0% found this document useful (0 votes)
382 views12 pages

MCQs of Math 1

The document contains 50 multiple choice questions related to complex numbers. Some key topics covered include: - Definitions of imaginary and pure imaginary numbers - Properties of the argument (arg and Arg) of a complex number - Roots and powers of complex numbers - Trigonometric, hyperbolic and exponential functions of a complex variable - Logarithms of complex numbers

Uploaded by

Kashaf Dua
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
382 views12 pages

MCQs of Math 1

The document contains 50 multiple choice questions related to complex numbers. Some key topics covered include: - Definitions of imaginary and pure imaginary numbers - Properties of the argument (arg and Arg) of a complex number - Roots and powers of complex numbers - Trigonometric, hyperbolic and exponential functions of a complex variable - Logarithms of complex numbers

Uploaded by

Kashaf Dua
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 12

1.

Complex numbers with 0 as real part are called:


A. imaginary numbers
B. pure non real numbers
C. pure imaginary numbers
D. pure complex numbers

2. The argument of which of the following number is not defined?


A. 0
B. 1
C. 1/0
D. i

3. If θ is the principal argument Arg(z) of a complex number z, then:


A. 0 ≤ θ ≤ 2π
B. −π ≤ θ ≤ π
C. −π ≤ θ < π
D. −π < θ ≤ π
4. For k ∈ Z, the relationship between arg(z) and Arg(z) is:
A. arg(z)= Arg(z)+2kπ
B. Arg(z)= arg(z)+2kπ
C. arg(z)= Arg(z)−2kπ
D. All of these

For answers with detailed explanation, visit YouTube Channel Suppose Math Akhtar Abbas
BSc Multiple Choice Questions Page 2 of 12

5. Which of the following is unique?


A. Arg(z)
B. arg(z)
C. Both A and B
D. None of these

6. We can write r(cos θ + i sin θ) as:


A. rsicθ
B. rcsiθ
C. rcisθ
D. r cos θ

7. The value of arg(5) is:


A. 0◦
B. 90◦
C. 180◦
D. 270◦
8. The value of arg(−5) is:
A. 0◦
B. 90◦
C. 180◦
D. 270◦

9. The value of arg(5i) is:


A. 0◦
B. 90◦
C. 180◦
D. 270◦
10. The value of arg(−5i) is:
A. 0◦
B. −90◦
C. 180◦
D. 270◦

For answers with detailed explanation, visit YouTube Channel Suppose Math Akhtar Abbas
BSc Multiple Choice Questions Page 3 of 12
11. The value of Arg(−5i) is:
A. 0◦
B. 90◦
C. 180◦
D. 270◦
12. The value of Arg(−5) is:
A. 0◦
B. 90◦
C. 180◦
D. 270◦

13. The equation of a circle with center at origin and radius 2 is:
A. |z| = 2
B. |z| = 4

C. |z| = 2
D. None of these

14. Which of the following is not true?


A. arg(z1z2)= arg(z1) + arg(z2)
B. Arg(z1z2)= Arg(z1) + Arg(z2)
C. zz = |z|2
D. arg( zz1 )= arg(z1) - arg(z2)
2

15. The least value of |z1 + z2| is:


A. ||z1| + |z2||
B. ||z1||z2||
C. ||z1|/|z2||
D. ||z1| − |z2||
16. The inequality ||z1| − |z2|| ≤ |z1 + z2| ≤ |z1| + |z2| is called:
A. Triangle Inequality
B. Minkowski Inequality
C. Cauchy-Schwarz Inequality
D. Holder’s Inequality

For answers with detailed explanation, visit YouTube Channel Suppose Math Akhtar Abbas
BSc Multiple Choice Questions Page 4 of 12

17. The principal argument of any complex number can not be:
A. 7π
8
B. 7π
6
C. π2
π
D. −
2
19. If |z| = 2i(1 − i)(2 − 4i)(3 + i), then |z| equals:
A. 20
B. −20
C. 40
D. −40
20. z = a + ib is pure imaginary if and only if:
A. z = −z
B. z = z
C. z = −z
D. z = z−1
21. If z1 = 24 + 7i and |z2| = 6, then the least value of |z1 + z2| is:
A. 31
B. 19
C. −19
D. −13
|az+b|
22. =1, for z =?
|bz+a| | |
A. 1
B. 0
C. 2
D. −1
23. Locus of the points satisfying Re(iz) = 3 is:
A. a line parallel to x-axis
B. a line parallel to y-axis
C. a circle
D. a parabola

