ELECTRIC CHARGES AND FIELDS
nest
CHARGE +
An wecbale change ie an intrinsic property of
acolan propo. Unit is counluml - le-= 1,60aQx107'%C
Changer ane of tue kinds, Positive and negative
Crerce Chee Mass
| —
1) Can Le positive, : 1. Al Uttve.
[ee megrmiie 1 Alone: poslit
2. Change can be iantined | As Not quantised
3. Change is conserned (3. Moss - energy is conserued,
| | Home of the missing mass |
. Lolkes the form of, energy.
oa A Mawes aon |
Of, speed. > speed.
B+ Force Letweenrcan be | 5. Force Lehuen masses ie |
Ottrockive cy repulsive | always attractive |
6 Force Petron changes 6. Fotce Reborn nv ae
ds dependent on nabine Independent of medion.
|
Ah medium. _ i 7
FUNDAMENTAL Lew Or Cuaraes ! ‘MetHops OF CHaraunér:
In Changing 24 Conduction }
Tp om unchanged conductor (BD ie touched
a changed trody (A) chosges ane shoned fy
the tv Lodies (tite their potential is the same).
Bs Changing 24 hiction : |
Puibing two sultalle viraterials can electrify 2otin
electrons while the then goles then and sus
tne thectnons acdires O positive Chonge. e.g!
wher a lass sod is subbed with stile, tre
vetnens Toate Ail Wits neur hes a agateand Q ie Left Ath a positive
| 3) Now the nod is sumed. So te negative
won the and Pspreads ald even the conductor.
Electroscepe is an instrument thot detects the
presence G changes tn a body.
| Peopeeties Or Cuaraeg :
V\ donges one ywonlised . Chas Q a Dedy = ner
near ee and e- Crexionag
a. are additive . Toad chesge on an 2)
fedy Ie the algebrale sum of the change on
3+ Changes ane conserued. The net chonge on an isolated
| Aypten ds alurays a Constant »
Covrour Ss Law :
Coulomb» faus way Le stated os “Fovee of,
interaction Letween tuo point changes is divectty
Proportional to the product of tl changes and
3distance Lebroeen then’.
bet quand qo Be the tivo Lee poink oA
phanger separated fy a distance ae
Detvoeen thom. ae
point changes is geen by F 1 point changes
Fae qqas Aeporroted nye distance
ond Fe I “
a
we FOO WY
Ae
or Fe k VY
n>
where kk is a constant wise value depends -on
pod lve techn 20 clea es the tuo
and also the wih in which Fy and + ane
eT BY2%0 (Like )s the force on
Bie omrny frome | and that en! i away Prom a.
They repel ere another. On the other hand, if
Yy2 £0 (untike chacrges), the force on Q is towards
| 1, thar on lis towands 2, attract one anotten.
| .
Te ST system te value of constant k dn
Vacuum is
k= _t
ATIEo
The constant Eo ds cadled the perunistivily of the
fre space. The oxperimentatty measured Vole of
Akis 949x107 Nm cm,
Ys Eo zt > '
ank AX 22 ¥AxI07
=;
= 8. 85x 107! CON n>
With thir choice Af constant k, the coomb's
Brous can be written as
AT éo ras
xp charges wane situated fra midtiun and not in
whine K is colted the dickectric constant xf the
ST Unit of Change s
Th the medium is aiv, then K =!
Wee Qt = a=! conlomtb, T=! metre
FeQ@xtotx IX! 2 QyioIN
=
nus, ene coulorwte is that vstich when
phaced in airrat a distance of ene metre from an
2qpal and aimiban change, expertences a sepulsive
force of AXIOIN.
Redative | Pounittivity (Dielectric Constant) :
The coulombic. ce Debiseen bo changed orticQe
Leo made bee P
2 ot Wye
| A Eokon Fo= 1 Ue |
ire |
where € is alscbute pereittiuity of tive median
ond je equal Le Gok .
Les € =KEéo
Now >» Fae = &€ =K (or En)
Fin E> [: Fue bo U2)
TOUINAES yrleo
Fro = Fae
k |
Thus» velative wtivt af a medium may Le
defined o% the vatve 4, tht foros Leboen ture changes
ata certain distance opart In air (or vacuum)
to the force Letvown the same tier rhanges placed at
ae
Coulomb's Laur in Vector Forno p
— _ « nH Sonal
Suppose Luo Dike point charges SB
au go are pla ata Yar fa Om
divtance apant dn freespaee Ae ag ag |
the ane alike , trey wild Fo Bop °
Tes changes '4192%0
mepee ee separates 24 0 distance
Let Fia e the force onchange 4) nm
duz te chonge 42 and Fai Le the force on change qa
due Te q+ |
| Let Ray do the wit vector from 4) te 42 - Then the
force Fa $$
Roo tae F,]
anéo |
67 Wynn >
wwe Rar We the unit vector in the dimection of Far.
mel &a4n [4 . a]
Fou = lo Yor Vans “Te
Ae a? 7
Siwitonty » 1f Fig de She wit vector from go te 41,
the foror on change q) dit fb q> con Le wonition as
>
fer to M42 BR RL ae
Feo rs alee ae
| Since Min ond Ra; one sdk vectors pouting in
x i ‘ drove
Bo prec oenN caat c ae e
Aw = = Are
T. » Becomes
Prenehore » cay |
Fos 1. $4205.) 1 age 4,
AMGy ye eresheos
qrom 24h) LE fowewrs thot
> =>
For = - Fin
|. Taie shorrs thot fovees exerted by dre duo
om zach other are uel and Ue The f oa
the Newton's third Laur of motion i+ obeyed.
a: Fora experienced one. due to r
Letuater the twowhanges ds a cenbrar f :
Soper POSITION Paineipe : |
The Basic idea Athind the superposition. prtnetple
ds that the porce ora duc 2 another
chonge in LB neighbourhood je independent of the
2change qo is tue Bry
iS > > 7
| Fre = Fit Fot--: + Fr
presence of ore He ther changes in thein
netghtourtood : Asa 2 result , the net force or
due te all the dn Ue nee orheod,
Spake te weston anon of nd foraes etc en it denik
ait the individual changes in ite neighbourhood .
In applying the auperpostiion POinrciple, all the
indtuiduol forees must be colertatid teeeping Ln mind
bet FFL, BS. Fh) be the forces: exerted ono |
charge Ap dy the changes Yi4rs Jaro Gn in its |
WahLoumo
od: The net force which nour acts on the
White applying tre above equation » the force Fr en qo
due te qy is te Le caleulated assuming that the
ster changes do vst affect this foree . Simitorly >
the force Fa onde duc tg Js also te Le asuuned
dndepundent ff the other changes. This is the essential
feature of all the forces acting on dp.
