ETANK FULL REPORT - 3300
ETank2000 Demo 1.9.12 (02 Apr 2010)
TABLE OF CONTENTS PAGE 1
ETANK SETTINGS SUMMARY PAGE 2
SUMMARY OF DESIGN DATA AND REMARKS PAGE 3
SUMMARY OF RESULTS PAGE 5
ROOF DESIGN PAGE 8
BOTTOM DESIGN PAGE 22
WIND MOMENT PAGE 24
SEISMIC MOMENT PAGE 27
ANCHOR BOLT DESIGN PAGE 29
CAPACITIES AND WEIGHTS PAGE 34
MAWP & MAWV SUMMARY PAGE 35
ETANK SETTINGS SUMMARY
To Change These ETank Settings, Go To Tools->Options, Behavior Tab.
----------------------------------------------------------------------
No 650 Appendix F Calcs when Tank P = 0 -> Default : Verdadero
-> This Tank : Falso
Repad 650 Design Basis
-> Default for Tank Roof Nozzles : Use API Default 1/4 in.
-> This Tank : Use API Default 1/4 in.
Show MAWP / MAWV Calcs : Verdadero
Enforce API Minimum thicknesses : Verdadero
Enforce API Maximum Roof thickness : Verdadero
Enforce Minimum Self Supp. Cone Pitch (2 in 12) : Verdadero
Force Non-Annular Btm. to Meet API-650 5.5.1 : Falso
Set t.actual to t.required Values : Falso
Maximum 650 App. S or App. M Multiplier is 1 : Verdadero
Enforce API Maximum Nozzle Sizes : Verdadero
Max. Self Supported Roof thickness : 5 in.
Max. Tank Corr. Allowance : 5 in.
External pressure calcs subtract C.A. per V.5 : Verdadero
Use Gauge Material for min thicknesses : Falso
SUMMARY OF DESIGN DATA and REMARKS
Job : 3300
Date of Calcs. : 08/12/2010 , 12:26 p.m.
Mfg. or Insp. Date : 24/11/1993
Designer : JEFFCOAT SMITT
Project : 48' OD BY 32' TALL
Plant Location : COLUMBIA, SC
Site : COLUMBIA, SC
Design Basis : API-653 4th Edition, April 2009,
& API-650 11th Edition, Addendum 1, Nov 2008
----------------------------------------------------------------------
- TANK NAMEPLATE INFORMATION
----------------------------------------------------------------------
- Operating Ratio: 0,4
- Design Standard:
- API-650 11th Edition, Addendum 1, Nov 2008 -
- API-650 Appendices Used: M -
- Roof : A-36: 0,375in. -
- Shell (4): A-36: 0,25in. -
- Shell (3): A-36: 0,25in. -
- Shell (2): A-36: 0,3125in. -
- Shell (1): A-36: 0,336in. -
- Bottom : A-36: 0,25in. -
----------------------------------------------------------------------
Design Internal Pressure = 0,009 PSI or 0,25 IN. H2O
Design External Pressure = -0,0036 PSI or -0,10 IN. H2O
MAWP = 0 PSI or 0 IN. H2O
MAWV = 0 PSI or 0 IN. H2O
OD of Tank = 48 ft
Shell Height = 59 ft
S.G. of Contents = 1
Max. Liq. Level = 58 ft
Re-Rate Temperature = 300 °F
Tank Joint Efficiency = 0,85
Ground Snow Load = 0 lbf/ft^2
Roof Live Load = 25 lbf/ft^2
Total Roof Dead Load = 15,2982 lbf/ft^2
Basic Wind Velocity = 110 mph
Seismic Zone = 0
Site Amplification Factor = 1,5
Importance Factor = 1
Ground Snow Load = 0 lbf/ft^2
Roof Live Load = 25 lbf/ft^2
Total Roof Dead Load = 15,2982 lbf/ft^2
DESIGN NOTES
NOTE 1 : There are tank calculation warnings.
Search for * * Warning * * notes.
NOTE 2 : Tank is not subject to API-650 Appendix F.7
DESIGNER REMARKS
SUMMARY OF RESULTS
Shell Material Summary (Bottom is 1)
------------------------------------------------------------------------
Shell Width Material Sd St Weight CA
# (ft) (psi) (psi) (lbf) (in)
------------------------------------------------------------------------
4 44 A-36 24.091 30.102 67.640 0,0625
3 5 A-36 24.091 30.102 7.686 0,0625
2 5 A-36 21.896 27.376 9.607 0,0625
1 5 A-36 21.896 27.376 10.329 0,0625
------------------------------------------------------------------------
Total Weight 95.262
Shell API 653 Summary (Bottom is 1)
-----------------------------------------------------------------
Shell t.design(Sd) t.test(St) t.external t.required t.actual
# (in.) (in.) (in.) (in.) (in.)
-----------------------------------------------------------------
4 0,3186 0,205 0 0,3186 0,25
3 0,3491 0,2293 0 0,3491 0,25
2 0,4113 0,279 0 0,4113 0,3125
1 0,4448 0,3058 0 0,4448 0,336
-----------------------------------------------------------------
Structurally Supported Conical Roof
Plate Material = A-36,
Struct. Material = A-36
t.required = 0,2502 in.
t.actual = 0,375 in.
Roof Joint Efficiency = 0,85
Plate Weight = 27.701 lbf
Rafters:
22 Rafters at Rad. 24 ft.: W 10X39
Rafters Weight = 20.592 lbf
Girders:
Girders Weight = 0 lbf
Columns:
1 Column at Center: 6 INCH SCH 40 PIPE
Columns Weight = 1.089 lbf
Bottom Type: Flat Bottom: Non-Annular
Bottom Floor Material = A-36
t.required = 0,1 in.
t.actual = 0,25 in.
Bottom Joint Efficiency = 0,85
Total Weight of Bottom = 18.648 lbf
TOP END STIFFENER: L2-1/2x2x1/4, A-36, 546, lbf
QTY (1) INTERMEDIATE STIFFENER: A-240 Type 304
L1x1x1/8, 126, lbf, Elev. = 32,31 ft.
