Galatoulas ct2010 Pres
Galatoulas ct2010 Pres
1
Emmanuel Galatoulas
1
Department of Mathematics
University of Athens
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
Emmanuel Galatoulas Monoidal Quantaloids
A short introduction
Quantaloids and their calculus
Monoidal structure for quantaloids
Extending the monoidal structure to Q-categories
Calculus in the monoidal quantaloid
where is the physics?
So why monoidal quantaloids?
References
1 A short introduction
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
Emmanuel Galatoulas Monoidal Quantaloids
A short introduction
Quantaloids and their calculus
Monoidal structure for quantaloids
Extending the monoidal structure to Q-categories
Calculus in the monoidal quantaloid
where is the physics?
So why monoidal quantaloids?
References
on the other hand the notion of monoidal bicategory is not new either
(and quantaloids are particularly simple bicategories):
• monoidal bicategories eg. in Street’s and Day’s work, Gray monoids
and so on, however the presentation is rather ”awkward”
• perhaps the most ”elementary” presentation of monoidal
bicategories is quite recent: in Robin Houston’s PhD thesis (”Linear
Logic w/o units”)
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
Emmanuel Galatoulas Monoidal Quantaloids
A short introduction
Quantaloids and their calculus
Monoidal structure for quantaloids
Extending the monoidal structure to Q-categories
Calculus in the monoidal quantaloid
where is the physics?
So why monoidal quantaloids?
References
what is a quantaloid?
− ◦ f ⊣ {f , −} and f ◦ − ⊣ [f , −]
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
Emmanuel Galatoulas Monoidal Quantaloids
A short introduction
Quantaloids and their calculus
Monoidal structure for quantaloids
Extending the monoidal structure to Q-categories
Calculus in the monoidal quantaloid
where is the physics?
So why monoidal quantaloids?
References
has objects the categories enriched over Q and arrows functors between
them, ie. an object mapping F : A0 → B0 satisfying:
type equalities t(Fa) = ta, ∀a ∈ A
action inequalities A(a′ , a) ≤ B(Fa′ , Fa)
Dist(Q) and Cat(Q) relate by means of this 2-functor:
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
Emmanuel Galatoulas Monoidal Quantaloids
A short introduction
Quantaloids and their calculus
Monoidal structure for quantaloids
Extending the monoidal structure to Q-categories
Calculus in the monoidal quantaloid
where is the physics?
So why monoidal quantaloids?
References
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
Emmanuel Galatoulas Monoidal Quantaloids
A short introduction
Quantaloids and their calculus
Monoidal structure for quantaloids
Extending the monoidal structure to Q-categories
Calculus in the monoidal quantaloid
where is the physics?
So why monoidal quantaloids?
References
diagrammatically:
f ⊗f ′ 1 v ⊗ v′ g ⊗g ′
u
f /v g
/w
′ f′ / v′ g′
/ w′ u ⊗ u′ w9 ⊗ w ′
u
(g ◦f )⊗(g ′ ◦f ′ )
and:
∨
∨ i,j (fi ⊗gj )
i fi
u /v
'
∨
gj
u ⊗ u′ = v8 ⊗ v ′
u′
j
/ v′
∨ ∨
( i fi )⊗( j gj )
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
Emmanuel Galatoulas Monoidal Quantaloids
A short introduction
Quantaloids and their calculus
Monoidal structure for quantaloids
Extending the monoidal structure to Q-categories
Calculus in the monoidal quantaloid
where is the physics?
So why monoidal quantaloids?
References
a couple of remarks
1u⊗v = 1u ⊗ 1v
f ⊗h ≤g ⊗h
f ◦ k ≤ g ◦ k and h ◦ f ≤ h ◦ g
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
Emmanuel Galatoulas Monoidal Quantaloids
A short introduction
Quantaloids and their calculus
Monoidal structure for quantaloids
Extending the monoidal structure to Q-categories
Calculus in the monoidal quantaloid
where is the physics?
So why monoidal quantaloids?
References
extend ⊗ to Dist(Q)
our main goal here is to extend the monoidal structure of the ”basis”
quantaloid Q to the quantaloid of Q-categories Dist(Q).
What should be an appropriate notion of tensor for Q-categories?
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
Emmanuel Galatoulas Monoidal Quantaloids
A short introduction
Quantaloids and their calculus
Monoidal structure for quantaloids
Extending the monoidal structure to Q-categories
Calculus in the monoidal quantaloid
where is the physics?