For answers with detailed explanation, visit YouTube Channel Suppose Math Akhtar Abbas
BSc Multiple Choice Questions Page 5 of 12

24. For all integers n, we have:


A. (cos θ + i sin θ)n = cos nθ + i sin nθ
B. (cos θ + i sin θ)n = cos nθ − i sin nθ
C. (cos θ − i sin θ)n = cos nθ + i sin nθ
D. (cos θ√+ i sin θ)−n = cos nθ + i sin nθ
3− i 6
25. The value of ( ) is:

3+i
A. 0
1
B. 2
C. 1
D. −1
26. For any integers n, we have (sin x + i cos x)n =
A. sin n(π − x) + i cos n(π − x)
2 2
B. cos n(2π − x) + i sin n(2π − x)
C. sin n(π + x) + i cos n(π + x)
2 2
D. sin n(π + x) + i cos n(π + x)
2 2

1
27. If x = cos θ + i sin θ, then the value of x =
A. cos θ + i sin θ
B. sin θ + i cos θ
C. cos θ − i sin θ
D. sin θ − i cos θ
1
28. If x = cos θ + i sin θ, then the value of n =
x
A. cos nθ + i sin nθ
B. sin nθ + i cos nθ
C. cos nθ − i sin nθ
D. sin nθ − i cos nθ

29. If x = cos θ + i sin θ, then the value of xn +xn1 =


A. 2i sin nθ
B. 2i cos nθ
C. 2 cos nθ
D. 2 sin nθ

For answers with detailed explanation, visit YouTube Channel Suppose Math Akhtar Abbas
BSc Multiple Choice Questions Page 6 of 12

30. If x = cos θ + i sin θ, then the value of xn − xn1 =


A. 2i sin nx
B. 2i cos nx
C. 2 cos nx
D. 2 sin nx
31. If |z| = r and arg(z) = θ, then all the nth roots of z are:
1
A. r n 2kπ+θ
n )
cis( 2 π+θ
1
kn )
B. r n
2π+kθ
cis( n )
1
2kπ+θ
C. r n
kn )
cis(
1
D. r n
cis(
32. 1, ω, ω2, ..., ωn−1 are nth roots of:
A. zero
B. unity
C. 2i
D. None of these

33. If z is a root of w, then which of following is also a root of w?


A. 1
B. −z
C. z
D. z−1

34. Three cube roots of 8i are:


A. 2, 2ω, 2ω2
B. 2i, 2iω, 2iω2
C. −2, −2ω, −2ω2
D. −2i, −2iω, −2iω2
35. Sum of four fourth roots of unity is:
A. 0
B. 1
C. i
D. −1

For answers with detailed explanation, visit YouTube Channel Suppose Math Akhtar Abbas
BSc Multiple Choice Questions Page 7 of 12
(cos θ+i sin θ)n
(cos φ+i sin φ)m equals:
36.

A. cos(mθ + nφ) + i sin(mθ + nφ)


B. cos(nθ + mφ) + i sin(nθ + mφ)
C. cos(mθ − nφ) + i sin(mθ − nφ)
D. cos(nθ − mφ) + i sin(nθ − mφ)
(cos α—i sin α)11
37.
(cos β+i sin β)9
equals:
A. cos(11α + 9β) + i sin(11α + 9β)
B. cos(11α − 9β) + i sin(11α − 9β)
C. cos(−11α + 9β) + i sin(−11α + 9β)
D. cos(−11α − 9β) + i sin(−11α − 9β)

eiz−e iz
38. For a complex number z, iz −iz
i(e
=
A. cot z +e )
B. tan z
C. coth z
D. tanh z

39. sin2 z + cos2 z=


A. 1
B. −1
C. 0
D. 2 sin z cos z

40. sin iz=


A. sinh z
B. sinh iz
C. i sin z
D. i sinh z

41. cos iz=


A. cosh z
B. cosh iz
C. i cos z
D. i cosh z

For answers with detailed explanation, visit YouTube Channel Suppose Math Akhtar Abbas
BSc Multiple Choice Questions Page 8 of 12

42. an iz=
A. tanh z
B. tanh iz
C. i tan z
D. i tanh z

43. sinh iz=


A. sin z
B. i sin z
C. sinh z
D. i sinh z

44. cosh iz=


A. cos z
B. i cos z
C. cosh z
D. i cosh z

45. tanh iz=


A. tan z
B. i tan z
C. tanh z
D. i tanh z

Important Points
(i). ez is never zero.
(ii). For z = x + iy, |ez| = ex.
(iii). |eiθ| = 1, where θ ∈ R.
(iv). ez = 1 if and only if z = 2kπi, where k ∈ Z.
(v). ez1 = ez2 if and only if z1 − z2 = 2kπi, where k ∈ Z.