ContiNves s CHarare ‘DistRiBotion +
A cotlection of Longe huunber of, Phennrentory changes js
iu @ Cotinusis Change ‘Disteibutlon . |
The «ontinucus change distnibutton Le one
dimenitonal, two dinvensional or thot dimenstorncl.(a) Linea Change Density, :
Suppox the change iv dintributed unbfownty
aleng a Lines straight Or cunved Then the change
disterbutien is called Linear. 4
Comiden a thin straight sod. -
in in coutemi and R in metres .
The Plectnostatile force on qo due te the change on
infinitesimal orua dS is de 1 ox
. Ai€o aen04
0 an eas RLS)
anes yeThe teak fps cng on dee te change on |
the whole
> t aoe
P+ Lae. SSO
(©) Volume rity (2D) +
Winer she change its distrituted tultorrns oe oO
VRume , then it 46 called voliime vt
a ore
change 4 distributed NAA tee
Volume Vs Then vobume chovge thosge density ans
ar
Soy it wade is coulonte fete’,
element dV us dq = PAV.
| lor examples Suppose the total chasige q is spread
| The stotat force acting on Gp “aeteay avr the
Aotal Noume is FL ft. ety
3 We.
Evecteic Fieun :
The space orrornd a change In which its electric
influsnce ton Le fort is coved thy olectric field.
Evectrie Feup Intensity
Te electric field Intensity € ak any point In an
eucroskatiec fterd is defined as the force expertencd
Pr unit test chonge placed at that point, the
"dest change being extremely mall.
=
aa
|_|
Ae the test ) Go produces its oun freed» Lt
way dintul Be position of source .
| Therefore, test ehrange should Le supfictentdy srratt ,
approaching Te Bev a.e. Yo tends to Zero. Therefore ,
E = tim F
dvorn the Coulowk's Laur, the
fore on thetert change is SE erent eee
eee ak the origin
geen Oe og
| Felt Rae a
ANen ye
7 Dectric pietd 3 tly ie oven
2. Fit es on
qe (AMES— -
C-1 Qe. es
ANE a> re |
The divaction of Fat a potnt Is along the Line
Joining dine potnt and the Q, ining Cutvoasd
AR QBs positive and poluting invoand if @ is negabive,
Nate :
Fon a. point chonge » vaph. for
|e etcnite fila Downuty © iemus stance from
k
| /
|
|
| 1
Evecrere Fieup Due To A Geove Or Charis :
The slestnte feta due £0 0 Group af changes ob ab any
Petit cam Se cabeutobed bap
c Pietd dus te Lack chosige turn Ly ton
Sovcidintig to oon clenqr Ste otaent are danSuperposition + Tf &, é&,.. En *s '
ar the filds due 2 Lrdividuat . po
chongus and E is the nesutant i
Jntemsitey » “e howe » a de sat
errete as mouny
P+ hee OF changes om
ct Soe 1 Fe pa +t Gm Pop
AME Hep Aigo TP AT Es Yop
= See
=~ cet
mere, Enis the electaic field at tu peint P due Xp
WY point chorige aund n= Qs8-..
Evectaic Leg Or Force : cul ar
Lecbrte field tn a region i depicted ,
| agree electric Liner
oh poner, a
An electric Line force fee oo dm
ot on. pout lpvan She dincton of tne aestnie ald
Anienseeg at that pent
Line of dovee
Ps Electric ines ff Force |
1s Eveny Sine of force ie
contimmous and smoot t \
curse originalin nerun Ss on <—
Jpom- a Conte Ehonge at | - \
ending normally at o p Pe akonegative change.
2. The tomgent te the Line of
force at any point giver the
dinection & E at trot point.
3+ Liner of force never intersect
4, ERecdric Lines of force de wot
ee cece hid inst —
charged conductor i> Beno:
5. The mumber of Dines of foree
per unit area Oo Aus
Asraction, at euorg Pont
a . ; =
. seplond unlike eb
changes cttrack toch alien.
Th thes sawords glectsia Lines
wf, force expand Latirally and.
yy
MAMARM
[fxeea eee o +
i i|
yy yy yy
|Longitndtnah cama he > se
contrast Leargthucise, This explains, Y NE
attraction Letweanr forces. / N
Elecbrule fietd Lines com
B. The Lines Pf force exert Lateral rir Intersect as shou,
Prssine on one anther Le. they
tend td repel each other. This xy
2xplaine Hepulsion. Se
As The relative density of sthe [etol LX A
Lines at different pornts indica = & a |
the relative fteld strongrthe
tenn pena et |
points .
Evecteic Diroces a
A pain of 2qyol ond opposite point changes separate
a distance de called an electric. dipole. ‘
The tuo changes ashich forun thre
dipete are +9, ond ~GYond the = 3k
distance Retroeen them is QL. “4 - Fg,
Its electric dipole menment is defined as a vector
quordity hoving magnitude 4.08 De the product of
| change and distance Deroum the chonges and |
dtnected from vepotive Ts positive charge: |
Pe gx ae
Thur, SI unit of electric dipole moment 1s Cm.The Ferd Or A Dirove - At A Pot On Its Axis
(Axiac Line)
Comiden own electric dipole
changes 4 sepanated bape ;
Arstance RL. Covsiden a point a dipcle
Pot o distance x from the combrye of the dipele.
The slectric field due 4, (44) at P
Ero A 4 Girected atone BF)
ANE» Ca-2)> °
The Lecteic fret Arse te (-g) ab P
Eo- t 4 7
ibe Cas D> (Abrected aed ry
As w+h > a-k
Ei > én
+ The magnitude of aectric fietd ak Pig
E+ €.-ea (adeng BP)
nn —- it &
ATEo (m-2)% Aree (x4 a
€- 4 Le _ &
4rté. | Ta-2)* aa
B= 4 4a spe- 1 _SP* (1 p=qxan)
AME, (a2 22)* 4I1E, (2 >- 9>\?
