Module - 2
@
Praguatior gf ste Daligirs Maltamnabitas Tndetion
Sputial sts_af Meeebitns
Z = dia dh aabgos : {0,1,-1,%,-2,°°°9
VN - kee set v ee Aoatigua ah “alunal babes
{9,1,2, 8,
ilgt - m stg — dohgud AD, 8 --P es
{x €z| x30}
gq - Me ot Y rationas vwmben: fajb}o,b €2, bo}
gt. - de At g provitine solienal Wumnbouw
a _ dm at nonynd alignal “wwibo eee
R = dhe Bb ap road wumbens ae
pt - Ma At 4 posite ouak wuwabens ae
gh = te ae nano gual munbirs.
lo fle sag A Braprhere numbers: [oer ty Jou YER,
ck te set A angen mpl wide 3
dy - 15. n-th & neg
Tn ctx We OMamins Oo Accra)
ys i th Sedat of fee tga wots). oh LM ty er Lute
Wud Untoloms dmaeaet| aga told wiathanahi
AuluctiongY
The _Wwilt- Brdl tring prtancinle & Evuy Nawinpty subst af ot
hivlams a drallet Umut. Dr wtrnr Words, x
Wolk dere! ae
Theotow 4:
Fiinile Tinduclion Fouweiple A frmnrsple Mabhennatioat
Dahecbiows
hg ap esti
oy SC) es Bue
Tp 900) te ne, Shee Ser) te Bae whi,
ba onbibasss pron, LEZ:
Prog: Let SC) be om estaba, odin
at oben @ mule oa A a
Lb, Fa {Ee rt] St) me fatef aud ne fow &
ae ne
nace t 8 Peal 8lO wis fatse’)
Lk Wh Oddie the hoviio bightan. Feo ae Cine
F+¢ ——@
Tri, dey the bans ~ddiiing pemepur , Phas whe Lost
elowntabinn. “B""
Sue BO) ee Bee, (aecotdonng te CO), wt fettones
Yok = SEI 1 BOF & FO
Sint
S| amd (h-1) FE os A’ ms
FE
Amalie Uoeruit
put, Sl @ zt ond 3(s-f) ui Bux GerBy tondtimn Cb), Gk pollous
=65() u“ fim
Buk abr. Arc we frtowd beak SCs) ix tres.
Thix Korbibabict, our Aasunypbin, Brak Peg.
Fab Because bit etisti at fea One hand
ep puck Mat 8 (4) te Thue.
Th tir The (1) slatewent, the condihon -% post cad
Vn Ayetted Te 05 the hasis Sp, ooad Pb) v4
Tuas tae udclive tip t
— Chote Ft ae de fet tordibon a net :
we need ofa takimtint SQ) a Be tras for ovat
qt cemant My Cz bo nak tes adler fares Let
a Hast. piace
- rips Ore) 4 saSoR YS ye “a
The Set ae wacom mei {0} a omy penile co
. poll ~ KdLed-
q raphe Sogo
edie tare A Cumeslantes » 1% bopsese ee Brie
igen PASaneple y deg pron: ces ee
[Bora [ven GD scesall) 24mm 965) |
NA
wat
:
prrows feel Sse)Prove sew
Tduchin
? asc St
SCID
we Orsaones
s= 2 F
1=
Now,
ds)
Sr+)= ZF
Tel
Boe
NM nezt F taitdes-> tae
fel
\
ae S45 sits
tol
ea
cng —slolimenk ty, athunobicas
Wer) soy
ht nz)
o6
wties
Weed BRC
Sa ge
Tue
i) Tuduct ve Sth
Toute ¥ sc) fir tome kext
ACAtI
2
we wok te deiua pe t ¥
- ltruterre
&
Bat (+1)
ru
£Cke) + Gv
ther)
=
2
) klesi) «20a
(eat) eas)
SChH) a ae
By tae Phuntifle y mabe fecal Tndenlsor, 3(y) ar
tne * yh one zt ee —
DMKER, Spte teats ao Peles) Caney)
te]
ot a n(naylenay
Lt Sly) = weit - AC
O° he 7
i) Rsee Sto bk Ne!
sc) = sips ir Oa) 4
ie) 4
601) a SaneTvhive Step Aasinne dtcok for home ky pext,
say a Mee
se rite AceOAy
72h a4
We oak to eu te a F sled = wee
sCkre Ee ate ean
ke
. sha (Kar®
- 7 Ee ?
_ ReesDotet) 4 Od
gceay (AN) ab ki)™
(ooo bat +14 —
Cen) ( (ut A shes et |
2 6
ppt vets sO
Gen? (er pos)
ster) a 6 |
at SO) Qe a aioe ee |
‘un Tent "2ei-0" 2 [teat 4ste tn yh
nan fensy)
Lt SO) Z(ei-v*- n(2n- Doan
$2 4 ss
pom sip: ub Mel
SQ) = 108) 4
oe gC) bun i || wy -
Ludarh ve Shh 1 We Ouse Ahel Sn) vi Fee for
Awe “ent & .
SCH) = z Ot ore (EOE iaey
b& a don Posh, y
sta) - (kay (aio -1) o(t+1) +1)) of
| . Ce Caa) Oe ar
| 3 a
kt
st) = ERs -1
tot
Hh
sD, Gay
We
A frees) (Her) + 3 Gay)
a
| Coaifietonn) + sO)
lr On Lt be+3) (2% rH) bea tsk ts)
Gu oerireestey, Gen) 24 Ceres Gey)
bree + 5) hn) +3) (An)
shea) *
| SU) We faeyp Mn né2t, 2)
z nlne = po 2 SA Bhp EMln)
Y a
Ld sty) = Zany) = n (wan (tr) |
qe
3
Basin soy Ld el 0 SC) = (9) (39 oa
ye SC) en Bue 3
Tudeh ip! Assume Aorak Cup buns fot Some ext
SS Ek kay 2 Klee 2)
t=t 32
idee bee Hante
4g
Pha (aay = Ga (ss) Cars)
we browe te
Ska =
S(t) az brargde-¢4e (hay) 4 (eriplete)
&
= 2, kleti) 4 Er (e+)
tel
_ EC ey ey ete)
a
&by mothanolizol Dudek, prove tab nly tl
74
vn ezt
SG)! nL yo" Ynez
hoses steps JR M=1, SCi)> Ip at
Nop of nee wt Benes os $07 ee
Dunluctie Stp! Assume strat $4) a Hoe Jk some 4 £25
kly gt!
a
gt Pa = (i)
fk steep, m bow be pt, oh SCL
vs Pere oe — oedhing & 09
< (kn) #} ok kal {t 47)
< (eat)!
