0% found this document useful (0 votes)
396 views52 pages

Etank Full Report

This document provides a summary of design calculations for an ETANK storage tank. Key details include: - The tank is 48 feet in diameter and 32 feet tall. - Materials used include A36 steel for the roof (0.375 inches thick), shell (thicknesses ranging from 0.25 to 0.336 inches) and bottom (0.25 inches thick). - Total weight of the tank is estimated at 95,262 pounds. - The conical roof requires a minimum thickness of 0.2502 inches and has a weight of 27.701 pounds. It is supported by 22 rafters and other structural elements. - The bottom is a flat floor with a minimum

Uploaded by

Marcos Arbiza
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOC, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
396 views52 pages

Etank Full Report

This document provides a summary of design calculations for an ETANK storage tank. Key details include: - The tank is 48 feet in diameter and 32 feet tall. - Materials used include A36 steel for the roof (0.375 inches thick), shell (thicknesses ranging from 0.25 to 0.336 inches) and bottom (0.25 inches thick). - Total weight of the tank is estimated at 95,262 pounds. - The conical roof requires a minimum thickness of 0.2502 inches and has a weight of 27.701 pounds. It is supported by 22 rafters and other structural elements. - The bottom is a flat floor with a minimum

Uploaded by

Marcos Arbiza
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOC, PDF, TXT or read online on Scribd
You are on page 1/ 52

ETANK FULL REPORT - 3300

ETank2000 Demo 1.9.12 (02 Apr 2010)

TABLE OF CONTENTS PAGE 1

ETANK SETTINGS SUMMARY PAGE 2

SUMMARY OF DESIGN DATA AND REMARKS PAGE 3

SUMMARY OF RESULTS PAGE 5

ROOF DESIGN PAGE 8

BOTTOM DESIGN PAGE 22

WIND MOMENT PAGE 24

SEISMIC MOMENT PAGE 27

ANCHOR BOLT DESIGN PAGE 29

CAPACITIES AND WEIGHTS PAGE 34

MAWP & MAWV SUMMARY PAGE 35

ETANK SETTINGS SUMMARY


To Change These ETank Settings, Go To Tools->Options, Behavior Tab.

----------------------------------------------------------------------

No 650 Appendix F Calcs when Tank P = 0 -> Default : Verdadero

-> This Tank : Falso

Repad 650 Design Basis

-> Default for Tank Roof Nozzles : Use API Default 1/4 in.

-> This Tank : Use API Default 1/4 in.

Show MAWP / MAWV Calcs : Verdadero

Enforce API Minimum thicknesses : Verdadero

Enforce API Maximum Roof thickness : Verdadero

Enforce Minimum Self Supp. Cone Pitch (2 in 12) : Verdadero

Force Non-Annular Btm. to Meet API-650 5.5.1 : Falso

Set t.actual to t.required Values : Falso

Maximum 650 App. S or App. M Multiplier is 1 : Verdadero

Enforce API Maximum Nozzle Sizes : Verdadero

Max. Self Supported Roof thickness : 5 in.

Max. Tank Corr. Allowance : 5 in.

External pressure calcs subtract C.A. per V.5 : Verdadero

Use Gauge Material for min thicknesses : Falso

SUMMARY OF DESIGN DATA and REMARKS

Job : 3300

Date of Calcs. : 08/12/2010 , 12:26 p.m.

Mfg. or Insp. Date : 24/11/1993


Designer : JEFFCOAT SMITT

Project : 48' OD BY 32' TALL

Plant Location : COLUMBIA, SC

Site : COLUMBIA, SC

Design Basis : API-653 4th Edition, April 2009,

& API-650 11th Edition, Addendum 1, Nov 2008

----------------------------------------------------------------------

- TANK NAMEPLATE INFORMATION

----------------------------------------------------------------------

- Operating Ratio: 0,4

- Design Standard:

- API-650 11th Edition, Addendum 1, Nov 2008 -

- API-650 Appendices Used: M -

- Roof : A-36: 0,375in. -

- Shell (4): A-36: 0,25in. -

- Shell (3): A-36: 0,25in. -

- Shell (2): A-36: 0,3125in. -

- Shell (1): A-36: 0,336in. -

- Bottom : A-36: 0,25in. -

----------------------------------------------------------------------

Design Internal Pressure = 0,009 PSI or 0,25 IN. H2O

Design External Pressure = -0,0036 PSI or -0,10 IN. H2O


MAWP = 0 PSI or 0 IN. H2O

MAWV = 0 PSI or 0 IN. H2O

OD of Tank = 48 ft

Shell Height = 59 ft

S.G. of Contents = 1

Max. Liq. Level = 58 ft

Re-Rate Temperature = 300 °F

Tank Joint Efficiency = 0,85

Ground Snow Load = 0 lbf/ft^2

Roof Live Load = 25 lbf/ft^2

Total Roof Dead Load = 15,2982 lbf/ft^2

Basic Wind Velocity = 110 mph

Seismic Zone = 0

Site Amplification Factor = 1,5

Importance Factor = 1

Ground Snow Load = 0 lbf/ft^2

Roof Live Load = 25 lbf/ft^2

Total Roof Dead Load = 15,2982 lbf/ft^2

DESIGN NOTES

NOTE 1 : There are tank calculation warnings.


Search for * * Warning * * notes.

NOTE 2 : Tank is not subject to API-650 Appendix F.7

DESIGNER REMARKS

SUMMARY OF RESULTS

Shell Material Summary (Bottom is 1)

------------------------------------------------------------------------

Shell Width Material Sd St Weight CA

# (ft) (psi) (psi) (lbf) (in)

------------------------------------------------------------------------

4 44 A-36 24.091 30.102 67.640 0,0625

3 5 A-36 24.091 30.102 7.686 0,0625

2 5 A-36 21.896 27.376 9.607 0,0625

1 5 A-36 21.896 27.376 10.329 0,0625


------------------------------------------------------------------------

Total Weight 95.262

Shell API 653 Summary (Bottom is 1)

-----------------------------------------------------------------

Shell t.design(Sd) t.test(St) t.external t.required t.actual

# (in.) (in.) (in.) (in.) (in.)

-----------------------------------------------------------------

4 0,3186 0,205 0 0,3186 0,25

3 0,3491 0,2293 0 0,3491 0,25

2 0,4113 0,279 0 0,4113 0,3125

1 0,4448 0,3058 0 0,4448 0,336

-----------------------------------------------------------------

Structurally Supported Conical Roof

Plate Material = A-36,

Struct. Material = A-36

t.required = 0,2502 in.

t.actual = 0,375 in.

