0 ratings0% found this document useful (0 votes) 110 views28 pagesVector Calculus-1
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content,
claim it here.
Available Formats
Download as PDF or read online on Scribd
VECTOR CALCULUS
x Gradient — virectional pesivalive
% Divergence and cut — Imckakional and selencidal
vecla tields
and volume inltgrals
# Line, Surface
* -Theoagn'sGradienl-- Directional perivalive
Te vetler dibtewctial opesalir "xy"
The veden dittexatil —opercias vy a dehid as
ve tRr7er?Z vmu 27,2 ax
anil vecleas along ha thite —eclaingeles anes on,
oy and oz,
The Gradient
fae pcuyi2? De a scala petel- — funchisn
and ip conbinrouly dittorenfinkle thin Ike vedas
wpe PMH? Be 42% = Gad 6
siudional seiveive 1 v6. 3
Normal verivelive : IN!
units woamal velox A = an
angle beLivcen he
Surtaces
cosa Te BS
Wr.) | veelGRADIENT - DIRECTIONAL DERIVATIVE.
Gradient
The vector differential operator V
The vector differential operator V (read as del) is defined as
> >a tS
,k are unit vectors along the three
rectangular axes OX, OY and OZ.
The Gradient [or slope of a scalar point function]
Let $ (%,y,z) be a scalar point function and continuously differentiable.
Then the vector
ve = ( tits ) = Poe Seek “8
is called the gradient of the scalar point function # and is written as Grad @=Ve
Note- Vis a vector differential operator.
Note verre tly tay
Note: V9 is a vector whose three components are 3%, s
Note : If ¢ is a constant, thon VG = 0
Note: "Vg should not be written as ¢ VNote: . (a) V(ey 1 e292) = 1 V G1 HOV G2
where c; and cy are constants and $1, #2 are scalar point functions,
(b) Vtg) = VftVe [Here, c= cz = 1]
Note : V (1 92) = 1992+ ¢2V91
He v (3) = BVOAW AVG ing 2g
$2 Bs
2
Note : If v=f(u), then Vv = f'(u) Vu.
L_ PROBLEMS BASED ON GRADIENT
- Prove that Gradient of a constant is a null vector.
Solution : If ¢ (x,y,z) is a constant, then
88, 28 ang 28
ax’ dy are zeros.
vp = Taba? fork 2 -F@+7 +%@ = 0If ,5 = xyz, then find V ¢.
Solution : Given: ¢ =
xyz
Pd >a¢g Poe
ve =72t
e=i set ‘ay t* az
I
> >= 3s
Py+j, XZ + ky =.yzitxjt+xyk
If ¢ = log? + +2), then find V¢.
Solution : Given : = log @? + y +2)oa s
ae PEF +k
ity ze} =
obzes
Faye
yWe know that, 7 = xityj bee
eWay oP etapa yg
a ar
item; a Bay 5 yar
ax oy az 2
:
tee eee ar
| Say or a aetare
‘Note vre=
«Find Yio, |
F
Sdution : We know tht,
rele — | Pa eayted
= ai by tek,
x : ero ey ar
x ay “4s az
@ par, rar, > ar
Ov PPA
ay" azProve that V(@) =n2"? 6.
Solution: V(r") = sre @) = xia oe
= Binet = Eine x
17
=np [xityj+zk] = r
Find V (log r).
Solution : V (logr) = 57 >lar
n (log r) iz, (ogr) = Ei =o
>
r
= 272 fh] 275 - but fed -
£
2+ Prove that grad (¢y) = ¢ grad vty grad ¢
Solution : grad (PY) = V (py) = 272 @y)
=(_ ay _ >
=x) (oSe + vit) =i (+22) +2: (v32)
= o (rae +
¥ (e722) = Vy +yve
grad (PY) = @ grad y +y grad ¢.
