0% found this document useful (0 votes)
52 views8 pages

Spectros

Classical theory describes light as electromagnetic waves, while quantum theory describes light as discrete packets of energy called photons. According to quantum theory: 1) The energy of a photon depends on its frequency and wavelength according to the Planck-Einstein relation E=hf. 2) Photons have no mass but do have momentum that depends on their wavelength. 3) The intensity of electromagnetic radiation depends on the number of photons at each wavelength according to the blackbody radiation law.

Uploaded by

Bhavani
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
52 views8 pages

Spectros

Classical theory describes light as electromagnetic waves, while quantum theory describes light as discrete packets of energy called photons. According to quantum theory: 1) The energy of a photon depends on its frequency and wavelength according to the Planck-Einstein relation E=hf. 2) Photons have no mass but do have momentum that depends on their wavelength. 3) The intensity of electromagnetic radiation depends on the number of photons at each wavelength according to the blackbody radiation law.

Uploaded by

Bhavani
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 8

classiral theoy

Mamuella cpodion

Neuton Laus electromognHc

classical
to
Accovdn9
O
rodtatiem is just
Coneiet

uantum +Reoy a N e

emY
Accovdn9 fotAiS thevg

Coled Photon
o hafides

Eh7 h : hc 7

hhoton dehends uh orn

Energy
monochmonaH

o repn y
ener9

We
F Cew) 1240
A(inm) Uheo u o

E (ev) 2400
(in )
.
atiing away oi
deterioration or
destruction of
en 11Onment. a
metak
Colwode
boergy of o hhoton of a elrctromogneffr Yodi akToy TOn
iay-i
rcdiation : De ones
tVea
clechromognetic
Ttnsity Set to
nawing )Wavelergth djoo nm
cloesicad Reony otunsity
1own as an ore,
Ail th
etals ltPIesen tihei-
peopotion ad to
55en diectly tiom tinese ores tt
1l an instabl: state
state by 1ecombini
mor OTOSi0n
Ttasity of em
ii wane(engtb So0 m
it, dctility ad
+ Eom quatum heorgH iotnsity cmr
Cnit aMea
hotons htesent
Covers Vi i b l e
suoliaHOn Shecrum
Electromagoetic
Of dijart
e array
e shectru Odu
Momertum of Photon
no mags
Todiations
=
d elecomognctic
momntem I Photan
As hur classical Reory
wawe num
b ar reaen
of
Heon - d u a natw
AS uantum
Wawe nwmban
Eeinstein Relatvity E
650-4Doo 25000
00,D00
Plank Pa E hY 2500
(osrnic
yisible Photo mos
mtcro
Tnfraued
-Pm = O E =
Pc E h: rodio wowe
roliatio
Vra o
eJecdrorir
cerop
elet hre bay
freayen rotcima
PX c h
(DreR)
n ol&d
elerron 9r
1 e o n on esY
Photon ho mOmustum intusity ( y Vs
P h momentum dehende is also a
hlof of
C m k o u n d .
Shectru h a u t t a w o
e srno
w a v e ruum a u ( J r
momoum
Con Calub Uig Phofon
Beers Rauo k d
Relatjooshih
betur en
tronsition
ght tion o
destru 1tot
ofnmeta
7he
d t l pen
and
Lo
known s an
oe, A tt
r cudroi Hed odtoli 2
1 111 t O t
d'a
Io Dlt, ne tility
T o i oicosiey o j inciclent redre. asul
gn Lo: x tYk
- dI
SoulO
Cnc
L. C
da
Trdnsidc of Toeideni frltin cvK
n a hcutrulr 2id
303 og9,, )
Rog /It) 3oa)xexR aciolbI
t y
r
amonochroRhic rCdiahom hesd molo
then
A Ahsor bonre