Roof Joint Efficiency = 0,85

Plate Weight = 27.701 lbf

Rafters:

22 Rafters at Rad. 24 ft.: W 10X39


Rafters Weight = 20.592 lbf

Girders:

Girders Weight = 0 lbf

Columns:

1 Column at Center: 6 INCH SCH 40 PIPE

Columns Weight = 1.089 lbf

Bottom Type: Flat Bottom: Non-Annular

Bottom Floor Material = A-36

t.required = 0,1 in.

t.actual = 0,25 in.

Bottom Joint Efficiency = 0,85

Total Weight of Bottom = 18.648 lbf

TOP END STIFFENER: L2-1/2x2x1/4, A-36, 546, lbf

QTY (1) INTERMEDIATE STIFFENER: A-240 Type 304

L1x1x1/8, 126, lbf, Elev. = 32,31 ft.


SUPPORTED CONICAL ROOF (from Brownell & Young)

Roof Plate Material: A-36, Sd = 24.091 PSI (API-650 Table 3-2)

Structural Material: A-36, Sd = 24.091 PSI (API-650 Table 3-2)

R = 24 ft

pt = 0,75 in/ft (Cone Roof Pitch)

Theta = ATAN(pt/12) = ATAN(0,0625) = 3,5763 degrees

Ap_Vert = Vertical Projected Area of Roof

= pt*OD^2/48

= 0,75*48^2/48

= 36 ft^2

Horizontal Projected Area of Roof (Per API-650 5.2.1.f)

Xw = Moment Arm of UPLIFT wind force on roof

= 0.5*OD

= 0.5*48

= 24 ft

Ap = Projected Area of roof for wind moment

= PI*R^2

= PI*24^2
= 1.810 ft^2

S = Ground Snow Load = 0 lbf/ft^2

Sb = Balanced Design Snow Load = 0 lbf/ft^2

Su = Unbalanced Design Snow Load = 0 lbf/ft^2

Dead_Load = Insulation + Plate_Weight + Added_Dead_Load

= (0)(0/12) + 15,2982 + 0

= 15,2982 lbf/ft^2

Roof Loads (per API-650 Appendix R)

Pe = PV*144 = 0,0036*144 = 0,5184 lbf/ft^2

e.1b = DL + MAX(Sb,Lr) + 0,4*Pe

= 15,2982 + 25 + 0,4*0,5184

= 40,506 lbf/ft^2

e.2b = DL + Pe + 0,4*MAX(Sb,Lr)

= 15,2982 + 0,5184 + 0,4*25

= 25,817 lbf/ft^2

T = Balanced Roof Design Load (per API-650 Appendix R)

= MAX(e.1b,e.2b)

= 40,506 lbf/ft^2

e.1u = DL + MAX(Su,Lr) + 0,4*Pe


= 15,2982 + 25 + 0,4*0,5184

= 40,506 lbf/ft^2

e.2u = DL + Pe + 0,4*MAX(Su,Lr)

= 15,2982 + 0,5184 + 0,4*25

= 25,817 lbf/ft^2

U = Unbalanced Roof Design Load (per API-650 Appendix R)

= MAX(e.1u,e.2u)

= 40,506 lbf/ft^2

Lr_1 = MAX(T,U) = 40,506 lbf/ft^2

P = Design Load = T

= 40,506 lbf/ft^2

( Frangible Roof Design per API-650 Section 5.10.2.6.g )

Afr = Maximum Participating Area

= W/[201000*TAN(Theta)]

= (72.596)/[201000*0,0625] = 5,779 in^2

= 0,2813 PSI

l = Maximum Rafter Spacing

= (t - ca) * SQRT(1.5 * Fy / P)
= (0,375 - 0,0625)*SQRT(1,5*36.000/0,2813)

= 136,92 in.

MINIMUM # OF RAFTERS

< FOR OUTER SHELL RING >

l = 84 in. since calculated l > 84 in. (7 ft)

N_min = 2*PI*R/l = 2*PI*(24)(12)/84 = 21,54

N_min = 22

Actual # of Rafters = 22

Minimum roof thickness based on actual rafter spacing

l = 82,25 in. (actual rafter spacing)

t-Calc = l/SQRT(1.5*Fy/p) + CA

= 82,25/SQRT(1.5*36.000/0,2813) + 0,0625

= 0,2502 in.

NOTE: Governs for roof plate thickness.

RLoad_Max = Maximum Roof Load based on actual rafter spacing


RLoad_Max = 288(Sd)/(l/(t - ca))^2

= 288(24.091)/(82,25/(0,375 - 0,0625))^2

= 100,16 lb/ft^2

Let Max_T1 = RLoad_Max

P_ext_1 (Vacuum limited by actual rafter spacing)

= -[Max_T1 - DL - 0,4 * Max(Snow_Load,Lr)]/144

= -[100,16 - 15,2982 - 0,4 * Max(0,25)]/144

= -0,5199 PSI or -14,41 IN. H2O

Pa_rafter_1 = P_ext_1

= -0,5199 PSI or -14,41 IN H2O.

t.required Must be >= 0,09 in. (per API-653)

t.required = MAX( 0.09 , t-Calc )

= 0,2502 in.

RAFTER DESIGN

Maximum Rafter Span = 24 ft

Average Rafter Spacing on Shell = 6,831 ft

Average Plate Width = (6,831)/2 = 3,416 ft

Mmax = Maximum Bending Moment


Mmax = wl^2/8

where, w = (0,2813)(3,416)*12 + 39/12 = 14,78 lbf/in

l = (24)(12) = 288,00 in.

Mmax = (14,78)(288,00)^2/8 = 153239, in-lbf

Z req'd = Mmax/24.091 = 153239,/24.091 = 6,36 in^3

Actual Z = 42,1 in^3 using W 10X39

W_Max (Max. stress allowed for each rafter in ring 1)

= Z * Sd * 8 / l^2

= 42,1 * 24.091 * 8 / 288,00^2

= 97,8232 lbf/in.

