BASIC DESIGN FOR 1 UNIT 5Tx 23.
045M S/G CRANE
TECHNOINTAN HOLDING SDN BHD
CRANE SPECIFICATION :
MATERIAL
(Based on Specified in the product Standard-BS4360 GR43A OR EQUIVALANT S275JR / SS400)
2
Minimum Yield Strength, Ys = 240 N/mm
2
Minimum Tensile Strength, Us = 370 N/mm
(BS5950 : Part 1: Cl 3.1.1 : Table 6)
2
Design Strength, Py = 275 N/mm
CALCULATION STANDARD
Young's Modulus, E = 2100 ton/cm²
Allowable Stress, σ all = 1.65 ton/cm²
Impact Factor, Ø = 1.25
B. Moment By Horizontal Load, MH = 0.15 x MV1 ton.m
Deflection Ratio = < L/750 cm
SPECIFICATION :
Type = Single Girder
Safe Working Load ,P = 5 ton
Hoist Weight, Q = 0.586 ton
Girder Weight, W = 5.105 ton
Hoist Wheel Base,L1 = 0.3 m
Hook Approach, e = 0.800 m
Span, L = 23.045 m
End Carriage Weight, G = 0.786 ton
Wheel Pressure By Vertical :
Dynamic Load, P1 = [(P+Q) x 1/4)] ton/wheel
= 1.3965 ton/wheel
Traversing Wheel Pressure :
By Rated Load, P2 = (P x 1/4) ton/wheel
= 1.25 ton/wheel
GIRDER SECTION :
Type = Single Girder
Top Plate Width, B1 = 600 mm
Top Plate Thickness, a = 12 mm
Bottom Plate Width, B2 = 370 mm
Bottom Plate Thickness, c = 18 mm
Web Plate Width, H = 900 mm
Web Plate Thickness, b = 6 mm
Height of Section, h = 930 mm
CROSS SECTIONAL AREA
2
Top Plate Area, A1 = (B1 x a)/100 cm
2
72 cm
2
Web Plate Area, A2 = (b x H)/100 cm
2
54 cm
2
Bottom Plate Area, A3 = (B2 x c)/100 cm
2
66.6 cm
2
Girder Section Area, A = A1+2A2+A3 cm
2
246.6 cm
DISTANCE OF CENTROID FOR SECTIONAL AREA
Top Plate Centroid, G1 = (c+H+(a/2))/10 cm
92.40 cm
Web Plate Centroid, G2 = (c+(H/2))/10 cm
46.80 cm
Bottom Plate Centroid, G3 = (c/2)/10 cm
0.90 cm
Distance of Centroid, Gx = ((A1xG1)+2(A2xG2)+(A3xG3))/A cm
47.72 cm
Distance of Centroid, z = (b+d)/2 cm
13.20 cm
MOMENT OF INERTIA
4
Moment of Inertia, Ix1 = 143758.381 cm
4
Moment of Inertia, Ix2 = 36495.459 cm
4
Moment of Inertia, Ix3 = 145997.191 cm
4
Moment of Inertia, Ixx = Ix1+2Ix2+Ix3 cm
4
362746.490 cm
4
Moment of Inertia, Iy1 = 21600.000 cm
4
Moment of Inertia, Iy2 = 9410.580 cm
4
Moment of Inertia, Iy3 = 7597.950 cm
4
Moment of Inertia, Iyy = Iy1+2Iy2+Iy3 cm
4
48019.110 cm
SECTION OF MODULUS
3
Section of Modulus x-axis, Zxt = Ix/Gx cm
3
7601.956 cm
3
Section of Modulus x-axis, Zxc = Ix/(h-Gx) cm
3
8010.747 cm
3
Section of Modulus y-axis, Zyt = Iy/(B2x(1/2)) cm
3
2595.628 cm
3
Section of Modulus y-axis, Zyc = Iy/(B1x(1/2)) cm
3
1600.637 cm
LOADINGS :
WHEEL PRESSURE
Max Wheel Pressure, Pmax1=Pmax2 = ((W+G)/4) + ((P+Q)x(L-e))/(2xL) ton/wheel
4.169 ton/wheel
SHEAR FORCE, FV