For answers with detailed explanation, visit YouTube Channel Suppose Math Akhtar Abbas
BSc Multiple Choice Questions Page 9 of 12

46. Multiplication of a vector z by ... rotates the vector z counterclockwise through an angle
of measure α.
A. eα
B. e−α
C. eiα
D. e−iα

47. −3 − 4i=
A. 5 i tan−1 43

e
−1 4
B.
5ei(− tan −1 34)
C.
5ei(π−tan
i(π+tan−1 4 )
3)

D. 5e 3

48. For any complex number z, log z=


A. ln |z| + i arg z
B. ln z + i arg |z|
C. ln |z| + i arg |z|
D. All of these

49. Which number(s) has(have) no complex logarithm?


A. 0
B. Negative real numbers
C. Non positive real numbers
D. None of these

50. For any complex number z, Logz=


A. ln |z| + i Arg z
B. ln z + i Arg |z|
C. ln |z| + i Arg |z|
D. All of these
51. The value of Log(−i) is:
A. π2 i

B. 2
i
C. − 2π i

D. − 2 i

For answers with detailed explanation, visit YouTube Channel Suppose Math Akhtar Abbas
BSc Multiple Choice Questions Page 10 of 12

52. If x is any negative real number, then Logx is:


A. ln x + iπ
B. ln x − iπ
C. ln(−x) + iπ
D. ln(−x) − iπ
53. log(ez)=
A. z
B. z + 2nπ
C. z + 2nπi
D. ez

54. If z is a positive real number, then


A. Log(z)=log(z)
B. Log(z)=log(z)+ 2nπ
C. log(z)=Log(z)+ 2nπ
D. None of these
55. sinh−1 z= √
A. log(z + z2 + 1)

B. log(z − z2 + 1)

C. log(z + z2 − 1)

D. log(z − z2 − 1)
56. cosh z=
−1

A. log(z + z2 + 1)

B. log(z − z2 + 1)

C. log(z + z2 − 1)

D. log(z − z2 − 1)
57. sin−1 z= √
A. i log(iz + 1 + z2)

B. −i log(iz − 1 − z 2 )

C. −i log(iz + 1 + z 2 )

D. −i log(iz + 1 − z 2 )

For answers with detailed explanation, visit YouTube Channel Suppose Math Akhtar Abbas
BSc Multiple Choice Questions Page 11 of 12

58. If z and w are complex numbers, then zw=


A. exp(z log w)
B. z exp(log w)
C. exp(w log z)
D. w exp(log z)

59. If z and w are complex numbers, then the principal value of zw is:
A. exp(zLogw)
B. z exp(Logw)
C. exp(wLogz)
D. w exp(Logz)
i
60. The principal value of i is:
π
A. e2 π
B. −e 2
−π
C. e2
π

D. −e 2
61. The principal value of (−1)i is:
π
A. e
B. e−π
C. −eπ
D. −e−π
62. The principal value of −( i)−i is:
π
A. e π
2

B.π −e 2

C. e2
π
− 2
D. −e
63. If a is a positive real number, then the principal value of ai is:
A. cos(ln a) + i sin(ln a)
B. cos(a) + i sin(a)
C. sin(a) + i cos(a)
D. sin(ln a) + i cos(ln a)

For answers with detailed explanation, visit YouTube Channel Suppose Math Akhtar Abbas
BSc Multiple Choice Questions Page 12 of 12
64. Log(1 − i)=
A. 1 ln 2 + πi
2 4
1 πi
B. 2 ln 2 − 4
1
C. ln 2 + 3πi
2 4
1 3πi
D. ln 2 −
2 4

i+ 3
65. (−1 + i) =

A. exp[(i − √ 3) log(−1 − i)]
B. exp[(i
C. exp[(−1 log(i + √
+ +3)i)log(−1 3)]
+ i)]

D. exp[(i + 3) log(−1 − i)]

For answers with detailed explanation, visit YouTube Channel Suppose Math

You might also like