Max_P (Max. Load allowed for each rafter in ring 1)

= (W_Max - W_Rafter/12)/(Average Plate Width*12)

= (97,8232 - 39/12)/(3,416*12)

= 2,3071 PSI

Let Max_T1 = Max_P * 144

P_ext_2 (Vacuum limited by Rafter Type)

= -[Max_T1 - DL - 0,4 * Max(Snow_Load,Lr)]/144

= -[332,2224 - 15,2982 - 0,4 * Max(0,25)]/144

= -1 PSI due to Rafter Type

Pa2_rafter_1 = P_ext_2

(limited by Rafter Type)


COLUMN DESIGN

CENTER COLUMN

l = Column Length

= 726 in = 60,5 ft (as computed)

r = Radius of gyration

if l/r must be less than 180, then

r req'd = l/180 = 726/180 = 4,03 in.

Actual r = 2,246 in. using 6 INCH SCH 40 PIPE

* * Warning * * Center Column:

Actual r = 2,

246 in.,

Req'd r = 4,03 in.

P = Total load supported by center column

= [(rafter length)(rafter load)(# of inner rafters)]/2

= [(24 ft)(12 in/ft)(14,78 lbf/in)(22)]/2

= 46.823 lbf

Fa = Allowable Compressive Stress (Per API-650 5.10.3.4)


Per API-650 5.10.3.3,

R = L/r = 323,2 (actual)

Cc = Column Slenderness Ratio

= SQRT[2PI^2E/Fy]

= SQRT[2PI^2(28.299.999)/(36.000)]

= 124,6

FS = Factor of Safety

= 5/3 + 3*(323,2)/(8*(124,6)) - (323,2)^3/(8*(124,6)^3)

= 0,4578

Since R <= 120,

Using AISC Specification Formulas Section E2,

(let K = 1)

Fa = [(12*PI^2(E))/(23*R^2)]

= [(12*PI^2(28.299.999))/(23*(323,2)^2)]

= 1.395 PSI

Fa is multiplied by MIN(31.680 / 30.000,1) (Per API-650 M.3.5)

Fa = 1.395 * 1

= 1.395 PSI

F = actual induced stress for the column


= P/A = [ 46.823 + (726/12)(18) ] / 5,58

= 8.586 PSI

W_Max (Max. weight allowed for each column in ring 1)

= 6.695 lbf

Max_P (Max. Load allowed for each column in ring 1)

Let Max_T1 = Max_P * 144

P_ext_3 (Vacuum limited by Column Type)

= -2.5 * [(Max_T1 - DL - Max(Snow_Load,Lr)] / 144

= -2.5 * [(-3,9888 - 15,2982 - Max(0,25)] / 144

= 0,7689, since cannot be positive,

= 0 PSI due to Column Type

Pa_column_1 = P_ext_3

(limited by Column Type)

Roof_Area = 36*PI*OD^2/COS(Theta)

= 36*PI*(48)^2/COS()

= 261.085 in^2

ROOF WEIGHT

Weight of Roof Plates

= (density)(t)(PI/4)(12*OD - t)^2/COS(Theta)

= (0,2833)(0,375)(PI/4)(576 - 0,375)^2/COS(3,5763)
= 27.701 lbf (New)

= 23.084 lbf (Corroded)

Weight of Roof Plates supported by shell

= 27.701 lbf (New)

= 23.084 lbf (Corroded)

Weight of Rafters = 20.592 lbf (New)

Weight of Girders = 0 lbf (New)

Weight of Columns = 1.089 lbf (New)

Total Weight of Roof = 49.382 lbf (New)

= 44.765 lbf (Corroded)

<Actual Participating Area of Roof-to-Shell Juncture>

Wc = 0,6 * SQRT[Rc * (t-CA)] (Top Shell Course)

= 0,6 * SQRT[287,75 * (0,25 - 0,0625)]

= 4,4072 in.

Wh = 0,3 * SQRT[R2 * (t-CA)] (or 12", whichever is less)

= 0,3 * SQRT[4.617 * (0,375 - 0,0625)]

= MIN(11,3953, 12)

= 11,3953 in.

(Wc per API-650 Figure F-2)

(Wh per API-650 Figure F-2)


Top End Stiffener: L2-1/2x2x1/4

Aa = (Cross-sectional Area of Top End Stiffener)

= 1,06 in^2

Using API-650 Fig. F-2, Detail c End Stiffener Detail

Ashell = Contributing Area due to shell plates

= Wc*(t_shell - CA)

= 0,826 in^2 (per API-620 Section 5.12.2, Footnote 18)

Aroof = Contributing Area due to roof plates

= 0 in^2 (Since Roof is Lap Welded)

A = Actual Part. Area of Roof-to-Shell Juncture (per API-650)

= Aa + Aroof + Ashell - Redund.Area

= 1,06 + 0 + 0,826 - 0

= 1,886 in^2

< Uplift on Tank > (per API-650 F.1.2)

NOTE: This flat bottom tank is assumed supported by the bottom plate.

If tank not supported by a flat bottom, then uplift calculations

will be N.A., and for reference only.


For flat bottom tank with structural roof,

Net_Uplift = Uplift due to design pressure less

Corroded weight of shell and corroded roof weight.

= P * PI / 4 * D ^ 2 * 144 «

- Corr. shell - [Corr. roof weight + Structural weight]

= 0,009 * 3,1416 / 4 * 2.304 * 144 «

- 72.596 - [23.084 + 20.592 + 0 + 1.089]

= -115.016 lbf

< Uplift Case per API-650 1.1.1 >

P_Uplift = 2.345 lbf

W_Roof_Plates (corroded) = 23.084 lbf

W_Roof_Structure = 21.681 lbf

W_Shell (corroded) = 72.596 lbf

Since P_Uplift <= W_Roof,

Tank Roof does not need to meet App. F requirements.

< API-650 App. F >

Fy = Min(Fy_roof,Fy_shell,Fy_stiff)

= Min(31.680,31.680,31.680)

= 31.680 psi
A_min_a = Min. Participating Area due to full Design Pressure.