1 2
a MK EHV K wis
we
(431% 0
Sta) ne HG
pr ans me) for at postve satleg 7
sty: ane *-7)
Loser Step: Lt nrhee6
S(a)=2 ss) e 46 <4 S6-7 = &
1 24 < 24
< SQe) vig truce
Fader tp! sn) ban fe
ea oe. uk 2 (Kr D —vV
pe Drone te didn sta bo f sari)
Yo nye white moné
a
gous LEZ bah 76:
o., Ce 2 (&t-V—
4 Cha) eA Ce
-7
Le) Gers) £ry Gath
[becomes whine k7/6 , We boone Par e -
= 1874 |
ater 2 "7
+ sa) we fre: —
Der o> ent Hn nez* ood ME nD,
7
s@jrorpur ¥ nezt & n7s
Bisa sup) LA ME 2%
‘ist eo s@)i V7 5*
S (0) dee woe
indus Sh s(x) fron fob Bome hen & bys
cc): ke el? Re
Wwe drone fe dads tu) Henk 7 a
a" > (an
kit A
gels dea eee (aeeately ADD)
“nigy?
al oy
S oe
Ga het
yeh tehe phy U4) , an
gent raay* ys
5*7 2s) +)
7M
Ben
==
[.. ke (aa)[SP fA Ez, 5 duds yon —
Ld SU)! & bwoes nen
Baas sip: Lt M21 807;
5 diwds 17-13 © olwds o.
1 SQ) ta Lee
Duduckive 1 issue trate Stu) te Lew {* Age
b eé 2+,
S dwdes Fk Ss
| 8, eR a mnt ge Meee
| Tin oteas a fa mez? __G)
Me Drow te hides tee Hate of C41)
(KH) ¥ (esi) = (44 Skt 10k 410k 4k 41) — le )
| = (Ke- H+s (x4 4 10L54 lok? ask)
gm + & (44 tob4 toes 54) — by
5 (wre kh 410k 4 fo eo 45%)
<5) miter, Por te 4 108 fo Leash
RY
Tea Brows Bros Cena de a witha J 5.
9G) te Be
) Are “oui pork tabigi My 24 Ror Be Waitin os oa
wen of 5% pudlor 97's.
Son): Wn Lar be betittny AA Aun of SF lpr 7
ny 24
fosuls Shp: 5 (24)
245 (1 1) +(S +5)
SSC oe Tee
v
vSurdarehs ve Astin Mook cCa) ia Brg
kezgt £ ky 24> -
be (le dae Da repens)
Supface Te apelin. of A nahn ¥ se
B eon & AFD
rn if i
aus i!
Using Bir Bpetindads TA, we Prd tral
kes (1874 + (Sree D4)
|
we
Garr) C949) HET A 40
Gs i
(Itt) +S rse- 9) Ces
(7) (ATS) tact 1
Tha Slay teat SCk) wh a Aum of TA & sis.
SCnp we Fem Cri le te fe Magis ad
vet Risk ass Seneelaeeeenes
+ Ong
ie hoa: bin an Oe vyonézt
18M) 1 <4" se
Kass _sdy
gy a1 Xa A225 3, 427 3849 * |
neal?
Lt SCay ws fea foe
. feat S04) hy Aero gor 462"
ie SY Asus.
Fudnchrarm St! z |
LAY 3 On <3
|
MI 0, pO Mao |
koe
Oye
aka kt 43
mr BN ge sh a ste 54)jus, sty) & Baa 7 Moy Mort, Mat? > 7 Ay
Sodus Sep Arte tren SOD ae Heat fe
at Netty ok
Yo, Moat, ot*, ae
ma
pur £7), = 29:
‘
qh, sCk- ) @., sC20-4) & ‘ae 1
_ eon
PC eee
“s g¢en) <8 Pt , sas poe ¥ |
sete deg etd sh a |
ae bye we |
|
g Moor f 7% ws
tg acd 5%}
ofwe hel, Hed, ays le babe
Hy, cla dade te!
pn Tey eC Hae nex"
nw
ges 8G: EH HH
tol
fas Sips Lk nol
ete 2H,71
2 axt-l =l
sa) ws tem
india pnt Tak SC
| al fu cH
= aot > Kal
ie Hy ii
\ ee
| = (ke) Ha ei
| 5 f oT
aCe) | tye Gaol -# + Hee)
al kl
| oc GpNG1 7 ar ~ ke Hee] SF
| sche) 2 he - (r+0). eS
|= clap ve et ee
(ies Et pow OD
panna
O44 5 Jatt +S
fu
ppt) 225 = 54Gt StS eS
0
eo fad T+
yease ete TA SAGAS 4ST
| Wo +4 72s F qxeTtTeT7
| } ©
RECURS WE DE Fini ons
Styruaces fh Keaprtnce vis Dw gf cmonds
|g & dat Am Candin ab the finse Steels) re Hear
5 vo 6uyprintr, Wn tHAch On
Eg: Consdi the snob. Stapalrrte be, bijsesy
b,=2n fm out nen
Hist, we fad aot :
b, 2 2020 byt ls byt each bys be sre.
