100% found this document useful (1 vote)
4K views512 pages

G.V Kumbhojkar 2

1. The document discusses different methods for solving differential equations of the first order and first degree, including homogeneous equations, non-homogeneous equations, exact differential equations, linear differential equations, and Bernoulli's differential equations. 2. It provides examples of solving homogeneous differential equations by changing variables to put the equation in the form f(y/x). Homogeneous expressions have terms of the same degree. 3. The document reviews solving homogeneous differential equations and will discuss the remaining three types - exact, linear, and Bernoulli's - in more detail.

Uploaded by

Tarun Nair
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
100% found this document useful (1 vote)
4K views512 pages

G.V Kumbhojkar 2

1. The document discusses different methods for solving differential equations of the first order and first degree, including homogeneous equations, non-homogeneous equations, exact differential equations, linear differential equations, and Bernoulli's differential equations. 2. It provides examples of solving homogeneous differential equations by changing variables to put the equation in the form f(y/x). Homogeneous expressions have terms of the same degree. 3. The document reviews solving homogeneous differential equations and will discuss the remaining three types - exact, linear, and Bernoulli's - in more detail.

Uploaded by

Tarun Nair
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 512

In tro d u c t io n

1 .

L a s t y e a r y o u h a v e le a r n t h o w to fo r m a d iĦe re n tia l e q u a tio n fr o m a g iv e n p rim itiv e a n d a ls o to


s o m e s im p e
l d iĦe r e n tia l e q u a tio n s
s o lv e

In th is h a p te r w e s h a ll le a r n s o m e m o re m e th o d s o f s o lv in g th e d iffe re n tia l e q u a tio n s o f th e


c

irs t o rd e r a n d firs t d e g re e i e T e d Ħe re n tia l e q u a tio n o f th e ty p e a w d x = f (x , y ) T h e m e th o d o f


h i
ı
n tia l e q u a tio n o f th e firs t o rd e r a n d firs t d e g re e d e p e n d s u o n th e t
s o lv in g a d iĦe re p y p e to w h ic h it
b e lo n g s T h e s e ty p e s a re

1 e s S e pa
V a r ia b ı ra bı
e Ty p e
2 H o m o ge n e o u s Eq u a tio n

3 N o n ho m o ge n e o u s Eq u a tio n

4 Ex a c t D iffe r e n t ia l E q u a t io n

5 L in e a r D iĦe re n tia l E q u a tio n

6 B e rn o u i' s D iĦe
lı re n tia l E q u a t io n

Yo u h a v e a lr e a dy s tu d ie d h o w to s o lv e th e e q u a tio n s o f th e firs t th re e ty p e s W e s h a ı l b rie tı


y
re v ie w th e m th e s a k e o r c o m p le te s a n d s h a ll d is c u s s in d e ta ils th e re m a in in g th re e
a g a in fo r ne s
ı
yp e s

h a te Jg h

S tu d e n ts m a y o m it th e a rtic la s 2 3 a n d 4 a fte r re a d ı
n g th e m B u t th e y a re a d v is e d to te a m
,

c ın y ly th e re m a in in g th r e e a rtic a ls

Scanned by CamScanner
Ap pı
ıe d M o th e m o tı
c s ı
l (1 2 ) Dı o l E q u a tı
ffe re n tı o n s o fFO & ED

3
E xa m pı
e 1 soı
ve x y = a x
2
+
)
S o ı T he e q u a tio n ca n be w ritte n a s ,

X ĹT = ・ . [ B y p a rtia ıfra c tio n s ]

3 .
Eq u a t io n s H o m o g e n e o u s in x a n d y (R e v ie w )
d y is id to b e h o m (h o m sa m e ) if th e d e g re e o
A p re s s io in o n e o u s o -
n e x n x a n sa
2 3 2 th ir d d e g re e
is h o m o g e n e o u s o f th e


e v e ry te r m is th e s a m e e g x y + x + xy y
3 2 2 3 4
is h o o f th e fo u r th d e g e A h o m o g e n e o u s e x p re s s io n
re o f d e g re
x y + x y + xy x m o ge neo us
n
n
o n in th e fo rm x f (y / x ) F o r e x a m p le , th e h o m o ge n e o u
be p re s s e d b y ta k in g x com m


n ca n ex

s s io n s g iv e n a b o v e c a n b e w ritte n a s
e x p re

ĹŤ) ĹŤR ł(Ť) (Ťr


' '


4
x
3
Ť " " . M x ・ . "

if f1 (x y )a n d r2 (x , y ) a re fu n c tio n s o f th e s a m e d e g re e in x a n d y th e n f;(x , J4 / Fz (x , ý


F u rth e r, ,

c a n b e p u t in th e fo rm f (y / x ) o r F (x / y )
2 l y + 3x】 7 a nc
c o n s id e r tw o h o m o g e n e o u s fu n c tio n s f(x, y ) a n d 62 (Ą y ) w h e re f (x y )
.
,

S in c e b o th a re h o m o g e n e o u s fu n c tio n s o f d e g re e th re e w e c a n w rite t e r ra tic


h i
2 2
l2 (x y )= x y x y
ー a s
,

3 2 2
f2 (x y ) , x [(y /x ) (y /x ) ] (y /x ) (y /x )

ゆ w

va
he ref: a n d ¢ z a re
ria b le s e p a ra b ı

If w e put
ho m o ge n e o u s
e ty p e b y p u ttin g y

f
v

(x

, y)
y l x in th e

2v + 37
a
-
e x p re s s io n s o

b o v e illu s tra tio


w A n d th e n

n ,
w e
f th e
m e re

ge t
sam e d e g re e in
in te g ra tio n g iv e s
x a n

th e
d y c a n b e re d u c e d tc
s o lu tio n o f th e e q u a tio n

-
2
- F (v )
l2 (x y ) v v

T h is is a fu n c tio n o fv o n ly ı p\
ł v

To s o ı
v e ho m o ge n e o u s e q u a tio n in x a n d y

L e t th e g iv e n e q u a tio n be
dv
.
Į (x y ) ,
(1
dx l2 (x y ) ,

w he re f a n d t2 a re ho m o ge n e o us fu nc tio n s in x a n d y o f th e sa m e d e g re e

習 Scanned by CamScanner
th tı
c s ı
ı
Ą p p lı
e d M a e m a (1 3) Dı
tfe \ı
o l E q u o tı
re n o n ıo t ¢o & rD

N ow w e puty . " " ' "

d 62 h o m o ge fu n c tio n s o
S in c e f a n a re n e o u s f th e sa m e d e g re e s a y n ı n x a n d y w e c a n ta k e
" fr o m b o th n u m e r a to r a n d de n o m in a to r C lı
in g it o u t th e rig h t h a n d s id e o f (1 ) th e n
x co m m o n a nce

fu ċ tio n o f v o n ı
y s a y F (v ) H e nce th e e q u a tio n (1 ) r e d u c e s
becom e s a n to
dv dv
改 改
dv dx
w h ic h is o fv a r ia b le se p a ra b le ty p e (
F (v ) v T
b o th id e s w e ge t
n te g r a tin g
s
ı

Ĵ ı
o g x + c

g e t th e q u ire d s o lu tio n
R e su b s titu tin g v =
y /x w e re

Ex a m p le 1 S o lv e (x
3
+ y
3
) x
2
y

d y
is h o ge n e o u s o f th e th ird d e g re e in x an
tio n m o
ı S in c e th e
e qu a
S o

vx
@ V + X
p u ttin g y =
dx dx

dv dv dx
O

ı
o g x - \o g c
+ ı
o g v + ¢İ
In te g ra tin g R 1
(q

lo g c =
L o g vi c
ı -

v + ı
o g x +
lo g a
/3 y
3
x
is cy - e
3
h e s o lu tio
n »
x T ť Į

o g cy
ı =

p u ttin g v -

(R e v ie w )
u a t io n
s
Eq
h o n lo g e n e ロ
リ コ

ニニ
ı in e a f (1)

H \
4 .
N o n
-
an d y
\in e a r in x
ous
ho m o ge n e
o is non
,
+ c
'
)d y .
he
a x +
b y s of
'

)d x ( v a lu e
or (? + by + c
and
fin d th e
'
+ k
a nd y . y
h
T o s o lv e th e e q u a t io
'
n x +
x -

io n w e put
e qu at
th e a b o v
e
To s o lv e

p re v io u s m e th o d

Scanned by CamScanner
p?

APpı
ıe d M o ł
he m ie fı
c s lı (1 4) ffë re
Dı n llo l E q u a llo ns o f60 &

P u ttin g x = x
'
+ h y,
=
y
'
+ k s in c e dx - dx
'
a n d dy = dy '

,
th e e q u a tio n (1 ) re d u c e s to

a x + ( '
h ) + b (y '+ k ) + c
.

W e c ho o se h a n d k suc H th a t th e ltl
e q u a tio n (2 ) is h o m o g e n e o u s o f th e firs t d e g re e T h is w iı
so if th e c o n s ta n ts o n th e r ig h t ha n d s id e o f (2 ) in n u m e ra to r a n d d e n o m in a to r a re z e ro i e If

Fo r th e s e v a lu e o fh a n d k th e e qu a tio n (2 ) re d u c e s to

dť a x +
' '
b y ' '

B u t th is is h o m o ge n e o u s a n d he n ce b y p u ttin g y '
. .
'
A n d . v + y th e e q u a tio n (4
,

dť 0 '

be co m e s

dx a +
'
b '
v

w he re th e v a ria b le s a re s e p a r a te d a n d th e s o lu tio n c a n be o b ta in e d b y in te g ra tı
on

T he s o lu tio n o f th e e q u a tio n (1 ) is th e n o b ta in e d b y re s u b s titu tin g v =


y
'
/ x
'
a n d x
'
. x I\
y
'
.
y k in te rm s o fx a n d y

a b
T he m e th o d ho w e v e r, fa ils if -
,
Ë
be ca u se th e ro o ts o f th e e qu a tio n (3 ) a re th e n in d e te rm in a te

a b
S u ppo se ' th e n th e e q u a tio n (1 ) r e d u c e s to
a b '
m

dx (a x b y )+ '
m + c

O n p u ttin g a x ◆ by ・ v a n d a + b g .
C th e e q u a tio n (5 ) r e d u c e s to
dx dx

w h e re th e v a r ia b le s a re se p a r a te d a n d th e s o lu tio n c a n b e o b ta in e d by m e re in te g ra tio n
R e s u b s titu tin g v - a x + by ,
w e ge t th e s o lu tio n o f th e e q u a tio n (1 )

a b
Type ' +
i ı j i

Exa m e 1
pı S o ı
ve (4 x + 3y + 1) d r + (3 x + 2y + 1) d y = 0

@ 4x + 3y + 1 i
S o l W e ha ve _ ,

dr 3x + 2y + 1 .

S in c e
Ĵ Ş ・ ,
w e s o lv e th e e q u a tio n s .
.
.
,

4x + 3y + 1 = 0 a n d 3x + 2y + 1 - 0 a n d ge t x = 1 a n d y - 1

4x '
+ 3y '

H ence , p u « in g x . x
'
1 a n d y -
y
'
+ 1, w e ge t ,
.

d )ť 3x '
+ 2y '

Scanned by CamScanner
th e m a tic s lı (1 6 ) Dı
ffe ï lo ıE q u o ł
lo m o fF0 & ED
le d M
Ap pı a re n . .

dv 2 v + 2
1= 二二 二 二二
Ok 2v + 3
dv 4v + 5

d bc 2v + 3

C 不た)
: !十
5
. 一 。 [B y a c tu a ıd iv is io n ]

In te g ra tin g , v + lo g (4 v + 5 )= x + c
2 8

P u ttin g v = x + 2y ĝH + 2 y )・ : o g (4 *
ı + 8 y + 5 ). ' "

'

By 5 )= 4 x By + C
T he s o lu tio n o g j4 x
is ı + +

o f re v ı
ew o n ly
T he a rtic le s 2 3 4 a
, ,
re m e a n t fo r th e p u rp o s e

5 Ex a c t D iĦe r e t ia l E q u a t io n s
,
n o n ly

m ı
i tio n
v e b y d iffe re n t a
s o b ta in e d fro m
ts p rı
ı
D e fln ı o n w h ic h ı
tio n : A d iffe re n tia l e q u a tı a l e q u a tı
on
tdıfte r e n tı
a n d w it d c tio n l
s c a lle d a n e x a c
h o u t a n y o e ra tio n o f e ıım ın a tio n o r re u
p

Scanned by CamScanner
A p p lı
e d M a th e m o tı
c s II (1 6 ) Ħe re n ï la ıE q u a tio n s o f 6 0
Dı & ED
\

fu
ı he is fu n c tio fx d y is
c w re u a p rim itiv e th e
=
n o a n ,
a n

?u ?u
o u = Ox + ? y = U
ax ay
is a n e xa c t d iĦe re n tia l e q u a tio n T h u s a n
, e a c t d iffe re n tia l e q u a tio n is o b ta in e d fro m its p r im itiv e b y
e qu a tin g its to ta l d iffe re n tia l to z e ro F o r e x a m le
p ,
fu
ı = x
2
+ y
2
. c th e n c fu =
y a r +
?u
dy = 2x a r + 2y ay .
ñ
E q u a tin g d u O g e t th e
=
,
w e e q u a tio n x c fx + y dy = O w h ic h is e x a ct

W e s h a lın o w p ro v e th a t if th e e q u a tio n M dx + N ?y = O is e x a c t, th e n . A n d c o n v e rs e ly
?y ?x

i
¡l .
'

'" - . " " + N dy = o is e xa c t In o th e r w o rd s w e p ro v e th a t :

Th, N " " S m . Ie . T C.


