0% found this document useful (0 votes)
27 views13 pages

Calculus Rules PDF

The document provides rules and formulas for calculus involving trigonometric functions, hyperbolic functions, inverse trigonometric functions, and basic functions. It includes formulas for differentiation, integration, and important trigonometric identities. The rules cover topics such as differentiation and integration of sine, cosine, tangent, cotangent, secant, cosecant, and their hyperbolic counterparts, as well as the natural logarithm, exponential, and inverse trigonometric functions.

Uploaded by

ahmed abdo
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
27 views13 pages

Calculus Rules PDF

The document provides rules and formulas for calculus involving trigonometric functions, hyperbolic functions, inverse trigonometric functions, and basic functions. It includes formulas for differentiation, integration, and important trigonometric identities. The rules cover topics such as differentiation and integration of sine, cosine, tangent, cotangent, secant, cosecant, and their hyperbolic counterparts, as well as the natural logarithm, exponential, and inverse trigonometric functions.

Uploaded by

ahmed abdo
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 13

Calculus Rules

Trigonometric Functions
Differentiation Integration Important rules
d
sin u  = (cos u ) u '  sin x dx = − cos x + C sin 2 x + cos2 x = 1
dx
d
cosu  = (− sin u ) u '  cos x dx = sin x + C
dx sin 2 x = 2 sin x cos x
cos x = cos  x − sin  x
d
tan u  = (sec 2 u ) u '  tan x dx = ln sec x +C =  cos  x −
dx
= −  sin  x

d
cot u  = (− csc2 u ) u '  cot x dx = ln sin x +C sin  x = (− cos x )
dx 

d
sec u  = (sec u tan u ) u '  sec x dx = ln sec x + tan x +C cos  x = (+ cos x )
dx 
sin x cos y =
d
cscu  = (− cscu cot u) u '  csc x dx = ln csc x − cot x +C 
[sin(x − y ) + sin(x + y )]
dx

sin x sin y =

 sec 

x dx = tan x + C [cos(x − y ) − cos( x + y )]

cos x cos y =

 csc 

x dx = − cot x + C [cos(x − y ) + cos(x + y )]

tan x + tan y
tan(x + y ) =
− tan x tan y

Walls rules
  
( n − )( n − )..........   
 sin x  
 n
if even
  n dx =
cos x    


(n )(n − )..........    if odd

    
(n −)(n − )..........   .(m −)(m − )..........    
   

if both even
 sin n x .cos m x dx =
 

 

(n + m )(n + m − )..........   otherwise


pg. 1
Hyperbolic Functions
Differentiation Integration Important rules
d
sh u  = (ch u )u '  sh x dx = ch x + C ch  x − sh  x =
dx
d
ch u  = (sh u )u '  ch x dx = sh x + C sh x = sh x ch x
dx
ch x = ch  x + sh  x
d
 tanh u  = (sech  u )u '  tanh x dx = ln ch x +C = ch  x −
dx
= + sh  x
d 
coth u  = (− csch  u )u '  coth x dx = ln sh x +C sh  x = (ch x −)
dx 
d 
sech u  = (− sech u tanh u )u '  sech x dx = tan
−
(sh x ) + C c h  x = (+ ch x )
dx 
x e x + e −x
 csch x dx = ln tanh 
d
csch u  = (− csch u coth u )u ' +C ch x =
dx 2
e − e −x
x
sh x =
2

basic Functions
Differentiation Integration Important rules
d f (x ) f (x )
dx
ln f (x )  =
f (x )  f (x ) dx = ln f (x ) + c ln x a = a ln x
d f (x ) f (x ) ln x
dx
loga f (x )  =
ln a f (x )  f (x ) dx =  f (x ) + c loga x =
ln a
d
e f  =ef f (x )
e f (x ) dx = e f ( x ) + C
(x ) (x ) f (x )
dx   ln xy = ln x + ln y
d ef (x ) x
= ln x − ln y
a f  = af f (x ) ln a a f (x ) dx = +C ln
(x ) (x ) f (x )

dx   ln a y
d
f (x )n = n f (x )n − f (x ) f (x )
n +

 f (x ) f (x ) dx =
n
+c y = ln x → x = e y
dx n +

pg. 2
Inverse Trigonometric Functions
Differentiation Integration Important rules
d u' 1
sin − u  =
  csc−1 ( x ) = sin −1  
dx −u  x 
f (x ) dx f (x )
d −u '  = sin −1 +C
1
 cos − u  =
  a 2 − f 2 (x ) a s ec −1 ( x ) = cos −1  
dx −u  x 
1
cot −1 ( x ) = tan −1  
d u'
 tan − u  =
dx   + u  x 
f (x ) dx 1 f (x )
d
cot − u  =
−u ' a 2
= tan −1
+ f (x ) a
2
a
+C
dx   + u 

d u'
sec − u  =
 
dx u u  −
f (x ) dx 1 f (x )
d
csc− u  =
−u '  f (x ) = sec −1
f 2 (x ) − a 2 a a
+C
 
dx u u  −

pg. 3
Inverse hyperbolic Functions
Differentiation Integration
f (x ) dx f (x )

d u'
sh − u  =
 
= sh −1 +C
dx +u  a 2 + f 2 (x ) a
f (x ) dx f (x )

d u'
ch − u  =
 
= ch −1 +C
dx u  − f 2 (x ) − a 2 a

d
th − u  =
u' 1 f (x )
   tanh −1 + C if f (x )  1
dx − u  f (x ) dx a a
 a 2 − f 2 (x ) =  1 −1 f (x )
d
cot − u  =
u'  coth + C if f (x )  1
dx   − u   a a
d −u ' f (x ) dx 1 f (x )
dx
sech − u  =
 
u − u 
 f (x ) a 2 − f 2 (x )
= − sech −1
a a
+C

d −u ' f (x ) dx 1 f (x )
dx
csch − u  =
 
u + u 
 f (x ) a + f (x )
2 2
= − csch −1
a a
+C

Important rules Logarithmic form

sech −1x = cosh −1


1
x ( )
sinh −1 x = ln x + x 2 + 1 , −   x  

csch −1x = sinh −1


1
x (
cosh −1 x = ln x + x 2 − 1 , x  1)
1 1 1+ x
coth −1x = tanh −1 tanh −1 x = ln , x 1
x 2 1− x
 1+ 1− x 2 
sech −1x = ln   , 0  x 1
 x 
 