sha fot uy othe WEN. (the Lupheit
a by >on)
- fi Sr bre Seapinen OI trnpbicrdly
a ma he pond fame is suitedue wulo fe Fi
Styne fom
|
Ae aca m a4 - My, bs bo, - be Wise
baton % new
ton iy a fatjng hie Stgytante oi
he by +2 ae nzr anal b=2
>Ktwst dept - fie few dees Bee sequence pu
Unditabiol vifscy Chace tee 6 woud poo_— Exawples a
wbbdin OX AeUrs! vite. fr Lew Si {a,
D |e lack yf te pris iow VC
DO rH Wao “UPA, =3n+7
Wayanrtrts) yoann’ Wane 2- cy"
a. Hee, a ee cblaiiest fs
uF . ae ay-l
|
| N oa 3
a7 8%, wt
| of
| a eR ye"
* 0 Fes
| aslo, 213, A321 aye
|
|
“a os ne +s | ~ noe
W) ane nln”
OF 3, A= %, O16, Oy = Ur
Ay HESS UNAS, Agr A= T= 2XL*S,
Ont = I= 243 +5, Os 4g all = 2X4 43
2 [Baar a= 23 | W+s {* nyl
Z202>
AN ESS 2K2+1, Ay-AR T= 2X3 tH, Ay-%=4=2K4
2 Pac Ont eet | pensyO
ee
DP Oyen
A=}, aagr » %%24 1 ay 216
Qo -O, 28's
3 Pehl aa- Gass aka 41,
aa axa
Peace] fe vo
ys Ou= 2-C-1)"
AS, Aral, Ax 8, AF!) ages 451 :
we’.
wean, eee RE
a all ie
AeA ETB, Myr ays 2 a= ye
AA Gra 2, -
[tena ons 260 | 6
Hlu, bye [ Dave Alitrmale +e ond ve
Wha Aha\ stent Btu (CG) ty add
(Stuck vas 8,5 a,, Of,@
|DaA Stgprmee {an defo Winall Tap
| OH, n=O, +H yor N22 [Ass ts
H
pone ae = Qt) +3
2 [[an-2}* naj oy 2 Oy + Ie
2 (a, +2)*3 -
= Oye Ha eH) HH aes ay ee
2Qa,+2t E+
2 Any 4 (37 + (n-2)h =i) tH
Ont At2t3+
SA, tre Bt erent
pe hove Oa
hor Lt Steere o> 4
ey ; ,
es ge faa wid es + Oe
a ce fotnrte a On ~& .
— n(u+) ye
ower} + ee
% Fiud daw beapbcces Lys of tea stgpstate fined
P racwery “4
O=1, On224,_,7! fo ote3
On
1 Oy =
we
Oy =
en") 4
= 24,44 1
OF 2Ay 4 +!
=2Poy,ti\+!
a (2 tn, +19 +1) +1
= gO Oe!
-t oa :
PO tay * aS 4 eae]
* ee 2 feet
1 + oo
we Lowe A HT er
f}4 + rp gare eet) ae
Lar sand ard Aete
- at_
Apt ae 4a" eee fo, mi]
amin
nl (h-t)
WM2 + 2 =
oni [4 wy “1i
I: 0)
7 n are Kehouaaer Mumbo, & prove thal
4 rs wt AU fositre Aalegurg wv,
T=0
Sol (Note? Fikerace Met te ea pad a
yO Rot - Frat Fae, fe nze
LFrltost Ae ane ey RAF 23 bo ow
Let WA AOrdlin }
bog 2 Lv
| ae - oh jt
| Zee hth ~ OWL) = hs By
Tha 3 +2 He Vurfies te Aequirsid ActLe got n>)
[Baa pt etme se Ata Ie Ba oe, Ay
| SR a Fax yy
ae wees
oo
kal _ kg Z
Pinks * Bi +f, &
| FX Faye t FG
| 2h * (Fat Figg,
kal ig
| 2 fr oF 7 a
| ts i YY Fibebae es
| Thuy Bs resut dy Lene fee = Ayp Tatas walt os Que bifid — Mouavely 44, ———f
072, 4yef LyaL, cathy fh npr
Bins &. Le
boshytlys years Lee loth, siterip
bg eh, th 2 B+l ey byt bg gee Pipe aag
Ly Fhytlgs b +g- 7 lg alittle 224419247
bs clyth o7eh ou 44> Geely 4742957
be = eb eo eT Flog
Oy FA ase Rlenases Winn tik Ls Lincas
§ number, thak
bee Fey fr Pa postive Adlpus
SL Wedd,
~ fo=9, Fat, FyrGPyta ss ys iach ie .
Lo =0, Ly, B SE OET hy eby yo Lye {
hel rotls hy ¥ Fe e,
biosmslrd= Fy t fF, wreees
3 M's ae
Lye alt ok + fy
Hue, tr usury Aue for Mel, D2.
Arpinme teat tee Curd te Hoe fo Roya, k
poe |
bi 7 HD
he roar, Ly tt tel (hy dy Y Ly)
fut) (Sea ¥)ee o
baat =( Fic, + Fendt (i, 7 Ef oy gu rs
= (fei th fo) 4 (Rt few)
Te = = it fia) a a i, a
| hes toate abd eat,
Pe el a ta Ee al
bye faa t faa) .
)
7 [fer te Filenae Sequin, fF Bye cele
| eee. oy] 7
se Fe. nz0,
he a] bs?
f 7 ey
| re et ES (33 2) fee
|
|
wie ge
Da feat Jr need
Assvne taal Abu ett dds Bint for as
wre kde
A b be fhe emits. 4 Fibovace swies
eT) ape Cs
(og Ae sptetee)43> ey 2 i. (PTS
fest ee 071
sales apt Fog
sapere eT
|
a
(> Ene . QF its
.
atl
AE
Lee gre) cl
EGE ey)
tn shaves trae te CF oun pow
How, Mh mabmalicas + a Catnanate pow),
oud pe i wd now reg ol Ne nkegert we
—_——@
Ficyeay - fas fran poste dnfgarie
x F
se Pres J- kee —a)
get 2 eee
9
Doe be pao Leal ye
“yl
SF \- Fees ee
toi 2" me
+) A FE.
+) Fy. re
fia. & Fle ay
; ar gel 2 2
\
CC!
‘
A.