In vector form
>
pet SP |
eeSpectat Case i
Ig point Pia fan from the dipots + ey L>>Q the
teu 2? is UUole as comported De 2 40 tre
npprerderate valu af, flatd 6 quer Hey
> =
P- op
ATIEG 13
At A Fon Now mat To Ditove_ Axis (ow EquaToRiAl |
Le) oy
| Consider @ point P Dgting on
dhe foul 2s x
of the Ene foining He tuo
ata distance o¢ Brom tre midpoint 0. / Saal
| tot Fi and Es De she Pierd \
Intenricies af P due te +4 and oo. 8s
244
—4, changes. Ey is directed. “4
P isa por ne
ow ay froin the positive change aapotdiod bina dhe
ae Ex disuckd tousands dipole
Hoe negative ew eee fevers
point Pus a7 2 (oy Pagthagonas theorem):
Noto, the magnitude ab each fidd Js given by
Er- Gs = 4
4M Es (m4 2%)
On sesclutng toch fied along X and y ones and
adding then swspective Components ; tae find thot
Hiss Y- components concel out and X- components
1g= aq 2
are 2) (134 2) Ve
E= Ags
—______..
AMEs (x74 27) 32
[ cee ee |
e=-_! Pp
ATES “(5004 D237
Tn vector fom .
[> =
} @-t-_p
_ ames Ge 4 PYF
The neqotine sign indicates thot Eis Co
direction te P”. Pe
Spectal Care }
TZ %>>L, ther
12. _ _
Dirore In An Externac Evectric Fiera: ;
Suppose an eleckute dipole
The tuo changes £xpentence tie _— —_
sarod and opposite forces Fand -F Papen
as shown, where F = UE. As the two |
forces ane eqyah and opposite » having > ps ie
Aiptenent Diner of action they form o pn dete. dipéle in an
Couple, the roagnitude of moment of uunllerm dechic fiard
the coupte or torque de given ty
Ts [Fx ad | = 4F alsine - oy
Ie Ac = Alsine] Stalte aqyilibediurn (9 = 05)
L= PEsine
Uns torgye acting on dre dipole dur
tr external Held tends th altgn the
5 >
AL nstatle equi tihstiorn
dipake moment panollt Be the electuic feekd (© =180)
Thefow » Weve equolior can Le woithen ar |
[2.3]
Dinedion of T : Direction of T is perperdioutar Se the
Special Gare :
) Torque acting on a dipole is rroseiroum (= pe) when
the Bipole us perpendicular Te the field
ao(b) Torgue acting on an sicctate Alpole is zero urhen
C2) Angte Letuacen Pand © is zero Le, = 20. In
fiwcans te ee eee
Gi) Angee Retrcwer pr and Ele 180" L.e, © =160°.
Th thie case the dipole da In ventas aaystBtietann
Tre number of fidld Vines passtng. Brough. a given
onea js desouted ac the oLectrte flue Hvroigh the a
and is denoted Ly O. Te isa seatan quantity .
Therefore » [$= €Scose =F. |
\Gaves Law #
Lot Ws consider a sirbertoak
surface of radius m valth a
+4 at UR corte . The
electric fidd ob ate the points
co the surface is radially Reapere Ree oboe ua |
outwond . Sine the Aadial dircction Jo evangurtane nevroad
To tre surface of the sphere Hhe field ts normal te the
surface ab all pects Hence » at point the electaic
ea Eis in dhe Same direction ag the elemental arco
Vector As (whith also normal Te the surface),
T 2) the slumental Pur db through the ance
element: a is Ger Gg
ddg = €. aS = EAS
a cst (at ate points on the sphere)
ATED“dd = 1. 4 ds
| AMEs
The total ptux Gewun the surforce of the sphere ls a
Auurornation (or integral) af te night hord side of He
alove equatron, Hence »
6: Joe »% ds
ATMEo n>
New gq and a Being constant , we Ihave
os + Jas
Freon
6 = _4 Ana
ATE oaA>
[is Jas = 41: Austace
b - a area of the apherw |
fe o-oo (8)
| Me cerca fom ay) abi shat Are total
douing a change q ot its ene bo ee
positcive and negative i 9, is negatives”
The dotat electric flux through a closed surface S
aurfact This susult developed LY Gours for
ficlds by Maxwrel is called the Causes Low.
Mathematically liv expressed os given Pelour |
o- feds=
3
EoThe intagral on the Left Anand side of the eqpation
giuer the total plc Horough a closed sunface Sand
Yi won fhe sight bond side de dhe net change enclosed
Inside the Posed sunfoce S+
ing the Gauss's Low t
(i) This Lous ie applicable to hosed sinface
dovrespectove of Ue sbape. ont
(i Tre electric fiebls produced on the considerta
surface ove produced by changes Inside, as-vaell as
eutsiole thre
Gil) The cLosed surface chosen fon the applicalron of
Gauss’ ow 1s called the Gaussian 5 D Ye
net draving any poluk changes on the Gaussian surface
(iw) Gouss's taus le often used for colaWating electote
fields duc Te symmetric bey
Ao ropriate Gioussian ds ene ever which
agDenetion Or © Covtoun’s lw Frou Giauss’s Law :
“Lat us considen dure poiuk charges
Grand go hept at a distance ra ~
The
apart tn vocuim: ores expertenced |
hig qe duc Te qa \ atte
FeQie ---------- 0) Ne
ww Fis tre electia field due — Changes! and Ao ane
te Gp ak P. Hept ato. distance %
eee crn anata nt cae
Arunpace with the conbre Ab Fs and ince:
radius 1. The Gaussian sunface passes Hvrough the
point P. By Grawss’s. Law
b= 4 aeen n-ne n- Ay
| Eo
hone @ 14 the atectnic flux poming Saough he Gawrsion
"Ase ition Oh, electato peux
b- $P. dg ------------- tn)
Fave eqs. (11) and (1)
EB. dS = Ge
$ &
SEGdS= Io (0 is constant in ro.
a Prorvoughout the Gausstoan
ee 2 surface)
as
> ect oo
© Rie Ee Gy)
From 2qive, (1) and Cw)Fea ame
ATES ae
The abeve expression of force 46 that of Coulomb's
Row Ln electsrotabics.
Gaussian surfece) afrout the
Rint The change enclosed Ly the
&
Point Pis Located ot a
Goussiown usface We 4 = MR. Azitance + prove 0
Aesonding te Gourwsl, throeoramn dong Aheoigit Dive of |
net flux, ob. ange -
ge.ds- 4% sw
& &
The cylindrical Gaussian susfoce is divided Jivbe & pants #
I,D ond Tl ar shoun. .
SSS a
ds. fea fea + [Pk a
=z nD m8.48. Jess.
low) Efds = ArAL "4 44 Constant en cused surface
“Ee Ah cyttnden).
Ex Qik = Ag
eo
ee
AN eo
Foem the Pique oH is chean that net edectric Bats
at any polit f the Gaussian oylinder tras a dinecKon
Ponperdicutan to the tclern outwards,
oe = rd. vn
aMEor
Geragh shows Variation sh
= :
© wath dinlance 9.
