FORM NO.
F / CDTE / 16
REV. NO. ISSUE DATE 00, 01-07-2018
DEPARTMENT OF COMPUTER
ASSIGNMENT -III
SCIENCE & ENGG.
ACADEMIC YEAR 2022-2023 COURSE TEACHER I.M.PALKAR
COURSE NAME MATH - III CLASS S.E.
SEM. III DATE 02/12/2022
ASSIGNMENT NO. 03 TOTAL MARKS:05 M
Q.
Question Description
No.
1 1 ;0 ≤ 𝑥 ≤ 𝜋 ∞ 1−𝑐𝑜𝑠𝜆𝜋
Express 𝑓(𝑡) = { as a Fourier sine integral and hence deduce that ∫0 𝑠𝑖𝑛𝜋𝜆 𝑑𝜆
0 ;𝑥 > 𝜋 𝜆
2 𝑐𝑜𝑠𝑥 ; |𝑥| < 𝜋
Express the function as Fourier integral 𝑓(𝑥) = {
0 ; |𝑥| > 𝜋
3 1 − 𝑥 2 ; |𝑥| ≤ 1
Find the Fourier transform of 𝑓(𝑥) = {
0 ; |𝑥| > 1
1 − 𝑥 2 ; |𝑥| ≤ 1
Find the Fourier transform of 𝑓(𝑥) = { ; Hence Prove that
0 ; |𝑥| > 1
4
∞
(𝑥𝑐𝑜𝑠𝑥 − 𝑠𝑖𝑛𝑥) 𝑥 −3𝜋
∫ 𝑐𝑜𝑠 𝑑𝑥 =
0 𝑥3 2 16
5 Find Fourier sine transform of 𝑓(𝑥) = 5𝑒 −2𝑥 + 2𝑒 −5𝑥
𝑠𝑖𝑛𝑥 ; 0 ≤ 𝑥 ≤ 𝜋
Express the function 𝑓(𝑥) = { as a Fourier sine integral and Evaluate that
6 0 ;𝑥 > 𝜋
∞ 𝑠𝑖𝑛𝜆𝑥 𝑠𝑖𝑛𝜆𝜋
∫0 𝑑𝜆
1−𝜆2
0 ; 𝑥 < −𝑎
7
Express the function as Fourier integral 𝑓(𝑥) = {1 ; −𝑎 < 𝑥 < 𝑎
0 ;𝑥 > 𝑎
𝜋
8 𝑐𝑜𝑠𝑥 ; |𝑥| < 2
Express the function as Fourier integral 𝑓(𝑥) = { 𝜋
0 ; |𝑥| > 2
9 𝜋
Express the function as Fourier sine integral 𝑓(𝑥) = 𝑒 −𝑥 ; 𝑥 ≥ 0
2
Page 1 of 2
10 𝑥3 ; 0 ≤ 𝑥 ≤ 1
Find the Fourier cosine and sine transform of 𝑓(𝑥) = {
0 ;𝑥 > 0
4𝑥 ;0 < 𝑥 < 1
11
Find Fourier sine transform of 𝑓(𝑥) = { 4 − 𝑥 ; 1 < 𝑥 < 4
0 ;𝑥 < 4
𝑥 , 0<𝑥<1
12 Find the Fourier Cosine transform of 𝑓(𝑥) = {2 − 𝑥, 1 < 𝑥 < 2
0, 𝑥 > 2
13 ∞ 𝑥𝑠𝑖𝑛𝑚𝑥 𝜋𝑒 −𝑚
Find the Fourier sine transform of 𝑒 −|𝑥| , and hence Show that ∮0 𝑑𝑥 = ,𝑚 > 0
1+𝑥 2 2
14 ∞ 𝑐𝑜𝑠𝜆𝑥
Find the Fourier cosine transform of 𝑒 −𝑎𝑥 Hence Evaluate ∫0 𝑑𝑥
𝑥 2 +𝑎2
𝜋
15 ∞ 𝑠𝑖𝑛𝜆𝜋 𝑠𝑖𝑛𝜆𝑥 𝑠𝑖𝑛𝑥 ; 0 ≤ 𝑥 ≤ 𝜋
Using the Fourier integral representations, show that ∫0 𝑑𝜆 = {2
1−𝜆3
0 ;𝑥 ≥ 𝜋
16 ∞ 𝑤𝑠𝑖𝑛𝑥𝑤 𝜋
Using the Fourier integral representations, show that ∫0 𝑑𝑤 = 2 𝑒 −𝑥 ; 𝑥 ≥ 0
1+𝑤 2
𝜋
17 ∞ 1−𝑐𝑜𝑠𝜆𝜋 ;0 ≤ 𝑥 ≤ 𝜋
Using the Fourier integral representations, show that ∫0 𝑠𝑖𝑛𝜆𝑥𝑑𝜆 = { 2
𝜆
0 ;𝑥 ≥ 𝜋
2
18 ∞ 𝑠𝑖𝑛𝑎𝑡 𝜋 1−𝑒 −𝑎
Using Parseval’s identity for cosine transform Prove that ∫0 𝑑𝑡 = 2 ( )
𝑡(𝑎2 +𝑡 2 ) 𝑎2
19 ∞ 𝑡2 𝜋
Using Parseval’s identity, Prove that ∫0 (𝑡 2 +1)2
𝑑𝑡 = 4
20 ∞ 𝑑𝑥
Using Parseval’s identity for cosine transform evaluate ∫0 (𝑥 2 +𝑎2 )(𝑥 2 +𝑏 2 )
21 ∞ sin2 𝑥
Using Parseval’s identity, Evaluate ∫0 𝑥2
22 ∞ 𝑑𝑡
Using Parseval’s identity, Evaluate ∫0 (𝑡 2 +1)2
23 ∞ 𝑡 2 𝑑𝑡
Using Parseval’s identity, Evaluate ∫0 (4+𝑡 2 )(9+𝑡 2 )
Page 2 of 2