TM 2209
PETROFISIKA
Semester II – 2021/2022
Pahala Dominicus Sinurat
Ivan Kurnia
Ketentuan Umum
• PR & materi suplemen via Edunex (+ MS Teams)
• Pertanyaan -->
• MS Teams
• ivan_kurnia@itb.ac.id
• PR & tugas diserahkan pada waktu yang telah
ditentukan
• Presensi mandiri di SI-X
Evaluasi (Tentatif)
• Pekerjaan rumah, Kuis : 15%
• Lab/Praktikum : 15%
• Ujian Tengah Semester : 35% (bahan ujian:
W1-W7)
• Ujian Akhir Semester : 35% (bahan ujian: W9-
W15)
• Kehadiran tidak diperhitungkan
Pustaka Acuan
• Petroleum Reservoir Engineering: Physical Properties (J. W.
Amyx, D. M. Bass, Jr., and R. L. Whiting: 1960, 1988).
• Petrophysics: Theory & Practice of Measuring Reservoir Rock &
Fluid Transport Properties (D. Tiab dan E. C. Donaldson: 2004,
2nd ed.)
• Properties of Reservoir Rocks: Core Analysis (R. P. Monicard:
1980)
• Petroleum Reservoir Rock and Fluid Properties (Abhijit Y.
Dandekar, 2013, 2nd Edition, CRC Press)
• Coring and Core Analysis Handbook (G. Anderson: 1972).
• Fundamentals of Reservoir Rock Properties (N. Alyafei: 2021)
• Dll.
PE ITB - Student Outcomes
1. An ability to apply knowledge of mathematics, science, and
engineering
2. An ability to design and conduct experiments, as well as to analyze
and interpret data
3. An ability to design a system, component, or process to meet desired
needs with realistic constraints
4. An ability to function on multidisciplinary teams
5. An ability to identify, formulate, and solve engineering problems
6. An understanding of professional and ethical responsibility
7. An ability to communicate effectively
8. The broad education necessary to understand the impact of
engineering solutions in a global, economic, environmental, and
societal context
9. A recognition of the need for and an ability to engage in life-long
learning
10. A knowledge of contemporary issues
11. An ability to use the techniques, skills, and modern engineering tools
necessary for engineering practice
Petrofisika: Definisi & Sejarah
Properti
Batuan
Petrofisika
Interaksi
Batuan-Fluida
1859 1936 1942
Col. Drake Hassler Archie
1856 1927 1936 1941
Darcy Kozeny Schlumberger Leverett
Petrofisika – Ilmu Terkait & Aplikasi
Production
Drilling Eng. Eng. Reservoir Eng.
Petrophysics
Fluid & Well
Geophysics Logs & Core Analysis
Analysis
Geology
Topik-Topik yang Dibahas
• Batuan reservoir & perangkap hidrokarbon
• Pori-pori dan porositas
• Permeabilitas absolut
• Saturasi fluida
• Sifat kebasahan batuan
• Tekanan kapiler
• Permeabilitas efektif dan relatif
• Kompresibilitas
• Sifat hantar arus listrik (electrical properties) batuan berpori yang
berisi fluida
• Rock Typing
• Digital Petrophysics
Litologi Reservoir &
Perangkap Hidrokarbon
Kilas Balik – Geologi Fisik
• Klasifikasi batuan
• Mineral pembentuk batuan
• Batuan sedimen
• Energi fosil
Klasifikasi Batuan
% dari kerak
Jenis Deskripsi
bumi
Beku (Igneous) Intrusi & ekstrusi lelehan magma yang 20
mengalami pendinginan
Metamorf Transformasi (mekanik, panas, kimiawi) 14
batuan beku & sedimen
Sedimen Hasil dari proses mekanik & kimia 66
terhadap batuan lain & bangkai biologis
Batuan Reservoir = Porous, Permeable
Sandstone Carbonate
• Silica grain: quartz, • Calcite, dolomite
feldspar • Pore space: inter- &
• Consolidated, loosely intra-granular,
consolidated, dissolution, fracture
unconsolidated
New play: Fractured shale
Clean vs Dirty Rocks (Clay Content)
Heterogenitas
Pada umumnya reservoir bersifat heterogen:
✓ Sedimentasi/deposisi
✓ Lingkungan pengendapan
✓ Diagenesa
✓ Facies.