:y ' " . . M ,b . Fo . M d ' " d y = O be e. . c t ie

P ro o f (a ) T h e C o n d it io n is n e c e s s a ry t
v .
'
ņf q ) S X
G iv e M N aM ?N
n o r + c fy - O is e x a c t, to p ro v e th a t a
T
- ?
y
S in c e th e g iv e n e q u a tio n is e x a c t, b y d e fin itio
,
n it is o b ta in e d b y p u ttin to ta l d iff
so m e fu n c tio n u o f x a n d y to
,
g e re n tia l d u o l
z e ro

H e nce th e I h s f th e
, o e q u a tio n is d u i e D u - M dx + N dy A

But d나三 づ七 十 ニニ ゴン
?x Ļ ı ay

?u !
M - a n d N
?u ?M a2 u ?N ?2

-


az u ?2 u ðM
But ðN
he
m
-

yax nce ,
-

(b ) T h e co n d itı
o n is s u ffı
c ı
ent

?M ðN
G Yv e n - to p r o th a t M d x + N d
i ve
y - o is a n e x a c t d iffe re n tia ıe q u a tio n

Le t JM dx - V th "
g - M a nd
m
- L t g łj l ı
LÌ t

:
iRM ?N ?z v ?N a 1
lŕ rl r
!

w he re o '
(y ) is a fu n c tio
,
n o fy a lo n e (a c o n s ta n 墓
t w ith re s p e c t to p a rtia l In te ra tin
g g) 匦
Scanned by CamScanner
M lh e m a tı
c s II . °' " ! (1 7 ) ţ » F! D lffe re n ï lo l E q u a ï lo n $ o f 6 0 & ED
a p p lie d
,
a ,

ttin g th e va ı
ue s o fM a n d N
H e nce , pu

N y
M dr li
+ d =

?V av
-

x
d 'X + o y + O
'
(y )o y
i
M dx + N dy - d [V + 4 ) (y )]
M dx + N d y is a n e x a c t d iffe r e n tia l e q u a tio n

R u le fo r n g th e
fin d ı s o ı
u tio n
(c )
i d iĦe
If M d x + N d y O s a n e xa ct re n tia l e q u a tio n it m t h a v e b e e n o b ta in e d b y e q u a tin g to
=
,
u s
f fu
z e ro ,
to ta l d iffe re n tia l d u o s o m e n c tio n u o f x and y

?u ?u ?u ?u
S in c e d【
ı= a r + o y a n d M -
'
N - b y in te g ra tin g M c fx w r t x ,
w e g e t p a rt o f
,
ay ax
i i N T h e te rm s in
ts p a rtia l d e r iv a tiv e w r y s n a r in M but
t u w h ic h a re fre e fro m x do n o t a ppe
ı
th e y a p p e a r in N
H e n c e th e re m a in in g p a rt o f u is
,
o b ta in e d b y in te g ra tin g w r t Y th o se te rm s in N

w h ic h a re fre e
fro m x T h u s w e g e t , ,

The R u ı
e 1

In te g ra te M c fx w r t x tr e a tin g y c o n s ta n t In te g ra te o n ly th o s e te r m s in N w h lc h a re fr e e

fro m x w r t V E q u a te th e s u m to a c o n s ta n t T h is is t h e s o ı
u tio n

In sym b o ls ,
dx (tr e a tin g y c o n s ta n t) + (T e rm s in N fro m x )d y = c

A lte rn á tiv e ly w e m a y firs t in te g ra te N w ith re s p e c t to y trė a tin g x c o n s ta n t

Th e R u le 2

In te g ra te N d y w r t y tr e a tin g x c o n s ta n y th o s e te r m s in M w h ic h a re
t In te g r a te o n ı
fro m y w r t x Eq u a te th e s u m to a c o n s ta n t T h is is th e s o lu tio n (S e e Ex 1 be ı
ow )

In s ym bo ı
s , N o y (tre a tin g x c o n s ta n t) + (T e rm s in M fre e fro m y )d x = c

(S e e so ı
ve d E x 7 p a g e 1 19
, )

So ı
v e d Ex a m pı
e s C ı
a s s «a ) 4 M a r ks

2
E x a m p le 1 (a ) S o lv e (ta n y + x )d x + (x sec y 3 y )d y = 0

S o ı H e re M 2
,
. ta n y + x N - x sec y 3y
,

aM aN
T he e q u a tio n is e xac t

Now ,
JM o r -
(ta n y + x )d x = x ta n y +

2
3
And
J (te rm . In N fre e fro m x )dy =
J 3 y c ly =

Scanned by CamScanner
A p pı
le d M o n s o fEO
D iffe re n tia l E q u a tı & ED ,
o th e m o llc s ı
l (1 8 ) .

A lte m a tı
veı
y
2
3
JNdy ,e a tin g x c o , s ta n o = (x sec
2
y 3 y )o y = x ta n y

(te rm s in M fre e fro m y ) d x = x ok -


)
?
T he soı
u tio n is x ta n y + . c
2 2

a (x d y y a r )
- - _ - r ı- ' w l v u ıv c n u n r y u y 2 2 w n U ı= = ı, = g)
X + y
S o ı: T h e e q u a tio n ca n be w r itte n a s

M - x +
a y ?M
-
a 2a 7 ax
2
a y
2
2 -

■国虹 + y x
z
+ J 0 + y
2 2
) (x
2
. y
2
)
ax ?N a 2a} a J ? a y
2
N =
y - + -

x
2
. y
2 J + y
2
(x
z
+ y
2 2
) (Ĵ + y
2 2
)
r

ðM ?N
S in c e -
'
th e e q u a tio n is e x a c t
n o l

And J[l e '" . M N ¢


. ' " ° c v =
Jy o y =

ř)
Exa m p le 3 (a ) : S o lv e [1 + lo g (x y ) a 】r + 1' dy = o

N ow ,
Jl g ( y )
o x ・ 1・ dx - lo g (x y ) ・
x
J x .
I
y c fx
x
.
[ In te g ra tı
n g by p a rts ]
y
J ı
o g (x y ) 1 ・ ・ o r - x ı
og (x y) d* x lo
-
g (x y ) x
A n d (te rm s In N fre e fro m x )o y 1
= ・ oy .
y
T he s o lu tio n ı
s x + x lo g (x y ) x + y = c /e Y + x lo g (x y ) = c

Scanned by CamScanner
th e m o tı
c s lı r ir rt t?
(1 9 ) !!j 1
ed M
A p p lı o ; Dı
ffe re n tla ıE q u a tio ns o ¢¢o & ¢D

e 4 (a ) S o ı
ve
g y c o s x + s in y + y
E x a m pı + - O (M U 19 89 , 9 2 , 2 003 , 12)
c rx s in X + x cos y + X

So l W e ha v e , (y c o s x + s in y + y ) dx + (s in x + x cos y + x )?y = o
M =
y c o s x + s in y + y ; N = s in x + x c o s y + x

?M ?N
= co s x + cos y + 1 ; cos x + cos 1
°
y +

ðM ðN
T he e q u a tio n is e xa ct
i
=
.

Now ,
M c fx = (y c os x + s in y + y )d x

=
y s in x + x s in y + x y

And (te rm s in N fre e fro m x )d y = O

T he u tio n
so ı is y s in x + x s in y + x y = c

Exa m pı
e 5 (a ) S o lv e 2 1+ x
2
Jy )y a K + x
2
Jy + 2 × dy = 0

2 3 12 3
So \ He re ,
M = 2y + 2 × y ; N = » + 2x

= 2 + 3× y
2 " 2
,
N = 3x
2
Jy + 2
?y ?x

ðM ?N
T he e q u a tio n is e xa c t
ay ðx

2 3" 3 3 /2
NOW ,
M dx = (2 y + 2× y )c fx = 2x y + X y

And (te rm s in N fre e fro m x )d y = O ・ dy = O

2 3 3 /2
T he s o lu tio n is 2 x y + x y = c
3

ðM ðN t
ı
ce - th e e q u a tio n is e xa c
li '

J. ° ・
12 x . '"
Ť d"

Scanned by CamScanner
,śį
A P ◆ı
e d M o th e m a tlc s ll (1 1 0 ) Dı o ıE q u a tio n s o f 8 0
ffe re n tı & Rl

(T e rm in N fre e fro m x )d y = O

T he s o lu tio n is x
2
sin . c
X

ï )y
Ex ×" w
a m p le 7 (a ) S o lv e (1 + e )d x + e
Ĵ
' o
d =
, g iv e n y (o ) = 4

L y )

ðM ðN
=
1
th e e q u a tio n is e xa ct
?y ?x

M dx =
1(1 + e
x /y
ck . x + ye
×/y

(T e rm ls N fre e fro m x )d y O dy
=
= O
T he s o lu tio n is x + ×/ y
ye = c
B y d a ta w he n x O y
=
,
= 4 4 . c
T h e p a r tic u la r s o lu tio n is x + ×l
ye y = 4

T he a b o v e d iĦe re n tia l e q u a tio n c a n a ls o be so ı


ve d b y p u ttin
g x °
w a n d th e n by se pa ra tin $
Exa m p le 8 (a ) S o lv e (x 2e 9
)a y + (y + x s in x
)d x O
S o l W e ha v e M
.
.
y + x s in x a n d N = x 2e y (M U 2013
?M ðN
- 1 °

ix
JM dx -
J(v . x s in x
)d r

x
[ In te g ra tio n b y p a r ts ]
-
y x cos x + si
n x
(T e r m is N fre e fro m
x )o y =
2e r a y = 2 r
e
: T he s o lu tio n is x y x co s x + si
n x 2 e
r = c

Scanned by CamScanner
o «c r ı
ı (1 1 1 ) f 60 & RD
ı
Appıe d M d hm D lffe re n llo ıE q u tr tı
o m o

e 9
E xam pı «a ) s o lv e y l+
) . .m y d b« + (x + ı
o g x x sı
n y )c ry = o

(M U 199 8 , 2 00 6 , 1 5)

So ı W e ha ve M =
y 1+
İ) x
+ cos y a n d N = x + lo g x x s in y

ðM ðN
= x 十 s in y a n d 1十 s in
ay ×

y
?x x
ðM ðN
ay ?x

H e n c e th e g iv e,
n e q u a tio n is ex a c t

Now , JM d ( J y 1 +
) . ' ' " dy =
y (x + lo g x )+ x c o s y

A n d (T e rm is N fre e fro m x )d y = O c (y = O

T he u tio n
so ı is y (x + ı
o g x )+ x co s y = o

2 2 2 2
Exa m pı
e 10 «a » S o lv e (x 4xy 2y )dx + (y 4x y 2× )dy = 0 (M U 2 014)
2 2 2
Soı W e ha ve M . x 4x y 2y a n d N .
y 4xy 2 ×2
ðM ðN
= 4 × 4y a n d 一 4y 4 x
ay ?x
ðM ðN
Ì ?x
H e nce th e g iv e n e qu a tio n is e xa c t

2 2 2 2
N ow M 改 一
(× 4 ×y 2 )? = 2× y 2y x

2
And (T e rm is N fre e fro m x )d y =
y Dy =

T he u tio n
s o ı is

2 2 3
2× y 2y x + = C x + y
3
6 ×2 y 6y 2
x = C
3 3

R em ar k

T h e a b o v e d iĦe re n tia l e q u a tio n c a n a ls o be s o lv e d b y p u ttin g y vx a n d th e n by tin g


-
se pa ra
th e v a ria b le s a s in §3
pa ge 1 2

Exa m pı
e l1 s o lv e x + y m dx + x m y dy = o

Sol W e ha v e M d N x
= x + y a n =
y

Scanned by CamScanner
AP Pı
ıe d M ll ne.'1lı;l ffe
Dı tla ıE q u a tio f60
a ïh e m o H c s , (1 1 2 ) r ! re n ns o & FD

?M ?N
-

ii
H ence ,
th e g iv e n e q u a tio n is e x a c t

m i
N ow , JM ok =
J . + y dx = ・ y
'
J ? !
,

By JJ 2 x i
a c lrx =
P a
2
y
2

2
W
JM o bc - + y
2
ŝF x
2

į s in
1
Ĺi )
ī y

-
ţ ŢW W W Į ・ . . (w

E x a m pı
e 12 s o lv e . M i
y dx + y J " f
cy - o (M u 2 0 14 )

S o \ W e hav e M x
=
y a n d N -
y x

?M ?N
-

ii
H e nce ,
th e g iv e n e q u a tio n is exa c t

N o w , JM dx =
J m ・
y dx

T o fin d 2 2 2
x x + 2
y o r, w e putx + y . 1 2x o x - dt

2 2 3 /2
l 2
2 3 /2
-
(X + y )
3 3
H e nce M dx 2 2 3 /2
, .
(x + y ) x y
A n d (T e rm is N fre e fro m x )d y = O ・
c fy = O
T he co m p le te s o lu tio n ls

ġ( x
2
+ J )
3 /2
x y = c
'
(x
2
1 y
2 3 /2
) 3xy = c

be e xa c ta n d ca n be s o lv e d byu s in g th e m e th
o d o f §5 F o r i
ll a ta nd Ex n s ta n c e E x 5 b
a s w e s e xa c 10 p a g e 1 11 i e lo is ho
, s ho m o e n e
g o u s a s w e ll
w n o n m o ge ne o us
a s e xa ct