SUPPORTED CONICAL ROOF (from Brownell & Young)
Roof Plate Material: A-36, Sd = 24.091 PSI (API-650 Table 3-2)
Structural Material: A-36, Sd = 24.091 PSI (API-650 Table 3-2)
R = 24 ft
pt = 0,75 in/ft (Cone Roof Pitch)
Theta = ATAN(pt/12) = ATAN(0,0625) = 3,5763 degrees
Ap_Vert = Vertical Projected Area of Roof
= pt*OD^2/48
= 0,75*48^2/48
= 36 ft^2
Horizontal Projected Area of Roof (Per API-650 5.2.1.f)
Xw = Moment Arm of UPLIFT wind force on roof
= 0.5*OD
= 0.5*48
= 24 ft
Ap = Projected Area of roof for wind moment
= PI*R^2
= PI*24^2
= 1.810 ft^2
S = Ground Snow Load = 0 lbf/ft^2
Sb = Balanced Design Snow Load = 0 lbf/ft^2
Su = Unbalanced Design Snow Load = 0 lbf/ft^2
Dead_Load = Insulation + Plate_Weight + Added_Dead_Load
= (0)(0/12) + 15,2982 + 0
= 15,2982 lbf/ft^2
Roof Loads (per API-650 Appendix R)
Pe = PV*144 = 0,0036*144 = 0,5184 lbf/ft^2
e.1b = DL + MAX(Sb,Lr) + 0,4*Pe
= 15,2982 + 25 + 0,4*0,5184
= 40,506 lbf/ft^2
e.2b = DL + Pe + 0,4*MAX(Sb,Lr)
= 15,2982 + 0,5184 + 0,4*25
= 25,817 lbf/ft^2
T = Balanced Roof Design Load (per API-650 Appendix R)
= MAX(e.1b,e.2b)
= 40,506 lbf/ft^2
e.1u = DL + MAX(Su,Lr) + 0,4*Pe
= 15,2982 + 25 + 0,4*0,5184
= 40,506 lbf/ft^2
e.2u = DL + Pe + 0,4*MAX(Su,Lr)
= 15,2982 + 0,5184 + 0,4*25
= 25,817 lbf/ft^2
U = Unbalanced Roof Design Load (per API-650 Appendix R)
= MAX(e.1u,e.2u)
= 40,506 lbf/ft^2
Lr_1 = MAX(T,U) = 40,506 lbf/ft^2
P = Design Load = T
= 40,506 lbf/ft^2
( Frangible Roof Design per API-650 Section 5.10.2.6.g )
Afr = Maximum Participating Area
= W/[201000*TAN(Theta)]
= (72.596)/[201000*0,0625] = 5,779 in^2
= 0,2813 PSI
l = Maximum Rafter Spacing
= (t - ca) * SQRT(1.5 * Fy / P)
= (0,375 - 0,0625)*SQRT(1,5*36.000/0,2813)
= 136,92 in.
MINIMUM # OF RAFTERS
< FOR OUTER SHELL RING >
l = 84 in. since calculated l > 84 in. (7 ft)
N_min = 2*PI*R/l = 2*PI*(24)(12)/84 = 21,54
N_min = 22
Actual # of Rafters = 22
Minimum roof thickness based on actual rafter spacing
l = 82,25 in. (actual rafter spacing)
t-Calc = l/SQRT(1.5*Fy/p) + CA
= 82,25/SQRT(1.5*36.000/0,2813) + 0,0625
= 0,2502 in.
NOTE: Governs for roof plate thickness.
RLoad_Max = Maximum Roof Load based on actual rafter spacing
RLoad_Max = 288(Sd)/(l/(t - ca))^2
= 288(24.091)/(82,25/(0,375 - 0,0625))^2
= 100,16 lb/ft^2
Let Max_T1 = RLoad_Max
P_ext_1 (Vacuum limited by actual rafter spacing)
= -[Max_T1 - DL - 0,4 * Max(Snow_Load,Lr)]/144
= -[100,16 - 15,2982 - 0,4 * Max(0,25)]/144
= -0,5199 PSI or -14,41 IN. H2O
Pa_rafter_1 = P_ext_1
= -0,5199 PSI or -14,41 IN H2O.
t.required Must be >= 0,09 in. (per API-653)
t.required = MAX( 0.09 , t-Calc )
= 0,2502 in.
RAFTER DESIGN
Maximum Rafter Span = 24 ft
Average Rafter Spacing on Shell = 6,831 ft
Average Plate Width = (6,831)/2 = 3,416 ft
Mmax = Maximum Bending Moment
Mmax = wl^2/8
where, w = (0,2813)(3,416)*12 + 39/12 = 14,78 lbf/in
l = (24)(12) = 288,00 in.
Mmax = (14,78)(288,00)^2/8 = 153239, in-lbf
Z req'd = Mmax/24.091 = 153239,/24.091 = 6,36 in^3
Actual Z = 42,1 in^3 using W 10X39
W_Max (Max. stress allowed for each rafter in ring 1)
= Z * Sd * 8 / l^2
= 42,1 * 24.091 * 8 / 288,00^2
= 97,8232 lbf/in.
Max_P (Max. Load allowed for each rafter in ring 1)
= (W_Max - W_Rafter/12)/(Average Plate Width*12)
= (97,8232 - 39/12)/(3,416*12)
= 2,3071 PSI
Let Max_T1 = Max_P * 144
P_ext_2 (Vacuum limited by Rafter Type)
= -[Max_T1 - DL - 0,4 * Max(Snow_Load,Lr)]/144
= -[332,2224 - 15,2982 - 0,4 * Max(0,25)]/144
= -1 PSI due to Rafter Type
Pa2_rafter_1 = P_ext_2
(limited by Rafter Type)
COLUMN DESIGN
CENTER COLUMN
l = Column Length
= 726 in = 60,5 ft (as computed)
r = Radius of gyration
if l/r must be less than 180, then
r req'd = l/180 = 726/180 = 4,03 in.