#F
be
NO
+
:
BA
VVye dour hal,
Faas > Fase t feay
_ Recent tus, ke ge
&
od
” 5 fy Eat = I (Tees) e
a :
The butt a Sen neem4s>
mabtematray MobudBon , wt to proved thay
Hema, by
n
>a Fr) cl- 1 mPa
aid —_
— — + —| UNITIS Fun pamper AL PtvepLes of
COUNTING @
The Ave of Stet an
gia pur Late dow be pufdimed 2. mi! Wan Whe ¢
fol, Aan be Pufred fm “HW WAYS , Onde
fun Laty Launet fe pyered A vaultowe (yf thar
oh rs Ulnn tone ton be Mee pbestrod a0 aug
pe 7 omen) way:
Ente A omfult Mint adituvtg whe Los, fre
heecks tack Or Ot4, FORTRAW, Tava, aud
Parcol forr Atitewmerrol at 1 20 books by
Shudunt Who di
Andirertind Leasing a pr
| Paparnceg langage
"ae ps
ragiona «te Lope done anol
“Tada m
Ve
wv
oe tute
slags, iy Lise O30 pos alee
ecm Bat IN a eee
ouktenes ¢
ome be al ee harp out, sen
ne lerrqualid ey be in (ed wi
pas Hn ws also Posts OT Lene
Bee
ugg
E. .
cose ee
one YF Cate strotents
a w Aaluchoog a a 1b
ST OY sciclag 0 pit te
- Gilat vo YF Wap Y selec ng a gtuolent Choy ot gor?
vw (bE BhD spp ta Tae of a
P “pp 10 Qual Tr A “Gabi q “ at. et ti |
* Ay Wie
pans 10, te Bow vaaway’ wns was SE
wel .
+ a Begs (Skubg DE BAS OY
“t : wes (Sled: Dae
cua, & at fiat Oud aw ,,
na
toa Stor VY bs Lowe Tr RT Coe Bt peftnced
ya ET
re
A
) fubow Had That ond St, we ets |
a4 fa tom pleeot 0. She gud 9% fe? a
Sol sor Los 4 shia 44 bs v na
ae 5 FY rach tb, Cy ts met &
Posel btw p eet gud \Crhe ate a
pio), (P42, Cb, 9, HP
ay
es
Gna), (asp, CH, CUA, (8) ve
(xa), Caddo ¢a,c), 4,4) C4.)
i) gggcie an day et od
>
adn be vane eps a pews Le 00
2 pypnur four ayacbats ies, best re
tn To Pt ca digit
pd Uo ube gud figt COA vender!
Swe f Bagh fettins Wh ue
weg cule tale At wo (oyContr
4 “4 4 Spnibols Bee tae eancly Wa
TD seledeeg he 0 Ueber Among 74 Meus 4 :
Db, kiong
ayn guished, Ben ih taarirgt Be uted
* pee Aah Lelie tor be Mikal 2.
, oq
| eg
> Fist diyt door OA Stlechid ten IQ
ped Se scandy low GES
Pe aa hematiinch Bh Styoteat ae Sg
[ 26 ¥ 25 XB XI = 58500 naugs: ea
pla sustaurout Sells 6 Sorte eee. ee ances
| Sadiaen dae, 8 os ea and 2 told beverages,
le Der tot anys, ta heen toa Mlk gue
Souk dang ane Lk Betray a
FL motes Saline ce Pear 0 foth fo
[Soke Rust clei te brs che Way CPradusct Luly
Suourd theta An gyn 2 9 Lap Chtoduuct, Pole
jn. Ae tata vane f hay ba sl cour whet
dus [re eh IP EP = 98 (sume Pale)
Trae Bus Lords bikin hanes A amd Bane
| ue Tee tc Getsern. flows ond ¢. Pa
| eabon gf a pie
Af fr wo fois las rae sect ot Bee
Ovite +
Sa At B me 2 pat
bE ¢ mes may
cash : Coola 2 Lay (blues udt take tee sain
Ke A d& (Chaos aay. ea+ he numb J Ways Dra ton pole Me Sours tape
ws 4Y¥ 3X9x3 572+
P a Sy at Ya Te Low
he Nn ayo 9
ea ws fee 3 “OT vw ey
ee Dros oe oy
oes ze i She aged
Ae, WE ew TE play pit place so git plas
wg nef VA Naty as wep
x ON nv sre x Ja doi]
4 que tte re Se the 2 Planes
fe [he tress are go fous seqptrrees |
© Fiad tw nambr f Grunig Styrene oY Leas W
sao Brwarg Supine — Ute 0 AK!
Stypumner of feregt WL toviauy Yo positron
Me 7k g peg on fowtons As, o
Da ey Oe fi etre 7 Oe
ae numb ¥
tee Bat bate wate oak
wk
Oe
Leas oe” WK Od bathe
wove
Wll¢ tovtowne
BR PSE ne
i Muir fg bys le oo asé
Byft Begone J tadiieg Adte =f]
| peers
|
| posta, tue ddr Me filed oe
at
3
ve
jqux ari
Pile eee ak
«ei bi Lyf teat Edman ond. ead.
pata ft
a) Bye bar aoe Mn, b& ye ot eal ie ‘
| GET ee
| SS, Spon poskous
qh jam be fil 294 5 64 HOGS.
[x brew ose 64 byl Meas bike Id
Ley Oukh Wid LA
But, due Wx I bola thal
hit (it)
|
te, See i oe 1 and ols Hot Bed Aut
as 6h (6 = Ae
|
ine mp de a sa Nook OD
| f byl wd bk I wu 64 —— (&
RY eyes bgp ond ink tat I ai
ne yom of Beffa Ligie ta
G)+@) - Clad pot a) fAv £1 = JAl +16] ~Jan
|
le C4 +64 -16 =H12-
\>Permutations
Supe Eaak MEO Poems On! Utes ects od
EE na glam Fi eolame :
ch v boos et, Gi-)
j we on wey 7 “4
al om x4)
ways ¥ haasng we bjt.