.
İ Scanned by CamScanner
:
Q
tic s II (1 13 ) Ħe re n tı
Dı & ED
ıe d M th e m a a ıE q u a tio n s o f 6 o
Ap pı a .

a
X E R C I SE -
aa
'
L ł ;
rs£r ı
j(
f llo w in g e qu a tio n s C ı
a s s (a ) 4 M a rks
So v e th e o
ı

g U 7 g _
a 2 J¢y J
6 .
c f× 2
Dx 2 y lo g y + y x (x + y)


ļ

3 ×y 2
×y
2y )d x + (x e 6xy 2 y )d y = O
9 (y e
2
¢ x ta n
2
y + sec y )d y = (ta n y 2 ×17 y )d x
10

11
( y
2
2y o r + (2 y ta n
'
x 3x + s in h y )o y = O

2
2
(x y ) ] d x + [x s in (x y ) + x y co s (x y ) ] o y = O
12 [y s in (x y ) + xy co s
(M U 19 98 , 9 9 , 2 00 3)

2 y + e 2x
2
4x
3
12 ×y
2
+ 3y + x e )? y
13 (2 × y +
2X
3 3 r O
2
2 ×y
2
+ 4 × 4y + 2 ye + e ) dx =

+ (12 x y +

' C
' (6 1 y lo g y W
4. 2 Bx 71 6y "
(9 . 6W
'
y '
+ s in x = c
(8 ) x y 2

2 ta n y - c
ta n y x y x y
(1 o ) x

Scanned by CamScanner
Ap pı
te d M a th e m o Hc s II sp E L (1 1 4 ) Dı
ffe re n tı
o ıE q u a tı
o n s o f 60 & EDA

6 . Eq u a t io n s R e d u c ib ı
e to E x a c t (I n te g ra t in g F a c t o r )
S o m e tim e s a g iv e n e q u a tio n is n o t e x a c t b u t is de re d e xac tip ı
t if it is m u ı ie d b y a s u ita b l
re n
ä
fa c to r Such a fa c to r is c a lle d a n in te g ra tin g fa c to r ïü

Fo r in s ta n c e th e e q u a tio n y o x ay o is t e x a ct If w ltip ly it b y 1 / y 2 th e n
, x ・ no e m u
, Ĥ
be co m e s


n ce , gi - -
g ,
it is exacta n d M "

"
ř ' J. d y = '

x
He nce ,
its s o lu tio n is . c

A g a in if w e m u tip ly (1 ) b y
ı th e it b e c o m


,
n es - - °

s in ce ,
i - -
3ï ,
it is e xa c t a n d its s o ı
u tio n is
Ť - °
'
i'
Ť - - ' " " .

歹 A ls o , if w

S in c e ,
aM
e m u

-
ı
tip ly

O =
?N
ix
(1 ) b y

'
it is
ı
Ày

e xa cta n
,
th e n it b e c o

d its s o lu
m es g

tio n is
"
g
y
. o J

w ・*t .
Io g x lo g y = ı
o g c ie Io g
ł - lo g e i e

x
. c a s b e fo re

o n e in te g ra tin g fa c to rs

ı
n te g r a tin g fa c to b y in
r s p e c tio n
S om e tim e s in te g ra tin g fa c to r ca n be o b ta in e d b y in s e c tio
p n c a re fu l s tu d y o f th e fo llo w in
g

(弓) ı
fu 一 ×
2
y du 2 砂 改 2
,

十 × dy

(7 ) ı
f u = ta n '
ř ,
du =

(9 ) If lo g C fx 吟
U 一
(x y) du ,
-

X y
2
(1 1 ) ı
f u 一
壬 ,
凼 一
空y w 2
y 湘


1 3 ) If u 一

c fu 。
丝吟 上声 川
)¢
y 2 ź
X y

Scanned by CamScanner
A p p lIe d M a th e m o tı
c s ı
\
(1 1 5 ) Dı
ffe re n tı
o ıE q u o tı
o m o ffO & +D

S o v e d E
ı x a m pı
e s C la s s (b ) 6 M a rk s

E x a m e 1
pı (b ) S o ı
v e (x + y ) (d x dy ) dx + dy

F ro th e re s u lt (1 0 )w e se e th a t if w d iv id e b y
S o ı m e (x + y ) th e e q u a tio n w iı
\be e x a ct

D iv id in g b y (x + y )
dx + a y
dx dy = i e d (x ) d (y ) o g (x
d tı + y )1
x + y

Its u tio n
so ı is x y - lo g (x + y )+ c

2 2
E x a m e 2
pı (b ) S o lv e y dx x dy + (1 + x )d x + x s in y dy 0
2
t th e te
2
H d iv id in g b y x
ı F ro m a s t te rm
th e ı w e se e th a t w e m u st g e t rid o rm x e nce
S o

Ĺ
" " g n y d y-

a tio n is e x a ct
t (4
th e r e s u ı )w e s e e th a t th e e qu
F ro m

W e ha v e d
Ĺ{) L 4 . d - * d ( CO S y) '

1 c
is + x c o s y
T he u tio n
so ı
X X

2 cx
ie y + 1 x + X CO S y -

(M U 2 0 14)
x x
dy 0
S o lv e y (2 ×y + e )d x e -

E x a m e 3 (b )

2 tw e m u st d iv id e b y y
2xy dx exac
de th e te r m

Lł1
to re n r
S o ı In o rd e r
× 2 '
e
x
a K e dy
. d (x )・ d
y . .
2X O X + 2
H e nc e
y
u tio n
so ı
is
e xa ct a n
d its
T h is is Ř .
"

x
2
+ e . cy
- c i e x y
A T

y
dy . X + y
dy . x dx + y dy
x
n a s y dx
c a n b e w ritte
tio n
n J]
T he a
s o l e qu 2 2
w e ge t
+ y
ho u tby x
D iv id i g th ro u g
d ta n
'
Ť - d o g

+ c

H e n ce ,
its u tio n
so ı
is ta n
1
ť = lo g

p = Þ ii
Scanned by CamScanner
眉目团团团团团团■
M ◆he m a tlc s ı
l (1 16) D iffe re n tla ıE q u a tio n s
o f ro
ą
N " ,
I. I. g '"lng b y p a rt°

H e n c e ,
b y in te g ra tio n ,

L
ť d )t í łc x
X X X y
11
y (lo g x + 1)= 1 cx y is th e s o ı
u tio n

E x a m pı
e 6 (b ) S o lv e (1 + x y )y o x + (1 x y )x oy = 0
S o ı T he e qu a tio n ca n b e w r itte n a s (b 1l
2 2
y dx + x dy + x y dx X y dy = O
2 2
D iv id in g b y x y ,
w e get ,

y y ok
.
,
- o d
[] . [
d Io g × 】 d tıo g y ] = o

In te g r a tin g + lo g x ı
o g y - lo g e


,

x y
1
log _ x = c ye
" (x y ) i th
s e c o m ie te s o lu tio n


c y ×y

E X E R C IS E II
-
, S o lv e t h e fo llo w in g e q u a t io n s C ı
a s s (b ) 6 M a rk s



Scanned by CamScanner
\e d M
A P pł o h e m o tï c *
ł ・ ı
ı (1 16 ) D lffe re n tı
o l Eq u o ł
lo m t Eo
o
ą
N ow n g b y p a rts
in te g ra tı
ı a t* D Zfq r ic < !ı
,t
b

1 1 1
- ı
o g x
J
1 2
dx = ı
o g x
X X X X

d
[ ı
o g x
] 一] 一 d

H e nc e ,
b y in te g r a tio n ,

>c (d ĵ " '


rï G X
・ lo g x = 十 C
X X )y

y (lo g x + 1) = 1 c x y is th e u tio n
so ı

U屋 !
E x a m pı
e 6 (b ) S o lv e (1 + )y dK (1
x y + x y )x c ry = 0
S o ı T he e qu a tio n c a n b e w r itte n a s

Z
y dx + x dy + x jř d x x y dy - O
2 2
D iv id in g b y x y ,
w e ge t ,

In te g ra tin g , + lo g x lo g y - ïo g c
x y

ĺ l " (x y ) i h
lo g _ x = c ye s t e co m ie te s o lu tio n
c y ×y

ı E X E R C IS E II

Scanned by CamScanner

o th e m a ıc s
\ (1 1 7 ) Ħe
D ı lla ıE q u a tio n s o f E O & RD
\e d M
Appı re n :

t io n s R e d u c ib ıe T o E x a c t B y I n t e g r a t in g
7 Eq u a
to r s (R u ı
e s o f F in d in g I n t e g r a t in g F a c t o r s
Fa c
ı
e a rn so m e s ta n d a rd r u le s o f o b ta in in g in te g ra tin g fa c to rs
W e s ha ı
ın o w

n
R u le 1

ĺ i )/
lf(x )d r is in te g r a tin g fa c to r
,,
N is a fu n c tio n o f x o n ı
y s a y f (x ) th e n e a n

C ı (b » 6 M a r k s
S o v e d Ex
ı a m pı
e s a s s

2 2 (M U 2007)
S o ı (x Y 1) d x 2 x y dy 0
e 1 (b ) v e . +
Ex a m pı
2 2
+ 1 a n d N 2xy
ı W e ha v e M = x + y
S o

aM aN
2y 2y
Ì i
2
o g (1l x '
ıF e
J (2 / X )d x
.
2 ı
o g X
.
ı
T

M u ltip ly in g b y th e '
' w e ge t l +
J ・ - .
2
) dy ° w h ic h i" " '

)d y O
(T e rm s in N fre e fro m x

a n d N dy =

T he u tio n
so ı
is X
X X 1 9 9 5)
(M U
x y )d y
0
3 × [1
v e (y
2x )d x
Exa m e 2
pı (b ) S o ı 2
2 d N - x + x y
2× a n
S o ı: W e ha v e M = y

쁘 1 and ? ! + 2砂
2
f(x )
x {1 xy )

:x
' 2
ı
o g x x
2 lo g x
Ĵ e
J(2 / x )d x e
e

e x a ct

ĺł l. O w h ic h is
l. y

M u pı
w e ge t Ĺ 2×

?
J k卡 2× 。

ペ )

JM c b《
J X

fro m X )dy y dy f2
in N fn e e
d N W (T e r m s
a n

2 C


y 十
tio n is 2
T he s o lu X

Scanned by CamScanner
Appı
ıe d M a th e m a Hc s - ı
ı p (1 18) D iĦe re n tı
o l Eq u a tı
o n s o fEo & Ĺ
E x a m p le 3 v e (2 × lo g
«b » S o ı x x y )dy + 2y o K - 0 ı «M U 1995 2
, t \ , 0
S o l H e re ,
M - 2y, N - 2x ı
og x y
?M ?N
.
g
2 1o g x + y
一 f(x )
?y ?x x (2 ı
o g x y ) x

f(x )d tr ( 1/X )d ir lo g
ıF x o g (1/x
ı )
= e = e = e = e =

M u ltip ly th e g iv e n e qu a tio n by 1 / x a n d re a rra n g e th e te rm s

dk + (2 lo g x y )o y = O ,
w h ic h ls e x a c t

JM c ht 一
幻 イ警 一 2y ı
o g x

J(T e rm s in N f. E f' " )d y =


J y d y =

T he s o lu tio n is 2 y lo g x . c

2
E x a m pı
e 4 (b ) S o ı
v e (4y + 3y x )d x + x (x + 2y )o V = o

(T e rm s in N fr e e fro m x )d y = O

4
4 3 2 x
The s o lu tio n is X y + x y . C 4x
4
y + 4 } 4 jf 2 x
4
. C
4

Ex a m pı
e 5 (b » S o ı
v e (À 】f
2
e
1/ x '
)d x x
z
y oy = 0
(M U 2 004 , 品 、
?M ?N 酚
S o ı W e ha v e . 2 硝 _ 2 砂 条
?y ?x 臣



e
lı( X )o k
_ .
J dr _ .
4 ı
og X
. e
'o g j1 /X '
) .
ĺ
ı

Scanned by CamScanner
团团 b

b
e d M o th e m o «e * ïl (1 1 9 )
A p p lı ffe te n tlo ıE q u o ł
Dı lo m of ¢O & ¢D
Și 2 0 0 3 )
m um pM n g ï h ' " v °' " '" " '
"j ' "
1 .
= ° , " " " "

(T e rm s in N fre e fro m x )d y = O

2
3
1 /x y
The s o lu tio n is e c
i 2 ×
5

E x 6 p a g e 1 5 4 fo r a n o th e r m e th o d
S e e

4 4 3
Ex a m e 6
pı v e (x
(b ) S o ı + y )d x x y dy 0

ha
W 4y
3
y
3
W
.
l e v e
S o ay ?x

200 1 2)

M u y in g th e g
tip ı
ı iv e n e qu a tio n by
×
w e ge t .1 dx dy ' w h ic h is e xac t

A 4
y X

Ĺ 4 5 ı x
. og
JM ( Ĵ + y X 4
=

) c ly = O
in N fre e fro m X
(T e rm s
4 4
4 cx
= c ie 4 )ŕ lo g x y
T he s o lu tio n is lo g x
(M U 2 0 1 5)
2 ]dx 0
)
=
s in
dy + [y (x c o s x
v e x s in
x
S o ı
Exa m p le 7 (b ) d N = x s in x
in x a n
M x y co s x y s
so l W e hav e =
aN cos x
= s in x + x
刁八 a n d
s ln x
一 x cos x
ay X + X CO
X s ln X ) (s ln
(X Y

X S
2004 , 07 )
ııı

J Ŝ dx
e
o9x
2ı . e T
I = e
Ĵ f(x )d b r
= e
=

w e ge
t
by
q u a tı
'
o n
e
M u ı y in g
tip ı th e g iv e n

Scanned by CamScanner
y 2
T he s o lu tio n is L s in x + = c
X X

R u ı
e 2

M is a fu n c t io n o f y o n ly , s a y f (y ), t h e n
Jf (y )d y
e J is a n in te g r a tin g fa c tr

S o v e d E
ı x a m pı
e s C ı
a s s «b ) 6 M a r k s

E x a m p le 1 (b ) S o lv e (x + 2y
3
) _
y
ok
3
s o ı T he e q u a tio n ca n be w r itte n a s
r
y dx (x + 2y ) dy = o f
j. y
'
J W : I
3
H e re M -
y a n d N ・ (x + 2y )

M u ltip ı
y in g b y th e I F ,
w e ge t ° ' " oy = O ,
w h ic h is e xa c t

Scanned by CamScanner
e d M a th e m a tic s l ii
ı (1 2 1) Dı a l E q u a tio n s o f 6 0
ffe re n tı & FD
A p p !ı , .