Actual r = 2,246 in. using 6 INCH SCH 40 PIPE
* * Warning * * Center Column:
Actual r = 2,
246 in.,
Req'd r = 4,03 in.
P = Total load supported by center column
= [(rafter length)(rafter load)(# of inner rafters)]/2
= [(24 ft)(12 in/ft)(14,78 lbf/in)(22)]/2
= 46.823 lbf
Fa = Allowable Compressive Stress (Per API-650 5.10.3.4)
Per API-650 5.10.3.3,
R = L/r = 323,2 (actual)
Cc = Column Slenderness Ratio
= SQRT[2PI^2E/Fy]
= SQRT[2PI^2(28.299.999)/(36.000)]
= 124,6
FS = Factor of Safety
= 5/3 + 3*(323,2)/(8*(124,6)) - (323,2)^3/(8*(124,6)^3)
= 0,4578
Since R <= 120,
Using AISC Specification Formulas Section E2,
(let K = 1)
Fa = [(12*PI^2(E))/(23*R^2)]
= [(12*PI^2(28.299.999))/(23*(323,2)^2)]
= 1.395 PSI
Fa is multiplied by MIN(31.680 / 30.000,1) (Per API-650 M.3.5)
Fa = 1.395 * 1
= 1.395 PSI
F = actual induced stress for the column
= P/A = [ 46.823 + (726/12)(18) ] / 5,58
= 8.586 PSI
W_Max (Max. weight allowed for each column in ring 1)
= 6.695 lbf
Max_P (Max. Load allowed for each column in ring 1)
Let Max_T1 = Max_P * 144
P_ext_3 (Vacuum limited by Column Type)
= -2.5 * [(Max_T1 - DL - Max(Snow_Load,Lr)] / 144
= -2.5 * [(-3,9888 - 15,2982 - Max(0,25)] / 144
= 0,7689, since cannot be positive,
= 0 PSI due to Column Type
Pa_column_1 = P_ext_3
(limited by Column Type)
Roof_Area = 36*PI*OD^2/COS(Theta)
= 36*PI*(48)^2/COS()
= 261.085 in^2
ROOF WEIGHT
Weight of Roof Plates
= (density)(t)(PI/4)(12*OD - t)^2/COS(Theta)
= (0,2833)(0,375)(PI/4)(576 - 0,375)^2/COS(3,5763)
= 27.701 lbf (New)
= 23.084 lbf (Corroded)
Weight of Roof Plates supported by shell
= 27.701 lbf (New)
= 23.084 lbf (Corroded)
Weight of Rafters = 20.592 lbf (New)
Weight of Girders = 0 lbf (New)
Weight of Columns = 1.089 lbf (New)
Total Weight of Roof = 49.382 lbf (New)
= 44.765 lbf (Corroded)
<Actual Participating Area of Roof-to-Shell Juncture>
Wc = 0,6 * SQRT[Rc * (t-CA)] (Top Shell Course)
= 0,6 * SQRT[287,75 * (0,25 - 0,0625)]
= 4,4072 in.
Wh = 0,3 * SQRT[R2 * (t-CA)] (or 12", whichever is less)
= 0,3 * SQRT[4.617 * (0,375 - 0,0625)]
= MIN(11,3953, 12)
= 11,3953 in.
(Wc per API-650 Figure F-2)
(Wh per API-650 Figure F-2)
Top End Stiffener: L2-1/2x2x1/4
Aa = (Cross-sectional Area of Top End Stiffener)
= 1,06 in^2
Using API-650 Fig. F-2, Detail c End Stiffener Detail
Ashell = Contributing Area due to shell plates
= Wc*(t_shell - CA)
= 0,826 in^2 (per API-620 Section 5.12.2, Footnote 18)
Aroof = Contributing Area due to roof plates
= 0 in^2 (Since Roof is Lap Welded)
A = Actual Part. Area of Roof-to-Shell Juncture (per API-650)
= Aa + Aroof + Ashell - Redund.Area
= 1,06 + 0 + 0,826 - 0
= 1,886 in^2
< Uplift on Tank > (per API-650 F.1.2)
NOTE: This flat bottom tank is assumed supported by the bottom plate.
If tank not supported by a flat bottom, then uplift calculations
will be N.A., and for reference only.
For flat bottom tank with structural roof,
Net_Uplift = Uplift due to design pressure less
Corroded weight of shell and corroded roof weight.
= P * PI / 4 * D ^ 2 * 144 «
- Corr. shell - [Corr. roof weight + Structural weight]
= 0,009 * 3,1416 / 4 * 2.304 * 144 «
- 72.596 - [23.084 + 20.592 + 0 + 1.089]
= -115.016 lbf
< Uplift Case per API-650 1.1.1 >
P_Uplift = 2.345 lbf
W_Roof_Plates (corroded) = 23.084 lbf
W_Roof_Structure = 21.681 lbf
W_Shell (corroded) = 72.596 lbf
Since P_Uplift <= W_Roof,
Tank Roof does not need to meet App. F requirements.
< API-650 App. F >
Fy = Min(Fy_roof,Fy_shell,Fy_stiff)
= Min(31.680,31.680,31.680)
= 31.680 psi
A_min_a = Min. Participating Area due to full Design Pressure.
(per API-650 F.5.1, and Fig. F-2)
(using API assumption internal P of 1/32 PSI)
= [OD^2(P - 8*t)]/[0,962*31.680*TAN(Theta)]
= [48^2(0,0313 - 8*0,375)]/[0,962*31.680*0,0625]
= -2,576 in^2
= 0 in^2 (since can't be negative)
P_F51 = Max. Design Pressure, reversing A_min_a calculation.
= A * [0,962*31.680*TAN(Theta)]/OD^2 + 8*t_h
= 1,886 * [0,962*31.680*0,0625]/48^2 + 8*0,3125
= 0,1465 PSI or 4,06 IN. H2O
Since Tank Roof is Frangible and net uplift exists, calculating
failure pressure per F.6, which is based on
calculated Max. Design Pressure of F.4.1.