(per API-650 F.5.1, and Fig. F-2)

(using API assumption internal P of 1/32 PSI)

= [OD^2(P - 8*t)]/[0,962*31.680*TAN(Theta)]

= [48^2(0,0313 - 8*0,375)]/[0,962*31.680*0,0625]

= -2,576 in^2

= 0 in^2 (since can't be negative)

P_F51 = Max. Design Pressure, reversing A_min_a calculation.

= A * [0,962*31.680*TAN(Theta)]/OD^2 + 8*t_h

= 1,886 * [0,962*31.680*0,0625]/48^2 + 8*0,3125

= 0,1465 PSI or 4,06 IN. H2O

Since Tank Roof is Frangible and net uplift exists, calculating

failure pressure per F.6, which is based on

calculated Max. Design Pressure of F.4.1.

< Maximum Design Pressure > (per F.4.1)

P_F41 = 0,962*31.680*A*TAN(Theta)/D^2 + 8*t_h

= 0,962*31.680*(1,886)*(0,0625)/(48^2) + 8*(0,3125)

= 0,1465 PSI or 4,06 IN. H2O


< Calculated Failure Pressure >

(Per API-650 F.6.1, for Frangible Roof Tanks per 5.10.2.6)

P_F6 = 1,6 * P_max_internal - 4,8 * t_h

= 1,6 * 4,06(IN. H2O) - 4,8 * (0,3125)

= 5 IN. H2O or 0,1804 PSI

Pf_anchor (Failure Pressure for Anchor Design)

(per API-650 Table 5-21b)

= 1,5*(1,6*P_max_internal - 4,8*t)

= 1,5*(1,6*4,06 - 4.8*0,375)

= 7,044 IN. H2O or 0,2542 PSI

P_Std = Max. Pressure allowed (Per API-650 App. F.1.3 & F.7)

= 2,5 PSI or 69,28 IN. H2O

P_max_internal = MIN(P_F51, P_F41, P_Std)

= MIN(4,06, 4,06, 69,28)

= 0,1465 PSI or 4,06 IN. H2O

P_max_external = 0 PSI or 0 IN. H2O

SHELL COURSE RE-RATING (Bottom Course is #1)


Course # 1; Material: A-36; Width = 5ft

API-653 ONE FOOT METHOD

Sd = Min(Sd, 0.8 * Sy * Rf) = 21.896 PSI (allowable design stress per «

API-653 4.3.10 and API-650 Table M-1a)

RE-RATE CONDITION

G = 1 (per API-653)

< Re-Rate Condition G = 1 >

H' = Effective liquid head at design pressure

= H + 2,31*P(psi)/G

= 58 + 2.31*0,009/1 = 58,02ft

t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-653)

= 2,6*48*(58,02 - 1)*1/(21.896*0,85) + 0,0625

= 0,4448 in.

hMax_1 = E*Sd*(t_1 - CA_1)/(2,6*OD*G) + 1

= 0,85*21.896*(0,336 - 0,0625) / (2,6 * 48 * 1) + 1

= 41,7874 ft.

Pmax_1 = (hMax_1 - H) * 0,433 * G

= (41,7874 - 58) * 0,433 * 1


= -7,02 PSI

Pmax_int_shell = Pmax_1

Since Pmax_int_shell < 0, Pmax_int_shell = 0 PSI

HYDROSTATIC TEST CONDITION

< Re-Rate Condition G = 1 >

H' = Effective liquid head at design pressure

= H + 2,31*P(psi)/G

= 58 + 2.31*0,009/1 = 58,02ft

t.test = 2,6*48*(58,02 - 1)/(27.376*0,85) = 0,3058 in.

Course # 2; Material: A-36; Width = 5ft

API-653 ONE FOOT METHOD

Sd = Min(Sd, 0.8 * Sy * Rf) = 21.896 PSI (allowable design stress per «

API-653 4.3.10 and API-650 Table M-1a)

RE-RATE CONDITION

G = 1 (per API-653)

< Re-Rate Condition G = 1 >


H' = Effective liquid head at design pressure

= H + 2,31*P(psi)/G

= 53 + 2.31*0,009/1 = 53,02ft

t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-653)

= 2,6*48*(53,02 - 1)*1/(21.896*0,85) + 0,0625

= 0,4113 in.

hMax_2 = E*Sd*(t_2 - CA_2)/(2,6*OD*G) + 1

= 0,85*21.896*(0,3125 - 0,0625) / (2,6 * 48 * 1) + 1

= 38,2829 ft.

Pmax_2 = (hMax_2 - H) * 0,433 * G

= (38,2829 - 53) * 0,433 * 1

= -6,3725 PSI

Pmax_int_shell = Min(Pmax_int_shell, Pmax_2)

= Min(0, -6,3725)

Since Pmax_int_shell < 0, Pmax_int_shell = 0 PSI

HYDROSTATIC TEST CONDITION

< Re-Rate Condition G = 1 >

H' = Effective liquid head at design pressure


= H + 2,31*P(psi)/G

= 53 + 2.31*0,009/1 = 53,02ft

t.test = 2,6*48*(53,02 - 1)/(27.376*0,85) = 0,279 in.

Course # 3; Material: A-36; Width = 5ft

API-653 ONE FOOT METHOD

Sd = Min(Sd, 0.8 * Sy * Rf) = 24.091 PSI (allowable design stress per «

API-653 4.3.10 and API-650 Table M-1a)

RE-RATE CONDITION

G = 1 (per API-653)

< Re-Rate Condition G = 1 >

H' = Effective liquid head at design pressure

= H + 2,31*P(psi)/G

= 48 + 2.31*0,009/1 = 48,02ft

t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-653)

= 2,6*48*(48,02 - 1)*1/(24.091*0,85) + 0,0625

= 0,3491 in.

hMax_3 = E*Sd*(t_3 - CA_3)/(2,6*OD*G) + 1


= 0,85*24.091*(0,25 - 0,0625) / (2,6 * 48 * 1) + 1

= 31,7653 ft.

