Geometry/Trig Name __________________________
Unit 4 Proving Triangles Congruent Packet Date ___________________________
#1 F
H
Given: LF || WH; HY LY
Prove: ΔWHY ΔFLY Y
W L
Statements Reasons
#2 M A
Given: MH || AT; MH AT
Prove: ΔMAH ΔTHA
H T
Statements Reasons
#3 W
Given: ZX bisects WZY
ZX bisects WXY Z X
Prove: ΔZYX ΔZWX
Y
Statements Reasons
#4 A
C
Given: E is the midpoint of AD E
E is the midpoint of BC
Prove: ΔAEB ΔDEC B
D
Statements Reasons
1. _________________________________ 1. __________________________________
2. _________________________________ 2. __________________________________
3. _________________________________ 3. Given
4. _________________________________ 4. __________________________________
5. _________________________________ 5. Vertical Angles are Congruent
6. _________________________________ 6. __________________________________
#5 A
Given: AC BD
B D
Prove: ΔACB ΔACD B D
C
Statements Reasons
#6 M
Given: MO NP
MN MP
Prove: ΔMON ΔMOP
N P
O
Statements Reasons
1. _________________________________ 1. __________________________________
2. _________________________________ 2. Definition of Perpendicular Lines
3. _________________________________ 3. __________________________________
4. _________________________________ 4. Given
5. _________________________________ 5. __________________________________
6. _________________________________ 6. __________________________________
#7 W Z
Given: WO ZO; XO YO
Prove: W Z O
X Y
Statements Reasons
#8 Q
Given: PR bisects QPS and QRS R P
Prove: RQ RS
S
Statements Reasons
#9 A
Given: AC BD; AD DC B D
Prove: AB BC
C
Statements Reasons
#10 Y Z
2
Given: ZW || YX; ZW XY 3
Prove: ZY || WX 4
1
X W
Statements Reasons
1. _________________________________ 1. _________________________________
2. _________________________________ 2. If lines are parallel, then alternate interior
angles are congruent.
3. _________________________________ 3. _________________________________
4. _________________________________ 4. _________________________________
5. ΔXYZ ΔZWX 5. _________________________________
6. _________________________________ 6. CPCTC
7. _________________________________ 7. _________________________________
_________________________________
S
#11
Given: P S
O is the midpoint of PS Q
O R
Prove: O is the midpoint of RQ
P
Statements Reasons
1. P S, O is the midpoint of PS 1. __________________________________
2. __________________________________ 2. __________________________________
3. __________________________________ 3. Vertical Angles are Congruent
4. __________________________________ 4. __________________________________
5. RO QO 5. __________________________________
6. __________________________________ 6. __________________________________
#12 J
Given: JK KM, JL ML
K L
Prove: KL bisects JKM
Statements M Reasons
1. JK KM, JL ML 1. __________________________________
2. __________________________________ 2. __________________________________
3. __________________________________ 3. __________________________________
4. __________________________________ 4. CPCTC
5. __________________________________ 5. __________________________________
Mixed Proofs Practice
Directions: Complete the proofs on a separate piece of paper. Mark diagrams as necessary.
1) Given: AB || DE; AB ED 2) Given: AB || CD; AD || CB
Prove: ΔABC ΔCDA
Prove: ΔABM ΔEDM
B C
A B 4
3
M
2
1
D E A D
3) Given: MO bisects LMN 4) Given: X and Y are right angles;
L and N are right angles XZ YZ
M W
Prove: ΔLMO ΔNMO Prove: ΔWXZ ΔWYZ
L N X Y
O Z
5) Given: C is the midpoint of AE 6) Given: AB CB, AD CD
C is the midpoint of BD Prove: A C
B
Prove: AB || ED
A B
D
D E A C
7) Given: MT bisects ATH, AT HT 8) Given: BC || AD, A C
Prove: BC AD
Prove: MT bisects AMH
B C
A
M T
H A D