< Maximum Design Pressure > (per F.4.1)
P_F41 = 0,962*31.680*A*TAN(Theta)/D^2 + 8*t_h
= 0,962*31.680*(1,886)*(0,0625)/(48^2) + 8*(0,3125)
= 0,1465 PSI or 4,06 IN. H2O
< Calculated Failure Pressure >
(Per API-650 F.6.1, for Frangible Roof Tanks per 5.10.2.6)
P_F6 = 1,6 * P_max_internal - 4,8 * t_h
= 1,6 * 4,06(IN. H2O) - 4,8 * (0,3125)
= 5 IN. H2O or 0,1804 PSI
Pf_anchor (Failure Pressure for Anchor Design)
(per API-650 Table 5-21b)
= 1,5*(1,6*P_max_internal - 4,8*t)
= 1,5*(1,6*4,06 - 4.8*0,375)
= 7,044 IN. H2O or 0,2542 PSI
P_Std = Max. Pressure allowed (Per API-650 App. F.1.3 & F.7)
= 2,5 PSI or 69,28 IN. H2O
P_max_internal = MIN(P_F51, P_F41, P_Std)
= MIN(4,06, 4,06, 69,28)
= 0,1465 PSI or 4,06 IN. H2O
P_max_external = 0 PSI or 0 IN. H2O
SHELL COURSE RE-RATING (Bottom Course is #1)
Course # 1; Material: A-36; Width = 5ft
API-653 ONE FOOT METHOD
Sd = Min(Sd, 0.8 * Sy * Rf) = 21.896 PSI (allowable design stress per «
API-653 4.3.10 and API-650 Table M-1a)
RE-RATE CONDITION
G = 1 (per API-653)
< Re-Rate Condition G = 1 >
H' = Effective liquid head at design pressure
= H + 2,31*P(psi)/G
= 58 + 2.31*0,009/1 = 58,02ft
t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-653)
= 2,6*48*(58,02 - 1)*1/(21.896*0,85) + 0,0625
= 0,4448 in.
hMax_1 = E*Sd*(t_1 - CA_1)/(2,6*OD*G) + 1
= 0,85*21.896*(0,336 - 0,0625) / (2,6 * 48 * 1) + 1
= 41,7874 ft.
Pmax_1 = (hMax_1 - H) * 0,433 * G
= (41,7874 - 58) * 0,433 * 1
= -7,02 PSI
Pmax_int_shell = Pmax_1
Since Pmax_int_shell < 0, Pmax_int_shell = 0 PSI
HYDROSTATIC TEST CONDITION
< Re-Rate Condition G = 1 >
H' = Effective liquid head at design pressure
= H + 2,31*P(psi)/G
= 58 + 2.31*0,009/1 = 58,02ft
t.test = 2,6*48*(58,02 - 1)/(27.376*0,85) = 0,3058 in.
Course # 2; Material: A-36; Width = 5ft
API-653 ONE FOOT METHOD
Sd = Min(Sd, 0.8 * Sy * Rf) = 21.896 PSI (allowable design stress per «
API-653 4.3.10 and API-650 Table M-1a)
RE-RATE CONDITION
G = 1 (per API-653)
< Re-Rate Condition G = 1 >
H' = Effective liquid head at design pressure
= H + 2,31*P(psi)/G
= 53 + 2.31*0,009/1 = 53,02ft
t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-653)
= 2,6*48*(53,02 - 1)*1/(21.896*0,85) + 0,0625
= 0,4113 in.
hMax_2 = E*Sd*(t_2 - CA_2)/(2,6*OD*G) + 1
= 0,85*21.896*(0,3125 - 0,0625) / (2,6 * 48 * 1) + 1
= 38,2829 ft.
Pmax_2 = (hMax_2 - H) * 0,433 * G
= (38,2829 - 53) * 0,433 * 1
= -6,3725 PSI
Pmax_int_shell = Min(Pmax_int_shell, Pmax_2)
= Min(0, -6,3725)
Since Pmax_int_shell < 0, Pmax_int_shell = 0 PSI
HYDROSTATIC TEST CONDITION
< Re-Rate Condition G = 1 >
H' = Effective liquid head at design pressure
= H + 2,31*P(psi)/G
= 53 + 2.31*0,009/1 = 53,02ft
t.test = 2,6*48*(53,02 - 1)/(27.376*0,85) = 0,279 in.
Course # 3; Material: A-36; Width = 5ft
API-653 ONE FOOT METHOD
Sd = Min(Sd, 0.8 * Sy * Rf) = 24.091 PSI (allowable design stress per «
API-653 4.3.10 and API-650 Table M-1a)
RE-RATE CONDITION
G = 1 (per API-653)
< Re-Rate Condition G = 1 >
H' = Effective liquid head at design pressure
= H + 2,31*P(psi)/G
= 48 + 2.31*0,009/1 = 48,02ft
t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-653)
= 2,6*48*(48,02 - 1)*1/(24.091*0,85) + 0,0625
= 0,3491 in.
hMax_3 = E*Sd*(t_3 - CA_3)/(2,6*OD*G) + 1
= 0,85*24.091*(0,25 - 0,0625) / (2,6 * 48 * 1) + 1
= 31,7653 ft.
Pmax_3 = (hMax_3 - H) * 0,433 * G
= (31,7653 - 48) * 0,433 * 1
= -7,0296 PSI
Pmax_int_shell = Min(Pmax_int_shell, Pmax_3)
= Min(0, -7,0296)
Since Pmax_int_shell < 0, Pmax_int_shell = 0 PSI
HYDROSTATIC TEST CONDITION
< Re-Rate Condition G = 1 >
H' = Effective liquid head at design pressure
= H + 2,31*P(psi)/G
= 48 + 2.31*0,009/1 = 48,02ft
t.test = 2,6*48*(48,02 - 1)/(30.102*0,85) = 0,2293 in.