Skala Batuan Reservoir
Reservoir
Blok Rokan
Suardin, 2021
Minas
Masduki et al., 2020
Contoh Skala Giga dan Mega
Skala :
Mega scale :
25 meter
Giga scale : Skala :
200 meter
? Sandstone
?
Giga scale : ? ?
Carbonate Buildup
Contoh macro scale Whole cores
Sandstone
Core plug
Common low resistivity low contrast lithofacies observed in the MTJDA include
Bioturbated Muddy Sandstone (Sbm), Rippled Heterolithic (Hr) and Bioturbated
Heterolithic (Hb). Occasionally these intervals are also associated with Bioturbated
Sandstone (Sb) and Rippled Sandstone (Sr).
Contoh macro scale: whole cores/conventional
CARBONATE Carbonates CARBONATE
Diameter ≈ 4 inches
Contoh micro scale - thin section
(warna biru = pori-pori)
Crocker, Donaldson, Marchin (1983)
Comparison and Analysis of Reservoir Rocks and Related Clays
SEM Pictures to Identify
Production Problems
Holub et al., 1974
From Macro to Micro
Via X-Ray CT Imaging
Jackson et al., 2019
ODC-BY 1.0
Skala Batuan Reservoir
Giga (>100 m)
Mega (10-100 m)
Uncertainty Makro
(cm-m)
Mikro
Petroleum System
Source Rock - Genesis
Migration
Trap + Seal
Accumulation = Reservoir
Reservoir Seal
Seal
Sedimen Materi Organik
P & T ↑↑ Source
Jebakan Hidrokarbon
Struktural Stratigrafi
• Hasil proses tektonik • Perubahan fasies akibat
• Bentuk: fold/lipatan, proses sedimentasi
fault/patahan, diapiric • Lebih kompleks karena
(e.g. intrusi kubah melibatkan pergantian
garam) lingkungan endapan
Jebakan Hidrokarbon
Simple convex trap
Simple convex trap
(differential thickness)
Permeability trap
Amyx et al, 1960
Jebakan Hidrokarbon
Pinchout trap
Fault trap
Piercement trap
Amyx et al, 1960
TM 2209
PETROFISIKA
Semester II – 2021/2022
Prof. Pudji Permadi
Pahala Dominicus Sinurat, PhD
Ivan Kurnia, PhD
Reviu Kuliah 1
• Petrofisika: sejarah, ruang lingkup, keterkaitan dengan disiplin dan
sub-keilmuan
• Litologi reservoir: batu pasir (sandstone) & gamping (karbonat),
lempung (shale)
• Sistem petroleum: sumber, migrasi, penjebakan, akumulasi
• Skala batuan Reservoir
Deskripsi Padatan Penyusun
Batuan Reservoir
Sumber Sampel Batuan
toh macro scale Whole cores
Sandstone Whole Core Outcrop Drill Cuttings
Core plug
ontrast lithofacies observed in the MTJDA include
(Sbm), Rippled Heterolithic (Hr) and Bioturbated Peksa et al, 2015
these intervals are also associated with Bioturbated
ndstone (Sr).
