Assignment-1
BMA-251 (Mathematics III)
1. Find the Fourier transform of:
1 |𝑥| < 1
(i) 𝑓(𝑥) = {
0 |𝑥| > 1
1 − 𝑥2 |𝑥| < 1
(ii) 𝑓(𝑥) = {
0 |𝑥| > 1
2 2 2 ⁄2
(iii) 𝑓(𝑥) = 𝑒 −𝑎 𝑥 , 𝑎 < 0 and deduce that 𝑒 −𝑥 is self reciprocal in respect of
Fourier transform.
2. Find the Fourier cosine transform of
2
(i) 𝑓(𝑥) = 𝑒 −𝑥
𝑥 0<𝑥<1
(ii) 𝑓(𝑥) = {2 − 𝑥 1<𝑥<1
0 𝑥>2
1
(iii) 𝑓(𝑥) =
1+𝑥 2
3. Find the Fourier sine transform of
(i) 𝑓(𝑥) = 𝑒 −|𝑥|
(ii) 𝑓(𝑥) = 𝑥 𝑛−1
1
(iii)𝑓(𝑥) = 𝑥(𝑥 2+𝑎2)
∞ 𝑑𝑡 𝜋
4. Using Parseval’s identity, prove that ∫0 (𝑡 2 +𝑏2 )(𝑡 2 +𝑎2 )
= 2𝑎𝑏(𝑎+𝑏) .
2
5. Verify convolution theorem for Fourier transform for 𝑓(𝑥) = 𝑔(𝑥) = 𝑒 −𝑥 .
6. Find the finite Fourier sine and cosine transform of
(i) 𝑓(𝑥) = 2𝑥, 0 < 𝑥 < 4 .
−𝑥 𝑥<𝑐
(ii) 𝑓(𝑥) = { 𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑐 ≤ 𝜋.
𝜋−x x>𝑐
7. Solve:
𝜕𝑢 𝜕2 𝑢
(i) = 2 𝜕𝑥 2 , where u(0, t) = 0; u(x,0) = 𝑒 −𝑥 (x>0) and u(x, t) is bounded.
𝜕𝑡
𝜕𝑢 𝜕2 𝑢
(ii) = 𝜕𝑥 2 , where u(0, t) = 0; u(4,t) = 0 u(x, 0) = 2x with 0 < x < 4.
𝜕𝑡
𝜕𝑦 𝜕2 𝑦 π 𝜕𝑦
(iii) = 3 𝜕𝑥 2 , where y (2 ,t)=0 (𝜕𝑥 ) = 0 and y(x,0) =30 cos 5𝑥.
𝜕𝑡 𝑥=0
𝜕𝑢 𝜕2 𝑢 𝜕𝑢 𝑥 0<𝑥<1
(iv) = , where ( 𝜕𝑡 ) = 0 𝑎𝑛𝑑 𝑢(𝑥, 0) = {
𝜕𝑡 𝜕𝑡 2 𝑥=0 0 𝑥>1
8. Find the Z-transform of:
(i) 𝑛𝑎𝑛
(ii) 𝑛 2 𝑎𝑛
(iii) sin 𝑛𝜃
(iv) cos 𝑛𝜃
(v) 𝑎𝑛 cos n 𝜃
(vi) 𝑎𝑛 sinn 𝜃
(vii) 𝑛 2 𝑒 𝑛𝜃
−𝑧 𝑧
9. If Z(𝑢𝑛 ) = + 2 , then find Z(𝑢𝑛+2).
𝑧−1 𝑧 +1
𝑧2
10. Using convolution theorem, evaluate 𝑍 −1 ((𝑧−𝑎)(𝑧−𝑏)).
11. Find inverse Z-transforms of following functions:
2𝑧 2 +3𝑧
(i) (𝑧+2)(𝑧−4)
𝑧 3 −20𝑧
(ii) (𝑧−2)3(𝑧−4)
𝑧
(iii) (𝑧−1)2
5𝑧
(iv) (2−𝑧)(3𝑧−1)
3𝑧 2 −18𝑧+26
(v) (𝑧−2)(𝑧−3)(𝑧−4)
12. Solve following difference equations using Z-transform:
(i) 𝑢𝑛+2 +4𝑢𝑛+1 +3𝑢𝑛 = 3𝑛 , 𝑢0 = 0 𝑢1= 1
𝑛
(ii) 𝑢𝑛+2 +6𝑢𝑛+1 +9𝑢𝑛 = 2 , 𝑢0 = 𝑢1= 0
(iii) 𝑢𝑛+2-5𝑢𝑛+1 +6𝑢𝑛 = 1, 𝑢0 = 0, 𝑢1=1
𝑛
(iv) 𝑢𝑛+2+ 𝑢𝑛 = 5.2 𝑢0= 1, 𝑢1= 0
(v) 𝑦𝑛 +3𝑦𝑛−1= 𝑢𝑛 , where 𝑢𝑛 is a step function and 𝑦−1=1