Pmax_3 = (hMax_3 - H) * 0,433 * G

= (31,7653 - 48) * 0,433 * 1

= -7,0296 PSI

Pmax_int_shell = Min(Pmax_int_shell, Pmax_3)

= Min(0, -7,0296)

Since Pmax_int_shell < 0, Pmax_int_shell = 0 PSI

HYDROSTATIC TEST CONDITION

< Re-Rate Condition G = 1 >

H' = Effective liquid head at design pressure

= H + 2,31*P(psi)/G

= 48 + 2.31*0,009/1 = 48,02ft

t.test = 2,6*48*(48,02 - 1)/(30.102*0,85) = 0,2293 in.

Course # 4; Material: A-36; Width = 44ft

API-653 ONE FOOT METHOD


Sd = Min(Sd, 0.8 * Sy * Rf) = 24.091 PSI (allowable design stress per «

API-653 4.3.10 and API-650 Table M-1a)

RE-RATE CONDITION

G = 1 (per API-653)

< Re-Rate Condition G = 1 >

H' = Effective liquid head at design pressure

= H + 2,31*P(psi)/G

= 43 + 2.31*0,009/1 = 43,02ft

t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-653)

= 2,6*48*(43,02 - 1)*1/(24.091*0,85) + 0,0625

= 0,3186 in.

hMax_4 = E*Sd*(t_4 - CA_4)/(2,6*OD*G) + 1

= 0,85*24.091*(0,25 - 0,0625) / (2,6 * 48 * 1) + 1

= 31,7653 ft.

Pmax_4 = (hMax_4 - H) * 0,433 * G

= (31,7653 - 43) * 0,433 * 1

= -4,8646 PSI

Pmax_int_shell = Min(Pmax_int_shell, Pmax_4)

= Min(0, -4,8646)

Since Pmax_int_shell < 0, Pmax_int_shell = 0 PSI


HYDROSTATIC TEST CONDITION

< Re-Rate Condition G = 1 >

H' = Effective liquid head at design pressure

= H + 2,31*P(psi)/G

= 43 + 2.31*0,009/1 = 43,02ft

t.test = 2,6*48*(43,02 - 1)/(30.102*0,85) = 0,205 in.

Wtr = Transposed Width of each Shell Course

= Width*[ (t-ca)_thinnest / (t-ca)_course ]^2,5

Transforming Courses (1) to (4)

Wtr(1) = 5*[ 0,1875/0,2735 ]^2.5 = 1,9457 ft

Wtr(2) = 5*[ 0,1875/0,25 ]^2.5 = 2,4357 ft

Wtr(3) = 5*[ 0,1875/0,1875 ]^2.5 = 5 ft

Wtr(4) = 44*[ 0,1875/0,1875 ]^2.5 = 44 ft

Hts (Height of the Transformed Shell)

= SUM{Wtr} = 53,3814 ft

INTERMEDIATE WIND GIRDERS (API 650 Section 5.9.7)


V (Wind Speed) = 110 mph

Ve = vf = Velocity Factor = (vs/120)^2 = (110/120)^2 = 0,8403

Re-Rate PV = 0,0036 PSI, OR 0,10 In. H2O

<TOP END STIFFENER CALCULATIONS>

Actual Z = 0,484 in^3

Using L2-1/2x2x1/4, Wc = 4,41

<INTERMEDIATE STIFFENER CALCULATIONS> (PER API-650 Section 5.9.7)

* * * NOTE: Using the thinnest shell course, t_thinnest,

instead of top shell course.

* * * NOTE: Subtracting corrosion allowance per user setting.

ME = 28.299.999/28.799.999

= 0,9826

Hu = Maximum Height of Unstiffened Shell

= {ME*600.000*(t-ca)_thinnest*SQRT[(t-ca)_thinnest/OD]^3} / Ve)

= {0,9826*600.000*(0,1875)*SQRT[(0,1875)/48]^3} / 0,8403

= 32,1191 ft

Wtr = Transposed Width of each Shell Course

= Width*[ (t-ca)_thinnest / (t-ca)_course ]^2,5


Transforming Courses (1) to (4)

Wtr(1) = 5*[ 0,1875/0,2735 ]^2.5 = 1,9457 ft

Wtr(2) = 5*[ 0,1875/0,25 ]^2.5 = 2,4357 ft

Wtr(3) = 5*[ 0,1875/0,1875 ]^2.5 = 5 ft

Wtr(4) = 44*[ 0,1875/0,1875 ]^2.5 = 44 ft

Hts (Height of the Transformed Shell)

= SUM{Wtr} = 53,3814 ft

L_0 = Hts/# of Stiffeners + 1

= 53,3814/2 = 26,69 ft.

Number of Intermediate Wind Girders Sufficient Since Hu >= L_0

Zi (Req. Wind Gird. Z)

= (0,0001)(Ve)(L0)(OD^2)

= (0,0001)(0,8403)(26,69)(48^2) = 5,17 in^3

Actual Zi = 0,0533 in^3 using QTY (1):

L1x1x1/8 (Not Adequate)

* * Warning * * Wind Girder Zi is inadequate.

Wind Girder Zi Req'd = 5,17


SHELL COURSE #1 SUMMARY

-------------------------------------------

Pmax_int_shell = 0 since hMax_1 < H, and hMax_2 < H, and hMax_3 < H, and «

hMax_4 < H

t-Calc = MAX(t-Calc_650, t_min_ext)

= MAX(0,4448, 0)

= 0,4448 in.

Course Minimum t shall not be less than 0,1" + CA

(per API-653 Section 4.3.3.1)

t-653min = 0,1625 in.

t.required = MAX(t.design, t.min653)

= MAX(0,4448,0,1625) = 0,4448 in.

* * Warning * * t.actual < t.required

< API-653 4.3.2.1 >

t1 (lowest average thickness in the shell course)

t1 must be >= t.required = 0,4448 in.

t2 (least min. thickness in an area of shell course)

t2 must be >= 0,6*(t.required - CA) + CA = 0,291880 in.

t.actual = 0,336 in.

Weight = Density*PI*[(12*OD) - t]*12*Width*t


= 0,2833*PI*[(12*48)-0,336]*12*5*0,336

= 10.329 lbf (New)

= 8.409 lbf (Corroded)

SHELL COURSE #2 SUMMARY

-------------------------------------------

t-Calc = MAX(t-Calc_650, t_min_ext)

= MAX(0,4113, 0)

= 0,4113 in.