Course # 4; Material: A-36; Width = 44ft
API-653 ONE FOOT METHOD
Sd = Min(Sd, 0.8 * Sy * Rf) = 24.091 PSI (allowable design stress per «
API-653 4.3.10 and API-650 Table M-1a)
RE-RATE CONDITION
G = 1 (per API-653)
< Re-Rate Condition G = 1 >
H' = Effective liquid head at design pressure
= H + 2,31*P(psi)/G
= 43 + 2.31*0,009/1 = 43,02ft
t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-653)
= 2,6*48*(43,02 - 1)*1/(24.091*0,85) + 0,0625
= 0,3186 in.
hMax_4 = E*Sd*(t_4 - CA_4)/(2,6*OD*G) + 1
= 0,85*24.091*(0,25 - 0,0625) / (2,6 * 48 * 1) + 1
= 31,7653 ft.
Pmax_4 = (hMax_4 - H) * 0,433 * G
= (31,7653 - 43) * 0,433 * 1
= -4,8646 PSI
Pmax_int_shell = Min(Pmax_int_shell, Pmax_4)
= Min(0, -4,8646)
Since Pmax_int_shell < 0, Pmax_int_shell = 0 PSI
HYDROSTATIC TEST CONDITION
< Re-Rate Condition G = 1 >
H' = Effective liquid head at design pressure
= H + 2,31*P(psi)/G
= 43 + 2.31*0,009/1 = 43,02ft
t.test = 2,6*48*(43,02 - 1)/(30.102*0,85) = 0,205 in.
Wtr = Transposed Width of each Shell Course
= Width*[ (t-ca)_thinnest / (t-ca)_course ]^2,5
Transforming Courses (1) to (4)
Wtr(1) = 5*[ 0,1875/0,2735 ]^2.5 = 1,9457 ft
Wtr(2) = 5*[ 0,1875/0,25 ]^2.5 = 2,4357 ft
Wtr(3) = 5*[ 0,1875/0,1875 ]^2.5 = 5 ft
Wtr(4) = 44*[ 0,1875/0,1875 ]^2.5 = 44 ft
Hts (Height of the Transformed Shell)
= SUM{Wtr} = 53,3814 ft
INTERMEDIATE WIND GIRDERS (API 650 Section 5.9.7)
V (Wind Speed) = 110 mph
Ve = vf = Velocity Factor = (vs/120)^2 = (110/120)^2 = 0,8403
Re-Rate PV = 0,0036 PSI, OR 0,10 In. H2O
<TOP END STIFFENER CALCULATIONS>
Actual Z = 0,484 in^3
Using L2-1/2x2x1/4, Wc = 4,41
<INTERMEDIATE STIFFENER CALCULATIONS> (PER API-650 Section 5.9.7)
* * * NOTE: Using the thinnest shell course, t_thinnest,
instead of top shell course.
* * * NOTE: Subtracting corrosion allowance per user setting.
ME = 28.299.999/28.799.999
= 0,9826
Hu = Maximum Height of Unstiffened Shell
= {ME*600.000*(t-ca)_thinnest*SQRT[(t-ca)_thinnest/OD]^3} / Ve)
= {0,9826*600.000*(0,1875)*SQRT[(0,1875)/48]^3} / 0,8403
= 32,1191 ft
Wtr = Transposed Width of each Shell Course
= Width*[ (t-ca)_thinnest / (t-ca)_course ]^2,5
Transforming Courses (1) to (4)
Wtr(1) = 5*[ 0,1875/0,2735 ]^2.5 = 1,9457 ft
Wtr(2) = 5*[ 0,1875/0,25 ]^2.5 = 2,4357 ft
Wtr(3) = 5*[ 0,1875/0,1875 ]^2.5 = 5 ft
Wtr(4) = 44*[ 0,1875/0,1875 ]^2.5 = 44 ft
Hts (Height of the Transformed Shell)
= SUM{Wtr} = 53,3814 ft
L_0 = Hts/# of Stiffeners + 1
= 53,3814/2 = 26,69 ft.
Number of Intermediate Wind Girders Sufficient Since Hu >= L_0
Zi (Req. Wind Gird. Z)
= (0,0001)(Ve)(L0)(OD^2)
= (0,0001)(0,8403)(26,69)(48^2) = 5,17 in^3
Actual Zi = 0,0533 in^3 using QTY (1):
L1x1x1/8 (Not Adequate)
* * Warning * * Wind Girder Zi is inadequate.
Wind Girder Zi Req'd = 5,17
SHELL COURSE #1 SUMMARY
-------------------------------------------
Pmax_int_shell = 0 since hMax_1 < H, and hMax_2 < H, and hMax_3 < H, and «
hMax_4 < H
t-Calc = MAX(t-Calc_650, t_min_ext)
= MAX(0,4448, 0)
= 0,4448 in.
Course Minimum t shall not be less than 0,1" + CA
(per API-653 Section 4.3.3.1)
t-653min = 0,1625 in.
t.required = MAX(t.design, t.min653)
= MAX(0,4448,0,1625) = 0,4448 in.
* * Warning * * t.actual < t.required
< API-653 4.3.2.1 >
t1 (lowest average thickness in the shell course)
t1 must be >= t.required = 0,4448 in.
t2 (least min. thickness in an area of shell course)
t2 must be >= 0,6*(t.required - CA) + CA = 0,291880 in.
t.actual = 0,336 in.
Weight = Density*PI*[(12*OD) - t]*12*Width*t
= 0,2833*PI*[(12*48)-0,336]*12*5*0,336
= 10.329 lbf (New)
= 8.409 lbf (Corroded)
SHELL COURSE #2 SUMMARY
-------------------------------------------
t-Calc = MAX(t-Calc_650, t_min_ext)
= MAX(0,4113, 0)
= 0,4113 in.
Course Minimum t shall not be less than 0,1" + CA
(per API-653 Section 4.3.3.1)
t-653min = 0,1625 in.
t.required = MAX(t.design, t.min653)
= MAX(0,4113,0,1625) = 0,4113 in.
* * Warning * * t.actual < t.required
< API-653 4.3.2.1 >
t1 (lowest average thickness in the shell course)
t1 must be >= t.required = 0,4113 in.
t2 (least min. thickness in an area of shell course)
t2 must be >= 0,6*(t.required - CA) + CA = 0,271780 in.
t.actual = 0,3125 in.