4 y 3 2 4 2 2 0
Ex a m e 2
pı (b ) S o lv e (2 x y e + 2x y
y)d×(Ť y e
y x y 3 x )o rry =

(M U 1996 , 2005 , 10)


4 3
ha v e M 2x y e r + 2x y + y
ı W
-
S o e ,
Ų
2 4 y 2 2
a n d N = x y e x y 3x

4 3 2
- 2x (y e r + 4y er )+ 6xy + 1
ay
4 y 2
2xy e 2x y 3
a n d .

ðx

M u ltip l

,- --ĺ .
'
.
'
î ) . = o w h ic h is e xac t

)d y O
ri T fro m X =

e r

2 y + +
u tio n
s o ı
is x e
T he y
x
x
dv = 0
y ( y x + e )d K e
S o lv e
Ex a m p le 3 (b ) x
d N = e
M = y (x y + e
x
) a n

S ı W e ha ve
o aN
,
x
e
?M x
a n d -

- 2 ×y + e ?x x
) 2
ay x 2 (x y + e . f(y )
. 2xy e .
-
+ e
x
) y
+ e
x
) y (x y
y (x y
=
2 lo g y e
2 /y )d y =
İ( . e
1F = e
exa ct

) } o w h ic h is
dy - ,
d.
x. +.
h e ıF w e ge t ,

y in
u ltip ı g by t
,
M

!今夕 댜

O
fro m x )d y =

fre e
r {T e rm s

ズ s c

is
s o lu tio
n y
T he

Scanned by CamScanner
ı
Appıe d M o th e m a Hc s - ı
ı '" '

(1 2 2 ) D lffe re n tı
o ıE q u o ł
lo n $ o f r ö
i &

Ex a m pÞ 4 b) s ţ oı
ve
(Ť ''" ta n y c fx + (s e c y ı
og x x )o y = o

S ı W ダ
o e have M . se c y ta n y a n d N . se c y lo g x x
x

1F - e
J ta n y d y

M u tip ı
ı y in g th e e q u a tio n b y c o s y w e ge t

Ť s in y d rx + (ı
o g x x co s y )d y = o

İM dk 一
了壬 s in y 改 一
y lo g x x s in y

(T e rm s in N fre e fro m x )o y = O dy = O

T he s o lu tio n is y lo g x x s in y = c

3 2 2 4
E x a m pı
e 5 (b ) S o lv e (x y + y) o K + 2 (x y + x + y )dv = 0 (M U 2 0 0 9 , 14
3 2 2 4
S o l W e ha ve M - x y + y a n d N - 2× y + 2x + 2y

2 2
. 3x y + 1 an d . 4 x y + 2
ay ?x

ß J/
2 2 2
4x y + 2 3xy 1 x y + 1
M = . - . f(y )
2 2
y (x y + 1) y (x y + 1) y

ıF e
l(1 / y )o y E
ı
o gy
- . .
y
M u ltip ı
y in g th e e qu a tio n by y, w e g e t,
4 2 2 3 5
(x y + y ) dx + 2 (x y + x y + y )o y = O

JM d 'x -
J(x y 4
+ y
2
)o r - ・
y
4
+ x y
2

6
(T e rm s in N fre e fro m x )o y =
y .
W =

Scanned by CamScanner
:ť

团团团团团团团团团国 国舀a 音 圈 目

th tı i N
APled M ı
ı \ '
a e m o c l ĺ r
? Ť
(1 2 3 ) D \tf・re n H o \ E q n ı o ¢6 0 曾巩0

Th e s o lu tio n ls
2 4
X y 2
)O f 3 ×2 y 4
ı
+ + = C + 6 xy z ◆ y
e
. C
2 6

R u e 3
ı O d M x N y + o th e n
dx 1'2 (x y ) × dy . a n
is f th e fo r m r; (x y ) y +
q u a tio n o
If th e e
in t e g r a t in g fa c to r
1 ı(M x N y ) is a n

6 M a rk s

e s C ı
a s s (b ) U 2 0 12 )
S O V e d E
ı x a m 2 2 0 (M
2 y )d y
-

2X
2
y )d x + x x (y x
y (x y +

fo rm a n d
f th e a bo v e
tio n is o 33 33
i
T he e qu a a3 33
s o l 3 Z Z 33 ×
x yy
a . x : yy =.

xz 2
+ ż x y » ì
y

l
M Ny -

b
X

ł h ic h is e xa ct

Ĺ.
dy - 0 w
dx ,
Dividingbyx3j . . get
ıh s is z e ro
se
ed beca
u
ca nce lı
3 .
b y 3 l J7 t
h e te r m
f y o u d iv id e

'y Î
2 ı
og ・


.
・ d' "

J M dx - ry

(T e r m s in N fre e fro m X )d y -
Ĵ ły c y -
lo g y

o g x
lo g y -

is 2 ı xy 1 9 8 9 , 9 5)
: T he s o lu tio n (M U
2 2 = 0
+ xy +
x y ) dy
)dx + x (1
xy
ve y (
1 +
Soı
p le 2 ( )
b
E xa m 3 3
3 3 x y
2 2 x y .

2 2 xy x y
x y + X y
M X Ny -

- l '" e xa ct

ľ 六廿 ł
O , w h '" h
'

D iv id i" b dy °




Scanned by CamScanner
tla ıE q u a tı
o n s " d 戴园区
o '
国国 D lffe re n
(1 2 4 )

ı
ı A ppl
th e m o llc s
A p p lie d M a


M r Ĵ cx -
(小 川 六 咕 。 一

ı
o g y S o ı
fro m X )方 一 命 一

n N fre
ı e
(T e rm s 彆

+
十 ı
o g y = C
n r r J
th e u tio n
so ı

2 2 0
2 2 (x y x y ) dy -

S o lv e y (x y + 2× y ) dx + x
E xa m e 3
pı (b ) w ritte n a s
tio n c a n b e
to r x y th e e q u a
ı C a nce llin g o u t th e c o m m o n fa c
s o
2 x y )o x 1 x ) dy = O
+ x ( y
y (1 +

bov fo rm a n d
is f th e a e
T he e q u a tio n o
2 2
Ny y (1 + 2 x y ) x y (1 x y )= 3 × y
M x x
2
2
a s w e ll )
3x
2 2
w e ge t (Y o u m a y d iv id e b y x y
D iv id in g (1 ) b y y

t d iffe re n tia l e q u a tio n


T h is is a n e xa c

ı I {l !

1 1


E x a m p le 6 (b ) S ı

S o \ The e qu a tio n ca n

" ua
e e tı io y s
ı

* D iv id in g b y 2 x y

国 p .
2 xyc os xy v
D iv id in g b y 2 x y co s x y w e ge t (◆ ◆
1
E x a m p le 7

:ĺ y ta n x y +
) . + x ta n x y
) dy 0
S o ı= T h e e q u a ū o n is

y ta n x y +
) . + x ta n x y
) c fy o w h ic h is e xa c t
Ń o lw M x Ny=
ļ
)
;て と

JM
v

=
了y t a n x y + c fx = ı
og sec x y + ı
og x
o l ķ c 4 1 īu
ąr i ÌJ X
B r iT D iv id in g th e q\
ņ


e e

J(T e rm s in N fre e fro m x )d y J ł dy = lo g y


¢ 11

T he s o lu tio n is ı
og s e c )¢
y + ı
og x = ı
og y + ı
og c 1e x sec xy = cy

$衫程竺 甫 ぢ
m
浮中 ,

Scanned by CamScanner

th Ne \\ o \Eq tio n s o lfO & ĦD
A p p \\e d M o e m o s 11 2 5) D 1tfe re n tı u a

i '
ų
E x a m p le 5 (b ) S o Yv e -

, .

T h e e q u a tio n c a n b e w ritte n a s
:
2 3 3 2
(x y + 2 y ) c fx + (2 x 2 × y )d y O
2 2 2 2 /l
ı

ie Y (2 + x y )d x + x (2 2 × y )d y O A bĐ

tio n is o f th e a b o v e fo rm a n d
The e qu a
3 3 3 3 3 3
Ny 2xy 2xy + 2× y 3× y ) ļt
M X - + X y \
A h
3 3
tio by 3× y w e get
D iv id in g th e e q u a n

N o w J. . Ĵ ・
l c fx ' "

'" ,
fr o x )d y Ĵ y dy
in N fre e m
A n d Ĵ (T e rm

2 Z
x y (M U 2 00 6 15)
2
)d x (x +
S o Yv e (y xy
p \e 6 ( )
b
E x a m z
? j? + )ţ y + x ]ř . 2xy
J
d M x Ny = x y
fo rm a n
f th e a bo v e
Th e e qu a tio n is o
o \io \ y:E

D iv id in g b y
2xy '
(y d x 4 ×dy i = 0

dy o
-
x y
X
lo g . c + x y
c
\o g y x y °
y
\ x
in w e ge t o g
n te g r a t g
ı
O
4 3 1 .
2
x
2
y + x ) dy .

(X y 2 013)
4 2 3
+ Xy
2
+ y ßd x
+ (M U
3 + x y
S o Yv e (x y
b)
E x a m p le 7 (

is o f th e fo f m 2
q u a tio
n 2 xy
S \ T he e dy O 4 3 3
+ y
o 4 + x y
2
) JiW
, 4
4 3 y ł
+ x y 1)
X y 2
Ny y (x y
2 +

Ï)
=
N 0W M x 2x

,
.

i
dy
.

: ツ?

团回回
:'

回国回

回国
; 色\ 月1
, , ミ
七す
: ,
į む宝

Scanned by CamScanner
A P pł
ıe d M th e m tı
ci n
a o ・
(1 2 6 ) D lffe re n tla l E q u a tto m o fEO
t f .
l
&i

f
ì

T h is is o f th e fo rm M dx + N o y = O a n d is n ow e xa ct

2x y + 1 x
N o w N - - +
2
,

2x y
2 į y

J(T e rm s in N fre e fro m x )o ry =


1 o y = lo g y

T he so ı
u tio n is
1 '
ïo g y - c 砂 2 1o g y = c
2 2 Äy ×y
l 2
ie ,
Ay (lo g y ) = C
x y

E X E R C IS E V

ı f th e e q u a tio n M dx ◆ N dy = O Ia h o m o ge n eo u s a n d M x + N y * o th e n 1 / (M x + s ıq
N y )ı
ı
n e g r a tı
t n g fa c to r

dl
Scanned by CamScanner
s
s
e
S
d
A
p
p
r
o p
a e
A N D T d
N a A n o v h
D u T E o d w o M
x n T d
. h w g
. ' a
v a h
d
e
m p
" e g
n
" h
e h m e
n p u s b
g
q
J e
o T M y
l m
Ĵ u e y v . ' a
e
b M a
2 Ĺ × ・
a e u
? x "
T y x
o
y o m ' c
e v a n = y
2 + n b x b
s

m
x
N a e s n
"
u
・ y
s
) - n s A
N
ĺ
h
'
y h S d 3
d h - ł e "
n o o v o
w m v
d- d
- e e '
N e
v
= m
a
x v e q
g g
o e y
o 2 u '
e
e
e e
n
e
y
x
Ĵ .
A
2
.

-
g
e
n
e
g
o

x
o
m

x
a

o
n
"
y s
o + yu + x - .
o b
^_ n
o 2
x
a u y -
u 3
d
Ī - e d
m x
n s d s
o y -
c
"2 x
x
d +
n
a
d 1- e g
o M
y
y
e
n
d
x r
y
x q
y
= 2 m '
2
. u e

"
d - o "
g a = s
y d M X
3 : g
x a
ı - x ĺ
- x e d
ł
o - d ' y
n + y g o
-
g u ' g -
g - v =

c
X
-
a
c
N
y X -
ı
e
s
" c
3
o
)
ŝ y
y
d
2 o
-
d g o . g ・ -
-
x x y Ŕ
V
0 y 2
-
d
y + b 8 D
ļ 0
y + X
e
7
. =
y
x
e
g
d
x
o -
e
e
" 0 v n

v
. e P
_ d y
V o
x b .
y - - y
E

+
3 2
v p
" q
u
v u o
x y
n o
y g
A
_ m
- y / o
2 y
-
x M
y ' O
U
' &
9 " D
8
7 M
.
2 "
0
0
2

Scanned by CamScanner
į

ffe re n a ıE q u a tio n s b f ¢O P

D ı

th e m o HC S L n Ap ı
Piı
įĖiiiiiihė
ı
ip ı
A¢ e d M o
\: çH

'
x 十 旧 リア .