Course Minimum t shall not be less than 0,1" + CA

(per API-653 Section 4.3.3.1)

t-653min = 0,1625 in.

t.required = MAX(t.design, t.min653)

= MAX(0,4113,0,1625) = 0,4113 in.

* * Warning * * t.actual < t.required

< API-653 4.3.2.1 >

t1 (lowest average thickness in the shell course)

t1 must be >= t.required = 0,4113 in.

t2 (least min. thickness in an area of shell course)

t2 must be >= 0,6*(t.required - CA) + CA = 0,271780 in.

t.actual = 0,3125 in.


Weight = Density*PI*[(12*OD) - t]*12*Width*t

= 0,2833*PI*[(12*48)-0,3125]*12*5*0,3125

= 9.607 lbf (New)

= 7.686 lbf (Corroded)

SHELL COURSE #3 SUMMARY

-------------------------------------------

t-Calc = MAX(t-Calc_650, t_min_ext)

= MAX(0,3491, 0)

= 0,3491 in.

Course Minimum t shall not be less than 0,1" + CA

(per API-653 Section 4.3.3.1)

t-653min = 0,1625 in.

t.required = MAX(t.design, t.min653)

= MAX(0,3491,0,1625) = 0,3491 in.

* * Warning * * t.actual < t.required

< API-653 4.3.2.1 >

t1 (lowest average thickness in the shell course)

t1 must be >= t.required = 0,3491 in.


t2 (least min. thickness in an area of shell course)

t2 must be >= 0,6*(t.required - CA) + CA = 0,234460 in.

t.actual = 0,25 in.

Weight = Density*PI*[(12*OD) - t]*12*Width*t

= 0,2833*PI*[(12*48)-0,25]*12*5*0,25

= 7.686 lbf (New)

= 5.765 lbf (Corroded)

SHELL COURSE #4 SUMMARY

-------------------------------------------

t-Calc = MAX(t-Calc_650, t_min_ext)

= MAX(0,3186, 0)

= 0,3186 in.

Course Minimum t shall not be less than 0,1" + CA

(per API-653 Section 4.3.3.1)

t-653min = 0,1625 in.

t.required = MAX(t.design, t.min653)

= MAX(0,3186,0,1625) = 0,3186 in.

* * Warning * * t.actual < t.required

< API-653 4.3.2.1 >


t1 (lowest average thickness in the shell course)

t1 must be >= t.required = 0,3186 in.

t2 (least min. thickness in an area of shell course)

t2 must be >= 0,6*(t.required - CA) + CA = 0,216160 in.

t.actual = 0,25 in.

Weight = Density*PI*[(12*OD) - t]*12*Width*t

= 0,2833*PI*[(12*48)-0,25]*12*44*0,25

= 67.640 lbf (New)

= 50.736 lbf (Corroded)

FLAT BOTTOM: NON-ANNULAR PLATE DESIGN

Bottom Plate Material : A-36

Annular Bottom Plate Material : A-240 Type 304

<Weight of Bottom Plate>

Bottom_Area = PI/4*(Bottom_OD)^2

= PI/4*(579)^2

= 263.298 in^2

Weight = Density * t.actual * Bottom_Area


= 0,2833 * 0,25 * 263.298

= 18.648 lbf (New)

= 18.648 lbf (Corroded)

< API-653 >

Calculation of Hydrostatic Test Stress & Product Design Stress

(per API-653)

t_1 : Original Bottom (1st) Shell Course thickness.

H'= Max. Liq. Level + P(psi)/(0,433)

= 58 + (0,009)/(0,433) = 58,0208 ft

St = Hydrostatic Test Stress in Bottom (1st) Shell Course

= (2,6)(OD)(H' - 1)/t_1

= (2,6)(48)(58,0208 - 1)/(0,336)

= 21.179 PSI. (Within 24900 PSI limit for Non-Annular Bottom)

Sd = Product Design Stress in Bottom (1st) Shell Course

= (2,6)(OD)(H' - 1)(G)/(t_1 - ca_1)

= (2,6)(48)(58,0208 - 1)(1)/(0,2735)

= 26.019 PSI.

* * Warning * * Exceeds 23200 PSI limit for Non-Annular Bottom.

t_Product : Required 1st Shell Course to make Sd = 23200 PSI


t_Product = 0,3692 in.

t_1 = t_Product = 0,3692 in.

* * Warning * * For Non-Annular Bottom,

1st Shell Course thickness

insufficient per API-650 5.5.1

--------------------------

Non-Annular Bottom Plates

t_min = 0,1 + 0 = 0,1 in. (per API-653 Table 6-1)

t-Calc = t_min = 0,1 in.

* * Warning * * For Non-Annular Bottom,

1st Shell Course thickness

insufficient per API-650 5.5.1

< FLAT BOTTOM: NON-ANNULAR SUMMARY >


t.required = t-Calc = 0,1 in.

t.actual = 0,25 in.

WIND MOMENT (Per API-650 SECTION 5.11)

vs = Wind Velocity = 110 mph

vf = Velocity Factor = (vs/120)^2 = (110/120)^2 = 0,8403

Wind_Uplift = 30 * vf

= 25,2083 lbf/ft^2

API-650 5.2.1.k Uplift Check

P_F41 = WCtoPSI(0,962*Fy*A*TAN(Theta)/D^2 + 8*t_h)

P_F41 = WCtoPSI(0,962*31.680*1,886*0,0625/48^2 + 8*0,3125)

= 0,1465 PSI

Limit Wind_Uplift/144+P to 1.6*P_F41

Wind_Uplift/144 + P = 0,1841 PSI

1.6*P_F41 = 0,2344 PSI

Wind_Uplift/144 + P = MIN(Wind_Uplift/144 + P, 1.6*P_F41)

Wind_Uplift/144 = MIN(Wind_Uplift/144, 1.6*P_F41 - P)

Wind_Uplift = MIN(Wind_Uplift, (1.6*P_F41 - P) * 144)


= MIN(25,2083,32,4576)

= 25,2083 lbf/ft^2

Ap_Vert = Vertical Projected Area of Roof

= pt*OD^2/48

= 0,75*48^2/48

= 36 ft^2

Horizontal Projected Area of Roof (Per API-650 5.2.1.f)

