and magnetic fields, forming waves. The document derives the wave equation in linear, homogeneous, and isotropic media and shows this reduces to the familiar vector wave equation.

Uploaded by

Bill White
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
70 views14 pages

Lecture Electromagnetic Waves

The document discusses electromagnetic waves and Maxwell's equations. It begins by outlining the lecture topics of Maxwell's equations predicting waves, deriving the wave equation, and solving the wave equation. It then shows how Maxwell's equations in source-free media lead to curl equations that predict propagating electric and magnetic fields, forming waves. The document derives the wave equation in linear, homogeneous, and isotropic media and shows this reduces to the familiar vector wave equation.

Uploaded by

Bill White
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 14

8/29/2019

Electromagnetics:
Electromagnetic Field Theory

Electromagnetic Waves

Lecture Outline

• Maxwell’s Equations Predict Waves
• Derivation of the Wave Equation
• Solution to the Wave Equation

Slide 2

1
8/29/2019

Maxwell’s Equations 
Predict Waves

Slide 3

Recall Maxwell’s Equations in Source Free Media
In source‐free media, we have 𝐽⃗ 0 and 𝜌 0.
Maxwell’s equations in the frequency‐domain become 

Curl Equations Divergence Equations
  
  E   j B D  0
  
  H  j D B  0
Constitutive Relations
 
D E
 
B  H
Slide 4

2
8/29/2019

The Curl Equations Predict Waves
After substituting the constitutive relations into the curl equations, we get

   
  E   j H   H  j E
A time‐harmonic magnetic field will induce a  A time‐harmonic electric field will induce a 
time‐harmonic electric field circulating about  time‐harmonic magnetic field circulating 
the magnetic field. about the electric field.
A time‐harmonic circulating electric field will  A time‐harmonic circulating magnetic field 
induce a time‐harmonic magnetic field along  will induce a time‐harmonic electric field 
the axis of circulation. along the axis of circulation.

An H induces an E.  That E induces another H.  That new H


induces another E.  That E induces yet another H.  And so on.
Slide 5

How Waves Propagate

Start with an oscillating 
electric field.

Slide 6

3
8/29/2019

How Waves Propagate

This induces a 
circulating magnetic 
field.
 
  H  j E

Slide 7

How Waves Propagate

Now let’s examine the 
magnetic field on axis.

Slide 8

4
8/29/2019

How Waves Propagate
This induces a   
circulating electric field.   E   j H

Slide 9

How Waves Propagate
Now let’s examine the 
electric field on axis.

Slide 10

10

5
8/29/2019

How Waves Propagate

This induces a circulating 
magnetic field.

 
  H  j E
Slide 11

11

How Waves Propagate

…and so on…

Slide 12

12

6
8/29/2019

Derivation of the 
Wave Equation

Slide 13

13

Wave Equation in Linear Media (1 of 2)
Since the curl equations predict propagation, it makes sense that we derive 
the wave equation by combining the curl equations.
   
  E   j    H   H  j   E

Solve for H
 1 
    E
1
H 
j

 1  
     E   j   E
1

 j  Slide 14

14

7
8/29/2019

Wave Equation in Linear Media (2 of 2)
The last equation is simplified to arrive at our final equation for waves in linear 
media.
 
     E     E
1 2

This equation is not very useful for performing derivations.  It is typically used 
in numerical computations.

Note: We cannot simplify this further because the permeability is a function of 
position and cannot be brought outside of the curl operation.

 
       E   2   E
1

Slide 15

15

Wave Equation in LHI Media (1 of 2)
In linear, homogeneous, and isotropic media two important simplifications can 
be made.
First, in isotropic media the permeability and permittivity reduce to scalar 
quantities.
 
   E    E
1 2

Second, in homogeneous media  is a constant and can be brought to the 
outside of the curl operation and then brought to the right‐hand side of the 
equation.
 