T he u tı
soı on is
t lo g"
2

. C A ho m o g e ih
' o g ×y
ı
. 2o - c X a s s e e n e a rlie r iı
lo g x + ı
og y
x
(M U.1
0
y )d y
2 -
2 (x + x
y )d x
2
e 3 (b )
S o lv e (x +
Exa m pı
2 b \
2
(X y) V \
2
3
x y - X S o v e th e fo ı
ı \o
z y )= X
y ) y (
2 x . X
M x + Ny - X (x +
2
1 x y d)

3 (3 x y

D iv id in g b y x
2
(X . " " '
.
Erin ・ = 0
" " HT
° x {J T

tia l e q u a tio n
N ow th is is a n e x a c t d iffe re n

Jm ? J X d.
J ・ y
'
J «
(4 ) ・

tre a tin g y c o n s ta n t L e t ・ ・ ) (a ) D e fin it i


(B y p a rtia l fra c tio n
A d iĦe n

JMM=2J J yJ o g jx
2 ı y) ı
o g x .
ï o n ly in th e fir

(T e rm s in N fre e fro m x )d y O

T he s o lu tio n is
Ť ı
o g x 2 lo g (x y )+ c lo g . ° /
ī .
' :
ì w he re P a n

F o r e x
2 2
Exa m pı
e 4 (b ) : S o lv e (x x y + y )d x x y dy 0

s ı: T h e is h o 3 2 2
o e q u a tio n m o ge neo u s a n d M '
x + N y x y
2 2 A \in
x + x y x y . x (x y) e i

H e nce
ì n
i is a n in te g ra tin g fa c to r
H ow eve r i
-
x
2 2 ņ ļ I W \ in te g ra tio n
D iv id in g b y 2 x y + y
1l x (x y) w e ge t c fx dy
2 = O t;
x (x y ) (b ) To s
2 2
x x y
a K +
y y
2 c fx C o n
x (x y)
2 - O ł yì
x (x y) × x ( y)

M u ti
ı

(B y p a rtia l fra c tio n in N ow


as (A ) o f E x 3 a bo v e )

\
x / ı\ ţ+
(T e rm s in N fre e f
ro m x )a y = o
T he s o lu tio n is lo g jx
y )+ . c
X



ţ

Scanned by CamScanner
A p p li. D M . m . . . Ħ. . \N ・ T.
11 2 9 ] ĮT .
0
1 D nı
m . N n a Eq u b n. . ? =
A h o m o g e n e o u s e qu a tio n c a n a \s o be s o lv e d b y p u ttin g y = vx a n d th e n se p a ra tin g th e v a ria b le s
ie r
e a rı in E x 1
a s s e e n
; NvfŤupa # 41 9v!b cs r !a

[ E X E R C IS E v l
iU

S o v e th
ı e fo ı
ıo w in g e q u a tio n s C ı
a s s (b ) 6 M a rk s
r \ ů r j

1 x
2
y dx (x
3
. Y
3
)d y = 0 2 (3 ×y
2
y
3
)d x l2 ×2 y

Z)dy.ij'
2 2 3 3 2 b 4
3 (3 x y 2 a y )d x + (x 2 a x y ) dy = 0 4 (x + y )d x x y dy . O

2 4 4
5 x (x y )d y + y c fx = 0 6 (x + y )d x
(M U 1996 , 2002 , 04)
.

(y / x ) 2
X
3
/3 y 3
(2 ) cx
3
Y
2
e (3 ) x y ( x a y )= c
«1 )
.
c y e
lA
-
n s
4 4
3
/3 ' y l× (6 ) 4x
4
lo g x y . cx 1
«4 ) cx - e
r *
(5 ) c y - e

L in e a r E q u a t io n s
8 .

ppe ar
its d e riv a tiv e s a
d n t v a ria b le a n d
id to b
is e ıin e a r if th e d e p e n e
tio n s a
A d itfe r e n tia ıe q
u
th e firs t o rd e r is
a
li e a r e q u a tio n o f
fir s t d e g e
r e T h e fo r m o f th e n
y in th e
\
o n ı
py - O

g . " \ \8 ţ Q )
f' ' " o n .

fu n c tio n s o
he re P a n d Q a re
w
2
+ 3. - x
F o r e x a ï ııp ı dx \t is

7
t s o \v a b le a
s
py - Q is no
.
a tio n o
f th e fo rm
' "
A lin e a r e qu be s o Yv e d w
" e c an
'
exm t . '
, e co m e s
fa c to ı .
tip ly it b y
m u ı
if w e
H o w e v e r,

in te g ra tio n

ĵ p dx is a n ıF
h o w th a t e
(b ) To s

C o n s id e r jP d x
Dy - O

e
l ľ u "
(P y L ı) u A

e
ĵ p dr
M u ltip ly
it b y jp d x
a nd
N = e
飞飞
ĵ P d x (p y Q)
N ow ,
M = e

Scanned by CamScanner

A p p *ı
ed M o th e m o tı
cs n (1 3 0 ) ;J Dı
ffe re n tı
o l Eq u o n o J=
'


l T
į
r» .

W
' Ų'

'p
g
o r
th e e q u a lı s e x a c t a n d he n c e
(1 ) ı is th e I F
爿 ay
, on g o f
a x
+ n
爿 To so ı
ve th e e q u a tı
o n + Py - O
dx
-
A s b e fo ltip ly in g th e g iv e n b y th e I F
'P d3
x
q u a tio
~
re m u e n . e ,
w e g e t,
Jp d (p r
Q Jp d x
e y ) c t* + e oy = O
S in c e it is e x a c t, w e ha v e ,

1" JP d JP d
JM c f× ・
J . (p y Q )ü r =
y İ .

. p o r İ .
'
. Q o r

lp d r 'P d r
Q c [r
=
y ・ e e .
[p u t P o K = t P o r - dt]
S in c e ,
th e re is n o te rm in N fre e fro m x th e s o lu tio n is
,

y e
JP o br
e
]P dx
Q c lx
'
c ie Jp dx Jp d・
Q
・ . =
y e = e d r + c

R e m a r k Øn

To so ı
ve a lin e a r d iffe re n tia l e q u tio fir s t w r ite th e q u a tio ith th e ffic ie n t o f
a n e n w c o e u nl
o Elr

i e In th e fo rm
g + py = Q
0 K

T he fin d P dx d fu rth e fin d lp dr


T he
n a n r e s o lu tio n th e n is

Jp dx JP d ・
y ・ e .
İ .

(a ) L in e a r Eq u a t io n s g + py - Q
dx

S o ı
v e d E x a m p ı
e s C ı
a s s (b ) 6 M a rks

E x a m pı
e 1 (b ) S o ı
ve ・
() y = 1 (M U 1991

S o ı T h is is a lin e a r d iffe re n tia l e q u a tio n o f th e fo rm


g + Py - Q
O K

N o w , V . =
İ ĹJ dx =
İ 21 - 2 lo g x

: T he s o lu tio n is



1/x
( F o r in te g ra tio n p u t e . t)

T h ò s o lu tio n is y e 1/# 1/# 2 1/x 2


. e 1 C y = x + c e . x


区 Scanned by CamScanner
* d ?* p h m llF ı ' ı
ı
Ąp p !ı o
ť t»\Æ
tıci t\ a 1 ) u i H ・m n \lo ı¢q u e ı
Dı ıo n ıq m
ł

E xl m pı
e a (b ) S o ı
v e (1 x
2
)¥d x
+ 2 xy . x m (M U 1 0 ı0 )

S o ı The e iq u a t!o n c a n be w ritte n a s y +


x X

y -

T h is ı
s a \ı
n e a r e q u a tio n o f th e to rm + py - Q

9 3 (M U 2 0 00 , 04)
2 )y (2 x 1)
u n ity E xa m e 3
pı «b ) S o ı
v e x (x 1) (x - x
dx
ix

S o ı T he e qu a tio n c a n be w ritte n a s i y ,
w h ic h is lin e ar

Ĵ, =
J dx -
ĵ( in) dx

tio
p a rtia ıfra c
ns
B y in s p e c tio n o r

p dx - 2 ı
o9 X o g {x
ı 1 )=
\og
= e
1F = e

u tio n
so ı
is
T he

19 9 0)
y
=
Jy Dx + c

X(X 1 )+ c
x x + c =

1 )d x + c =

◆ (2 x

(M U 2 0 02 , 1 5)

Scanned by CamScanner

A P P lie d M a th e m a llc s - ı ffe re n tlo ıE q u a tio n s o f k



ı (1 3 2 ) ö .
A ¢

J dx + c ・ ta n
'
x + c

1 Ļ
1ı ! i+ j łT
H e nce th e s o ı 2
,

u tio n is { 1)
2 1
,
y x + . Ta n x + c

E x a m p le s
«b ) s o lv e s in 2x .
g =
y + ta n x
d rx
5 o ı T he e q u a tio n ca n b e w ritte n as g h ic h is lin e a r
'
y = w
s in 2x ,

N ow ,
JP o r ・

J a k -
'
1
s ec 2
x
d, log t an .
2 l ta
=

n x 2
Jp o x
ġ lo g ta n .

T he İP o
s o lu tio n is y . ,
x
. ,
JP o * Q
.
o r + c

JJrx ・

co s x ・ 2 s in x c o s x
dx + c

1
・ s
ec 2
x
dx +c =m + c

T he s o lu tio n is y = c m + ta n x

Ex a m pı
e 6 (b ) : S o lv e g c os hx 2 ż
eos h x s in
=
dx '
hx y s īn h x
(M U 2001 02
S l g s in hx , , 0 e)
o W e ha ve + ・
y = 2 s in bx co s hx
co s hx

T h is is lin e a r o f th e fo rm g + py = G

1F . ,
Jp d ・
. e J 'o g c o s lw
dx - e . COS hx
T he s o lu tio n is y co s hx - co s hx ・ 2 s in h x c o s h x a x + c
Put co s hx t
=
s in hx o r - dt

l2 2 3
2
" " . ・ s in hx o r -
l 2 t dt-
2

T he s o lu tio n is y hx 3

cos = cos h x + c
3

Ex a m pı
e 7 (b ) s o lv e
xcosxd+y(XSinx+COSX) = 1

S o l B y D iv id in g b y x c o s x th e e q u a tio n ca n be w ritte n a s

Scanned by CamScanner
ïh e tı ı
ı (1 3 3 ) fRO & rD
A p ◆e d M
m o c s
o Dı a l E q u o tı
ffe re n tı om o , .

N ow , JP " Jt a' "


)
ł c fx - lo g se c x + lo g x = lo g (x se c x )
P c br b gx sec x
e . E . X sec x

T he s o lu tio n is y e
Jp o r
JP d x
: . , . Q dx + c

x sec x 2
y ・ = x sec x . . sec x dx + c = sec x dx + c

yx sec X = ta n x + C
\
"
ľ
ır
E X E R C IS E V II

S o lv e lo w in g e q u a tio
th e f o ı n s C ı
a s s (b ) 6 M a rk s

Ö + y 4 x lo g X + y z ı
og X
Ū
' = ・ =


2 dx
j (x + 1)

5 cos x ・
g + y s in x = sec
2
× 6 co s
2
x
g + y = ta n x
a « c fx

(b ) E q u a tı
o n s R e d u c ib le T o L ı
n e a r Fo rm s (T y p e I) (B y R e a r ra n ln g T e rm s )

w h e re P
A d iĦe

'
re n tia ıe q u a tio n o f th e fo rm
P į
d Q a r e fu n c tio
a n '
n s o fy o n s a ls o
ly ı a ı
ınea r d lffe re n tı
a ıe qu a tio n w ı
th x a n d y havı
ng
in te rc h
an g e d th e p o s itio n s

Its s o lu tio n is ,
.: i e
.
'
Dy
.
J .
JP ı
dy
. Q ıd y
Scanned by CamScanner
Piı
ed M à ïh e m tlc ı ll ; s ï
0 341 Dı
ffe re n tı
a l E q u a flo
l
o
St
'
nl of
Ri ,
:
S o ı d Ex pı Cı
v e a m e s a ss «b ) 6 M a rks

z 3\
(b ) s o ı
v e (1 + x + x y )o y + (y + y . O (M U 1 9 8 9
Soı W , 93
e ha v e ,a
,

Ģį
l+ x (l + j7 )+ y (l + jŕ )g . O
O¥ X

oy oy y
T h is is a lin ea r d iĦe re n tia ıe q u a tio n o f th e f
o rm
g + p '
x = Q '

Now , Jp '
o y =
JŢ - lo g y e
p oy
. E
'o g y
.
y

T he s o lu tio n is x . ,
JP '
o y JP '
o y
. . . Q dy '
+ c

Exa m pı
e 2 (b ) S o lv e (1 + y
2
)0 ¥ ı
an
'
y
E
y
.
o
(M U 1992 , 97 98 2
, 0 0 2 , 16)
,

S o ı T h e e u ti o r
q a on ca n be w r itte n a s 1 ı
an
Ą
y

T h is is a Iin e a r d iffe tia l e q u a tio n r


re n
o th e fo r m g + p '
x . Q '

o y
N P fy
JOy
'
o w c
, =
= ta , '
y , ,
Jp dy
ı
a n
ı
,
. E

T he s o lu tio n is x . ,
IP dy
JP oy
. , . Q '
oy + c

İ
'
ta n y
x e
y+
.

a C

(F o r in te g r a tin th e h
g s p u t ta n ' y = 1)
'
ta n y ta n '
x e = e y
+ c

Ex p le 3
a m (b ) S o lv e (y 1) o
+ K + [x (y + 2) e y
] dy = o
S ı T he
o e q u a tio n ca n be w ritte n a s g + x
y + 2
E y
=

W y + 1 y + 1
It is o f th e fo rm P ı
+ x = Q '

o y
N o w , İP dy =
İ 1
dy = ı
o g (y + 1) e
'P o y
y + 1
y + -

T he s o lu tio n is x e
Jp ı
dy
Jp o y
= e . Q ı
a v + c

Scanned by CamScanner


le d M
Appı a th e m a Hc ı lı
T ī (1 3 5 1
¡5 f1 Dı
ffe re n tı
o ıE q u a ïı
o n s o f 60 & Ep

" (y + 1) J(y + 2) e r .
(y + 2 )e r
j e r y
D + c [B y p a rts ]
-
(y + 2 )e v
e y + c
.