Xw = Moment Arm of UPLIFT wind force on roof

= 0.5*OD

= 0.5*48

= 24 ft

Ap = Projected Area of roof for wind moment

= PI*R^2

= PI*24^2

= 1.810 ft^2

M_roof (Moment Due to Wind Force on Roof)

= (Wind_Uplift)(Ap)(Xw)

= (25,2083)(1.810)(24) = 1.094.782 ft-lbf

Xs (Moment Arm of Wind Force on Shell)

= H/2 = (59)/2 = 29,5 ft

As (Projected Area of Shell)


= H*(OD + t_ins / 6)

= (59)(48 + 0/6) = 2.832 ft^2

M_shell (Moment Due to Wind Force on Shell)

= (vf)(18)(As)(Xs)

= (0,8403)(18)(2.832)(29,5) = 1.263.603 ft-lbf

Mw (Wind moment)

= M_roof + M_shell = 1.094.782 + 1.263.603

= 2.358.385 ft-lbf

W = Net weight (PER API-650 5.11.3)

(Force due to corroded weight of shell and

shell-supported roof plates less

40% of F.1.2 Uplift force.)

= W_shell + W_roof - 0,4*P*(PI/4)(144)(OD^2)

= 72.596 + 23.084 - 0,009*(PI/4)(144)(48^2)

= 94.742 lbf

RESISTANCE TO OVERTURNING (per API-650 5.11.2)

An unanchored Tank must meet these two criteria:

1) 0,6*Mw + MPi < (MDL + MF_min_liq)/1,5

2) Mw + 0,4MPi < (MDL + MF)/2


Mw = Destabilizing Wind Moment = 2.358.385 ft-lbf

MPi = Destabilizing Moment about the Shell-to-Bottom Joint from Design «

Pressure.

= P*(PI*OD^2/4)*(144)*(OD/2)

= 0,009*(3,1416*48^2/4)*(144)*(24)

= 56.284 ft-lbf

MDL = Stabilizing Moment about the Shell-to-Bottom Joint from the Shell and «

Roof weight supported by the Shell.

= (W_shell + W_roof)*OD/2

= (72.596 + 23.084)*24

= 2.296.320 ft-lbf

tb = Bottom Plate thickness less C.A. = 0,25 in.

wl = Circumferential loading of contents along Shell-To-Bottom Joint.

= 4,67*tb*SQRT(Sy_btm*H_liq)

= 4,67*0,25*SQRT(31.680*58)

= 1.583 lbf/ft

wl_min_liq = Circumferential loading of Minimum-Level contents along «

Shell-To-Bottom Joint.

= 4,67*ta*SQRT(Sy_btm*H_min_liq)

= 4,67*0,25*SQRT(31.680*0)

= 0 lbf/ft
MF_min_liq = wa_min_liq*PI*OD

= 0*3,1416*48

= 0 lbf

MF = Stabilizing Moment due to Bottom Plate and Liquid Weight.

= (OD/2)*wl*PI*OD

= (24)(1.583)(3,1416)(48)

= 5.727.502 ft-lbf

Criteria 1

0,6*(2.358.385) + 56.284 < (2.296.320 + 0)/1,5

Since 1.471.315 < 1.530.880, Tank is stable.

Criteria 2

2.358.385 + 0,4 * 56.284 < (2.296.320 + 5.727.502)/2

Since 2.380.899 < 4.011.911, Tank is stable.

RESISTANCE TO SLIDING (per API-650 5.11.4)

F_wind = vF * 18 * As

= 0,8403 * 18 * 2.832

= 42.834 lbf

F_friction = Maximum of 40% of Weight of Tank

= 0,4 * (W_Roof_Corroded + W_Shell_Corroded +

W_Btm_Corroded + RoofStruct + W_min_Liquid)


= 0,4 * (23.084 + 72.596 + 18.648 + 21.681 + 0)

= 54.404 lbf

No anchorage needed to resist sliding since

F_friction > F_wind

SEISMIC MOMENT (API-650 APPENDIX E & API-620 APPENDIX L)

Ms = 0 ft-lbf

* NOTE: Since Seismic Zone Coefficient (Z) = 0,

Seismic calculations are not applicable.

<ANCHORAGE REQUIREMENTS>

No Anchorage Required.

ANCHOR BOLT DESIGN

This is a Non-Anchored Tank (NAT), since there are no anchor bolts.

Uplift Check for Closed-Top NAT:

Since this is a Non-Anchored Tank (NAT), then

check to ensure tank MAWP rating does not

cause Net Uplift.


MAWP = 0 PSI or 0 IN. H2O

U1 @ MAWP = (Uplift due to MAWP)

= MAWP * PI / 4 * D ^ 2 * 144 «

- Corr. shell - [Corr. roof weight + Structural weight]

= 0 * 3,1416 / 4 * 2.304 * 144 «

- 72.596 - [23.084 + 20.592 + 0 + 1.089]

= -117.361 LBF

Closed-top NAT is okay for MAWP, Wind and Siesmic.

Maximum NAT Uplift per U1 to U7 (where applicable)

= -117.361 LBF

ANCHOR BOLT CHAIRS NOT SPECIFIED.

NORMAL & EMERGENCY VENTING (API-2000)

Contents : water

Tank OD = 48 ft

Tank Shell Height = 59 ft

Tank Design Temp. = 300 °F

<INBREATHING - VACUUM RELIEF>


Q1 (Maximum Movement Out of Tank) (per Section 4.3.2.1.1)

= 5,6 CFH Air per 42 GPH outflow

= (5,6/42)*50*60

= 400 CFH, or 7 CFM free air

Q2 (Thermal Inbreathing) (per Section 4.3.2.1.2)

= 19.660 CFH, or 328, CFM free air (Table 2A Column 2)

Total Vacuum Relief Required = Q1 + Q2 = 20.060 CFH, or 334, CFM

<OUTBREATHING - PRESSURE RELIEF>

Q1 (Maximum Movement Into Tank) (per Section 4.3.2.3.1)

= 12 CFH Air per 42 GPH inflow

= (12/42)*50*60 = 857 CFH, or 14, CFM free air

Q2 (Thermal Outbreathing) (per Section 4.3.2.3.2)

= 19.667 CFH, or 328 CFM free air (Table 2A Column 4)

Total Pressure Relief Required = Q1 + Q2 = 20.524 CFH, or 342, CFM


TABLE 1: NOZZLES & MANWAYS

----------------------------------------------------------------------

NAME TYPE SIZE FLANGE SCH. ELEV. WEIGH REPAD REPAD REPAD REPAD

FACING ON t Do W CA

SHELL or L

(in) (ft) lbf (in) (in) (in) (in)

----------------------------------------------------------------------

A SHNZ 24 RFSO 80 10 3 0,187 49,5 60 0

New 02 SHMW 6 RFSO STD 3 N.A. 0,625 15,75 0 0

----------------------------------------------------------------------

< Nozzle A Reinforcement Requirements >

(Per API-650 Section 3.7.2 and other references below)

NOZZLE Description : 24in. 80 RFSO

MOUNTED ON SHELL COURSE 2 ; Elevation = 10 ft.

