0% found this document useful (0 votes)
267 views2 pages

NS 3

The document contains 21 multiple choice questions related to mathematics. The questions cover topics like divisibility rules, remainders when dividing numbers, and expressions being divisible by certain numbers. They require applying concepts like factors, divisibility by 2, 3, 5 etc. to determine the answers.

Uploaded by

YaSh
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
267 views2 pages

NS 3

The document contains 21 multiple choice questions related to mathematics. The questions cover topics like divisibility rules, remainders when dividing numbers, and expressions being divisible by certain numbers. They require applying concepts like factors, divisibility by 2, 3, 5 etc. to determine the answers.

Uploaded by

YaSh
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 2

1.

One of the factors (82k + 52k), where k is an odd number, is :


(82k + 52k) का गुणनखंड क्या होगा ( जह ां k एक विषम सांख्य है ) :
(a) 86 (b) 84 (c) 88 (d) 89
𝟗𝟕 𝟗𝟕
2. What is the remainder when ( 𝟏𝟐𝟕 + 𝟗𝟕 ) is divisible by 32?
(12797 + 9797) 32 शेषफल
(a) 7
(b) 2
(c) 4
(d) 0
3. What is the remainder when ( 𝟕𝟓𝟔𝟐𝟕𝟑 - 𝟒𝟏𝟐𝟐𝟕𝟑 ) is divisible by 86?
( 𝟕𝟓𝟔𝟐𝟕𝟑 - 𝟒𝟏𝟐𝟐𝟕𝟑 ) 86 शेषफल
(a) 5
(b) 2
(c) 0
(d) 3
4. What is the remainder when ( 𝟑𝟒𝟏𝟐𝟏𝟖 - 𝟏𝟓𝟔𝟐𝟏𝟖 ) is divisible by 259?
( 𝟑𝟒𝟏𝟐𝟏𝟖 - 𝟏𝟓𝟔𝟐𝟏𝟖 ) 259 शेषफल
(a) 0
(b) 2
(c) 7
(d) 3
5. What is the remainder when we divided 𝟓𝟕𝟎 + 𝟕𝟕𝟎 𝒃𝒚 𝟑𝟕?
( 𝟓𝟕𝟎 + 𝟕𝟕𝟎 ) 37 शेषफल

a) 5 b) 0 c) 7 d) 1
6. The expression 𝟓 − 𝟐 has a factor?
𝟐𝐧 𝟑𝐧

व्यंजक 𝟓𝟐𝐧 − 𝟐𝟑𝐧 का एक गुडनखंड है?


(a) 8 (b) 7 (c) 17 (d) None of these
𝟐𝟎
7. ( 𝟑𝟏 − 𝟏𝟎𝟐𝟒 ) is not divisible by :
(a) 137 (b) 107
(c) 9 (d) 32
8. 4915 -1 is exactly divisible by;
4915 -1 बिल्कुल बिभाज्य है ;
A) 50 B) 51 C) 19 D) 19 &86 both

9. (68)n + 1 is exactly divisible by 23 when n is ?


(68)n +1,23 विभाज्य है यदि n:
a) Any natural number b) Odd number c) Even number d) Only prime
number
10. (167)2n – 𝟏𝟎𝟑𝟐𝒏 is exactly divisible by:
(167)2n – 𝟏𝟎𝟑𝟐𝒏 विभाज्य है :
a)144 b) 170 c)106 d)225

Join Our Telegram Channel - https://t.me/mathsbygaganpratap


Join Full Maths Special Batch-Download Careerwill App
11. 76𝑛 − 66𝑛 , where n is an integer > 0 is divisible by;
76𝑛 − 66𝑛 ,जहाां n एक पूर्ाां क है > 0 ,से बिभाज्य है ;
A) 13 B) 127 C) 559 D)all of the given
12. Given that 220 + 1 is completely divisible by a whole number, which of the following is completely
divisible by the same number?
दिया गया है कक 220+1 ककसी पूणण संख्या से पण
ू त
ण ः विभाज्य है। ननम्न में से कौन-सी संख्या उसी
संख्या से पूणत
ण ः विभाज्य होगी?
15
(a) 2 +1 (b) 5 × 230 (c) 290+1 (d) 260+1

13. 𝟐𝟎𝟐𝟎𝟐𝟎 + 𝟏𝟔𝟐𝟎𝟐𝟎 − 𝟑𝟐𝟎𝟐𝟎 − 𝟏 is divisible by:


𝟐𝟎𝟐𝟎𝟐𝟎 + 𝟏𝟔𝟐𝟎𝟐𝟎 − 𝟑𝟐𝟎𝟐𝟎 − 𝟏 ककससे विभाज्य है ?
(a) 317 (b) 91 (c) 253 (d) 323

14. Find the remainder:


𝟏𝟔𝟏𝟏 + 𝟏𝟕𝟏𝟏 + 𝟏𝟖𝟏𝟏 + 𝟏𝟗𝟏𝟏
=?
𝟕𝟎
15. Find the remainder:
𝟖𝟑𝟏𝟕 − 𝟓𝟐𝟏𝟕 + 𝟖𝟒𝟏𝟕 − 𝟓𝟑𝟏𝟕
=?
𝟔𝟐
16. Find the remainder:
𝟏𝟏𝟗𝟑𝟕 − 𝟖𝟎𝟑𝟕 + 𝟏𝟎𝟑𝟑𝟕 − 𝟔𝟖𝟑𝟕
=?
𝟑𝟕
17. Find the remainder:
𝟏𝟐𝟑 + 𝟐𝟐𝟑 + 𝟑𝟐𝟑 + − − − − + 𝟕𝟎𝟐𝟑
=?
𝟕𝟏
18. Find the remainder:
𝟏𝟕 + 𝟐𝟕 + 𝟑𝟕 + − − − + 𝟏𝟎𝟎𝟕
=?
𝟐𝟎𝟐
19. Find the last two digits of the expression of 642x – 64x, when 'x' is any
positive number
यदि 'x' कोई धनात्मक पूणाांक हो तो 642x – 64x के विस्तार में आखखरी िो अंक क्या, होंगे-
(a) 10 (b) 11
(c) 00 (d) 01
6n 2n
20. The expression 2 – 4 , where n is a natural number is always divisible by:
व्यंजक 26n – 42n, ( जहां n एक प्राकृनतक संख्या है ) से विभाज्य है :
a)15 b) 18 c) 36 d) 48
21. If a and b are two odd positive integers, by which of the following integers is (a4 – b4) always
divisible?
यदि a और b िो विषम धनात्मक पूणाांक हैं, तो ननम्न में ककस पूणाांक से (a4 – b4) हमेशा विभाज्य
है ?
a)3 b) 6 c) 8 d) 12

Join Our Telegram Channel - https://t.me/mathsbygaganpratap


Join Full Maths Special Batch-Download Careerwill App

You might also like