Bentheimer Sandstone (Peksa et al, 2015)
Loose packing, hematite Weathered feldspar grains
between grains
Bentheimer Sandstone (Peksa et al, 2015)
Whole Core - Slab
Heriott-Watt Reservoir Engineering p 7-28, p 8-3
7
Sidewall Sampling Gun
Core bullets
Formation rock
Core sample
8
Sidewall Coring Tool
Coring bit
Samples
9
Deskripsi Batuan Reservoir
Ukuran Butiran
Size Limit (mm) Class
256-2048 Boulders
64-256 Cobbles Gravel
2-64 Pebbles
1/16 – 2 Sand Sand
1/512 – 1/16 Silt
Mud
< 1/512 Clay
Deskripsi Batuan Reservoir
Distribusi Ukuran Butiran
Berea Sandstone (Tiab & Donaldson, 2004)
Deskripsi Batuan Reservoir
Material Sementasi & Lempung
Hanya
pembanding
Mineral
lempung
(Clays)
Deskripsi Batuan Reservoir
Routine Core Analysis
Klasifikasi Dunham untuk Batuan Karbonat
Depositional Texture Recognizable Depositional
Components Not Bound Together During Deposition Original Components Texture
Contains Mud Lacks Mud, Bound Together Not Recognizable
(clay and silt size particles Grain- During Deposition
Mud Supported Grain Supported
<10 % >10 % Supported
Grains Grains Crystalline
Mudstone Wackestone Packstone Grainstone Boundstone Carbonate
Prof. Maggard – NEXT Schlumberger
16
Aplikasi Deskripsi Batuan
• Strategi Pemboran
• Perlakuan untuk sampel batuan
• Karakterisasi Reservoir
Pori-Pori Batuan Reservoir
Pori-pori
• Rongga, ruang dalam batuan yang dapat ditempati oleh fluida
Butiran/ Luas Total (Bulk) =
Padatan PxL
Luas Pori =
Luas Total – Luas Butiran
Pori-Pori Batuan Reservoir
Effective Porosity:
Interconnected + Dead-end
Pore throat
Dead-end
Pore body
Pori-Pori Batuan Reservoir
Absolute Porosity
Interconnected + Dead-end
+ Isolated
Isolated
Ukuran Pori-Pori
Ukuran Pori-Pori
Peksa et al, 2015
Faktor yang Mempengaruhi Ukuran &
Sebaran Pori-Pori
• Keseragaman ukuran butiran
Faktor yang Mempengaruhi Ukuran &
Sebaran Pori-Pori
D-ratio Φ SD Scale
1.0 – 1.6 0.0 – 0.35 v wl srtd
1.6 – 2.0 0.35 – 0.5 wl srtd
2.0 – 4.0 0.5 – 1 mod srtd
4.0 – 16.0 1–2 p srtd
> 16.0 >2 v p srtd
(Folk, 1965)
Faktor yang Mempengaruhi Ukuran &
Sebaran Pori-Pori
• Susunan butiran (packing)
Faktor yang Mempengaruhi
Ukuran & Sebaran Pori-Pori
• Sementasi & konsolidasi
Faktor yang Mempengaruhi
Ukuran & Sebaran Pori-Pori
• Angularity/Roundedness
Faktor yang Mempengaruhi Ukuran &
Sebaran Pori-Pori
• Keseragaman ukuran butiran (sorting)
• Susunan butiran (packing)
• Derajat sementasi atau konsolidasi
• Kompaksi
• Rekahan
• Pelarutan & reaksi karbonat
Berea Sandstone Elgin Sandstone
Porosity = 0.219 Porosity = 0.240
Permeability = 363 mD Permeability = 3,484 mD
(Tiab & Donaldson, 2004)
Diskusi Penutup
TM 2209
PETROFISIKA
Semester II – 2021/2022
Prof. Pudji Permadi, PhD
Pahala Dominicus Sinurat, PhD
Ivan Kurnia, PhD
Reviu Pertemuan 2
• Sumber sampel batuan
• Deskripsi padatan penyusun batuan reservoir
• Pori-pori & faktor yang mempengaruhinya
Porositas
Porositas
(Peksa et al, 2015)
Solids
Pore
Diameter
Length
Porositas: Absolut & Efektif
• Porositas Absolut atau • Porositas Efektif
Total
Porositas & Kompleksitas Batuan
• Jenis padatan
• Variasi ukuran
• Sifat fisik tiap padatan
(Nanz, 1954)
Porositas & Kompleksitas Batuan
Bulk
Solids Fluids
Grains Clay Clay-
quartz,feldspar Minerals
Bound W HC
Water
silt, mud
φ-effective
φ-total
Penentuan Porositas
Core Analysis Well Logging
Bulk Volume • Sonic Log
• Gravimetric • Neutron Log
• Caliper • Density Log
Pore Volume
• Boyle’s Law Single Cell
• Saturation
• Hg injection
• Solvent extraction
Porositas dari Well Logs