So why monoidal quantaloids?
References
A(a,a′ )
ta′ / ta
(A⊗B)((a,b),(a′ ,b ′ ))
ta′ ⊗ tb ′ / ta⊗tb
:=A(a,a′ )⊗B(b,b ′ )
tb′ / tb
B(b,b ′ )
Φ(c,a)
ta / tc
(Φ⊗Ψ)((c,d),(a,b))
ta ⊗ tb / tc ⊗ td
:=Φ(c,a)⊗Ψ(d,b)
tb / td
Ψ(d,b)
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
Emmanuel Galatoulas Monoidal Quantaloids
A short introduction
Quantaloids and their calculus
Monoidal structure for quantaloids
Extending the monoidal structure to Q-categories
Calculus in the monoidal quantaloid
where is the physics?
So why monoidal quantaloids?
References
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
Emmanuel Galatoulas Monoidal Quantaloids
A short introduction
Quantaloids and their calculus
Monoidal structure for quantaloids
Extending the monoidal structure to Q-categories
Calculus in the monoidal quantaloid
where is the physics?
So why monoidal quantaloids?
References
The lemmas
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
Emmanuel Galatoulas Monoidal Quantaloids
A short introduction
Quantaloids and their calculus
Monoidal structure for quantaloids
Extending the monoidal structure to Q-categories
Calculus in the monoidal quantaloid
where is the physics?
So why monoidal quantaloids?
References
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
Emmanuel Galatoulas Monoidal Quantaloids
A short introduction
Quantaloids and their calculus
Monoidal structure for quantaloids
Extending the monoidal structure to Q-categories
Calculus in the monoidal quantaloid
where is the physics?
So why monoidal quantaloids?
References
Tensor of presheaves
Lemma (tensor of presheaves)
Given presheaves ϕ : ∗u −→ A and ψ : ∗v −→ B their tensor is also a
\
presheaf ϕ ⊗ ψ : u ⊗ v −→ A⊗B of type t(ϕ ⊗ ψ) = tϕ ⊗ tψ = u ⊗ v
Lemma (right lifting and extension of tensors)
Given presheaves ϕ : ∗u −→ A, ϕ′ : ∗v −→ A and ψ : ∗u −→ B and
ψ ′ : ∗v −→ B the right lifting [ϕ ⊗ ψ, ϕ′ ⊗ ψ ′ ] of their tensor satisfies the
inequality:
[ϕ, ϕ′ ] ⊗ [ψ, ψ ′ ] ≤ [ϕ ⊗ ψ, ϕ′ ⊗ ψ ′ ]
and given presheaves ϕ : ∗u −→ A, ϕ′ : ∗u −→ C and ψ : ∗v −→ B,
ψ ′ : ∗v −→ C the right extension of the tensors satisfies:
{ϕ, ϕ′ } ⊗ {ψ, ψ ′ } ≤ {ϕ ⊗ ψ, ϕ′ ⊗ ψ ′ }
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
Emmanuel Galatoulas Monoidal Quantaloids
A short introduction
Quantaloids and their calculus
Monoidal structure for quantaloids
Extending the monoidal structure to Q-categories
Calculus in the monoidal quantaloid
where is the physics?
So why monoidal quantaloids?
References
Φ⊗Ψ=Φ⊗Ψ .
. .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
.
.
.
.
. .
. .
.
[ϕ, ϕ′ ] ⊗ [ψ, ψ ′ ] = [ϕ ⊗ ψ, ϕ′ ⊗ ψ ′ ]
{ϕ, ϕ′ } ⊗ {ψ, ψ ′ } = {ϕ ⊗ ψ, ϕ′ ⊗ ψ ′ }
∥ϕ ⊗ ψ∥ = ∥ϕ∥ ⊗ ∥ψ∥
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
Emmanuel Galatoulas Monoidal Quantaloids
A short introduction
Quantaloids and their calculus
Monoidal structure for quantaloids
Extending the monoidal structure to Q-categories
Calculus in the monoidal quantaloid
where is the physics?
So why monoidal quantaloids?
References
why bicategories?
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
Emmanuel Galatoulas Monoidal Quantaloids
A short introduction
Quantaloids and their calculus
Monoidal structure for quantaloids
Extending the monoidal structure to Q-categories
Calculus in the monoidal quantaloid
where is the physics?
So why monoidal quantaloids?
