Calculus Rules PDF
Calculus Rules PDF
Trigonometric Functions
Differentiation Integration Important rules
d
sin u = (cos u ) u ' sin x dx = − cos x + C sin 2 x + cos2 x = 1
dx
d
cosu = (− sin u ) u ' cos x dx = sin x + C
dx sin 2 x = 2 sin x cos x
cos x = cos x − sin x
d
tan u = (sec 2 u ) u ' tan x dx = ln sec x +C = cos x −
dx
= − sin x
d
cot u = (− csc2 u ) u ' cot x dx = ln sin x +C sin x = (− cos x )
dx
d
sec u = (sec u tan u ) u ' sec x dx = ln sec x + tan x +C cos x = (+ cos x )
dx
sin x cos y =
d
cscu = (− cscu cot u) u ' csc x dx = ln csc x − cot x +C
[sin(x − y ) + sin(x + y )]
dx
sin x sin y =
sec
x dx = tan x + C [cos(x − y ) − cos( x + y )]
cos x cos y =
csc
x dx = − cot x + C [cos(x − y ) + cos(x + y )]
tan x + tan y
tan(x + y ) =
− tan x tan y
Walls rules
( n − )( n − )..........
sin x
n
if even
n dx =
cos x
(n )(n − ).......... if odd
(n −)(n − ).......... .(m −)(m − )..........
if both even
sin n x .cos m x dx =
(n + m )(n + m − ).......... otherwise
pg. 1
Hyperbolic Functions
Differentiation Integration Important rules
d
sh u = (ch u )u ' sh x dx = ch x + C ch x − sh x =
dx
d
ch u = (sh u )u ' ch x dx = sh x + C sh x = sh x ch x
dx
ch x = ch x + sh x
d
tanh u = (sech u )u ' tanh x dx = ln ch x +C = ch x −
dx
= + sh x
d
coth u = (− csch u )u ' coth x dx = ln sh x +C sh x = (ch x −)
dx
d
sech u = (− sech u tanh u )u ' sech x dx = tan
−
(sh x ) + C c h x = (+ ch x )
dx
x e x + e −x
csch x dx = ln tanh
d
csch u = (− csch u coth u )u ' +C ch x =
dx 2
e − e −x
x
sh x =
2
basic Functions
Differentiation Integration Important rules
d f (x ) f (x )
dx
ln f (x ) =
f (x ) f (x ) dx = ln f (x ) + c ln x a = a ln x
d f (x ) f (x ) ln x
dx
loga f (x ) =
ln a f (x ) f (x ) dx = f (x ) + c loga x =
ln a
d
e f =ef f (x )
e f (x ) dx = e f ( x ) + C
(x ) (x ) f (x )
dx ln xy = ln x + ln y
d ef (x ) x
= ln x − ln y
a f = af f (x ) ln a a f (x ) dx = +C ln
(x ) (x ) f (x )
dx ln a y
d
f (x )n = n f (x )n − f (x ) f (x )
n +
f (x ) f (x ) dx =
n
+c y = ln x → x = e y
dx n +
pg. 2
Inverse Trigonometric Functions
Differentiation Integration Important rules
d u' 1
sin − u =
csc−1 ( x ) = sin −1
dx −u x
f (x ) dx f (x )
d −u ' = sin −1 +C
1
cos − u =
a 2 − f 2 (x ) a s ec −1 ( x ) = cos −1
dx −u x
1
cot −1 ( x ) = tan −1
d u'
tan − u =
dx + u x
f (x ) dx 1 f (x )
d
cot − u =
−u ' a 2
= tan −1
+ f (x ) a
2
a
+C
dx + u
d u'
sec − u =
dx u u −
f (x ) dx 1 f (x )
d
csc− u =
−u ' f (x ) = sec −1
f 2 (x ) − a 2 a a
+C
dx u u −
pg. 3
Inverse hyperbolic Functions
Differentiation Integration
f (x ) dx f (x )
d u'
sh − u =
= sh −1 +C