Respon log:
• Litologi
• Fluida dalam pori-pori
Alyafei, 2021
Hg Immersion
𝑚𝑎𝑠𝑠 𝐻𝑔 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑑
𝐵𝑉 =
𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝐻𝑔 𝑎𝑡 𝑇
API RP40
Buoyancy Method with Fluids
API RP40
Hg Volumetric Displacement
API RP40
Boyle’s Law Apparatus
API RP40
Core Analysis – Bulk Volume
Method Principle Advantages & Limitations
Immersion Gravimetric + samples could be preserved
(Archimedes’ principle) + high accuracy
- Trapped air leads to high error
- Not suitable for p-uncons & vuggy
Hg Displacement Displaced Hg volume + very rapid
+ samples could be preserved
- Trapped air leads to high error
- Not suitable for p-uncons & vuggy
Caliper Direct measurement + Rapid & simple
+ Not suitable for irregular samples
Core Analysis – Pore Volume
Method Principle Advantages & Limitations
Dry Grain Volume Measurement on + fast
powdered sample - not viable for several minerals
- Assuming unchanged state during
drying
Boyle’s Law Cell P1V1 = P2V2 + samples are undamaged
(grain volume or + quick, simple, repeatable
direct void volume) + suitable for GV of irregular & vuggy
samples
- High maintenance for calibration
Liquid Saturation Gravimetric + direct PV measurement
- Slow
- Limited accuracy
Porosity from Digital Imaging (Arns et al., 2005)
Porosity from Digital Imaging (Arns et al., 2005)
Averaging Porosity
φ1, h1
φ2, h2
φ3, h3
Aplikasi Porositas
• Kalibrasi antara RCA – well logs
• Korelasi dengan properti lainnya
• Karakterisasi reservoir
• Estimasi volume minyak & gas bumi
Glover, 2008
Pore Space Visualization of Carbonates
(Lucia, 1983)
Pore Space Classification of Carbonates
(Lucia, 1983)
Core Sample of Vuggy Carbonate
(He et al., 2020)
Pore Space Characters of Carbonates (Arns et al., 2004)
Pore Space Characters of Carbonates (Arns et al., 2004)
Pore Space Characters of Carbonates (Arns et al., 2004)
Pore Space Characters of Carbonates (Arns et al., 2004)
TM 2209
PETROFISIKA
Semester II – 2021/2022
Prof. Pudji Permadi, PhD
Pahala Dominicus Sinurat, PhD
Ivan Kurnia, PhD
Reviu Pertemuan 3
• Porositas: Definisi, Pengukuran, Kompleksitas
• Porositas dari Core Analysis vs Log Interpretation
Saturasi Fluida
Etimologi & Definisi
Etimologi saturasi
• KBBI: kejenuhan
• MW: saturate = to fill completely with something that pervades, to
load to capacity
Saturasi fluida: fraksi volume suatu fluida dalam pori-pori batuan
Porositas & Saturasi Fluida
Bulk Volume
Solids Total Porosity
Grains Clay Clay-
quartz,feldspar Minerals
Bound W HC
Water
silt, mud
Saturasi Fluida
VB =
100 bbl
Vp = 20 bbl
Sw = 0.25, Vw = 5 bbl
So = 0.75, Vo = 15 bbl
Saturasi Fluida
FWL
Faktor yang Mempengaruhi Saturasi Fluida
• Porositas
• Distribusi ukuran pori
• Kandungan dan jenis clay
• Sifat kebasahan batuan
• Tegangan antarmuka (IFT) air-minyak
• Posisi vertikal di dalam reservoir
• Masa produksi
Saturasi Fluida
Before Migration After Migration After Production
Sumber Data Saturasi
Core Analysis Well Logging
• Routine CA • Resistivity Log
• Special CA
Saturasi Fluida – Well Log
Saturasi Fluida – Core Analysis
• Retort method
• Solvent extraction
• Centrifuge method
Saturasi Fluida – Core Analysis
Retort method
• Temperatur tinggi untuk menguapkan air & minyak
• Langsung mengukur Vo & Vw
Alyafei, 2021
Saturasi Fluida – Core Analysis
Retort method
• Discrepancies due to high T
Saturasi Fluida – Core Analysis
Solvent Extraction
• Penguapan
solvent/pelarut toluene,
gasoline, naphtha