*
Qs Fea ie ald tuo ae 2 0 sony
Anfinie plane sheet. go io
contcting ane shat baneg tye
ee o's Tt Ws required the
Bacto fald Intensity at a peint
OSAurpace with area ef foce 's)
A co Gauss’ Lavo
ceed «4 nek Beas
bE.ds- 4. ws
& €&
The Gousstan ace is divided inte
SiGe ne into tree paris ,
$€.ds- Jed 4 fe Ke [eR . ws
x T m Eo
(ov) r
vs - JEdscos4o* + J Edgcesn® + [edscoas?
Eo = m m
® co = lakde
eo
= GES
a
REo
So slectric field dus Te an infinite plata shed of
Charge ls lundependat of distance of, pour of
obseswvatiion .
Aue Dike a Lex as shown Leth
Aides lof the sheet. Chor enclosed the suspace
We Ye TS. The cyindrical surface ls the Grausstan
. at lds Dv Els comtauten tand ET] |
Mm
1ol GerapR APriows Vasodilan
= of Cvs distance ‘er’.
— 7
Bain spherical shall |
la) At a point oubside sheer :
. aw sun beth on the
rey cine ta anes bone ds suguired. te
fird the Intensity at a point 'P! of -distamce ‘2! from
Bre contre of thre shh (7>2D. A Gaussian sphere
of ius in' le draun with '0’as contre (ss).
oo
i"
\ Z
According te Gauss Lous, net fer
gé@.ds- 4 (rd bedseoo® = 4
&o Eo
(6) de ds=% (or) EGdc- 4% -------@
&> Eo
aeLD: Eis comtant on ‘S']
o. Ex
€o
+
ec. my
eer
(by Aba peint on the surface of tre vhele :
TEMP’ Les on the surface constden a Gaussian
pwrface that is idenbleol Te the shell to dimension .
a 2 Ad
i Na 3
ek
Net Hux Poy Games. Rous,
€. dg =4% (sr) @Edscoso” =
fede a tw Gessenc 4
Eo
beds - 4 [m Eddes 4 )
ée Eo EE ds constant on S]
EX 4nR>= %
bo
we ad
qnéor*(2) com also Be Lwritter ac follows,
ex4ane> = Tx gn
o ee
8 pe
P14
(c) At a point tnside :
en,
Ge. de
As there ds no change within she shell,
be. ds -=0
(x) E=0ELECTROSTATIC POTENTIAL AND CAPACITANCE
Nteopuction : i
Consider on electrostatic pisld E due cto a
Phaced ot The vonigin. We being
ae test
sande he
nom point R So the potut Pt us
suepulstue force. So the roork done Ly the external
Fext => External force
a Fe =E~ectric force (due
ew ~
-{ Fe. du Ae electric field)
P
~ change (G2)
The ST unit Ww volt (VY and ive Sle
Tt bo collar quouitiey.
Work done por annie positive tent chonge ly or
en Ayorce Jun beirging oO unlk positive chrovrge
dprom infinity Te o point is squat te the potential (Vv)at thak point:
We ~[Wee] ree
qe
whew, [Wooletec ie the work done Ly the electric
fitd on a chonged panticte as that pontcele Mewes
in from infinity 1 0 point. A potentiat (V) com Le
positives negative on gero, olepending on She «ign
ound. magnitudes ef 4 and We.
Evecteostatic Potentiac ‘Due To A Point CHarcit +
bet P Le the potnt at a distance 1 from the
The electric potential at oa point P is the omeurt of
werk done Jin conning. o unit positive chonge from
© Te P.
As w0k done is indeperdent of Ahe path » woe
choose 0 conventent pat the sradio£
orceeleration.
het A 2e an intermediate petnt von tris patos where
OA = me.Aw
F_'_. & , adong on = wy
Sroatt waernk dene Ln roving the lange Hvrough
a distance doe fem Ato B.
AW = Fda = Fdeccosigo’= - Fax
[ev cos 1g0° = -1]
—a)
Aw: —Faw
ee eae ee eee cae positive Con Le neghected .
a
atent[is a
au
DAs | + 22 cose) *
Bee ae cove) ‘Ta
Simtlantys so 7 x( . 2 cose \ le
Pating thane aes By OY, we ebtain
ve 2 [x ('- Beene) 3 “( Qa il
~+/142acese) 2
4AM Ee ma i
ing Binomial theorem [(1+%)"= lene, 2 <6!)
toe abba
“ “aall worse) (1 Secon]
- + Zee 1+ Feove]
pee ie- w& (2222 =~ L% Aacese
AMéon
AMtEo™
| v= peose Le pe 4qxaa]
| AM Eor*
Az, peose =p, ater Bis unit Veckon abong
the position vector oe- AL.
Electrostatic. potentiol at P due te a Prout
dipole (ed ) Le
ve pe
AM Eon” |
The potential depends Jt net wor position vector o,
Lut also on the ange Letoeen the position Vector s-
The electric Potential due Ts an electric Aipete at peint
P vosies Ln
ott Aquane of 1, Lie, the
istonce of, point P prem the centre of he dipole .
© On the dipele axis © = 0° &L TL
nVe bt Pp
ATIEos™
4 a
QO- + - -0. ~ +- Axis
D P
i——— aa ——
Positte sign for © = 0° and negative fe fon © = TL
© On the equatorial plane =n a
a
Cos® = cos TL =0
aP
\
—— LN,
Lie., electrostatic potential ak anny point on the
Etectesstanic Fotenmar Exeoay Or A Syetem
/
/\
4
Or Crences
Electrostatic potential a int
ere geen yy ten tt
done in Srnlnging the diprert changer Ab Brain
Prespective petitions frem infiniters forge routrat
Atponations+
Electrostatic Porential €: of oe
Three Potint Changes t we seen“
het we now consider a a
Aipstern Of these point
changes §) fe ard Ja hotteg, poston tact
Ay As and He i igin.
a * nae o from ovgin
Ys f%To tring Hy fievse from Infinite Be 1, No Worle 1s
sugpired Lecouse when we Laing chorge 7) fem
Anfinity Te 0 partioulan Localion where potential is
Ber:
ee Wi=z0
The work done tin Letingting qo pron infinity to
perition a ix eet inftety
Wa = Gav(va)
Woe tage
ANEe stig
Bandqs produce a petinnal urtict at any
potnt Pin given ty,
Mas 2 [+ te
4néo ls Fas
Workdone In Letinging 9s)
Ne is ap times Vizo at wm
a
Ws> 4s Vijalvs)= 1/43 4 4243
Anes ( 8 Pas
The total werkdone in assem bing Changes ot
Are given Locations (Anal Lp the potential tneng |
Ph the ayster) is obtained Ly adding the woedone
U = Wit WatWs
= 0+ tl UG 4 1 (282+ a
AME Mia ATEol Hi Aas
wba 4 4 492 + G4
wie cams tsa
ATES
Tie nesurt can also Le expressed din summation
foun as
b= [a = S #44]
AMEo tot Te aij
Dare te the comerwabiue nature of olectrostatic jorce »
“tre value of, U ie independent -0f the rrannen ir
suhich thre configuiation is assemtted .