Bak the nuwbr HWitenk evar —
tubal Os Vo Bebo: (a= xt1)-
ey PCH at) fh Mp cond
PCn a) = 1 & -) Onl Ln -241)
pos)» OED (oh DHE
(4-4) (1-4-1) (w-r-9)--
[oe] gf| @
Bucaveplas
affircnt Wwohels of Lingle 4 dann be fokvtol
fr LetlS of word Flowek 2
ven
gen) Tare ate 6 Meter od alk Oe, Cah aiee
po Rypend Me J bude
Go fo. BeSK evan 5
4 Gao) ae ia
2) firs Be nubs
word Success
|gce) Thue wer 7 Mien TR ae 3 sé,
i 2c4,
7 parnurlat one of tue Mies be
Tw a2 1 ek
| = Mangers of all T MWktUg wich such
ese rapebinve AW Satter ee
el Xx Updive Co
|
[DESIST ae 2
STRAY) 2420
as numb Y pirenlabom YF i te ¥
ba wid MASSASAUHA. EX Pew went y, Bo ae Be.
ls O24 dogtin) How mous Y trae bein Wk 612°
|goth! The gen ole Dos 10 Leer nike
BA, BSA, od om, Uw a OOS om
pa rapa ef pmo OM
10! er
= 25) 200 oe
spre, * 7 28= ieeeuea |e
TY ho Pa as ou Als ane to he one
3 Y NSO ore singe Lew: Rites
oe fe & pomudes tus Gag, §, 55 M,U, 4.
of pirwilat or dy ce = 940
at ail
Fot Fa prgnlatons fo bys wrth og
fee kk vn dicrded, the. fou ata 4
prot os & fe, bab tee due Axe 3, four ane 4.
“seit HIT — Te
5 How net poste tiliging Lom Lie fre neg
Die byt 3,4 ;,6,5,5,67 Fe
a 5,000, 000 7
SAN Hoe no mum be gf ta feu
Siaee S000 d00 Lay
7 1 bgt
Ay Come tabs gstear $f ok-y bo erdeeeal S.ove, 00
accthase ae ® Ey araly,
Thue ote to Ih Od eo lar
Y Wy 76, ee Hy WM Ay Othovagennenrte Wes
Ad 4A Wd ey miy owe Ss.
Me 7 WRomginesr dt weer
6) See
> 860 "Se
ee
N= Hy My He Hee MH
Yat eaeWe en @
Me Batts 1G %, Wg Mug % a
y N=6,
dap 4's ord two
Me q “ alent iy
=~ = {9o
ty > 7, he Wunder 7 Operas x
! "
40 Woh» mb
. : eek wa
Ou: 12 sae 10, Nun bers
ae gy antiques 4 nn
Mtns mee aes1 Com givaTtions
COM BUVAT IONS.
Seluct o4 va se, we a fom a sk Y NZ
5 tr te Colt vi altel
opel wel I sejuta. Th a Cienalad 8
yn
ct, ») 2 "GE (Y) oval
Pn, ») ht O STH eet we
Coke a: Rv atuwilad ond A ke met-
yw de Lose 1
a. 2126 Nop
|= :
| _
| ow 5 ee wou. “mot Awiltl
_ wud, fe select 5 ek af Momaueng 4 ac
a, Nays. 126 Houg.
. btal woe g acy bick the seaics tain te
fdeiot gg e196 4128 7S
7 Bad Be wn bi fe ee a ae
Fa
A Oy bt poe
din the eae be Hilts pevong 10 cyt
[Sen 86
Dyce GD pa ate vaca, Hoace tt tly ee
4 ony dan dupteosinng Orlin. “4
ip gf ee peed Liye
| ae we EPI WIS
ia AR BREIL ~ 2 spt> Prom uur Lowrenonts and fe Marit, Drow wah |
agwantid WA ech “
#
sel, dyad Memtentets arnany J does de LAY os
7 nus:
y) = oar
dy tiest Wares oondrg 5 how be plickecl ire
afr 5 Si ways
3)
70 1 dyftet Lttths. Mambu Monarch
pow, tute 11 (hy tee tirke of Paracel
x mba nef fotsstle vel As
HTL yp Sh gn Te BR [
al al 21 3 : |
oT Mm + Of tank piso ie te
VA fat oe ote ol Oi eee ay
Wed an bag trond holes, ‘
ws ratak wumnbt eae
Teg tmibucabons tee plone del care 4
Yuicliot Spor Ww! ele
“Me e(p)e ns nt Be
PO Le * Gey” Gog 11 gh
su (n-1) xHts
(ne), ele a
raca-y ohms mate 3):
penta fs 0) eH we AY
jo agonal — -pln-3) oF
| netunl-9d ‘3
vrgr =o Kno
| nee. Ty must te a pges ee
+ oe je Dai tide wad we
|
|
|wd te ss eles OI tas, Whois Dee
dappook 4 oy gy Mipouesicn. Af the trpbacssion
Gury, ae a ond ya oy dent aod
| 7 Gey" == yey
| Coal fott we ee Plmcomaral Teddi fr a froin
the nee ‘os () He? Loaainiat 20Ufieonde
yee ts psn wbes ROY fers delp
(DCG) Gare Ger
1 gan: age Yt pee ea
(Grp EC) 0
| Whi ag =
[7 becom 1s Ears =) Ci) Che
aC) (Ca HENS) 20 ee
Ls We ded: os
2 (atyy"= - zC)y Wea og
WR He of ze yel, we i“
o= £ fiyer= (IC) on )YD Fina a Aogpiaeut Nye a tee a |
lait PTT pring
sa! By te eee hihi ,
(%-5y ye pr) La) Cag)
pe at fe abet eat
("*)-ex" cay) = 146
Combinralions with cupeth ous _
J2-A
Suppose We en te click rite bi savbuaben:
ad
Ce petits pen ae
C(usa-t, ae A ') 2 Avent
~ Tat Cu-
ss Pep ye -) Z a
&
Olnte la) = C (ewe, ne :
eats te saps
tb gy, bie, Wile supsltiqus ala
S coh = (wes, n-s) ruwedee of
‘wigheceh ideybreas obfeds, Lose Be
“igang” 1 isnt angi
_ Bh lhe ee ante ge Oe
an ans
H+ tere t= - .|
Be aifaacd a Daalicay ab
Dy oes 1p teins wre to da devoid Te naval ey
vay ag
ET ae Ane
gts mele ae, ee uct horns - te hag
wed a 7
| CCnra-l%) = c (7412-1 viaje c(ieiy
Px (1X iexisxiyx sa BE 218,564
2 “yt Pasay se ee
5) wy A wan a dabibuke 10 J 2 vdivkirt
Drgw moan Wei ae ee
7 fnanbes Sag c eh
IsA™ 0, nz Sash 85
[7 en -1,10) = COs; 1) > ‘ols! f
| 2 hook
| = —
Dl But valigi Aol fous fe
fi due wens gq vo retgatove wnaltg
MH, HAM EY TMB
= pubuth we ude 4
Gy HR ty 2 repae ;
Hie, yes # r8
eer 458) = CC12,8) = 4SFundamudat fa Prunny
SolLians _ fo TU Quishen “Pye
mast Cars trae dna wodils, divtve xolours, :
fie and. oa vb Ze ic aa oie
Cos wranadilured ? e.