(y + 1) e y + c

E x a m p le 4 (b ) S o lv e (1 + s in
y) [2 y cos y x (s e c y + ta n y )]

l T h e g iv e n e qu a tio n be (M U 1 9 9 5 97 ģ9 2 0 1oi
S o c a n w r itte n a s ,

(s e c y ta n y e l i
o K + ) 2y cos y t iį 1 v \J ë
dy l + s in y l+ s in y
dx 1+ s in y) 2y co s
+ sec y X
y
dý (l + s in y) l+ s in [N o te th is l
y
2y co s y
+ sec y x
l+ s in y
J p o y
.
J " "
e
lo g (s o c y + ta Áy ) l + s in y
e .
se c y + ta n y
co s y
The s o lu tio n is

"
\ -
J揣 \ oy + c

2
. 2 y dy + c =
y + c

2
T he u tio n
s o ı ls x (l + s in y ) =
y co s y + c co s y

+ ( ) d yy
Iıリo yg yy ノ 0
o ı y lo g y d x匹 ◆
=
Exa m p le 5 (b ) S v e Vx

tio n c a n b e w r itte n a s
So ı The e qu a

z x lo g y
y lo g y + ・

+ P ı
x Q '

f th e fo
-
t is
ı o rm
O y
Jp dy
E
'o g lo g y
ı
o g y

J
t] .
lo g lo g y [ P u t lo g y -

J p oy
-
=

ĵP dy
. ,
Jp o y Q '
o y + c
is X e
T he so lu tio n

t]
1 og y)

2
+ c [p u t ı
o g y -

ı
o g y o y + c -

x ı
o g y -

y (M U 201 3)

2y
3
) dy - y dx
(b ) S o lv e (x
+
Exa m p le 6
be w ritte n a s
So l : The e q u a tio n ca n
1 2
dx X 2y

y
=
3
- x + 2y y

Q
'

' "

ł
'
T h is is o f th e fo rm
o g (1 ly )
ı
dy lo g y .

Ĵp = e
. E

Y
.
og y
ı
Now , Jp dy =
J -

Scanned by CamScanner
M a th e m o llc s II (1 36) Dı
ffe re

' " ' "


==t E X E R C IS E
m i
S o ı
ve th e fo ı
lo w in g e u a tı
q o ns : C la s s (b ) : 6 M a rk s

y X )O y (M U 1 9 9 4 ) 2 0 « + x o' y 2
y = e sec y o ry
3 (x + y + 1) - 1
4 s in 2y o r .
(ta n y x)a
tA n s (1 ) x = ta n '
ta n '
y l+ ce
y (2 ) x e r . Ta n y + c
(4 ) m à
x + y 2
× 3 /2
+ . cer
=
(ta n y ) + c
(5 ) x -
y
3
+ cy ]
(c ) Equ a tio n s R e du c ib ı
e T o L in e a r F o rm (T y p e ı
i) (B y s u b s titu t io
T he n )
e q u a tio n
Z
o f th e t e
yp ı (y )
'

+ p

Le t u s
P U T f (y ). fo llo
v th e n f '
(y ) g . g
A s w s
dx dx
T he e q u a tio n re du ce s to g + P
a r
v ° G w h ic h is ı
in e a r
Its s o lu tio n is v ・ e
lp o r
. Jp o r
, .
Q o r + c
s o ı
v e d Ex a m pı
e s cı
a s s (b ) 6 M a rks

T o fin d th e in te ra l
g pu t x
2
. I x a r
, .
g
2

Scanned by CamScanner
ed M a th e m a ı
tc s ? !! (1 3 7 )
A p p lı . ffe
Dı re n tla l E q u a tio n s o fFO & ED

2
T he s o lu tio n is v e
'
. e (x 1 )+ C 'e
2 ł

: :(
Z ' 2
x . 2 2 x
ta n y ・ e . . (x 1 )+ c ta n y = x 1 )+ c e

3
e 2 (b ) S o lv e ta
Exa m pı n y + ta n x - co s y ・ cos x
dx

ge t sec y ta n y
g ta n x sec y cos
3
x
D iv id in g b y w e +
Sol
cos y ,
-

dx
dy
v a n d d iffe re n tia te w r t x sec y ta n y .
putsec y = ,
dK c lx

3
d u c e to + ta n x ・ v = co s x
T he e qu a tio n re
dx

p dx ta n x d x = ı
o g sec x
N ow
=
,

P dr lo g sec X
e = sec X
1F = e =

: T he s o lu tio n is
2
3 ' cos x c lx + C
sec x cos x dx + C -

V sec X -

=
J(1 + co s 2 x )d k + c

0 3 , 11)
(M U 199 5 , 200 1, 02 ,
r
e
X y .
(e
X
e )
S o lv e
=

E x a m p le 3 (b ) di
be w nl
So l T he e q u a tio n can

re n tia te w
' ' N

d d iffe
l

r v a n
Now , put e =
2x
x 口
v


+ e .

r 一
e
O K C lx dl + p y = Q
f th e fo rm
T h is is a lin ea r e q u a tio n o dk x
ĺp d br o , \j
J = e
×
X 1F = e

p ( e dx = e
Now ,
=

・ o
" 2x dx + C
o e . E
Its u tio
so ı n ls v e =

X t
Put
s
e
ıo n r h s
T o fin d th e in te g ra t

1 dt .
口 ・
t
tď 一 t e
e
"
x x
改 一 e .

E e . e ,

t t e
t
(t 1)
e =
t ・ e

Scanned by CamScanner
r
Appı
ledMatheniaïı
ėi ıı (1 3 1 )
Dïfferenfloł
Eqtio
' '
e e
T he s o ı
u tio n is v e . E (e X 1 )+ c

er
x ï ı '
v =
(e 1 )+ c e
e . E l+ c e e

Exa m pı 2
e 4 (b ) s o lv e y (x Jr
y + e )d x
r
exo . o
S o ı B y d iv id in b ? w
.
g y ,
e w rite th e e q u a tio n as åUl U i
St
.
,

z z x ' Dy
y x + y e . .
ok

J yz
Now ,
d iv id in g b y ď
,
w e ge t ¥d r
y =
x
e n &x
D iv id in g b
Ĵ :$
2
yy ,
w e ge t ・
-

ıio łv fo

十V =

e
T h is is a lin e a r e q u a tio n o f th e fo rm g + py - Q
d )r
N o w e
ı p dr
ll dr
x
, . , . E

H e nce th e s o lu tio
, n is v ・ e

' " X .
İ x
2
o 'x + c =
. .

P u ttin g 1
v . 3
×

y 3

ve g
Ex pı
a m e 5 (b ) s o ı 3
s in
z
d li
- .
y + x s in 2y = x
3
S o ı W ha v e
e (M U 198 7
g + x s in 2y 3 z
o br
= x (1 s in y) + x s ín 2y a
Dr = x cos 2
y
D iv id in g b y co s
2 2 g
y , se c y
d + 2 ta n y ・
x . x
a


Scanned by CamScanner
切 罢
'
口 官
.

T 。 니 m っ


.
T
同 U .



. 币



h 国 卅 T : ぴ o
e
ヨ 了

d
h
,
.


コ . 币
宝 き
e じ .
. 쩝
。 h
.
U
。 四
. 區 气 亏
U の 。 . . 。
a U - 。 コ 。
니 . . の =

U .


. . 门 く 一 罍
コ げ e の ・
. 9 ・ m 阴
. 0 コ 气
. . .
a 。 a び の
= 田 国 . コ
. の


。 . P 挝 .
b e 崔 健
e く の U
X 昏 -
の ユ

- 弭

W . の の
健 0 ・
。 コ 個 .
身 . k
朱 の
e
=
a

。 l 'D
(
*

X
e
/ 、


.
.
.

S
- l4 X 气 d X
3
樂 .
-

y
- - d
g . 기 X
-


W
X

+
e


치 .
. の


身怜

0
. ト

米 聞 \ ro ト
ı


ş
! 、
、 區


.
.
X


.
、 1 の
\ 、 健 么 三

も 十 枣
も 自 区









、 む


く ぐ

汕 。 く 覧
借 日


固 汕 力 多

雯 心
A じ
の る ブ 弔

国 闖 胃


の く

知 個


呂 0

巴 N

Scanned by CamScanner
Ap pı
ı・d M o h * m o lic s II ) 1 3 41 (1 4 0 ) Į C ' f
) D lffe re n tlo l E
q u o ï ï o n ıo f
60 \,
liD

- 3 x /3
4
.
Gj . .
2 /3
and N o y = O

T he s o lu tio n ı 4 /3 3 z
s 3x + 2 /3
y . X = C
'
ie 2 ×4 /3 2 2 /3
2 + y . X = C
A lte m a tı
v e ly Sı
n c e th e e q u a tio n is h o m o ge neo us it c a n a ı
so be s o lv e d b y p u ttin
gy = w

S o ı P u ttin
g y X = V, g 1 -
g
C f× dr n p « JT

The e q u a tio n th e n r e duce s to + 2x 3


v . x w h ic h is lin e
,
ar

1F 一 e
J p dr 2 ×湘
x
2
一 e 一 e

The so ı
u tio n ls ' x
2
3
v e e
= .
x d bc + c

卫 2
V e
(大 1 )日x + c
2 [P u t x 2
= t a n d in te r a t
g e It b
' y p a rts ]
2 2
y X =
(x 1 )+ c e x
2

Ex a m p le 9 (b ) S o ı
ve g W
o r l+
-
(l + x )e ' sec y
x
S o ı D iv id in g b y se c y ,
w e ge t
g 1
(l +
.

s ec y o bc sec y cos y ī+ x
-
x )e '

P ttin g s in
d
u y COS
-
y ・e ge t
d
=

d si (l l
'
V
m )e r
・ .
X w h ic h ïs lı
, n ea r

Ī+ X
T he

Scanned by CamScanner
th e m o llc s n (1 4 1) * m
d M o -
D lffe re n tı
oıE q u a tio n s o r ¢O
A pp lie
. .

E X E R C IS E - IX

n g e q u a tio n s
lo w ı C la s s (b ) 6 M a rks
th e fo ı
soı
ve
g + ta n x (1 co s y )= O

3
oi
i
+
X
ta n y -
j ta n y s ı
n y 4 sec
2
y
d rx
+ 2 la n x ta n y = sı
n x

5 X
dx
l= x e
y 良 買阗 s y 安 sı
n y 一 x s in
2
y

2
3 3 x
2 + 2y x - 4x e
7 3y dx
2
l+ c e
x
«2 ) s e c y - l+ c cos x
(1 ) ta n y
-

lA ns
2 2
Ta sec x + c
cosec y l+ cx «4 ) sec x . n y -

(3 ) 2 x
-

(lo g x + c ) O
r x (ı
og x + c ) (6 ) c o s e c y + x =

(5 ) e .

z 2x Z 2
1)+ c
3 x
E (2 x ]
(7 ) 2 y e
.

o n)
l) (B y S u b s titu tı

e T o L in e a r F o r m
ib ı (Ty p e
o n Re du c
E q u a tı
(d )
f th e fo rm
f ' (X )g + P f(X )
q u a tio n
o
T he e
f rm b y p u ttin g f (x ) . v

fy nı n a ls o b e re d u c e d to lin e a r o
fu n c tio ns o o y ca
p an d Q a re
w h e re dv
dx
v th e n f (X )
d
' -

If w e p u t f (x )
- , È
dv in e a Its s o lu tio n is
+ pv = Q w h ic h is ı r
m e s
tio n th e n b e c o
T h e g iv e n e q u a

lp c ly
= e
Jp d y , Q dy + c
v ・ e

6 M a rks

e s C la s s (b )
S o lv e d Ex a m
x
)d y 0
(y e ダ
=
' xe
x
(X + 1 )d x +
lv e
E x a m p le 1 (b ) S o
e
x y
= y.
so l :T he e q u a tio n can b e w r itte n as e
x
(x + 1 ) d xe

j t łl, p

Scanned by CamScanner
le d M m
a p pı em o llc ı ı
l (1 4 2 ) D lffe re n « a l Eq ua tio n s O f
60 . \ Eo

E x a m p le 2 (b ) : S o ı 3 3
ve (x y + )IJ Ąd y o ¢

-

S o ı The
. e q u a tio n c a n be w ritte n a s 囀

.
D Iv idin g b y x
'
,
w e ge t
T
' '
y =
y
a

.