Forennian Eneraiy In An Externar Fle Fre
UW) Potential Enengy ob & Lingle Charge bn External
Freadd 3
Potentiot energy of a sigh change gq.) at a point
Luith postition vectors ttn an extesunrat frerd
= aV(~)
whores V[or) is the polential ot the -potnt dus Lo
Axbernal electric field E-
0) Potentiad Energy of a Systenn of Aus charges
dn an Externar Hietd +
Ue Qe (4 qeeV (v2) + AF
ATEe Tia
ashore, G14 2 = too peinis changes ot posiic'en
Vectors #11 ond Ho prospectively
V(ai) = potentiolat 1 due te Uhe external field
vss) = potential at %2duse to Thre external field
4fotentiac. Enerey Or A Dirove_ In AN Externe
eon :
Comsiden vo. dipele wuith changer +4 and -9 placed
Lin a aniforun external eectete field as shown
Jin the figure + In 0 unifoun -electaic Held, the
Aipele -experierces roferce, Lut experiences a
Sorgue(T) given 24
T= Pxt
This torque soll tend te state the dipole Suppose
an external torque Text le appeied te the dipole -
So that, it sotates foun Oc Le ©: swith sespect
ke The ebectoulc. Ateld CE).
—_«
Dipole in Muiform extenmrod prepa
Une amount of wonkdone by the external torque
We Pre (ede
Go- [Pre strode
Ge
We PE [-cose J:
W = PE (ces®o - cos6:)
Ve werk done Wits stoned as the potential energy
A, the systenr, Thersfore, the potentiol energy
Ue) = PE (cos®e - cose)
Spector Case 3
© When the dipole ts initionty aligned along the
electric Aled , 1:2) 8 = 0° and we drove te seb
Ae ok ought, Owith Ey Ley Or =e.
. We -PE (cos® - ceso®)
Ws —PE (cose - 1)
This work done is stoud tn the dipole in the
foun of potential energy:
| (When the dipole ix initlady at night Ine, ie,
01 = Q0° ard we have Ts set ib at ange © swith E,
ive, 62-0
"We -pE (coc - cosdo*) = -PEcoe
. Potential tnenqy of dipole, 0 = W= -PpEcose
U=-PE
Olniousty » petentiol energy of an electric dipete
te o sealon Quantity Ib le measuned in joule.
IoEquireten Tiny Sveraces : ¢
Tt is a surface walt a constant value of
petntiol at all polnis on the surface.
Fon a singte change potential is ve ka
So if ris constant ) Vis constant - en
sunfaces, af a airefe change one concentricNo work is done in moving dhe test change
from one point Ie another on an tqulpotentiot
Aunpace + Tp AL nw the smate distance -on the
“quipoentin£ surface throug wuttoh o Unie
pe ae
dw: Bak Dur dw-o
P.di-0o kur E#O ALtO
"C050 = FD"
Eley ab
The okectuic field Eis aloays nounal te the
Revation Berween Evectare re Fier> Ano
Forenrriae +
Consider tw. equipotential ausfaces A and B Apoced
Clery o% shou, The potential A is V and that
+ Bas Vidv. der us Ahe perpendicular distance
Antuowr the tive equipotentiol surfaces. When o
sanik positive 4s taken along tris distance
from Bto A The electric field.
Wea = Va- Va = t+dvu
P.dy -- dv Le = ig0°]
|
1gan
For uniform field E.da = adv
€ [lan - Jav
EX =v
= -dy iel- | a]
Electric fiskd isin the dtruction in uvtich the
potentio£ clecreases + Magnitude of electric feta is
Giver Ly die magnitude ef -potentiat grodient .
For a given dv, 80 the eqyipotintiol surfaces
dund fosr opont Jn the neaton of weal stechrie tata -
Fotenrtiac Enteay In Ax Externat Fleum :
The potential energy do a hosp q at pt. Pin
the external field as qv.
Potential energy of o aystem of Achonges qi and
{> Located at 91 and mo sold suspeck te mome ovigin,
Ys Wor) is the sro done din Detinging 41 fem co
te or
Wark dene Jun Letnging ga from ce te A. Ww,
Yo V(rs) + YF
4m Eerievs Potentia£ Energy = qivlritqovloa)+ Vd
ATES Tia
Foopennies Or Convertors
| & Ak the susrtoce of wo conductor He
slectnle field must De renmal te Dre sustorce ,
3 The interior of a conductor can boave no
sxcers change in the static condin'en .
By Gauss Louw,
Covalder ony small velure :
>
Ge. da ~ gy [Becosse alectric ptetd Insider
> be cenducter is zero]
ge da =O
me Y=°
4. The 2hecterostatic potentiad is constant
Hrrvoughout the volume of the conductor ound
Jrar the some value on Le purtace.
aoSunfoce of,
__ the conductts
To find te electric fetd at ary point P, on
We choose a pitt Lex (a short cuts Jaro
Goumsiown sustace. The pile Lex i partly a bbe
ond pp ouside the surface of the con /
Tt has a Arnall azo of eros 4 te, A& and
mepigiote hetghe Inside Bre sungace Ets 0,
Ontsicle » tre field Ie novmal to the surpace . The
r
i
,
:
é
;
Outstole cross Aection Bay resting Q ,
EAS 26 2 q
d = 8.4 a 7 EAS
T=4 TAS _ EAg
a &
E = T/2. Pomanty cutwandsEvectrostatic GHiet DING !
Electaic field Inside thre conthy of the conductor is
Zero Whatever Le the size ard shape of tHe
ard the abectite fEetd In whith. ib rray Pe pleced
(Dingrann nefer text Lock pg: 40) Thin pack im vscd
rave wo change Commies They one caaastpeed thee
© Polar
© New - polo
Nen potavannd Potarr molecules 3
@ New polar : Centers of positive and negative changes
coincide. The molecule has no dipole moment. Ee 3
Oxygen, nibogen .