fart ge Aare holowr7 7 ud
Sols we tom dive Moet vaireg te kode gf Product
me fim ee 2(h radels) & (1- calowrs) (3 errgine Bip) X
| Co Bans? typ = wate
. 2293 diyfaut cars er
wo COM wale) (be Waele? X C1 colowr) X [8 gre Epox
Mow ue 3 (2 Roms ty pus) = oT SD
= On cass Drove Anant polerit-
ie Ba apres Ne Ea aE Ta
is) mew pra a hoe
A ond ee assomgurtnls ie pont?
ie it owdss axdjoataat |
Ld) Socvoreaneni= No- y bh WD
BE aay rong te Much
cme f nap to Ant
0!
21471292
aF ay?! oo
rucs
weyoye ths tind, hy AGA tan Taal Gt
eee Whi fA a to (9
|
WW a Ll 7 931600 bangs
(abe 9: Whe by vie belo & (ra)
}
7 Totat Mumba mile Ah Gy adyound iy
“ PB 83iboo + 71600 = 6 gage gba
Ti) Theatr § Vonts te hee given Styees,
o&
Coo Tr A Bes
Wo Doe ets, es
SCLGCL [600 TTA !
tw han be Levoles as Sragte Lhe
No ote
othe LH ns y
en ) Ef ot os
oodrra
= 931600 Way
K vu
15,600 ee
=.
3h sa@
S| How aarp foro li
xs haar be doled at
3, ee Le Y Me Wont “Ww te nat a poisea
Th ploblnn di alriady poled i petit. leas re
| Man drone |
Oo Melon “Le vol
"et ee signe i, sage Noy La that
plete, Le Mutt
ae te ee ade i How wacky dade “4
peetfe possible Taw Toes mrt Y fa&eal ?
2 olewbifier donboains 8 fostous
ie putin Hoon be filed 2 bag (tes)
Mganaining pu. poskons dan be fd
Snap (D6 alpha oma 10 AAG) a
- Total possible dll fi, e
_ 28+ PE X SEX SEXSE KBE X36 XAEK _ %
it : OF inte mMhecued
Vv.
1 words
2 Ur 26X36 - 36
96x36 = 18
LF Hoy vadeng dlesbnet sak digih wokigin orm be YRontd
2) wa ar ey us
2) find tue fa Tas” af tee Lehllon im
eoeee fo plied aoljacint Als
se ann OX FXUXS
Fineeae ? =f eee
240 suck tntigieBy) TALLAHASSEE
Ne- ¥ wrtov of We pithout NA vig (runssee)
ch te wi
a = al 5046 Ene eae
The are A Lecabors ai. Above A 3-Ae &
he feed Wilt adjoint —Als.+ ’ é
SE 4
. cy mt to tee, 34 WA ww UE pcx a
(3) = (ala! ~ Tar ee x)
ah Ways
ap me ohocpiee 9 tung,
Ay, Meus Ose Gh Nop B witwt £ Ale ®
a S049 poss: be Slyyot, — Ulin 8
Sowoxsy < 423360 Lap
paid _——_—_—_+
aor 7 Eebiw woke pan abs okened vib Viiang fa LH
OED fe A 7
tia olution
“Tee me
onde 6- dig waegind (Vie Leading |
oyne digit uh Aupeated - Cong’ 2 RAGE
= Showld Larne nth Or
we ke x XOX S = 13600 bays
v
3 (ura)
“9 is ga
i) urd ane no cogil Xt Mptalid, Her shouts £4 Ween, a
Nuwngir pot stortid WO 0
Numb & tnrotirg nik O: oo
ig Kx TXexS 215120 ways: vy
_| Mawabirs rt nek 2:
BERZX Lrexs = labo Noy
Va,
ad net et 3) oe ss a
0 od 9 aml we ls (oo yd) ba «
Wt foe wading ree t= BXILTAELE = 1Bhbo ve
Jy) = Be EIS > ISG Ne
—_——S] P= Exe x7x6s = 13440 Ve
2. beled vw q Win nubs yu We MpbLon gy
digit a 15120 +4X JBbuO = e2esam
WD) metedias wh 0 pd midug wh 5 OH
Dae wey “4
Colerrtote Tost ueug te boyz ¥
Nuwabus “4 Weth 0b FXBXTVEN ES 5 IS I20 Lay
5S 1 gxexarerg = 344 Lay,
7 ey rao AMR 1004 1Sb40? 29560
oat soeDie a ; Hea WAMU 2, Al 851851 PP]
ve su?
Sed po lal Dots jad We
Noe J Ortangumsnts Without Six ate (4 mITIPPT )
mis, 7 et
pute 0 Sy Wbndel toon fe placed Belton o
UIs 9M pF q Dag Ta hie ht4 omk BR
7 baad os fe play te SA
otis Aa dant ing ern feer ut,
a (3 * ap) 4) SEE eee
~ otal rawbir of suck artangunrttt At
165 x “Jo 7 Bso wap Cd284 Graph Theory and Combinatorics
20. Prove the following identities:
(i) CQn,2) = 2C(n, 2) +?
(ii) CBn,3) = 3C(n,3) + 6nC(n, 2) +
(iii) CQnt r+ Ayr) = Cat 1, 1) + Cnt 2,2) + + Cl 7,2)
(iv) Cla Lyre 1) = Cin) + Clr + 1,2) Cla)
(v) nC(m + n,m) = (m+ 1)C(m+n,m+ |)
(vi) CQn+ n,n) = D2 9 Clm,r)C(n,r)
(il) Cntrt Lr = Diy Cnt hb
Answers
1, C(9,5)x C(15,4) 2. C(20,3) x C(30,4) 3. C(5,4) + C(6.4) 4. C(10, 6)
5. (a) C(5,3) x C(21, 5) x 8! (b) C(4, 2) x C(20, 4) x 6! (c) C(4, 2) x CY. 3) x BE
6. C(21,3)x C(5,2)x 5! 7.450 8 rh 8 )
‘ZI
r+
9. C(15,3)x3'? 10. 39600 11. 980
12, 7350 13.() 120 (i) 50° Gti) 110
14, (i) 28 (ii) 70. (iii) 2B (iv) 3715. (a) 350 (b) 150 () 105
16. (a) 350 (b)21 (©) 980 (4) 1176 17.32, (a)S (b)10 18.55 19. 16
5.3.1 Binomial and Multinomial Theorems
One of the basic properties of C(n, r) = (" is that it is the coefficient of x’y° in
r
the expansion of the expression (x + y)”, where x and y are any real numbers. In
other words,
fa
(x+y) = 2 (")x»
This result is known as the Binomial Theorem for a positive integral index.