• Direct Sw measurement
• Clean, undamaged core
Amyx, 1960
Saturasi Fluida – Core Analysis
Centrifuge
• High centrifugal force
• Consolidated core
• Solvent assisted
• Direct Sw measurement
Saturasi Fluida – Core Analysis
Perubahan Kondisi Saturasi pada Sampel Batuan
• Invasi lumpur pemboran
• Perubahan tekanan drastis
Kondisi Saturasi pada Sampel Batuan
Kennedy, Van
Meter, and Jones
(1954) WBM
OBM
Kegunaan Data Saturasi dari Sampel Batuan
• Kemungkinan tidak representatif sebagai acuan saturasi HC
sebenarnya
• Tren Sw/So dari core membantu penentuan WOC & GOC
• Penentuan kandidat lapisan produktif
• Korelasi dengan properti lainnya
Saturasi Fluida & Porositas
Swi v ф
100
90
80
70
60
Swi, % 50
40
30
20
10
0
0 5 10 15 20 25 30 35
ф, %
Saturasi Fluida - Well Log
TM 2209
PETROFISIKA
Semester II – 2021/2022
Prof. Pudji Permadi, PhD
Pahala Dominicus Sinurat, PhD
Ivan Kurnia, PhD
Reviu Minggu 4 – Saturasi Fluida
Permeabilitas
Etimologi & Definisi
• MW:
(v) permeate = to diffuse through; to pass through the pores or interstices of
(adj) permeable = capable of being permeated, esp. having pores or openings
that permits fluids to pass through
• KBBI: Kemampuan suatu bahan meloloskan partikel dengan menembusnya
• API: sifat fisik media berpori yang mengukur kemampuan/kemudahan
media dalam mengalirkan fluida
Permeabilitas
Permeabilitas ≈ Konduktivitas
𝑉
• Electric current: 𝐼 = =𝑉 ×𝐶
𝑅
𝑑𝑇
• Heat transfer: 𝑞𝑥 = −𝑘𝐴
𝑑𝑥
𝑘 𝑑𝑝
• Laju alir: 𝑞 = 𝐴
𝜇 𝑑𝐿
Attempts in Defining Flow Equation
Reservoir Pore Spaces
Hukum Darcy (1856)
ℎ1 − ℎ2
𝑄 = 𝐾𝐴
𝐿
𝑘 𝑑𝑝 𝑞𝜇
𝑞= 𝐴 𝑘=
𝜇 𝑑𝐿 𝑑𝑝
𝐴
𝑑𝐿
• 100% saturasi, fluida tunggal
• Fluida Newtonian, incompressible
• Aliran Laminer
• Steady-state
• Iso-thermal
• Tidak ada reaksi antara fluida & batuan
Unit Permeabilitas
1 darcy = 0.9869 x 10-12 m2
= 1000 md
Faktor yang Berpengaruh terhadap Permeability
• Ukuran dan susunan butiran
• Kandungan dan jenis clays
• Ukuran pore throat
• Vuggy pores (ukuran & susunan)
• Fractures (ukuran & network)
Hubungan k dengan Properti Lain
• k versus : eksponensial
• k versus Swc : power law
• Contoh persamaan empirik :
✓ Timur: k = ab/(Sw)c
✓ Coates: (k)0.5 = 1002(1–Swi)/Swi
Porosity-Permeability
Tiab, D., & Donaldson, E. C. (2004).
Porosity-Permeability
Tiab, D., & Donaldson, E. C. (2004).
Permeability - Swc
Darcy’s Law for Horizontal, Linear Flow
Darcy’s Law for Radial Flow
Permeability of Combined Layers
• Linear flow in parallel layers
Alyafei, 2021
Permeability of Combined Layers
• Linear flow in series of layers
Alyafei, 2021
Permeability of Combined Layers
• Radial flow in parallel layers
Alyafei, 2021
Permeability of Combined Layers
• Radial flow in series of layers
Alyafei, 2021
Single Fluid Permeability
Fluid Saturation = 100% -> kabsolute
• Permeability to Liquid
• Permeability to Gas
Permeability to Water (kw)
• Mendekati hukum Darcy
• Dapat terpengaruh oleh
➢ Clay swelling
➢ Fine movement
➢ Salinity
Permeability to Gas
Permeability measurement with gas:
• Compressible
• Viskositas sangat dipengaruhi tekanan
• Aliran turbulen mudah terjadi @ P/ L besar
• Difusi molekul gas @ P rendah
Gas Slippage Effect
Pada tekanan rendah, aliran gas secara signifikan
dipengaruhi oleh diffusi gas → gas slippage
Gas mengalir :
➢ Karena gradien tekanan
➢ free movement
➢ tumbukan antar molekul dan dinding pori
Mean free path dipengaruhi:
➢Ukuran molekul gas
➢Ukuran pori-pori
➢Tekanan
Gas Slippage Effect (Klinkenberg)
Gas Slippage Effect
(Klinkenberg corrected permeability)
gradien m
.