«Polar t Lt is oneinuttolh the centres
of posticive aud
negative changes ore separated and Une role cles
(@) Polar molecules
(a) Non-polar molecules
A diclectrle dA diddectric saith polon molecutes also develop a net
dipole memant . In the absence of On 2x ternal
electric Pteld., thre differork dipoles ane oriented
Arordomly dive to thermal motion. So the total dipole
Mement is 0. Whur an external flerd ts applied,
the individual moments Tend te align with the field.
So thou iso net dipole moment which is thse,
Atscotion of tre field ard tre dielectric Ly said te Le
Polarised. The dipete moment per uudit volume is called
polorisation and is denoted Pp.
A steckan dietectste stat ts placed tin an unidorm
eectric Le as shoum. Consider a 4rall volume
Mement AV. eau innide the volume element
the net te 0. This te leecause the post tive
change of the first dipole ts lose De the we
of the Other dipole. But at the edges the
positive ends of thre dipole remain wneubralised
and thre negative charges at the Left susface . The
tunbalanced changes produce an wectoic fiebd In the
Aiclecbute . Therdores tre total feetd Inside the
disdoctric is reduced.
be > H co,
6 /&
Some examples of polar
and non-polar molecules,Capacitan ce
| A capacitor ds a system of dco conductors separated
Ly an Insulator. Let Q Le the charge on the plates of
tne capaclton: Ure potenttiol difference Vis proportional
te Qs
Quay
Q =cv
where C is capacitance
Capacitance C depends on
SGeomericol configuration (Shope sige ond the
Aeporation of, tue Aipstem of uo Conductors)
© Natwee of insutator
ST unit of capacitance : Fanad (F)
| Forad = lopudunt-
| wot
Thee de a Limit te dhe amount of that
Low Le stored on & giver capacitor. Ae sire quantity
mf; charge Ireneasess electra petd plates
ineseases ond PD also increases The Chases “tant
Baking
|
Thi i known a Leaking of changes.Devecteic (STRENGTH :
The maximum electric feta thar oa dielectric medium
can wittstond witheut Leuokdoun i% called
diekectaic atrengin-
_Poraccer Poste _Crpaertor :
Te comsinte of treo ttn conducting plater each of
| one & one hata pasvallid Te each tthe. ob & diatonce
posit. The Plates ort Separated Ly lnsulac® 9
medium Like air on paper: lt o Leite anal
change dawily of place T and * ~o’ of poe Tr. We
arsume thd d < Ot Qo 4+ Qa
CVs CIV+CoVtCaV
C= CitCatCa Co 2fhectinve
capacitance
Eneray Stozen IN A Capacrtor :
Desig chasiging Let ‘q) Le the change. on ie plates |
Of, the capacitor ond V' Be the pot: Acpt. Retro the
plates of the capacitor. The workdone din giving on
iz dw = vidq
> Adg — 6% Apacitoures Of capacitor. the
| Tom wontons Bn gtaing: 2 toe a?
space Pa ye LTT
The de atored as pots erenay 1 O2 @>
Buc @=cv Ve
ac
cv
4 AEs, Ed
oa
= 1 €oe>
Ad Cs
Tota Exerey Sropep IN_A Compination Or
Capacitors t
Totat Energy stored in series or parallel combination
Stata Fe ol Copocitors .
Tn sorter eral Q— Constont }Total Enenay vb et @ 2 Q@, 1b
®t 2 Cs
be Qfay tat
2 (Cr Co ca
(Ee yw
aQcr QC AQC2a
UV =i4+0a4Va
Th porattet combinatior V-¥ constant |
Vet coye
a oP
ov? (cr Co+ Cs)
2
Lowey 1 2 4 .
ay +t cant, 1
| 2 a CNM Cav
U= Uj+U0a403
| Common Potentiat :
“When dive capactton : ie ome
conasted Bio eondunering wore, then flows
fev capacitor of digi wr potential te the A
| ok Lower potential. Unie pour of changes continue
| phen trete potential Lecomes equols Aris quot
| prtential is called Common potentias «
Common potential ,\V = CN + Cove
shore, epee ane Copacitis awe e {
Changed Te potentials Vi and Vo. sespeotiuely.
3°Lee, Common potentiat a Totakchonge
Tetat capacity
CiVi4CaVea = CiVtCon
OF CW —-C1V = CaV-CoNo
trey change Lok Ly one capacitor = Change gotred
capacitor
Lost Or Enerey On SHaring CHarces:
Whew do Bpacitors ane Cennected LE each |
Other, Arey shore » thee thes acquire a Commen
Potential. On showing charges, tere ts alroaiys
owe oss of energy. Hovowien ) Lobat change of te
Aryster ermal pe conseied » Consider tsp copactions
rowing capacttonces Ci, Ca ond potentials Vy Vo
mespectiuely »
Then, Lchere tre two capacitors one connected
together, tre total tnengy stored tn the ture
copacttors »
Ds Uta = RON + dave —— 0)
When the two capacitors ane Connected together »
otal change on the capacitor,
Ha Wr Yr = Crit CoVa,
Torar Capacitance 4 He tuo capaciterss
C= Ci+Co
| o, Setar the tuso Bt
oe energy of capac bons paften trey
connected,
692s (Ci+Caved?
Dred 5
ac 2 Citce utSubbracting Eq: (N) from &q + ft) » we qe
O-O'= [Lows oyy\ —- b Git Cove)?
(a = ) 3 (o1+es)
CPR 4 CC a Wi + CiCaNe™ 4 Cx*ya*— (C14 Cave)®
aw (Cr+ C2)
C102 (WA 4VF — QVived
Q(C1+Ca)
Av = Cio (Ve-ve>* |
Q(C1+C2) |
Since) U-U' is posiecue > there de abvoays a Lose of
| dogerner » An Aetorm of deot radiation dure te
| clectrte cwvnent utibte changing and electromagnetic
Acris OF Seep Poisrs :
| Winer a spherical conductor of cradius SL Comes a
change 7) Ht surface density As given fey
T = Change 2 4
Arex A4Na>
tor a pointed ands 1 is Ney Wey Amail) trorebore
is a positive quantity.CURRENT ELECTRICITY
eovititubes on electric vvent. Ip a chr
DQ passes -Hureugh an osteo bn tine te
t+ Ot, The tweunt I at time aA in vgn. dng
T+ lim AQ, dQ
bt>o Ak Ob
df cwunt electricity is shady , then r= kh
ST Unit? Ampou - Tf one coulumt of change
wonresses 01 wren in ene second, then the
\Azicso'
Orm's Law
The cust powing vo. conductor Us
dinectby ce Te the potential olipperence]
flo -of, changes Hough Le -
GT Anit of sesistance ! ofr (2) Stuce R= V/r,
susistonce us said tm Le IP if 1A corvrent fows
va conductor uirrose Lrrds ane Maintained
at 2 potential difference of Iv.
tao = IVA!