    E    E
2

Slide 16

16

8
8/29/2019

Wave Equation in LHI Media (2 of 2)
  
    A     A  2 A  
Now apply the vector identity                                                
 
    E    E
2

  
 
   E   2 E   2  E
  
 
In LHI media, the divergence equation 
 E    E     E
2 2
can be written in terms of E.

D  0

   
 E  0
 E    E  0
2 2

 
 E  0

E  0

Slide 17

17

Wave Number k and Propagation Constant 
 
We can define the term               as either 

k 2   2  or  2   2   k 2

This provides a way to write the wave equation more simply as
   
 E  k 2E  0
2 or  E  E  0
2 2

Slide 18

18

9
8/29/2019

Solution to the Wave 
Equation

Slide 19

19

Components Decouple in LHI Media
We can expand our wave equation in Cartesian coordinates.
 
2 E  k 2 E  0
 2  Ex aˆ x  E y aˆ y  Ez aˆ z   k 2  Ex aˆ x  E y aˆ y  Ez aˆ z   0
 2 Ex aˆ x   2 E y aˆ y   2 Ez aˆ z  k 2 Ex aˆ x  k 2 E y aˆ y  k 2 Ez aˆ z  0
 E2
x  k 2 Ex  aˆ x    2 E y  k 2 E y  aˆ y    2 Ez  k 2 Ez  aˆ z  0

We see that the different field components have decoupled from each other.
All three equations have the same numerical form, so they all have the same   2 Ex  k 2 Ex  0
solution.
2 Ey  k 2 Ey  0
Therefore, we only need the solution to one of them.
2 E  k 2 E  0  2 Ez  k 2 Ez  0

20

10
8/29/2019

General Solution to Scalar Wave Equation
The final wave equation for LHI media is
2 E  k 2 E  0
This could be handed off to a mathematician to obtain the following general 
solution.
    
E  r   E0 e
  jk  r   jk  r
 E0 e
forward backward
wave wave

Slide 21

21

General Solution to Vector Wave Equation
Given the solution to the scalar wave equation, the solutions for all three field 
components can be immediately written.
    
Ex  r   Ex e
  jk  r   jk  r
 Ex e
    
E y  r   E y e  jk r  E y e  jk r
    
Ez  r   Ez e
  jk  r   jk  r
 Ez e
These three equations are assembled into a single vector equation.
    
E  r   Ex  r  aˆ x  E y  r  aˆ y  Ez  r  aˆ z
     
 E0 e  jk r  E0 e  jk r
    
forward wave backward wave
Slide 22

22

11
8/29/2019

General Expression for a Plane Wave
The solution to the wave equation gave two plane waves.  From the forward 
wave, the general expression for plane waves can be extracted.
    jk r
E  r   Pe Frequency‐domain

    

E  r , t   P cos t  k  r 
Time‐domain

The various parameters are defined as
 
r  xaˆ x  yaˆ y  zaˆ z  position k  wave vector

E  total electric field intensity   2 f  angular frequency

P  polarization vector t  time

Slide 23

23

Magnetic Field Component
Given that the electric field component of a plane wave is written as
   
E  r   Pe jk r

The magnetic field component is derived by substituting this solution into 
Faraday’s law.
 
  E   j H

   1    jk r
   
 
  Pe  jk  r
  j H  H k P e

Slide 24

24

12
8/29/2019

Solution in Terms of the Propagation Constant 
The wave equation and it solution in terms of  is
    
2 E   2 E  0  E  r   E0 e  r  E0 e   r

    
forward wave backward wave

The general expression for a plane wave is
   
E  r   Pe r Frequency‐domain

The magnetic field component is
 1    r
 
The wave vector and propagation 
H  P e constant are related through
 
j   jk

Slide 25

25

Visualization of an EM Wave (1 of 2)
People tend to draw and think of electromagnetic waves this way…

Slide 26

26

13
8/29/2019

Visualization of an EM Wave (2 of 2)
However, this is a more realistic visualization.  It is important to remember that plane waves 
are also of infinite extent in all directions.

Slide 27

27

14

You might also like