The numbers (") for r = 0, 1,2,...n in the above result are known as the
binomial coefficients.
The student is already familiar with the proof by mathematical induction of,
the above-mentioned binomial theorem.5. Principles of Counting - I 285
The following is a generalization of the binomial theorem, known as the
Multinomial Theorem’.
Theorem : For positive integers n and t, the coefficient of x" x'2.x2...x)" in the
expansion of (x +X. +--+ + x," is
where each n; is a nonnegative integer The Binomial theorem for a positive integral index m reads
(x+y) = 2, (iv ie
When x = y = I, this becomes
Stem S0-tht-
= 0
ma
and when x = —] and y = |, we get
= SC -f)-G) been) :
Example 2. Find the coefficient of x°y’ in the expansion of (2x ~ 3y)*
» We have, by the binomial theorem,
2
(Qx-3))= y (?) -Qxy-3y)2F
a
2
21 :
- >| Percale
raul
In this expansion, the coefficient of x°y* (which corresponds to r = 9) is
Io. 99 = 9950 48 yc Bat 99 ye gh y LEX UX 10
(1) Pear = 293? x SAE = a? xa? PO
= -2!9x 33 x 11 x 10 = 1946. .
1
Example 3, Evaluate 2 .
2 3,2, 2,5. Principles of Counting - I 287
>» We have
2 12!
(323) = Spararay = 166320. 3
Example 4. Find the term which contains x!! and y* in the expansion of
(223 — 3x? +296.
> By the multinomial theorem, the general term in the given expansion is
Jecapstiyne
71, M2, M3,
(n.f gfoemeavrner =|
Thus, for the term containing x'' and y* we should have 3m +m = 11 and
2nz = 4, so that m = 3 and m = 2. Since m, +n) + n3 = 6, we should then have
ny = 1. Accordingly, the term containing x'' and y* is
(, 5 Pearse = = (ar ml i x8X 3} xllytz? = = 4320x!!y427_ .
13,2,
Example 5. Determine the coefficient of
(i) xy in the expansion of (2x -y =2)', and
(ii) 632d in the expansion of (a + 2b - 3c + 2d + 5)'®.
> (i) By the multinomial theorem, we note that the general term in the expansion
of (2x -y—z)* is
( Jeane yy"{-2)"
m1, 3,
For m = 1, m = Land n3 = 2, this reads
(4 / jon Wa
= ——— 97 = - 7
= 2x Tee = we.
Thus, the required coefficient is -24.
(ii) By the multinomial theorem, we note that the general term in the expansion
of (a+ 2b - 3c + 2d + 5)'Sis
1
( : Joranr sen aarisyr
Pty Ma, M3, Nay Res,288 Graph Theory and Combinatorics
For m = 2, m = 3,m = 2,m = Sands = 16-(2+3+2+5) =4, this
becomes
16 ere) 209 pS 16 3 2 x 8 x 54 x glared,
2b)(-3cP (2d)'5* = ~3P xB x St x aD?
(o.5.0 5a} cP Qa)s' bososs KBX BP XBx Ss xa?
16!
eB x3 x 54 2,
HBX¥ XS x Say Bod
: 16! :
aang x Leap tgs
23x XS x Ge red
Thus, the required coefficient is
16! x 25x 53 x3
aye
Exercises
1. Find the coefficient of
(i) 2y' in the expansion of (x + 2y)"? (ii) x5y° in the expansion of (2x - 3y)’
2. Show that (,,”,,) = (") =(”)-
3. Compute the following:
O65.) Cro) Gd (655,
4. Find the coefficient of
(i) xyz in the expansion of (x+y +z)’.
(ii) xyz”? in the expansion of (x — 2y + 3z7!)*
(iii) 224 in the expansion of (x + y +z)’.
(av) 23y*z" in the expansion of (2x — 3y + 52).
(v) w°x2y2? in the expansion of (2w — x + 3y ~ 22)°.
(vi) x2xyx}xé in the expansion of (xy + x2 + x5 + x4 + x5)!5. Principles of Counting - I 289
5. Prove that, if m is a nonnegative integer,
ad +x)" +(1-2)"}= (i) ()e+ : «(i
nif nis even
where k = ge
n-lifnisodd.
Deduce that (with k defined as above)
are
(‘)- 2"! forn > 0
KP \lifn=0.
Answers
1. (i) 1760 Gi) 6048
3. (i) 210 Gil) 420 (iii) meaningless (why 2)
4, (i) 42 (ii) -216 (ily 35. Civ) -3024000 (v) 161280 (vi) 12600
5.3.2 Combinations with Repetitions
Suppose we wish to select, with repetition, a combination of r objects from a set
of n distinct objects. The number of such selections is given by”
Cintr-1,n= (" ‘ = wz
“(ET ect en- tno
n-1
In other words, C(n +r - 1,7) = C(r-+ n= 1,1) represents the number of
combinations of n distinct objects, taken r at a time, with repetitions allowed.
The following are other interpretations of this number:
(i) C(n+r=1,r) = C(r+n-1,n= 1) represents the number of ways in which
r identical objects can be distributed among n distinct containers.
*For proofs, see Example 11, Section 7.1.2 and Example 8, Section 8.4.2.290 Graph Theory and Combinatorics
(ii) C(n +r 1.) = Cr +n—1,n— 1) represents the number of nonnegative
integer solutions’ of the equation
Xt tet yen
Example 1. A bag contains coins of seven different denominations, with at least
one dozen coins in each denomination. In how many ways can we select a dozen
coins from the bag?