Faetor’s Arrecting Resistance :
\. Length (Ra DS
a} Area of cross acotion (Ro '/n)
3 Nature of material
-Raet/y
R= PL | where P is constant of
A
Leboulty vor sae
pesiztamce of the material of the conductor . Tt
depends von che mate of the wraterial vond on
Sarmperotio Lut is independint of Us size on Ahape|
Units OF Resistivity br):
Resistdut aw 5 be at athe
veeend, by ondunctan oy at eenaine
af that motentol.Corrent Density (5) :
Cunnent dinsity Tot ing point Je Ws alefined vas
a wit area Held nownal Te the nection ».f
The plow of Change at Hat point. Tr direction
T= 2/a
Sy osve vector vmakes ong © wilh the curvent
duction, Ian I= Jrcose = 7.4
Thus ewwent ds 0 Acalan quality whereas
Leu ent denslly Vector. Linit vol cunment density
Js Ar?
Consvetance (Gi) t
Conductance wf A conductor ib the ease swith
which changes flow through it . Tt is equal t
Khe neciprocal of ils sesistance .
G='/R Unit = ohm" emo or elemer(s)
Conrpvetivity (> :
| Ta seclprocal of musinbidiy Of material is eatted
Ue cond
w= '/p
Unit tobe ns-' (or) mem! (ov) Sr-tNi CommerciaL Resistors:
1. Wire Lound seststors | monganin» constantan
Or nichstome. are used.
MV) pelotively Lnvsersttive JS Teperotune
2. Carbon mesistors | mace from mixture of
var Black ond nesin Linden 2rlosed
Jn a ceramic or plastic jacket .
dv: Monge of voles poritte » cheap, compact .
Cou Resigtors !
The fiert doo bonds indicate the first two
Alguificont numbers. The thind Land indicates
Bre power of ten asa multiplier The fourth
Rromd indicates the tolerance.
Colour Nuwpber Multiption Tekestance (*/*)
Bracke ° ! —_
B Il lol
Ded 2 (o>
Onange 3 | 10%
Vebleovs 4 | \o*
Green 5 | lo
Boue G | lo®
Vieder 7 | lo"
ere 2 fo te
Whir ci 104
Got | lor! 5
Biluer tom to
No colour | - | 20
4Eq: Sk the colours are yotlouss violet, Leon and
goed» dhen nesistonce Us RAX1O7'O + By.
Caeeiees Or CuRReNT :
\. Solids } electrons thn metals uvtite electsons
and Anoles in srumiconductors.
a Liquids : positive and negative lens
3. Gases : postitue ions , negative dons and xlectsrons
Deiet Verocity An Ant RELAKATION Time +
meee ho- Oe et
| fied» dese alestnons ane bea a
| motion dus tle theniad energy - Heovoevert y thone ie |
Mae re uae direction of motion.
a hy, Ds, a, Thy. Um ane the Hondom udlocittes |
1h Nueckrones Huon oounage Vabootley of stectrons
oll Le, = (4 Tit..... +0) /N = 0
Tas thane is ne mak plow ah charge dn ony
dintcrion. Tn the presence tf on exbonat fied ©
Zach tecknon experiences wo force ~eE” in the
oS gee tye at
we eel
Whene no is the mass of an electron. Ae the electron
metal Lows on -otiren electrons of thre metal.
Biron dhe caltinions an elechen gains 2 vi
in a dinzction opposite te ©. a
Svelocity Lots venty for a short poled of Time.
velodity Wire a+ oT
Similorky velocities of the wthen Lectrons vill be,
Va = Wn + A To ....
Woe Unt QIN
Thre average velocity Ua = (4 ++ 08) /N
= [(@? + at) + (i+ Sta) 4... + (RA RIN)] [N
= (Ur+ Ob 4 -..t a) /N 4&(TitTat--- +TN)/N
= O04 aT
were T= (Ti+ Tat. +IN) /N ds the werage ti
an tine
Retro £100 cottistons, The average
dime thot lapses Leboeen two successive
time . The welocity gained Ly on Pectron
duning this time is Va = OT =-eFT/m
Vd ds cabled athe dnife vetocltey aaa mt
Prue rlectrons of 2 conductor in the eppostte
pea.Revtation Between Current An /
let a potential difference VLE appeted acer o
conductor of Lengin 2 amd of wnriforir cross
Aection. A. The electric field E set up inside the
Aovductor ds given Ly E=V/2
Under the inftuence of tre field Es free electrons
chegin Te Arif Be eppons. dination. salts te
ownage Anift velocihy Va
Let the number of, oectrons per unit volume Len.
let chonge on an electron Le e-
Tren unter of electrons in Length 2 of the
conductor =n x valume of Conductor = KAL.
Total change contained tn length 2 of the conductor
bay = mar
Age the electrons which enter the conducter at the
sight end volil pass terough the conductor at the
Rept end in time += LI va.
“Covent T= A = NAL 2 neAva
+ five
» T= neAva
Current Density (pe
at‘Depvction Or Onis Law :
Whin .o potential diffrence V is applied across a
conductor of Longin £5 the doigt velocity Jn
Lown -of Vis given by Vd = CET [me
Ty the aren af cross Section of the conductor
through tht conductor voll be T= neAlah |
zenaeVT[me (or) V/T = ML/ne>TA
Ak a fixed temperature the quantiiies m,L,n,
er T ond A all dave constant values for a given
Conductor:
SN[D = a ecomstant, 2 the resistance (which is
chins Lave) -
Thus R= mL[nerTta
Resistivity :
The susistance R of a conductor of 2,
oven of Cross Atctton A ond resistivity, Cis
gon Oy
R= PLIp
But Qe m2 [ne2 TA
»Pe m |[ne>T
P depends on»
re Electron density of the conductor (1)
2. Rekaxation time (T)Microscopic Foam Or Onn's Law +
Flor an electron, 4.2 -€ and Va += -ePT
m
. qe ngVvae = nt-e) (21) 2 nereL
m
Bur ner>T = lo sag
ww 8
Jac? ME-
Mosiurty OF CHarsié Canciers :
| Mate Pb a. charge Cossler de the doift velocity |
cgquined Ly Lc tna sult electric field» Ttw |
,
Me lvdl/e = eT/m S.T anit! m/v.