Weight = Density*PI*[(12*OD) - t]*12*Width*t
= 0,2833*PI*[(12*48)-0,3125]*12*5*0,3125
= 9.607 lbf (New)
= 7.686 lbf (Corroded)
SHELL COURSE #3 SUMMARY
-------------------------------------------
t-Calc = MAX(t-Calc_650, t_min_ext)
= MAX(0,3491, 0)
= 0,3491 in.
Course Minimum t shall not be less than 0,1" + CA
(per API-653 Section 4.3.3.1)
t-653min = 0,1625 in.
t.required = MAX(t.design, t.min653)
= MAX(0,3491,0,1625) = 0,3491 in.
* * Warning * * t.actual < t.required
< API-653 4.3.2.1 >
t1 (lowest average thickness in the shell course)
t1 must be >= t.required = 0,3491 in.
t2 (least min. thickness in an area of shell course)
t2 must be >= 0,6*(t.required - CA) + CA = 0,234460 in.
t.actual = 0,25 in.
Weight = Density*PI*[(12*OD) - t]*12*Width*t
= 0,2833*PI*[(12*48)-0,25]*12*5*0,25
= 7.686 lbf (New)
= 5.765 lbf (Corroded)
SHELL COURSE #4 SUMMARY
-------------------------------------------
t-Calc = MAX(t-Calc_650, t_min_ext)
= MAX(0,3186, 0)
= 0,3186 in.
Course Minimum t shall not be less than 0,1" + CA
(per API-653 Section 4.3.3.1)
t-653min = 0,1625 in.
t.required = MAX(t.design, t.min653)
= MAX(0,3186,0,1625) = 0,3186 in.
* * Warning * * t.actual < t.required
< API-653 4.3.2.1 >
t1 (lowest average thickness in the shell course)
t1 must be >= t.required = 0,3186 in.
t2 (least min. thickness in an area of shell course)
t2 must be >= 0,6*(t.required - CA) + CA = 0,216160 in.
t.actual = 0,25 in.
Weight = Density*PI*[(12*OD) - t]*12*Width*t
= 0,2833*PI*[(12*48)-0,25]*12*44*0,25
= 67.640 lbf (New)
= 50.736 lbf (Corroded)
FLAT BOTTOM: NON-ANNULAR PLATE DESIGN
Bottom Plate Material : A-36
Annular Bottom Plate Material : A-240 Type 304
<Weight of Bottom Plate>
Bottom_Area = PI/4*(Bottom_OD)^2
= PI/4*(579)^2
= 263.298 in^2
Weight = Density * t.actual * Bottom_Area
= 0,2833 * 0,25 * 263.298
= 18.648 lbf (New)
= 18.648 lbf (Corroded)
< API-653 >
Calculation of Hydrostatic Test Stress & Product Design Stress
(per API-653)
t_1 : Original Bottom (1st) Shell Course thickness.
H'= Max. Liq. Level + P(psi)/(0,433)
= 58 + (0,009)/(0,433) = 58,0208 ft
St = Hydrostatic Test Stress in Bottom (1st) Shell Course
= (2,6)(OD)(H' - 1)/t_1
= (2,6)(48)(58,0208 - 1)/(0,336)
= 21.179 PSI. (Within 24900 PSI limit for Non-Annular Bottom)
Sd = Product Design Stress in Bottom (1st) Shell Course
= (2,6)(OD)(H' - 1)(G)/(t_1 - ca_1)
= (2,6)(48)(58,0208 - 1)(1)/(0,2735)
= 26.019 PSI.
* * Warning * * Exceeds 23200 PSI limit for Non-Annular Bottom.
t_Product : Required 1st Shell Course to make Sd = 23200 PSI
t_Product = 0,3692 in.
t_1 = t_Product = 0,3692 in.
* * Warning * * For Non-Annular Bottom,
1st Shell Course thickness
insufficient per API-650 5.5.1
--------------------------
Non-Annular Bottom Plates
t_min = 0,1 + 0 = 0,1 in. (per API-653 Table 6-1)
t-Calc = t_min = 0,1 in.
* * Warning * * For Non-Annular Bottom,
1st Shell Course thickness
insufficient per API-650 5.5.1
< FLAT BOTTOM: NON-ANNULAR SUMMARY >
t.required = t-Calc = 0,1 in.
t.actual = 0,25 in.
WIND MOMENT (Per API-650 SECTION 5.11)
vs = Wind Velocity = 110 mph
vf = Velocity Factor = (vs/120)^2 = (110/120)^2 = 0,8403
Wind_Uplift = 30 * vf
= 25,2083 lbf/ft^2
API-650 5.2.1.k Uplift Check
P_F41 = WCtoPSI(0,962*Fy*A*TAN(Theta)/D^2 + 8*t_h)
P_F41 = WCtoPSI(0,962*31.680*1,886*0,0625/48^2 + 8*0,3125)
= 0,1465 PSI
Limit Wind_Uplift/144+P to 1.6*P_F41
Wind_Uplift/144 + P = 0,1841 PSI
1.6*P_F41 = 0,2344 PSI
Wind_Uplift/144 + P = MIN(Wind_Uplift/144 + P, 1.6*P_F41)
Wind_Uplift/144 = MIN(Wind_Uplift/144, 1.6*P_F41 - P)
Wind_Uplift = MIN(Wind_Uplift, (1.6*P_F41 - P) * 144)
= MIN(25,2083,32,4576)
= 25,2083 lbf/ft^2
Ap_Vert = Vertical Projected Area of Roof
= pt*OD^2/48
= 0,75*48^2/48
= 36 ft^2
Horizontal Projected Area of Roof (Per API-650 5.2.1.f)
Xw = Moment Arm of UPLIFT wind force on roof
= 0.5*OD
= 0.5*48
= 24 ft
Ap = Projected Area of roof for wind moment
= PI*R^2
= PI*24^2
= 1.810 ft^2
M_roof (Moment Due to Wind Force on Roof)
= (Wind_Uplift)(Ap)(Xw)
= (25,2083)(1.810)(24) = 1.094.782 ft-lbf
Xs (Moment Arm of Wind Force on Shell)
= H/2 = (59)/2 = 29,5 ft
As (Projected Area of Shell)
= H*(OD + t_ins / 6)
= (59)(48 + 0/6) = 2.832 ft^2
M_shell (Moment Due to Wind Force on Shell)
= (vf)(18)(As)(Xs)
= (0,8403)(18)(2.832)(29,5) = 1.263.603 ft-lbf
Mw (Wind moment)
= M_roof + M_shell = 1.094.782 + 1.263.603
= 2.358.385 ft-lbf
W = Net weight (PER API-650 5.11.3)
(Force due to corroded weight of shell and
shell-supported roof plates less
40% of F.1.2 Uplift force.)