Permeability to gas, kG
. .
. Klinkenberg Factor, b :
b = m/kL
kL
0
0
1/Prata-rata
Diskusi Penutup
Fracture Permeability
Sisi tampak samping Sisi tampak depan
w Matriks
h
Matriks
Fracture dengan tebal celah w
l
L
kfracture (darcy)= 8,45106w2
dengan w dalam satuan centimeter
kav = (kmAm + kfAf)/Abulk
TM 2209
PETROFISIKA
Semester II – 2021/2022
Prof. Pudji Permadi, PhD
Pahala Dominicus Sinurat, PhD
Ivan Kurnia, PhD
Reviu
Sifat Kebasahan Batuan
(Rock Wettability)
Definisi
Wettability: kecenderungan batuan untuk dibasahi oleh satu dari dua fluida
(atau lebih) terpisah yang bersentuhan dengan batuan tersebut.
Tiab & Donaldson (2004)
Importance of Wettability
• Fluid saturation
• Capillary pressure
• Relative permeability
• Well log analysis
• Primary recovery
• Secondary & tertiary recovery
Wettability Spectrum
Neutral
Water-wet Oil-wet
Intermediate
0° 90° 180°
Contact Angle
Young-Dupre Eq. 𝐴 𝑇 = 𝜎𝑠𝑜 − 𝜎𝑠𝑤 = 𝜎𝑜𝑤 cos 𝜃
OIL σwo 𝜎𝑠𝑜 − 𝜎𝑠𝑤
cos 𝜃 =
𝜎𝑜𝑤
θ
σso σsw
SOLID
AT > 0 : water-wet
AT = 0 : neutral
AT < 0 : oil-wet
Interfacial Tension
Alyafei (2021)
Contact Angle: Different continuous phase
SILICA
CALCITE
Amyx et al. (1960). After Benner & Bartell (1941)
Contact Angle Measurement
• Sessile drop
From Harold Vance Dept of Petroleum Eng (2017)
Sessile Drop - Oil-Wet Shale
(Harold Vance Dept. of PE, TAMU)
Sessile Drop - Oil-Wet Shale
(Harold Vance Dept. of PE, TAMU)
Alat contact angle goniometer dan pendukungnya
Alat putar pipet untuk
menghisap dan
mendorong minyak
Pipet
Stand
Calcite
Quartz
Glass cell Lempeng mineral
Sessile Drop (Biolin)
Contact Angle Measurement
• Wilhelmy Plate
Advancing θ Receding θ
Tiab & Donaldson, 2004
Wilhelmy Plate (Kino Industry)
Wilhelmy Plate (Scientific Gear)
Contact Angle Measurement
• Only for polished solids (quartz & calcite)
• Useful for measurement of solute effects to wettability
• Inapplicable to reservoir rock (heterogeneity, roughness)
Spontaneous Imbibition
Fenomena imbibisi spontan
Water-wet core sample dijenuhi air dan minyak pada kondisi Swirr.
Silinder gelas
Air
Swc
(Soi = 1- Swc)
Imbibisi = proses pendesakan fluida yg tidak membasahi oleh fluida pembasah.
(kebalikan dari imbibition adalah drainage)
Spontaneous Imbibition
at Sor
at Swirr
Tiab & Donaldson, 2004
Amott Method
Alyafei (2021)
Amott Method
Wettability of Reservoir Rocks
Anderson, 1986, after
Tiab & Donaldson, 2004 Treiber et al.(1972)
Wettability could be altered by
• Surface active compound of crude oil
• Salinity of water
• Rock minerals
• Temperature
• Fluid migration history
Fractional & Mixed Wettability
Fractional: certain areas can be WW while others
are OW
Mixed: smaller sections of pores remain WW
while large pore becomes OW (Salathiel, 1973)
Alteration of Wettability
Abdallah et al (2007)
Wettability & Fluid Saturation
Abdallah et al (2007)
Wettability & Oil Recovery
Diskusi Penutup