TEMPERATURE E “DEPENDANCE Or Resistivity ‘
Crm|nemt
Is Metals 3 for metals n is not dependant on
temperature Te ony apprectalte 2xtent Lut as
mune dncneases , the thermal specd of;
fue electrons Inewases ond alse the vibration
ompeitude of metal Lens increases. Thus the
free electrons collide more frequentty wollte. he
metal Lons > The mean stelaration tine T decreases,
Hence sestotivity Increases
Resistivity ? at temperature THs giver
P= 0 [r+ w(t ra] met
where Co ie the sestativkty ot tempera Te
9and % is the coefficient of sesistiuity:
ve x = (P- Co) | Po (T-T0)
Thus the cosifictent of susistiuity of & may Le
The unit X45 °C-!, For metals % is tve-
As R- PLlA
Ree RoLi+ K(t-o] = Re li4 xe]
Whee Re = sesistance at t°c
Re = stesintonce at O°
t= subse tin temperature
as Tnsukatere and Semiconductors 1 Tn inwlators
ond ‘semiconductors , the number . ok
fru electrons Lncrtaser tx volth Une
Jncrense din temperate This tnoase more than
compensates ony decrease Ln - So far Aucl matertals,
conductivity Increases on sresistietty decreasesLuartation OF Onm’s Law:
ty Obmic Conductors : Those whith Ohm's ~
Rowe. V- graph fon wehmic conductors is a
straight Line passing Hvrough ontgin. |¢ | a
+t
n
Qi Non- ofa conductors :
These donot obey Olin ie Low: Now - ohmic
Altuations may *f fottarwing types :
@)V-L graph dees not pase onlgin
ayy- 2 graph slotionship de non - linear.
(W) I depends on sigin of V for some abselute
Voli. of V.
| (WY -L sutationsnip de men - unique.
| oe : a
+ n Pron: Qireag vgn
Fi | ; | tay
| 4 Ts
} | | if, \
| | ; , 8
6 7 —¥ I —— >Vv Pot iiyy
(ob tiafarn. connenbeV- (yp nae Somowete (ame ree Ca nistance o96)
yN-E WoT groph doesnt pars no ian
qroptavatonge tinted tere wp Tee att1 (me) ”
Tunckion diode
(wen - Uinear value of T
depends on sign of V)
ComBin ation OF Restore :
By Oln's Law, potinttol drops accors the swsistors
one, VizTRi: , Vo =TRe » Va=IRa
Th Res the equivalent seristance then
Ve IRs tli Ne
Akso Ve VitVo4Va ae Vie vate Va |
STRe = IRD Ro +TRs - |
1 Ree RitRot+Ra | i |
lor 1 susistancesy RA =RItRad---4 Pn VY
Equivalent resistance = Sum Bw
One —WWy—
AL individual swsintomces. |YW Porter Combination :
Internat Resisrance O Or A Ceu :
When vo cele ds dn a circuit, cunvent flours tn
the ustres ferom +ve teuninal tovearils the ne
| terminel. But instole Ane celd, tn the tkecboliyta ;
tue tows flow from the Lora te che Aighen potantinr,
of current inside He cell.
The seristonce offered dhe okectrolyte ab o cobs
collect inkernal sesistonce af the cell.+ Temperature of the electrolyte.
Teeminac Forentian “Dirrerence :
The potential cbrep actors tie tesuminals of % cele
dhe o cuvunt ls being drawn from it is called
Ue keuninal potential diffence (v)-
Retation Between €Me ‘€! AND TERMINAL
let a cetk of errf €& ond
Internal resistance s Le
connected Ts van external
suststance 2» Let o. ewvent
T flour thvvougie thie cicrewik. Lote
a
WW
Emp E= semen Ly dhe colt ie
Atreuit
Also,
| Emge E = awerkclone in caring a snik change
from At B thro! extounal sUesistance(e)
+ uprkdene in Fm tunik change
fever Bi A ngein: etmek soststatce
(or) @=vev'By obs Law, VeIe omd V'> In
“@ 2IR+ In = I(R+H)
So, jT= € |
R+or
—
A&o, V= Ie ve Ve ER
LR |
Also, Vz e-y' = €- IR lve e@-24]
“Ws E-v e-vio. E-Ve
I
Special Cases :
OY Whenr cel ie in open cincuit » I =O Ten Vepen = €.
Thus, Pid across the Leouminal Of 2 col ue
aquol Te ute emf ache no cuvwrent dn Being
| drown from the colt -
| Or) Wier cet te in closed. cht» T is Leing drawn.
| eo DTxo vee (“vse e-a7)
Thus pid across the terminals of a ce ina
osed cht ds always tess than tt ong -
Gn) Max. cuwment that can Le Aran from a cepe
ie for R=O0 5 Go Tnoax =
re
aComminietion OF Cetus '
DL Cells tn Series t
Lot Tote the cunt dtivrorigh the seer
combination of Hoo cells Of mf &1 ancl Ba wollte
ae eee Pi aud Ma especial:
oise ee = —- +
tm a eee
Ler Va, Ve ond Ve Le the potentials ot points As B
onde mesp. pid across the troo celts will Le,
Vae = Va-Ve= €:-Iam
Vac =Va_- Vez E2-Tan
New Vac Ws the prd ccross the series Combdiatar|
Vac = Va-Ve = (Va-Va dt (ve- Ve)
= (€1-Tai)+ (€2-Ta.)
lov) Vac = (€1+€2)- 2 (1+ 12) —O
the equivalent cele » Vac = beq- Ineg, —@
from D ond @ Eeq = Ett la and Heq = S14 He
Th gen, fe nm colts, Hono Jatebreat clin,
=E2 =Ex= En
is Ceqy = C1+€ar---+Orn Ceqr eit ever E=n€
ii. Pegs Hit Hate. + Ato Aeqe H¢ Mt M$ HOM
Tp one of Bhe cells (say of emf eo) t+ Connected
Bre other woay ctoundYD eq = 61 -Catlat--. + En
Ti) meq? Sup tat Hat 9+ ton
Poratteh bet Ti and To fe the cwvuents Leaving the
Ve. Lkectmodes of the cells and sesult Ln ov current I!
&:
se coy
ar Ke =z — 1
A << ° ema =~ RI é
Be e
DYKE, ain
Ne pen,
an
Fe
Ls TitTo
Nevo ) Prd CV) Letrocen the teuninals of Both certs
must Le tome (" they ane Parcarece)
So, V= Vei-Veo= €r-Tiai =) t= E,-v
war
and W= Ver - Veo > €2-Ta%e =) Ta. el iy
Aa
vo Tos €1-V4 €n -v
Pu Ae
2 ( Ea Eo a+ t
te Cat Sa) YR am) ®
prem the equivelent cell 1s Eeq -v ©
rt
Peg
From © and © |