1 1+ x 2 
csch −1x = ln  +  , x 0
x x 
 
1 x +1
coth −1 x = ln , x 1
2 x −1

pg. 4
Trigonometric rules
 sin
n
1. x cos m x dx

Case Solution
 sin
n −1
n odd (+ve) integer x cos x (sin x dx ), set every sin 2 x = 1 − cos 2 x
m

 sin x cos m −1 x (cos dx ), set every cos 2 x = 1 − sin 2 x


n
m odd (+ve) integer
n , m both even (+ve) 1 1
set sin 2 x = (1 − cos 2x ), cos 2 x = (1 − sin 2x )
integer 2 2
2.  tan x sec x dx
n m

 tan
n −1
n odd (+ve) integer x sec m −1 x (sec x tan x dx ), every tan 2 x = sec 2 x − 1

 tan x secm − 2 x (sec2 x dx ), every sec2 x = 1 + tan 2 x


n
m even (+ve) integer
3.  sin ax cos bx dx
1
sin ax cos bx = ( sin (a − b) x + sin (a + b) x )
2
1
cos ax cos bx = ( cos(a − b) x + cos (a + b) x )
2
1
sin ax sin bx = ( cos(a − b) x − cos (a + b) x )
2

Partial fractions  QP ((xx )) dx

f (x ) A B C
 + +
( x − a )( x + b )( x − c ) x − a x +b x −c
f (x ) A Bx + C
 + 2
(x − a )(x 2 + bx + c ) x − a (x + bx + c )
f (x ) A1 A2 An
 + ............. +
(x − a )n x − a (x − a ) 2
(x − a ) n
f (x ) A1x + B 1 A x + B2 A x + Bn
 + 22 ............. + 2 n
( x + bx + c ) n
2
x + bx + c (x + bx + c )
2 2
(x + bx + c ) n

pg. 5
Trigonometric substitution
f (x ) = a sin 

(a − f  (x ) )
 n

f (x ) = a tan 

(a + f  (x ) )
 n

f (x ) = a sec 

(f (x ) − a  )
 n

 u dv = u v − v du Integration by Parts

L I A T E
‫دوال لوغاريتمية‬ ‫دوال عكسية‬ ‫دوال جبرية‬ ‫دوال مثلثية‬ ‫دوال أسية‬
ln x sin −  x sin x ex
log x cos −  x ch x x
.. .. .. .. ..
. . . .
dv ‫ واالخري تكون ال‬u ‫في االغلب يتم اختيار الدالة التي تسبق في الترتيب ب‬

pg. 6
Limits
L’hopital rule
f (x )  
y = lim = or
x →a g ( x )  
f (x )
then y = lim
x →a g ( x )

Undefined values
 
, ‫إستخدام أوييتال مباشرة‬
 
. ‫تحول أولا لبسط ومقام ثم أوييتال‬
- ‫يتم توحيد المقام ثم أوييتال‬
‫( للطرفين أولا ثم الوصول ألحد األشكال‬ln) ‫يتم أخذ‬
0 0 ,  0 , 1
‫السابقة‬
Important rules .1
sin x tan x
lim x = 
x →
lim x =  x →

lim f . g = lim f  lim g


x →a x →a x →a
lim ln f (x ) = ln lim f (x )
x →a x →a

lim (+ f (x ) ) = e
g (x ) k

x →a

k = lim f (x ).g (x )
x →a

if f (x ) → , g (x ) → 

pg. 7
Graphs of Inverse Functions
sin (x ) sin − (x )

 
Domain [ − , ] ‫تحديد مجال‬ Domain [−,]
 
Range [−,]  
Range [ − , ]
 
cos (x ) cos − (x )

Domain [,  ] ‫تحديد مجال‬


Range [−,] Domain [−,]
Range [,  ]

pg. 8
tan (x ) tan − (x )

 
Domain [ − , ] ‫تحديد مجال‬ Domain R
   
Range R Range [ − , ]
 
sec (x ) sec − (x )

 Domain x , x  −
Domain [,  ] − ‫تحديد مجال‬ 
 Range [,  ] −
Range x , x  − 

pg. 9
csc (x ) csc − (x )

Domain x , x  −
 
Domain [− , ] −  ‫تحديد مجال‬  
  Range [− , ]−
 
Range x , x  −
cot (x ) cot − (x )

 
Domain [− , ] −  ‫تحديد مجال‬ Domain R
 
 
Range R Range [− , ]−
 

pg. 10
sh (x ) sh − (x )

Domain R Domain R
Range R Range R
ch (x ) ch − (x )

Domain R + ‫تحديد مجال‬ Domain [, [


Range [, [
Range R +

pg. 11
tanh (x ) tanh − (x )

Domain ] −, [
Domain R
Range ] −, [ Range R

sech (x ) sech − (x )

Domain R + Domain ] ,]


Range ] ,]
Range R +

pg. 12
csch (x ) csch − (x )

Domain R − 
Domain R − 
Range R − 
Range R − 
coth (x ) coth − (x )

-1

Domain R −  Domain x  , x  
Range x  , x   Range R − 

Amr Khaled

pg. 13

You might also like