+ Prove that V f(r) = CO where = atytd
Solution : V f(r) = rhe = ripe
= zp @t = fo Lai yj 2k) = LO7
Directional Derivative
a
Directional Derivative = Vg. =
iaPROBLEMS BASED ON DIRECTIONAL DERIVATIVE 1
Find the Directional Derivative of yet aa? a
(1,-2,-1) im the direction of () 2i7—j-2K Gd 2743; 4k
Solution : Given: ¢ = ae
Vp = POPOL 2b - Agr paresis Wy Hoye
ox at
a, -2,-1) = si-j-0k
@ a= 27-j-2k @) a=
|a|= veaTea =3 la|=
DD.- v¢.-4— DD.- v¢.
lal
= @ 7-105, =F = ej
1 oa
zlte+ 1429) = =
Find the directional derivative of 4x72 +2y?z at
(1, -1, 2) im the direction of 2—j'+34
Solution: g = 4x22 +122
oT OPE ~ Baty nit anny G2 tay)k
oe - Gerais coriuey? - ae
@ = 27-j438; la] =
Pee ea
_ M44415 55
vieNORMAL DERIVATIVE
Normal Derivative = | V¢ |
Find the normal derivative of = 39 + y2-+ mc at (~1,1,1)
Solution: Given: @ = ytyz+zr
za % a 7
ve = rit @tete) = LiVt2) = YFDI+ eta He+yz
(V9) 14,9 = 2i+0j+0k
Normal Derivative = |V| = VF = 2.
What is the greatest rate of increase of p=ayz” at (1, 0. 3)?
Solution : Given: @ = a2”
Vo= i sib ee se = Tye) +72) + Koz)
Veuos) =08+9j 40K
- Greatest rate of increase = |V¢| = V9 = 9
UNIT NORMAL VECTOR
Unit normal vector » = eo
[vel
Find a unit normal to the surface xy= 7° at the point
d, 1, -1).
Solution : Given: = ay-7
Vor y Pex fret
Vous iby HIE
|Vo| = VIFTFS =
: : y Efe 2k
© A unit normal to the given surface at the point is ToT =the
Find a unit normal vector to the suface
toy +y +097 at (1, -2, 1.
Solution : Given: @ = P+ay+y toyzVp POY POH OD
ar Vay th iy
Faery ey P+ a by 12 oy)
Very = HR HFU as nea
ata at
[VO] = VWRAES = VIE avy
oe VO | -2i-2f ak 1
"ver ah alae +k]
ANGLE BETWEEN THE SURFACES
VeiVoe 1 [ vaver
cos = eh 20 =e HV
°° Teil TV ¢al ~ Vi¥al TV 9a
Find the ungle between the surfaces =x + y'—3 and
Sey tz =9 at (2,-1,2),
Solution : Given : = 2 +y?—2-3,1 gp = Peye4 29
Voy = xi tye
(ena) = 47 27K
\¥¢| = VIOFTFT = IT.
Vez = uit Yi tak
Codaciy asi aaa.
cosd = VG ai
IVal 1 V¥¢21
0
= owt 2)
os Nr
Find the angle between the surfaces xlog2 = y?—1 and
¥y=2—2 at the point (1, 1, 1
Solution : Given =
Leg = y'~xlogz-1 Let $y = Py-2+2
at 0b 200 092 | 30)
Vo = TE) vg, = Re Pee
Pepe tl ayia ag 8 ona
= (~logz)i%+ 2y7 aR = FQy) +702) +h
CPaaa = OF 27-* CWedasy = 247+k
ak
1Vg)| = VORTAT =WFeT = V5
Vei-Ver _ (2j-%.Qi+ 7+ _0+2-1_ 1
[Vert 1 Vet v5 VO ~V~ Te
a= (ch)SCALAR POTENTIAL ¢
I Vp = 2yzitx2j+ xy, then find the value of
Solution : Given : V = 2yzitxzjtryk
Singita ite pare oe ee
PACT MOE 8 ay sFetafe eye
Equating the co-efficients of 77 77-2, we get
aeu
ax
~@, S6=22.@, $8 = 27.0)
Integrating (1) p.w.r.to ‘x’, we get
$= me Hho
ie, # = Pye thi n2) ao}
Integrating (2) p.w.r.to ‘y’, we get
= Pye t fo le2) ©
Integrating (3) p.w.r.to ‘2’, we get
o =the) os 6)
Combining (4), (5) & (6), we get
g = 2yz+e, where c being an arbitrary constant.DIVERGENCE AND CURL
-VECTOR IDENTITIES
-IRROTATIONAL AND SOLENOIDAL VECTOR FIELDS
DIVERGENCE AND CURL
' fey fe 22h, 2%
Note : DWF =v. P= Sh4 S04
Note : V. Fis a scalar quantity
Note owl Fev x Fa ea eee
x ay iz
Note : Curl F is a vector point function
Note : fF = Fyi+ Fj + Foe, then
tok
ee erate 8
VxXP= lar dy 92
RR
UF = f@i+eQ)7 +n @F, then
OVF =f @+e'4ne@,
j) Vx F=0= 0740] +0k =
WE = CaP tT ay twit eA then
ga EV 0B, VX BV. (7 XH and V x (WX B atthe pan
ai D-
Soation : Given: F = QP -y +20)7+ type eral
VP Lek tree Peo 2rd
Qet2) + (rt th wth
= “8 nase
va.i = Perniperairzerok
> es z
‘ i
> a a a
YxF = ax ay az
ayaa moan fa e
@+yi-ee- appa tak = -wepirers Fs
V5 = Apert Zorgor?