= W_shell + W_roof - 0,4*P*(PI/4)(144)(OD^2)
= 72.596 + 23.084 - 0,009*(PI/4)(144)(48^2)
= 94.742 lbf
RESISTANCE TO OVERTURNING (per API-650 5.11.2)
An unanchored Tank must meet these two criteria:
1) 0,6*Mw + MPi < (MDL + MF_min_liq)/1,5
2) Mw + 0,4MPi < (MDL + MF)/2
Mw = Destabilizing Wind Moment = 2.358.385 ft-lbf
MPi = Destabilizing Moment about the Shell-to-Bottom Joint from Design «
Pressure.
= P*(PI*OD^2/4)*(144)*(OD/2)
= 0,009*(3,1416*48^2/4)*(144)*(24)
= 56.284 ft-lbf
MDL = Stabilizing Moment about the Shell-to-Bottom Joint from the Shell and «
Roof weight supported by the Shell.
= (W_shell + W_roof)*OD/2
= (72.596 + 23.084)*24
= 2.296.320 ft-lbf
tb = Bottom Plate thickness less C.A. = 0,25 in.
wl = Circumferential loading of contents along Shell-To-Bottom Joint.
= 4,67*tb*SQRT(Sy_btm*H_liq)
= 4,67*0,25*SQRT(31.680*58)
= 1.583 lbf/ft
wl_min_liq = Circumferential loading of Minimum-Level contents along «
Shell-To-Bottom Joint.
= 4,67*ta*SQRT(Sy_btm*H_min_liq)
= 4,67*0,25*SQRT(31.680*0)
= 0 lbf/ft
MF_min_liq = wa_min_liq*PI*OD
= 0*3,1416*48
= 0 lbf
MF = Stabilizing Moment due to Bottom Plate and Liquid Weight.
= (OD/2)*wl*PI*OD
= (24)(1.583)(3,1416)(48)
= 5.727.502 ft-lbf
Criteria 1
0,6*(2.358.385) + 56.284 < (2.296.320 + 0)/1,5
Since 1.471.315 < 1.530.880, Tank is stable.
Criteria 2
2.358.385 + 0,4 * 56.284 < (2.296.320 + 5.727.502)/2
Since 2.380.899 < 4.011.911, Tank is stable.
RESISTANCE TO SLIDING (per API-650 5.11.4)
F_wind = vF * 18 * As
= 0,8403 * 18 * 2.832
= 42.834 lbf
F_friction = Maximum of 40% of Weight of Tank
= 0,4 * (W_Roof_Corroded + W_Shell_Corroded +
W_Btm_Corroded + RoofStruct + W_min_Liquid)
= 0,4 * (23.084 + 72.596 + 18.648 + 21.681 + 0)
= 54.404 lbf
No anchorage needed to resist sliding since
F_friction > F_wind
SEISMIC MOMENT (API-650 APPENDIX E & API-620 APPENDIX L)
Ms = 0 ft-lbf
* NOTE: Since Seismic Zone Coefficient (Z) = 0,
Seismic calculations are not applicable.
<ANCHORAGE REQUIREMENTS>
No Anchorage Required.
ANCHOR BOLT DESIGN
This is a Non-Anchored Tank (NAT), since there are no anchor bolts.
Uplift Check for Closed-Top NAT:
Since this is a Non-Anchored Tank (NAT), then
check to ensure tank MAWP rating does not
cause Net Uplift.
MAWP = 0 PSI or 0 IN. H2O
U1 @ MAWP = (Uplift due to MAWP)
= MAWP * PI / 4 * D ^ 2 * 144 «
- Corr. shell - [Corr. roof weight + Structural weight]
= 0 * 3,1416 / 4 * 2.304 * 144 «
- 72.596 - [23.084 + 20.592 + 0 + 1.089]
= -117.361 LBF
Closed-top NAT is okay for MAWP, Wind and Siesmic.
Maximum NAT Uplift per U1 to U7 (where applicable)
= -117.361 LBF
ANCHOR BOLT CHAIRS NOT SPECIFIED.
NORMAL & EMERGENCY VENTING (API-2000)
Contents : water
Tank OD = 48 ft
Tank Shell Height = 59 ft
Tank Design Temp. = 300 °F
<INBREATHING - VACUUM RELIEF>
Q1 (Maximum Movement Out of Tank) (per Section 4.3.2.1.1)
= 5,6 CFH Air per 42 GPH outflow
= (5,6/42)*50*60
= 400 CFH, or 7 CFM free air
Q2 (Thermal Inbreathing) (per Section 4.3.2.1.2)
= 19.660 CFH, or 328, CFM free air (Table 2A Column 2)
Total Vacuum Relief Required = Q1 + Q2 = 20.060 CFH, or 334, CFM
<OUTBREATHING - PRESSURE RELIEF>
Q1 (Maximum Movement Into Tank) (per Section 4.3.2.3.1)
= 12 CFH Air per 42 GPH inflow
= (12/42)*50*60 = 857 CFH, or 14, CFM free air
Q2 (Thermal Outbreathing) (per Section 4.3.2.3.2)
= 19.667 CFH, or 328 CFM free air (Table 2A Column 4)
Total Pressure Relief Required = Q1 + Q2 = 20.524 CFH, or 342, CFM
TABLE 1: NOZZLES & MANWAYS
----------------------------------------------------------------------
NAME TYPE SIZE FLANGE SCH. ELEV. WEIGH REPAD REPAD REPAD REPAD
FACING ON t Do W CA
SHELL or L
(in) (ft) lbf (in) (in) (in) (in)
----------------------------------------------------------------------
A SHNZ 24 RFSO 80 10 3 0,187 49,5 60 0
New 02 SHMW 6 RFSO STD 3 N.A. 0,625 15,75 0 0
----------------------------------------------------------------------
< Nozzle A Reinforcement Requirements >
(Per API-650 Section 3.7.2 and other references below)
NOZZLE Description : 24in. 80 RFSO
MOUNTED ON SHELL COURSE 2 ; Elevation = 10 ft.