COURSE PARAMETERS:

t_cr = 0,4113 in. (Course t-Calc)

t_c = 0,25 in. (Course t less C.A.)

t_Basis = 0,4113 in.

(SHELL NOZZLE REF. API-650 TABLE 5-6, AND FOOTNOTE A OF TABLE 5-7)
t_rpr (Repad Required Thickness)

t_rpr = A_rpr / D

A_rpr = (Required Area - Available Shell Area

- Available Nozzle Neck Area)

Required Area = t_Basis * D

= 0,4113 * 24,25

= 9,974 in^2

Available Shell Area = (t_c - t_Basis) * D

= (0,25 - 0,4113) * 24,25

= -3,912 in^2

Available Nozzle Neck Area = [4 * (t_n-ca) + t_c] * (t_n-ca) * «

MIN(Sd_n/Sd_s, 1)

= [4 * (0) + 0,25] * (0) * 20.073/21.896

= 0 in^2

A_rpr = 9,974 - -3,912 - 0

= 13,886 in^2

t_rpr = 13,886/24,25

= 0,5726 in.

Based on Shell Nozzle Size of 24 in.,

Repad Size (L X W) Must be 49,5 X 60 in.


< Nozzle New 02 Reinforcement Requirements >

(Per API-650 Section 3.7.2 and other references below)

NOZZLE Description : 6in. STD RFSO

MOUNTED ON SHELL COURSE 1 ; Elevation = 3 ft.

COURSE PARAMETERS:

t_cr = 0,4448 in. (Course t-Calc)

t_c = 0,2735 in. (Course t less C.A.)

t_Basis = 0,4448 in.

(SHELL MANWAY REF. API-650 TABLE 5-6, AND FOOTNOTE A OF TABLE 5-7)

t_rpr (Repad Required Thickness)

t_rpr = A_rpr / D

A_rpr = (Required Area - Available Shell Area

- Available Nozzle Neck Area)

Required Area = t_Basis * D

= 0,4448 * 6,25

= 2,78 in^2

Available Shell Area = (t_c - t_Basis) * D

= (0,2735 - 0,4448) * 6,25


= -1,071 in^2

Available Nozzle Neck Area = [4 * (t_n-ca) + t_c] * (t_n-ca) * «

MIN(Sd_n/Sd_s, 1)

= [4 * (0,28) + 0,2735] * (0,28) * 1

= 0,39 in^2

A_rpr = 2,78 - -1,071 - 0,39

= 3,461 in^2

t_rpr = 3,461/6,25

= 0,5538 in.

Based on Shell Manway Size of 6 in.,

Repad Size (OD) Must be 15,75 in.

CAPACITIES and WEIGHTS

Shell capacity to upper TL : 797.193 gal

New Condition Corroded

-----------------------------------------------------------

Shell 95.262 lbf 72.596 lbf

Roof

Plates 27.701 lbf 23.084 lbf


Rafters 20.592 lbf 20.592 lbf

Girders 0 lbf 0 lbf

Columns 1.089 lbf 1.089 lbf

Bottom 18.648 lbf 18.648 lbf

Stiffeners 672 lbf 672 lbf

Nozzle Wgt 3 lbf 3 lbf

Misc Roof Wgt 0 lbf 0 lbf

Misc Shell Wgt 0 lbf 0 lbf

Insulation 0 lbf 0 lbf

-----------------------------------------------------------

Total 163.967 lbf 136.684 lbf

Weight of Tank, Empty : 163.967 lbf

Weight of Tank, Full of Product (SG=1) : 6.698.997 lbf

Weight of Tank, Full of Water : 6.698.997 lbf

Net Working Capacity : 783.070 gal

Foundation Area Req'd : 1.810 ft^2

Foundation Loading, Empty : 90,59 lbf/ft^2

Foundation Loading, Full of Product (SG=1) : 3.701 lbf/ft^2

Foundation Loading, Full of Water : 3.701 lbf/ft^2

SURFACE AREAS

Roof 1.813 ft^2

Shell 8.897 ft^2

Bottom 1.810 ft^2


Wind Moment 2.358.385 ft-lbf

Seismic Moment (NA) since zone = 0

MISCELLANEOUS ATTACHED ROOF ITEMS

MISCELLANEOUS ATTACHED SHELL ITEMS

MAWP & MAWV SUMMARY FOR 3300

MAXIMUM CALCULATED INTERNAL PRESSURE

MAWP = 2,5 PSI or 69,28 IN. H2O (per API-650 App. F.1.3 & F.7)

MAWP = Maximum Calculated Internal Pressure (due to shell)

= 0 PSI or 0 IN. H2O

MAWP = Maximum Calculated Internal Pressure (due to roof)

= 0,1465 PSI or 4,06 IN. H2O

TANK MAWP = 0 PSI or 0 IN. H2O

MAXIMUM CALCULATED EXTERNAL PRESSURE


MAWV = 1 PSI or 27,71 IN. H2O (per API-650 V.1)

MAWV = Maximum Calculated External Pressure (due to shell)

= -0,0337 PSI or -0,93 IN. H2O

MAWV = Maximum Calculated External Pressure (due to roof)

= 0 PSI or 0 IN. H2O

MAWV = N.A. (not calculated due to columns)

TANK MAWV = 0 PSI or 0 IN. H2O

You might also like