homognous OuHon thod decreadr
+Rogh
intesity
o rodicion Rcknes tR mtooum A oc
a
SamHr
ron
tsrty Thudnd
d i s diuetty suohorfional to
enamitttd
S
0 h raodiakon
2olve:
Re Som
rodliadfon and Ccnc. &oluuion Calculak fRe
ahsorbonce o
ln a slide dos not obSeb h e Sam rdiahHon
A o91.(
+ au slides ahsorb San US Suma on
ahsoyb diforns USe totegraho
au 8lides
(ichangk is changing)
dT IC
da
dL K xIx
Miouve 3hechoscofhy (ov)hur fRutational
Datomic moleeur AssUme as
rigid e
o. N
The Dtatrion al energy a
rigid diotumic
Siti
molecule
hnown as
at or Al
(joule) Tietais 1epreSrilt tii
rototion pourr -Do , ,'
t ton
Aut
h T t t t tilt auti
Fn ) wor n.
8T hc
J2
h: 6. 636 xto
C3xto ms
TT 3.14
d echronic
AS
t
aettron ic
moment
rigid uoton Assurnption
Und
is Gsrutant
inerta )
T(T+1) Cr
F T)
Seleien Rur
R i g i d h r e t o n
3n destru
moletuJe tion oi a
metai
The molecud Must hoase
roonent
a t o m i e
joule for nono diadtomic (A2) molecude
(T41
moleaudes d a s not Chou
InGcte he ej *dti
tomod i ctonic gnal it
n CSor b MiCTUOVe odiaton known as an T. Sl
do nat t
fr t
Fo Herodiotomi c moleade
T:O
o,
1o, flo Adve 113-1531
t
Nev ent btre
Selection Rue
+Re Valu
Sheite
6e Gn
AT
O,
AT AtM:
T:O
(
ijote ra tnd +1iS for absopotion
Selection md T: 3
Fo -1 is fo
emission
T3 T:2
Selection Kule AJ
aheifi Sdechorn Rule J:0 T +2X
l be alitwed
Troraition uobahility (P)
only
Rotad ionod degen r a u T+I
uld cheo te
P 1 the Zignal
fUr rasiton Ul b cdsouwccd nof
i teroty
ie CoM Cded ade
2
Tor. ' r o r f n ora)
Trara itianru bobility (P) 1I i n fegvnl
F () M4
TMI
fin
fitrnesi
rofion 2 of Jlourd
(o)
Po rotaitton 9 ollOued
F r a n a i t h a n
Rrquismd
r
Energy
T: J 66
FTe T(Tu)
F(T+)
ie traaition
AF
FG
Requiste cd for
Energy
B(TH1)(T12)- r (T+)
line
B(T) (T2 T) heetrol
Lntensi o
26(T+1) Ttercit o hecrol dthende
1
iNo-d molecuds hatiipeig
Csa
to esd
AF26 Tefaionol ratant
(rorue Degeroxoo
oSSocia
2 rly ousr cner
T: T:3 AF 8(41) I xehulaim a
= 6B TLevd
FREGUENCY OF SPECTRUM KT
hc
eyency Specrrn 1 a u a
e ma noia
where
Meqie d fo frastios feve
Lneg
AF Short Cu Jmar
enegy gah ob
ensity ofToliation and
htehrun F)mus be qual
absen tron
akesece
ton or
. destruction of a metal
R o t a i o n a d M o l e e u l e
D i ' a d o m e m o l e d e
o n a t a n t c
(cvma A)
2 1 e m a u n
bond
Ingts
Rigid Tto
16.2646 known d an ore.
il h
T(T+1 o.1
(T)
p o l e r n o n e n t o ' h
T
fn+fz2
NTE icroO hetrur
in
ora
turen fur
he
r(n) 02340
nct
-
n o y rotesr
urrites Problern nrd
ioigid diatornic ttne
odjurst
The Go betuu
ren 2 n
Aitr Inse
2) in
1 i T U a u e

ndrun,
ston)
Pypody igid
urning
totererust)
dito
oftesA i Colo
itait
16.2546 p7
o
I 2 1 C armu
() 6
2
1+16
6.364
AND ITS CONTROL
10.70
A) Degnateg of 3 Des ts
6-RST owailabie at 4s en egy
Nbn- Rigid rotor Real molrtade
(Diatornie
molti)
TR bond etuween +R atorna
ehowu
pring bond lengt chang
dutiny
a IY o c d o to intey G 1nCoporat
fox Co
molccule e
Tmox
3 Caludat bond leng duwing ottion a
ne trm
qiven(6= 1.64 Gn Centrfugal diSfortion turm ored , enegy
mo
mu
n fofua .
ukr
kevd
rotaiona!
3
ono
-36D
I290
F) 20
9.12
i* 290
FTo)
56 25 Non Rief
Rigd
Selecion Rule
etum

You might also like