vsWO. Play = ise
Wx Bary = 2428
Iv .(V x Play = 9
oF ,p af _ , [pat
tb Baek 2 [raz]
ae ae
(i) ve - (sr oFs F
ae oF ey oF Ly [py a
List of Vector identities
Vi. 1. Vx (V9) =O (or) Cusl (grad $)
VL. 2. V.(0xF) =0 (or) div (Cunt #)
oo vxxF = vo.F- VF
vi VOR = 00. 4V0F
Vis. VGH = 0 «I + V9xF
vi 6. V.FxG) = GV xR -FV xe)
vi. VxEKG) = 0. GF-W.HG+E.WF-E.Ws
Vi. 8 VEG) = Fx VX +Ex CXR +E. E+ E.MF114 Bs 8 scalar point function, then Vx (yy =f
(on) 7
Prove that Curl (grad 9) = @
seating = VO
= Pot, 700, 209
ax tf ay ** az
cut ad) = VX (V9)
ab
-|ix ay
ae 99
ar ay
= EF'[0] [-° mised partial derivatives are equal]
Pao
UF ba vector pint function, then 9-(@ x3) = 9
(oo 7
Prove that div (curt F) = 0,
Solution : Let F = Fit RSH FE.
F
cul F = vxF
o(aFs oF) (oF oF
a ( az} ** [ae 7 oy
Pr OR OR PH PR
de oy~ deaz~ dyas * dyaz * 20x
0 [since, mixed partial derivatives are equal]IRROTATIONAL AND SOLENOIDAL VECTOR FIELDS
Solenoidal vector formula : V.F = 0
. > >
Irrotational vector formula : VxF=0.. Prove that the vector F = zi+xj+yik is solenoidal.
> + ee eae
Solution : Given : F = zitxj+yk | Note: When F = yi + zj + xk,
> >
To prove V. F = 0 V.F=
> (>a 7a 2a a
= ligctisgtkss “Gir k
V.F (5+) Qi + 2j + xk)
.@itxjty®
a a
= 7OtZOt
= FO+ZO*EO 0
=
=0 Hence, F is solenoidal.
Hence, F is solenoidal.
ity =
(x + 3y) i+ (y -22)j + (x + Az) K is solenoidal, then
find the value of A.
Solution : Given : V.v = 0
8 a a _
dx © +9) + 0-2 +556 +42) =0
i = 0
A =v
Find ‘a’, such that
(Qx-2yt 2i- + (4x + ay — Di- +(x-yt 2)k is solenoidal.
> > > >
Solution : Given : F = (Bx = 2y + 2)i + (Ar tay —Z)it yt Bk.
>
Also, Given : V.F = 0
< a a
V.F = -%€+z)+- +ay—-z)+ -yt =
F = aa (3x — 2y +2) dy (4x + ay —2) az @-yt+2) =0
3+a+2=0
a+5=0 =a=-5
> > > >
Show that, F = yzi+zxj + xyk is irrotational.
. > > > 2
Solution ; Given : F = yzit+zxj +xyk
> =>
To prove: V x F = 0Peed
a
= a 9 a r a
VxF = lax ay a2 iY OO) 92)
eon oy :
= Eie-a1 = 0f+0j+0K =o
Hence, F is irrotational
Find the constants a,b, $0 that
(ct ay tani + (bx 39 2) (Ox + ey +22) Ris ierotationa
Given: Vx f= 0
Solution ¢ i i
z z
H a 2 fig
ox ay az °
ato te
lee ater be—3y
Fe +1) ~jf4— a] +b - 2}
4-a=0 | b-2
ie, c+1=0 |
=z a=4
e=-1
Prove that P= Oxt wit Wy + @i- Gwe is
solenoidal as well as irrotational. Also, find the scalar potential of f
Solution : ?