References
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
Emmanuel Galatoulas Monoidal Quantaloids
A short introduction
Quantaloids and their calculus
Monoidal structure for quantaloids
Extending the monoidal structure to Q-categories
Calculus in the monoidal quantaloid
where is the physics?
So why monoidal quantaloids?
References
colim(ϕ, yA ) = ∆ϕ
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
Emmanuel Galatoulas Monoidal Quantaloids
A short introduction
Quantaloids and their calculus
Monoidal structure for quantaloids
Extending the monoidal structure to Q-categories
Calculus in the monoidal quantaloid
where is the physics?
So why monoidal quantaloids?
References
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
Emmanuel Galatoulas Monoidal Quantaloids
A short introduction
Quantaloids and their calculus
Monoidal structure for quantaloids
Extending the monoidal structure to Q-categories
Calculus in the monoidal quantaloid
where is the physics?
So why monoidal quantaloids?
References
(PA⊗PB)((ϕA , ϕB ), (ψA , ψB )) =
PA(ϕA , ψA ) ⊗ PB(ϕB , ψB ) =
[ϕA , ψA ] ⊗ [ϕB , ψB ]
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
Emmanuel Galatoulas Monoidal Quantaloids
A short introduction
Quantaloids and their calculus
Monoidal structure for quantaloids
Extending the monoidal structure to Q-categories
Calculus in the monoidal quantaloid
where is the physics?
So why monoidal quantaloids?
References
P(A⊗B)
(P(A⊗B))(yA⊗B (−,−),−)=yA⊗B
7 C O
yA⊗B
y⊗
A⊗B D=⟨yA⊗B ,yA⊗yB ⟩ ⟨yA⊗yB ,yA⊗B ⟩=y⊗
Y D
yA⊗yB
'
(PA⊗PB)((yA⊗yB )(−,−),(−,−))=yA⊗yB
PA⊗PB
and we get the factorization: yA⊗B ∼
= D ◦ (yA ⊗yB. ).. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
Emmanuel Galatoulas Monoidal Quantaloids
A short introduction
Quantaloids and their calculus
Monoidal structure for quantaloids
Extending the monoidal structure to Q-categories
Calculus in the monoidal quantaloid
where is the physics?
So why monoidal quantaloids?
References
y⊗
/ #
P(A⊗B) o PA⊗PB
d D
D
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
Emmanuel Galatoulas Monoidal Quantaloids
A short introduction
Quantaloids and their calculus
Monoidal structure for quantaloids
Extending the monoidal structure to Q-categories
Calculus in the monoidal quantaloid
where is the physics?
So why monoidal quantaloids?
References
Prospectus
• how far the analogy with DCCCs can go? This seems to involve an
involution on the quanaloids as well
• applications to quantales (quantales are single-object quantaloids)
• applications to Q-orders (or Q-sheaves) (Ord(Q) is basically
Map(Dist(Qsi )) and Qsi hence Dist(Qsi ) are also monoidal)
• and of course how do Cartesian quantaloids fit in this framework!
For instance: how does our ”disentanglement” condition in terms of
the equivalence P(A⊗B) ≃ PA⊗PB relate to the
Frobenius-separability condition in the context of cartesian
bicategories?
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
Emmanuel Galatoulas Monoidal Quantaloids
A short introduction
Quantaloids and their calculus
Monoidal structure for quantaloids
Extending the monoidal structure to Q-categories
Calculus in the monoidal quantaloid
where is the physics?
So why monoidal quantaloids?
References
Some references:
Only indicative!
[1] P.Katis, Sabadini, RFC Walters, Bicategories of Processes, Journal of Pure and
Applied Algebra, vol. 115. pp. 141-178, 1997
[2] I.Stubbe, Categories enriched over quantaloids: categories, distributors and
functors, Theory and Applications of Categories 14, 1-45.
[3] H.Heymans and I.Stubbe, On principally generated Q-modules in general, and
skew local homeomorphism in particular
[4] B.Coecke, D.Palvovic: Quantum measurements without sums
[5] Carboni A., Walters RFC: Cartesian Bicategories I
[6] D. Garraway: Sheaves for an Involutive Quantaloid, Cahiers de Top. et Geom.
Diff. Categoriques, vol. XLVI-4, 2005
[7] Street Day Monoidal bicategories and Hopf algebroids
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
Emmanuel Galatoulas Monoidal Quantaloids