> The selection consists in choosing with repetitions, r = 12 coins of n = 7
distinct denominations. The number of ways of making this selection is
18!
(7 +12 = 1, 12) = C18: 12) = = 18,564. .
12! 6!
Example 2. Jn how many ways can we distribute 10 identical marbles among 6
distinct containers?
> The required number is
C16 + 10~1, 10) = CCS, 10)= FP = 3003 «
Example 3, Find the number of nonnegative integer solutions of the equation
Xp + Xy + Xx + Xqt Xs = BL
> The required number is
C(5 + 8 ~ 1,8) = C(12, 8) = 495. s
Example 4. Find the number of distinct terms in the expansion of
6
(xy + XQ +g + XG +
> Every term in the expansion is of the form (by multinomial theorem)
16 my am gs
ch xt x
Ls M25 M34 Ray mg} 234 S
TA nonnegative integer solution of the equation x, + x2 ++ +x, =r is an n-tuple
(x .X24.3,. 0X9), Where x1, x25. %y are nonnegative integers whose sum is r5. Principles of Counting - 1 291
where each nj; is a nonnegative integer, and these m;s sum to 16. Therefore, the
number of distinct terms in the expansion is precisely equal to the number of
nonnegative integer solutions of the equation
nN +My +3 + Ng +ns = 16.
This number is
C(S + 16 ~ 1, 16) = C(20, 16) = 4845. .
Example 5. Find the number of nonnegative integer solutions of the inequality
Xp tx txg te +26 < 10.
» We have to find the number of nonnegative integer solutions of the equation
Xp tX_ $x3+6° + X6= 9 — x7
where 9 — x; < 9 so that x; is a nonnegative integer. Thus, the required number
is the number of nonnegative solutions of the equation
Xi tQt Ate $x = 9.
This number is a
CCT +9 ~1,9) = C(15.9) = sre = 5005 .
Example 6. Find the number of integer solutions of
xy xy + x3 +X4 + Xs = 30
where x; > 2, x) 23, x3 24, x4 > 2, x5 20.
> Let us set yy = x) - 2, 2 = -3, 2 = 49-4, yy = Ka —2, 5 = 5. Then
visV2, «Ys are all nonnegative integers. When written in terms of y’s, the given
equation reads
(+2) + 024+ 3)+ 03 +4)+ (v5 +2) 4ys = 30, or Wty tystystys = 19.
The number of nonnegative integer solutions of this equation is the required num-
ber, and the number is
23!
CG + 19 - 1,19) = (23,19) = Toray = 8855 .292 Graph Theory and Combinatories
Example 7. /n how many ways can we distribute 12 identical pencils to 5 chil-
dren so that every child gets at least \ pencil?
> First, we distribute one pencil to each child. Then, there remain 7 pencils to
be distributed. The number of ways of distributing these 7 pencils to 5 children
is the required number. This number is
ut
CS +7-1,7)= CLI) = 37 = 330 2
Example 8. A total amount of Rs. 1S00 is to be distributed to 3 poor studenis A,
B, C of a class. In how many ways the distribution can be made in multiples of
Rs. 100 (i) if everyone of these must get at least Rs. 300? (ii) if A must get at
least Rs. 500, and B and C must get at least Rs. 400 each?
> Taking Rs. 100 as a unit, there are 15 units for distribution.
In case (i), each of the three students must get at least 3 units. Let us first
distribute 3 units to each of the 3 students. Then there remain 6 units for dis-
tribution. The number of ways of distributing these 6 units to 4, B, C is the
required number (in this case). This number is C(3 + 6 — 1,6) = C(8, 6) = 28.
In case (ii), 4 must get at least 5 units, B and C must get at least 4 units
each. Let us distribute 5 units to 4 and 4 units to each of B and C. Then there
remain 2 units for distribution. Accordingly, the number of ways of making the
distribution in this case is C(3 + 2 ~ 1,2) = C(4,2) = 6. s
Example 9. /n how many ways can we distribute 7 apples and 6 oranges among
4 children sa that each child gets at least 1 apple?
& Suppose we first give 1 apple to each child. This exhausts 4 apples. The
remaining 3 apples can be distributed among the 4 children in C(4 +3 - 1,3) =
C(6, 3) ways. Also, 6 oranges can be distributed among the 4 children in C(4 +
6 — 1,6) = C(9,6) ways. Therefore, by the product rule, the number of ways of
distributing the given fruits under the given condition is
6! 9!
(6,3) x (9,6) = sray X Bray = 20x 84 = 1680, .
Example 10. Find the number of ways of giving 10 identical gift boxes to 6
persons A, B, C, D, E, F insuch a way that the total number of boxes given to A
and B together does not exceed 4.J. Principles of Counting - I 293
> Of the 10 boxes, suppose r boxes are given to A and B together. Then 0 A binary number that contains (7 ~ 1) 1’s and r 0°s, has — 1 +r positions
and is determined by positions of 0’s, The number of such binary numbers is
therefore C(n~ 1 +7,7). a
Example 13. Given positive integers m,n with m = n, show that the number of
ways to distribute m identical objects into n distinct containers such that each
container gets at least r objects, where r < (m/n), is
Con-1+U-rnayn- 1).
» Suppose we place r of the #7 identical objects into each of the n distinct con-
tainers. Then, there remain (sm — nr) identical objects to be distributed into 7
distinct containers. The number of ways of doing this is the required rumber.
This number is
C(n + (m— nr) = 1,m= nr) =C(n+ (m—nr)-1,2- 1
=C(m-1+(1-nn-) 2
Exercises
1. In how many ways can 20 similar books be placed on S diferent shelves?
r
. Find the number of ways of placing 8 identical balls in 5 numbered boxes.
e
. Determine the number of nonnegative integer solutions of the equation x) +x) + 5+
x4 = 7.
&
. Find the number of distinct terms in the expansion of (w + x+y + 2).
5. How many integer solutions are there to x, + £2 + x3 + xy +.x5 = 20 where each
mz 2?
ry
. How many integer solutions are there to x; + x2 + x3 + x4 + x5 = 20, where x; > 3,
Xp > 2,x3 24, x4 > 6, x5 > 0?
~ ‘Recall that C(n.r) = C(n,n—7).