COURSE PARAMETERS:
t_cr = 0,4113 in. (Course t-Calc)
t_c = 0,25 in. (Course t less C.A.)
t_Basis = 0,4113 in.
(SHELL NOZZLE REF. API-650 TABLE 5-6, AND FOOTNOTE A OF TABLE 5-7)
t_rpr (Repad Required Thickness)
t_rpr = A_rpr / D
A_rpr = (Required Area - Available Shell Area
- Available Nozzle Neck Area)
Required Area = t_Basis * D
= 0,4113 * 24,25
= 9,974 in^2
Available Shell Area = (t_c - t_Basis) * D
= (0,25 - 0,4113) * 24,25
= -3,912 in^2
Available Nozzle Neck Area = [4 * (t_n-ca) + t_c] * (t_n-ca) * «
MIN(Sd_n/Sd_s, 1)
= [4 * (0) + 0,25] * (0) * 20.073/21.896
= 0 in^2
A_rpr = 9,974 - -3,912 - 0
= 13,886 in^2
t_rpr = 13,886/24,25
= 0,5726 in.
Based on Shell Nozzle Size of 24 in.,
Repad Size (L X W) Must be 49,5 X 60 in.
< Nozzle New 02 Reinforcement Requirements >
(Per API-650 Section 3.7.2 and other references below)
NOZZLE Description : 6in. STD RFSO
MOUNTED ON SHELL COURSE 1 ; Elevation = 3 ft.
COURSE PARAMETERS:
t_cr = 0,4448 in. (Course t-Calc)
t_c = 0,2735 in. (Course t less C.A.)
t_Basis = 0,4448 in.
(SHELL MANWAY REF. API-650 TABLE 5-6, AND FOOTNOTE A OF TABLE 5-7)
t_rpr (Repad Required Thickness)
t_rpr = A_rpr / D
A_rpr = (Required Area - Available Shell Area
- Available Nozzle Neck Area)
Required Area = t_Basis * D
= 0,4448 * 6,25
= 2,78 in^2
Available Shell Area = (t_c - t_Basis) * D
= (0,2735 - 0,4448) * 6,25
= -1,071 in^2
Available Nozzle Neck Area = [4 * (t_n-ca) + t_c] * (t_n-ca) * «
MIN(Sd_n/Sd_s, 1)
= [4 * (0,28) + 0,2735] * (0,28) * 1
= 0,39 in^2
A_rpr = 2,78 - -1,071 - 0,39
= 3,461 in^2
t_rpr = 3,461/6,25
= 0,5538 in.
Based on Shell Manway Size of 6 in.,
Repad Size (OD) Must be 15,75 in.
CAPACITIES and WEIGHTS
Shell capacity to upper TL : 797.193 gal
New Condition Corroded
-----------------------------------------------------------
Shell 95.262 lbf 72.596 lbf
Roof
Plates 27.701 lbf 23.084 lbf
Rafters 20.592 lbf 20.592 lbf
Girders 0 lbf 0 lbf
Columns 1.089 lbf 1.089 lbf
Bottom 18.648 lbf 18.648 lbf
Stiffeners 672 lbf 672 lbf
Nozzle Wgt 3 lbf 3 lbf
Misc Roof Wgt 0 lbf 0 lbf
Misc Shell Wgt 0 lbf 0 lbf
Insulation 0 lbf 0 lbf
-----------------------------------------------------------
Total 163.967 lbf 136.684 lbf
Weight of Tank, Empty : 163.967 lbf
Weight of Tank, Full of Product (SG=1) : 6.698.997 lbf
Weight of Tank, Full of Water : 6.698.997 lbf
Net Working Capacity : 783.070 gal
Foundation Area Req'd : 1.810 ft^2
Foundation Loading, Empty : 90,59 lbf/ft^2
Foundation Loading, Full of Product (SG=1) : 3.701 lbf/ft^2
Foundation Loading, Full of Water : 3.701 lbf/ft^2
SURFACE AREAS
Roof 1.813 ft^2
Shell 8.897 ft^2
Bottom 1.810 ft^2
Wind Moment 2.358.385 ft-lbf
Seismic Moment (NA) since zone = 0
MISCELLANEOUS ATTACHED ROOF ITEMS
MISCELLANEOUS ATTACHED SHELL ITEMS
MAWP & MAWV SUMMARY FOR 3300
MAXIMUM CALCULATED INTERNAL PRESSURE
MAWP = 2,5 PSI or 69,28 IN. H2O (per API-650 App. F.1.3 & F.7)
MAWP = Maximum Calculated Internal Pressure (due to shell)
= 0 PSI or 0 IN. H2O
MAWP = Maximum Calculated Internal Pressure (due to roof)
= 0,1465 PSI or 4,06 IN. H2O
TANK MAWP = 0 PSI or 0 IN. H2O
MAXIMUM CALCULATED EXTERNAL PRESSURE
MAWV = 1 PSI or 27,71 IN. H2O (per API-650 V.1)
MAWV = Maximum Calculated External Pressure (due to shell)
= -0,0337 PSI or -0,93 IN. H2O
MAWV = Maximum Calculated External Pressure (due to roof)
= 0 PSI or 0 IN. H2O
MAWV = N.A. (not calculated due to columns)
TANK MAWV = 0 PSI or 0 IN. H2O