N

ow pu t - v

p
ã

- 2

Ý' " y a
W
+ 2y ・ V = 2y 3


T hı
s is lin e a r o f th e f
o rm + p v - Q ヘ 。

ãy
" IF -
J .
P oy
.
J . oy = ej
ŕ

9 Ł (사 ļ


J £O Ŕ r , Į )

*
E j«a m pı
e 3 (b ) S o ı 2
v e (1 +
y )d x =
(ta n '
y x )d y
S o ı The 一
q u a tio
(1 + y 2 )g
e n ca n be w r itte n a s 1
. Ta n y x
P '
u t ta n y = K

\
d .
C

T h is is a lin e a r d iffe re n tia ıe u a tio n


q

I E X E R C IS E X
S o ı
v e th e fo ı
ıo w in g e q u a tio C la
n s ss (b ) 6 M a rk s

/ \ı a e 1 y Z
y
" .
m " - ' e u - U "
'
y Jŕ ı
og y

Scanned by CamScanner
Iı lrl
ïh e m o H c ı (1 4 3 )
le d M
ı
o Dı
fı・ro n tı
o ıE q ı
ıo n ı o f ¢o
App u o . * m .

dr r #
(e r
X
)
. E e
4 Y sı g 2y a il x
3 . n x co s x = co
o y
1) = c e y
(1 ) xe
ı
+ (y
Ns
lA X 2 4
o l
r
x
E r l+ c e
(3 ) e (4 ) 3
.
sec x -
y + c y 1

B e rn o u ı
ıi' s E q u a t io n
9 .

R du e To L ı
ib ı Fo
E q u a tı
o n s e c n e a r rm (T¥ p e ı
v)

f th e fo E py Q y"
An e q u a tio n o rm
dx
+ =

O fu tio n fx a lo n e is
h e re p a n d a re nc s o ca le d B
ı
w , e rn o u ı
lľ s e q u a tio n d ı
a n s re d u c ı
bıe tı in
» ı ea r

ýL
"
di by y d b y p u ttin g
fo rm b y d iv i n g
a n - v A fte r s im p lific a tio it
n ca n be s o ı
v e d b y tFı
e
e th o d
p re v io u s m

P u ttin g 그 一 v (1 n )
1 W 湘 1 湘
ge t
li
P ū W e
=
"
,
'
" + Pv . Q
y i n )l i
c fv

w hic h is lin e a r in A lle


v r s o lv in g it w e re s u b s titu te v =
a n d g e t th e s o lu tio n o f th e g iv e n
e qu a u o n

Ja c o b B
e r n o u lı
i (1 6 5 4 1705)

Ja co b B e m ou lı
ia m em be r f th e
g u s h e d fa m iı o m o st d is tin i
m ath e m a tic ia n s w a s b o rn i y o¢
n Ba se ı s w itz e l d Be m ouı
, r an ıi re c e iv e d
M A in P h iı o s o p h y in 1 6 7 1 a n d a d
e g re e in T h e o l i
o g y n 16 7 6 D u rin
th is p e r io d h e s tu d ie d m g
a th e tı
c s a n d a s tro n o m m a
y w h ıc h h ı
s f th
a e r
d id n o t lik e ı n 168 7 h e b e c a m e p ro fe s s o r o f m a th e
m a tic s a t
u n iv e rs it o f B a s e l
y re m a in in g th e re u n tiıh is d e a th H e w a s th e ı irs t to
u s e th e te r m In t
e g ra lin th e s e n s e w e u s e in c a ı c u lu s to d a y B e m o u ı lts .
m o s t fa m o u s w o r k ı
A r s c o n je c ta n d ı(T h e A rt o f c o n e c t
'
l u re ) w a s
P U b lis h e d in 1 7 1 3 a ftn r h iQ r lo łh ı+ i łn ı

Scanned by CamScanner
Appı
ı・d M o h em o Hc s į II lł (1 4 4 ) D ïffe re n tla l E u
q a Ħo n i o f
Eo .
į
So ı
v e d E x a m p le s cı
a ss (b ) 6 M a r ks

e x a m p le 1 (b ) : s o ı
ve
@ x
3 3 l\
.
y x y
dx (M U 2 007
s o ı: S ı
nce + x
3 3
, i
i
,
y = x y th is is B e rn o u lliıs
dr , a e q u a tio n

+
D lv ld ı
n g by y 3
3
,
w e ge t , + x = x

P u ttin g


ぎ フ盏
厂令安 ー v, 一
th e e q u a tio n b e c
o r门e s

dv
+ X V 3
ie
d ii
= x 3
2x v = 2x

P d bc = 2 x d 'X 2
=
x P dx 2
IF = e = e
x

/ T h e s o lu ti ?
o n is ve
)
x
2
= e ( 2 ×3 )d K + C
T o fin d th e I
n te g ra ı u t 2
p x . t 2x c br = c lt
2
肓 2
( )( × 2 ×)湘 t

e t c ll
In te g ra tin
g b y p a rts = te I '
e d t = te t t a
+ e 2 x
= x e
z
x 2
Ve . x 2

V 2 2
= X + 1 + ce x
2 2
= x + 1- ce
x

Ex a m pı
e 2 «b ) S o lv e x + 3 6
y = x y
D iv (M U 2 0 0 4 2 0 13
.
n
o ı
ı g by y D
w e ge t
× 1 , )
i
'
P
,
'
A g a in d iv id i

・į ・i
- x
n g by x
2
- Jr

dv

T h is is a lin ea r e q u a tio n

P 改 一
改 S lo g 5
lo g Jp

X 一
X 湘
1F 一 e ı
o g x 5
一 e 5
= X
T he s o lu tio n is v e
İp d '
x
İp d "

= Q e + c

P u ttin g v = V jp , th e s o lu tio n is
) lL
5



Scanned by■
CamScanner
ę
h * M e \ı
d M e ı ı
e ıi ı ;
(\ 4 a ï i\# t3
Ap pı
ıe

H .. p h a (b ) S d vo y ' " .
g -
J4 【
1 .M a lm " Em . M M y - 2 W 0 n . ・

1
z
v ld ln g b y
Dı y Co S X

d ge t X 1 s in x
p u ttin g a n - w e + sec v =

dx

s a ı
T h is ı in e a r d iĦe re n tia ıe q u a tio n o f th e fo rm + Py - a
dx

JP d r js e c x d× ı
og
ı (s e c x + ta n x ) la n x
ıF = e e e sec x +

T he so u tio
ı n is

v (s e c x + ta n x ) (s e c x + ta n x )(1 s in x )d x + c

J (1 s in x )d x JŲ dx

Ĵそ会d x J . x 改 s in x + c

ta n x + s e c x
= s in x + c

c ta n x + sec x =
y s in x +
W he n x 一 O y 一 2 一

2 ( x
2
/2 ) W U 199 8»
. ı
o g x
e 4 (b » S o lv e x y +

=
E x a m
dx
7 /2
x e
)
ı
o g x
w ritte n a s
=
be
so ı T he e qu a tio n ca n di
dx y

W dv g x v e
) ŕ /2
Io g x
ge t + =
w e
P u ttin g V 下 ヂ

1
pr
f rm
T h is is a lin e a r d iffe re n tia l e q u a tio n o f th e o c fx

ıF = e
Ĵ ×d x
= e
x /2

T he u tio n
so ı is
2 '
/2
o g x dx
2
x
2
/2 x /2 x
ı + C
v e . e e

[B y p a rts l
id
'
x ・ x + c
'
ı
ogx x
o g x c fx

- ı + c ・

= x ı
og X X + C
1 /2
1 z
/2 1 )+ C
ı
1e
T he s o lu tio n is e
x
. x (ı
og x y

Scanned by CamScanner
Scanned by CamScanner
Ex a m pı
e 7 (b » s o ı
ve
g ĹT Fp )y
. . . Ji «m u 1 9 # 71 g g }
1

¡s o ı D iv id ln g b y , w e ge t
ĵg ( ) ・ = .

tl) łĐıc\łwł nx _

8 2

T h is is a lin e a r d iĦe re n tia ıe q u a tio n o f th e fo rm d + py a


dx

(M U 2 0 0 0)

2 W dv
PUt 了 一 V 了 c fx 改
y Y
1 凼 2 1 空 4
V =
츠 。

+ v = 3
M x
i i x
x

T h is is a lin e a r d iffe re n tia ıe q u a tio n o f th e fo rm åí + Py = Q

1F = e
卜(4 / X )改
一 e

og X
一 e
o g {1 / X
ı
'
)一
卡 ıJ n

Scanned by CamScanner
A 罗
di 一
一 .
年钮


看 m 一

幻 コ

I

盡 墨

。 禹 .
=
. 飞
乡屋 功

m 亡

Ě
- ロ
优脊 で

、 ン
:U
石 コ


の 国
の 。 一
. 一
。 一



n

.
.
t ,
ļ 一


+
ご 巳 一
却 。
。 一 台


こ 红 ン ヨ ・
。 口




、 기
-



齢 \


. 台 け 。 可

一 ・ 、

。 ロ 。 . 。

く 十 一 の




ロ 人
。 人
。 . 。 一

Š -I 団 刀 N 。 叫
十 . 人 . - 口


杈 . o
丽 。 日 団
分 .
\ 十

の 。

コ . 团 飞 目 人
丁 。 日 ー
齢 它 亡
- - 0 亡
山 圧 二

圧 台 台 。
入 -


、 .

田 ロ
鳥 ロ
却 5

・ ? 目
一 . 江 齢 。

齢 コ ロ
+ 日 , 人
. .
の ぴ

亡 国 一 人
二 。 囝 壱 。 の ー レ コ
u 田

ロ . の


啪 入

の ・ じ \ c 丁


、 +



に 门 .
く 口 十

ニ . コ

回 に
. 口


ロ 。
- ー 二
の 台 入 ヘ 亡


合 c

ロ ン ふ . ー に 人


国 っ コ 団 、 . の
m

.
の 亡 口

.
の 八 口
.

- 저
ロ ヘ 이 。 9 ー の 人
一 口 コ 。 国 罩 。
节 .
り ぴ ロ 。
-
-
と 陆 亡
三 コ 、 . 미 节
ニ の 。 刀 门
飞 m の







。 却 , 一 国


.
壱陌
一 叫
切 o
u 亡



虬 に
.
。 亡 の
丽 倒台 人
コ 队 闽
亡 ,
。 . 人



口 一 ロ

コ 匕 亡 亡
壬 口 口 。 国
ロ 反 び 団

! 国 。 .

の コ

・ コ
よ 口
口 国 。
国 ロ 三 口 仁
节 。
め 。 . 国
団 コ 日 全 田
三 口
罩 国 の 切
.
. . 二
亡 ユ の
仁 っ 树 = 如 . コ の
で 。 . こ の 強 こ
く く W 1 ロ 。 加 朝
1 ヨ

の 。
. 口 こ
1
。 ロ 目 卜
な 一
皂 目 。

の 。

Scanned by CamScanner
D 4
F Ą

& q 3
1 0
0
2
0
$ 0
o h
2
s
c
n H
r 5
o ļ 9 u
? 9
a ł 1
u r o
q e U
E o
l
M ů
o
n
e
e

)
D
- 3

3
$ 3
y x
u C
= ° ř
- +
y c . x
x
e ł ' + m d
u X 一 3
9 - : 2 o _-

X

d
4 F d
- _ v x 2
s d i
n ĺ
2
y g o

s
e
g n
x
u -
2 o 2 = e e o e
y o c
x a n u
- w a
u
2 Ĵ r
E - d u .
+ 2

q e e q
g
K
e r . B ď d e 2
3 E x n x
y 2
y a 2 o d o 一 a - x
x 2 .
e 国 e -
e
v
x
+
n
e
y y
'
y
e
b
e e
v
g
e
a
u



v
d 一
į n
e =
e
y
d
V v q e r
o y e
c
o w e 一 d
S x , s s S x s
s u V n = d
d -
c i - . n n d e n
» - v V
H a o o e C X a e o
u b y .
a e d
r g e
) u =
m £ 3 n p
u s
n
1 - e n u

e į e o o
e y h v ―K v F o
e s s o d s
h n v a e g
―o a
£ p a e e p g e
s n e s
o h a m
M c m h
T
h
T u
c n
s
h
T
a e s a n
u
d x w h
E
q x
E P
e
H P
h
e Ŭ E T T

p
o o
p b
A ţ s S

Scanned by CamScanner
2 ° 4 /2
R esu b s titu tin g fo r t a n d u, - x 2 + c e

3 3
Ex a m p le 2 (c ) S o lv e + x (x + y) = x (x + y) 1

' ť
S o ı P u ttin g x + y - vı 1+ =

T he e q u a tio n th e n b e c o m e s

dý 3 3
l+ 3 3
x r y = × y 1 + X V = × v
改 改
T h is ls a Be m ou lı
is e q u a tio n D iv id in g b y th ro u g h o u t, w e g e t
c hf
3
+ X x
p
・ =

p
P
2 dv c ll
u ttin g t
ge t



w e

y
丁 石 面ビ 。

T ıA = A Zx t = 2デ
2 c br c br
T h is is ı
in e
a a r e q u a tio n

2 }4 d r t
td t - t e t t z
)P e
. ・ e x 2
e .
e
Jr

H e n ce th e s o lu tio n is J / z
, 1・ e . e + e
x
+ c

P u ttin g ' " w e g e t th e so ı


-
, u tio n a s l .
'
- + 1- c e

E X E R C IS E XI
s o lv e th e fo ı
ıo w in g e <ł
u a tio c ı
n s a s s (b ) 6 M a rk s
(
1
业 本
y (1 2 ) ry )
2 2x d* 2 3
dx y (y + Ĵ )o y = O