Given Get i Gy +m7-G—m)E
Ff
VF = Ferm + Say 4+-Le-v)
=2+4-65
+ Fis solenoidal,
SS Ee zt (6)
Pe ote Paste ay eeettoe:
Qty sy te 6 txy
ie-n-jy-y+ke-o
* f is irrotational.
irrotational
Hence, Fis solenoidal as well
N ~
°% (0 find @ such that 7 =
& c
738 4 j rae +e oe
az
Ow tan7- Gm?a
ie = ty... () st = ata... (2) St _@—-») . 8)
Integrating (1), (2) and (3) partially w.r.to x,y,z respectively, we get
¢@y.2) =P +92 +f, (0,2) (4)
$92) = Wtyz +h @&z) » 6)
@@y,2z) = -327 +y2 +f; @y) . (6)
Combining (4), (5), & (6), we get
$ sy,2) = x7 + 2y? — 32? 4292 +k, where & is an arbitrary constant.
¢ is the scalar potential of fj”> > >, >
+ Prove that F = (cos x + 2')i+ (2ysinx— 4) j+ 3x? i i,
irrotational and find its scalar potential.
Solution : Given :
> => a el
F = (cosx +25) + (2ysinx — 4)j + 3x27k
i i - k
= a a a
Voc re = ax oy az
ly cosx +23 Ysinx—4 3x2”= if0 - 0) ~FI? ~ 32] + Fey cosx ~ 2 oss]
= 0i-0j+0k = 0
xi = 0. Hence, F is irrotational
pid?
oh F-v9
7+ oysine 4/4 402C = 726 , 796 a
poset 2)it Oysin Aft ate = TE TE ED cquaing
2
ge cocticents of 77, F, we get
Wo peor? 0), FE = aysing—4.. @), 88 32?
a
suing (0) pEI0 FE BL g = yan + Pr (2)
Qsinx (4) —4y+h@&2)
Inegatng (2) perio , we get g
ic,
Gay +he2 6)
Inegating @) presto, we get
(3
3x & +hbss)
22 + fly)
Combining (4), (5) & (6), we get
$= seine +23 +6, where ¢ being an arbitrary constant,
Show that F’= (6y + 2)7'+ Gx? -2)j'+ Gu?) is
irrotational vector and find the scalar potential function
such that F = V9.
Satin :
F ety ae-aft ety
YxE =
= Fey Capt x1 Eee) 070708 =F
Hace, Fis irotational.F-Ve
e know that, F a a
fo find @ > We 2 7-72 a
X feat-siraet-k= Oop +7 oe tk oe
(oye N74 GE 2+ 6 2
e got
quating the coffcints of js hy We Bt
aq, db = 32-2, 2% = ret
= ayt2 Os oy
az 6
(2) ae
Invegrating (1) pw.rto ¥, we get 9 = 6 p+ x+hi0,2)
ie P= 32H +hG.)
Integrating (2) pwrto Y, we get = 3¢y ye + fy (2) 9
Integrating (3) perso ‘2, we get
3x (- they)
ic, @ = ye thle) -
Combining (8), (5) & (6), we get
= 3xty +23 —yz +c, where ¢ being an arbitrary const.
WK and i are ierotational, then prove that xi i
solenoidal.
Solution : Giten A and B are irrotational
ie Vx R= Tmdvxe =o
We know that, V.(AxB) = (Vx)
B- (xb). = FB-TR
0
=0-0-
Hence, X x B is solenoidal
Nes —. ....
—,—r—C
Y*VG = Tad vxvy oF
We bmOw I VA VW) oOo y VA). Vy— (x Vy).VO
Ty -Fvy
= 0-0-0
Hence, V4 x Wy is solenoidalShow that #F is an irrotational vector for any value of
but is solenoidal only if n =
Solution : Let F = 7
= Ppityptz = aPTty Pj teP ke
Sa tase. ol
VxF = lor ay 92
Pro Py Pe
= Bi [enh 1 22 yp
7 BF [ar 1E 12
= Siem”? yen
= 0f+oj+or =o
} = BF (Q)
+. For all values of n, F is irrotational.
- a -19
v.F -22@y - = [Pea ne]
== [r ae = EP tn 22}
= PtP ways zy
= +n] i
= +n? = B+n)r
when n = ~3, we got V.F = 0
+. Pris solenoidal only if n =