dx +u a 2 + f 2 (x ) a
f (x ) dx f (x )
d u'
ch − u =
= ch −1 +C
dx u − f 2 (x ) − a 2 a
d
th − u =
u' 1 f (x )
tanh −1 + C if f (x ) 1
dx − u f (x ) dx a a
a 2 − f 2 (x ) = 1 −1 f (x )
d
cot − u =
u' coth + C if f (x ) 1
dx − u a a
d −u ' f (x ) dx 1 f (x )
dx
sech − u =
u − u
f (x ) a 2 − f 2 (x )
= − sech −1
a a
+C
d −u ' f (x ) dx 1 f (x )
dx
csch − u =
u + u
f (x ) a + f (x )
2 2
= − csch −1
a a
+C
pg. 4
Trigonometric rules
sin
n
1. x cos m x dx
Case Solution
sin
n −1
n odd (+ve) integer x cos x (sin x dx ), set every sin 2 x = 1 − cos 2 x
m
tan
n −1
n odd (+ve) integer x sec m −1 x (sec x tan x dx ), every tan 2 x = sec 2 x − 1
f (x ) A B C
+ +
( x − a )( x + b )( x − c ) x − a x +b x −c
f (x ) A Bx + C
+ 2
(x − a )(x 2 + bx + c ) x − a (x + bx + c )
f (x ) A1 A2 An
+ ............. +
(x − a )n x − a (x − a ) 2
(x − a ) n
f (x ) A1x + B 1 A x + B2 A x + Bn
+ 22 ............. + 2 n
( x + bx + c ) n
2
x + bx + c (x + bx + c )
2 2
(x + bx + c ) n
pg. 5
Trigonometric substitution
f (x ) = a sin
(a − f (x ) )
n
f (x ) = a tan
(a + f (x ) )
n
f (x ) = a sec
(f (x ) − a )
n
u dv = u v − v du Integration by Parts
L I A T E
دوال لوغاريتمية دوال عكسية دوال جبرية دوال مثلثية دوال أسية
ln x sin − x sin x ex
log x cos − x ch x x
.. .. .. .. ..
. . . .
dv واالخري تكون الu في االغلب يتم اختيار الدالة التي تسبق في الترتيب ب
pg. 6
Limits
L’hopital rule
f (x )
y = lim = or
x →a g ( x )
f (x )
then y = lim
x →a g ( x )
Undefined values
, إستخدام أوييتال مباشرة
. تحول أولا لبسط ومقام ثم أوييتال
- يتم توحيد المقام ثم أوييتال
( للطرفين أولا ثم الوصول ألحد األشكالln) يتم أخذ
0 0 , 0 , 1
السابقة
Important rules .1
sin x tan x
lim x =
x →
lim x = x →
lim (+ f (x ) ) = e
g (x ) k
x →a
k = lim f (x ).g (x )
x →a
if f (x ) → , g (x ) →
pg. 7
Graphs of Inverse Functions
sin (x ) sin − (x )
Domain [ − , ] تحديد مجال Domain [−,]
Range [−,]
Range [ − , ]
cos (x ) cos − (x )
pg. 8
tan (x ) tan − (x )
Domain [ − , ] تحديد مجال Domain R
Range R Range [ − , ]
sec (x ) sec − (x )
Domain x , x −
Domain [, ] − تحديد مجال
Range [, ] −
Range x , x −
pg. 9
csc (x ) csc − (x )
Domain x , x −
Domain [− , ] − تحديد مجال
Range [− , ]−
Range x , x −
cot (x ) cot − (x )
Domain [− , ] − تحديد مجال Domain R
Range R Range [− , ]−
pg. 10
sh (x ) sh − (x )
Domain R Domain R
Range R Range R
ch (x ) ch − (x )
pg. 11
tanh (x ) tanh − (x )
Domain ] −, [
Domain R
Range ] −, [ Range R
sech (x ) sech − (x )
pg. 12
csch (x ) csch − (x )
Domain R −
Domain R −
Range R −
Range R −
coth (x ) coth − (x )
-1
Domain R − Domain x , x
Range x , x Range R −
Amr Khaled
pg. 13