Take moment at FV1:
Shear Force, FV2 = [Pmax1(H/1000)+Pmax2((H/1000)+L1)]/L ton
0.380 ton
Shear force, FV1 = Pmax1+Pmax2-FV2 ton
7.958 ton
BENDING MOMENT (B.M)
B.M By Vertical Dynamic Load, MV1 = 39.706 ton.m
B.M By Static Load, MV2 = 14.704 ton.m
Total Vertical Bending Moment, MV = 54.410 ton.m
B.M By Horizontal Load, MH = 5.956 ton.m
DESIGN OF WEB STIFFENERS SPACING (BS5950 : Part 1: CL 4.4.2.2 & 4.4.2.3)
Spacing of the stiffeners, n = H/3< n<1.5H
1.5H = 1350 mm
H/3 = 300.0 mm
Design spacing of stiffener, n = 1000 mm
Since 300< n <1350………..OK
CHECK WEB THICKNESS (BS5950 : Part 1: CL 4.4.2.2 & 4.4.2.3)
For Serviceability
Stiffener spacing, n > Web Depth, H : Web Thickness, b > Web Depth, H/250 mm
= b > H/250 mm
3.6 mm
To Avoid Flange Buckling
Stiffener spacing,n < 1.5Web Depth, H : b > (H/250)x (Py/455) mm
= 2.8 mm
Since web thickness,
b = 6mm > 3.6mm &2.79874383125127mm...ok!
STRESS ANALYSIS
BENDING STRESS ANALYSIS (Top & Bottom Plate)
Tension Stress, σt = [(MV/Zxt)+(MH/Zyt)]x100 ton/cm²
0.945 ton/cm²
since σt < σ all 1.65 ton/cm2 ……….ok!
Compression Stress, σc = [(MV/Zxc)+(MH/Zyc)]x100 ton/cm²
1.051 ton/cm²
Since σc < σ all 1.65 ton/cm2 ……….ok!
SHEAR STRESS ANALYSIS (Web Plate)
Shear Stress in the web, Tv = Max. Shear Force(FV1)/bH ton/cm²
0.147 ton/cm²
Allowable Shear Stress, Tv all = 0.865 ton/cm²
Since Tv < Tv all ……….ok!
DEFLECTION BY RATED LOAD
Deflection, F = 1.67 cm
Allowable Deflection, F all = L/750 cm
= 3.073 cm
Since F < F all ……….ok!
CALCULATION BASE ON FEM
LOCAL FLANGE STRESS (Bottom Plate Under The Trolley Wheel)
Trolley wheel load, R = 1.46 ton/wheel
Bending Moment at Girder center
Girder Own Weight, Mx (HT) = 14.70 ton.m
Hoist Own Weight, Mx (Gka) = 3.38 ton.m
Rated Load, Mx (GH) = 28.81 ton.m
øMx (GH) = 30.25 ton.m
Horizontal Direction, MY (kr) = 0.56 ton.m
Girder Cross Section performance
3
Wyo = 96038.220 cm
3
Wy1 = 3001.194 cm
Calculation for various Coefficient
coeff, λ = 0.14
Czo = 0.27
Cz1 = 2.14
Cz2 = 1.79
Cxo = -2.36
Cx1 = 0.71
Cx2 = 0
Flange Parts Stress
σfx & σfy = 0.45 ton/cm²
σFI(Z0) = 0.12 ton/cm²
σFI(Z1) = 0.96 ton/cm²
σFI(Z2) = 0.81 ton/cm²
σFI(X0) = -1.06 ton/cm²
σFI(X1) = 0.32 ton/cm²
σFI(X2) = 0 ton/cm²
Vertical, Mx ges = 48.33 ton.m
Horizotal, My gcs (ton.m) = 0.56 ton.m
Stress at No 2 Point (Flange End) :
Direction, σz2 = 1.26 ton/cm²
2
Since σz2 < 1.65 ton/cm …….ok!
Stress at No 1 Point (Load Point) :
Direction, σz1 = 1.38 ton/cm²
2
Since σz1 < 1.65 ton/cm …….ok!
Direction, σx1 = 0.24 ton/cm²
Since σx1 < 1.65 ton/cm2 …….ok!