3 3x (1 X
2
)y
2
g + (2 l 1 )y
3
. A jp

Scanned by CamScanner
(1 A l)
DM e re n Ħo ıl q u a llo n ı o r ¢0 & RD

Th e ď Ħe re n tia ıe q u a tio n o f th e firs t o rd e r a n d firs t d e g r e e is o f th e fo rm

dx

To so ı
v e th e e q u a tio n y o u m a y p ro c e e d a s fo ı
ıow s

1 W r ite th e e q u a tio n in th e fo r m M dx + N dy - O

ðM I)N
ı
fso th e e q u a tio is e x a c t
T e s t w h e th e r ' n
ay 园
T he s o lu tio n is
:

M d x (tre a tin g y c o n s ta n t + ) (T e rm s in N fre e fro m x )d y = c

r th e e q u a tio n is o f th e fo rm
2 S e e w h e th e
dx
+py - Q or
dy
dx
f lin d iĦe re n tia ıe q u a tio n
f rm u ı
a o e a r
fso
ı a p p ly th e o
jp o y P dy Q dy + c

e
JP d r
. E
P dr Q dx + c o r x e . E

y ! \ \
ritte n a s
th e e qu a tio n c a n b e w
3 S ee w h e th e r

f ' (y )g + P f(y ) = Q
dx L
Ć
du c e s to
) th e e q u a tio n re
th e n p u t f (y
= v,

Q w h ic h is ı
in e a r
产 P V = ,

ix
be w ritte n a s
n ca n
S ee w h e th e r th e e q u a tio
'

f ' tx 1
Ę + p ı f(x ) - Q
ı Q
'
w h \c h \s \\n e a r
to + P v ° ,

e du ce s
u a tio n r
th e n p u t f (x ) - v th e e q
ľ e e qu a uo n
rn o u lı
itte n as Be
an b e w r
u a tio n c
s e e w h e th e r th e e q '
+ Q
'
x
P '
x -

+ Py - Q y
"
or
oy
d 'x le e
ıln g th e to u r m
n g fa c
tı to r b y a p p y
n te g ra
ı
ın d th e
r to f
If a ll a b o v e m e th o d s fa il t y

Scanned by CamScanner
i ıc

Ap pı
ıed M o th e m a lic s ı
ı ?
(it

M is c e ı
ıa n e o u s Ex a m pı
e s C la s s «b ) 6 M a rks fi
3 2
Ex am pı
e 1 (b ) s o ı
ve
g .
4x y + y cos (x y )
? 4
2x y + x cos (y )

:T)
3
(4 x Jŕ + y cos (x y n dx + (2 x y
4
+ x cos (x y D o y = O £
l
"
H e re M 4 x 3y 2 4 t ( S}
, . + y c o s o ,y ); N . 2× y + x cos (A y ) . .
8
fw ī į
8 )9 )
-
y + c o s o ly J ly s in (JW ); 8× y
3
+ cos o l ) W
ix y
-
s tr ı(A y ) .

JM o r ・
[4 A 3 y 2 + y co s (x y )]d x " y 2
ţ s im iy
y匕

i u 9 tn rloū ť iT
(T e rm s in N fre e fro m x )d y = O
っ lf L 1 凸ł\
闻 04
: T he s o lu tio n is x 4 y 2 + s in x y = c rA

Exampıe2)solve [2 x s in ,
(ï ) . 3y ''"
(ł) J. 3x '
co s h
ły .
o . ,
S o ı H e re
,
" ° 2x s in ,
(Ť) . 3y '"
ŤJ ' ' " 3x cos h
Ť

哿 - "
C壬) 专 C ) ・ 一 。


竺 쁘1 l)
3X COs h {y j ×į - /(X )
3x

S in c e M dr is ra th e r a c o m
p le x in te g ra l w e u se th e r u ı
e 2 g iv e
n in
n m l
JN d y O ,e a ti, g x c o n s ta ' " =
1 3x 5 /3
.
cos h
Ť dy
5 13
3x
-
.
s in h
ï ' " 3x 2 /a
.
' " h

(T e rm s in M fre e fro m y) . O

ł ş
T hc 2 /3
s o lu tio n is x . s in -
- .

Scanned by CamScanner


毫 っ

N



.

.
一 5
・ V
。 n

. の

も m


へ 人 年
。 日





ě 沁 小 じ "
n
' 权

o
+ 히勺 翅


一 人


、 x 械

ě 国


・ い 、 の ロ
u ン ロ
召 ロ





、 の

、 m ン 口

飞 。 x コ
나 日
串 钍 、 目 の コ

'


匕 呂 の 우 の
.
么 시 の .
。 人 二
、 ミ 1
.
、 目 コ


、 図


丁 甲丁 丁 ご 冈回国 =

圈自白し

Scanned by CamScanner
A p p lı
ed M o th e m o \ï c s ı
ı (1 5 4 ) frw
Dı e n tı
a I E q u a 1ı
o n ıo r
Ęo
,
ļ

D iv id in g b y Ą w e g e t, . '
) - x
2

p u ttı
ng - . -
,
' "
et ' . , = x
2
,
w h ic h is ı
in e a r

e
Jp d * . .
JW x )?
. E
b gx
. ,

, The s o lu tio n is z ・ ・ =
J . ' J dr + c = x
a
o br + c = . .

・ X = 十 C
2
üř + 3» 4
4
4x + x .
(y
2
+ 3 »2 + C
'
«y
2
◆ 3)
2
= 0

The so ı
u tio n is

+
J j
3
m
le
3
v e . m
・ - .
c = 2 .
dx + c

To o b ta in th e in te g ra l o th e h 3
n r s put x . t

x 3 3 3
The s o lu tio n is

N o te z h
S ee E x 5 p a g e 1 1 8 fo
, r ano th e r m e th o d

4 0 4
E xa m pı
e 7 (b ) S o lv e y d* - (x y
3
) 0 oV (M U
S o ı D iv id in g b y d y , th e e q u a tio n be c o m e s

4 竺
4
D iv id in g b y y ,
w e ge t

ł
・' x = i x -
/4 :
X
vc
.

"
?p r pĻ


Scanned by CamScanner

m a
ı e
n
o s

h
e c
ı h
n w
o
x s
a
u s
a
q o
c p
l
y
-
o B
« x
n n
ı s
ı .
H
D
' r
x
d
y c '
y n
x
一 +
s n
o y s
s d -
n x x
y x e -
m o
9
n
s
g
d e n
- s o e o
o c b x
n e y - c w
ı u n + u
e
I
h

H x -
s o

o
e
a
y

b
=
s
o
c
ź X
- x
f
d
s

n Q c 2
y - M o -
o
e

+
o 日 + y +
d x + x u
a n 一 y -
@ ; s n q

r o r
s u a o
J e q P 方 4
y i O
c
d s
m C
e
・ - + d x e

"
. e
e o x + h
g
7
c
e
a
h
e l y d
x
- x
n
s
o
c
x X 8
o o b n 。 n n
× y e w y e
w g
a 一 v
o
.
s - s s x
o g
4 y
e Q y ī o . d
x x x o
9 w s S
e - - - - c
。 y d = w . s e e e O
c x n n p =
o o v n
=
生y
-
o y . a p e o 2 ł n x

-
b o a v e b y o = = = n
m g
产 7
u
q
d n + 一 u
o 8 y g
n u
x s

g F
n y b -
h x e s o o +
y A 4 a o e
g s
o g e s e u v ダ
p n p n
h p e
M H
T s
h
T m d h
◆ a w T
D M
u
p
h
T E
x
D
v

N
o

p
p
A o
s

Scanned by CamScanner
5
0
u
8
0 0
v 0
0 u 6
2 0
y 0
U 2
M U
M

"
e y c o
y a
- = e = y
v y n v
y g d

o s
_y o
x y
2 h g n
_ c o
+ 日
―y h
y
―o 2
2
w 一
y c
$ y × e 一

T
2
_2 .
- 0
s
3
e
Y - y
2
x
g
- リ y
. ・ e タ
e o s
- i - n
2 y g E ・ ° l
o
a c
y
+
. e
w
. . 2
-
o
2
y
一 = o
y ) c e y n y
2
x y g y
y 2 a V
2 o + + n c
3 v y c c
y
ţ e
2
x o o
n
o
2
E
y
CX J a e
s
-
e
s
x
( g 2 -
Z s -
a
. o E - x e g
-

Ĺ
- E a e ' y o
k u s
y y y 2 y y 一
= n - o o q a c y -
e e İ _ . e n n 吟
l x y x y n s a
d . = e a y y
d d 2 i
-
a 2
2 c J f y y
s

e
w x e n y e 2 c ー o
2
2 , + w e E
c í c
v e - e v e e ー -
b . v y . x
o e - o e v s e
S n Ħ
e
y
o
s b y o f 主 げ月 一 -
a v
d s 2 y n s ノ
x d p s + y k
b
c
n
-
e
.
a e
n
o
_
b
a
c
n
y
+
y c
e
X l 命 X
s
d
c
j
o x e n o b y
= c S o
9 y
2
n - u 0 o e e
- s í c n
a b o 2 u s +
e e F
u
g a s e a
u
o i x
e
b
y s
p q s -
n g s e p q e - 一 -
e
m d
n h
m e e p = = F
g
ř
i
n
a
h
e
v
s w T
a e
h
m M y
x u h o x h T ? x
E T D P N a
T E T x
? p
E
u
o
s o M
S o
S

Scanned by CamScanner
lie d
App

JM dr -
J(Ť s in y dr -
y lo g x x e in y

oy O
N =

s y lo g x x s ı
h y c
lu tio n ı
The s o
S o lv e
12 (b )
Ex a m p le
2 2
1 ) s in x
ļ [2 x s in x + (x 1 )c o s x ]y -
(x D cos (M U 2010)
( ,

2
ho u t by (x 1 ) s in x w e get
th ro u g
,

- . Ir in a
U ı' "

50 l /
ı
r 2x C O S X CO S X

dy
r d iĦe re n tia tia ıe q u a tio n o f th e fo rm Ļ py - Q
a lin e a dx
T h is is

2
- lo g {x
2 1 )+ ı
og s in x = lo g [(x 1 )s in x ]
' 1 )s in ] 2
; !P d r '' g [H x
.
(x 1 ) s in x
,
. E
E
İp d r
,
JP o br
Q dx + c
tio n is
.
y e .

th e s:o lu

Hen ce ,

2
2 (X 1 )C O S X O K + C
(x 1 ) s in x -

y
2 2 x s in x M + c [ In te g ra tin g b y p a r ts ]
- (x 1 ) s in x
讨 7 械

辷£
ŔIĴ
0 V0 ( 2 cos X dx + C
2
1 ) s in X + 2x c o s X
. (x U % tj

2
1 ) s in x + 2x co s x 2 s in x + c U Rį a ıi i
- (x , . u
"
, H c ņ ' ;

Scanned by CamScanner

厂 Ap pı
ı
ed M o M em o \ic s II (1 s a ) D lfre re n flo ıE q u a
«
Y

17 . Y ? x o y+ lo g ×dx - O

2
sec y + cos (x + y )Ja y - o
2o x
Į
c
y
3
= x co s x , g iv e n y - O w he n x = rr

30 (y
4
2 y )O x (M U 2 0 0 2 m 2 00 9)
+ + (A y 3 + 2y 4 4x
, ,
)o y
32 y lo g y d )r +
= O 31 ' " .
X ・ 2y = " '
ll
(x lo g y )o y = O
33 2
X - 3x 2 2x y
34 C O S o r + 1
X
d lr
+ y s in x .
Jy s e c x
35 (y + e r ・
(M U 19 9 7)
e ) o rx + x (1 + e r )c u = O
36 s in x g + z
y cos x - 2 s in
o br X cos x

-
Scanned by CamScanner
Scanned by CamScanner
łpl ed M e M e . . «c ı ll tid o ) U ilm ' " l a Eq lł
nH -

(4 2 ) E X a c t 3 E f)
2 (X + y )+ 2 2 v f;
x y / £
. C

(4 4 ) L in e a r 4 x ta 4
n y = x + c
(4 5 ) B e r n o u lı
' "
i ķ sec
y = x + i + e
Jr
^ ıı
a ı y 2

(4 8 ) Exa ct Io g lo g
y ・ lo g x + . c
(4 9 ) H O m o
ŕ + lo g y = c
= =
ı aCTiE X II
(A ) S o lv e th e fo ı
to w ï n g d lff
e r e n tïa ı T
x ta n y " a o r
e )o r + sec x
sec
2 4 M a rk
s
2 (2 x y 1) o 'x Y o y° o
+ + (2 y x 1) o y = o \ o
3 (2 ×V C O S 2 m × ta n
X 2 ×v + 1 ) o r + (s ln a 2 TA n s #
2 y e
x
. c j
x x ) y a . 0 x V + * + 2
y y = c J
r) s (M U
4
(eł
+2M+y3)ocr+(2ly+a)cu = 0
lA n s
,
lo go 9
, 7)

+ 2 y ta n q ď
D
x - s in x r + #
fy ĉ
» .
ľ
G x ? is j lA n s
ł# y a . c j
Y se ce
r x = se c
. # + c
J

Scanned by CamScannerd ı
y
6 ×
į
h
2
E -
E -
=
s v
n X =
s
n A 2 ,
A -
x
s c
k e
s
a
M s .
n
4
r A
b o
s
n
A
a

s
u s
a U
r c
d
4
m
n
o
s
+
a
e
n
=
O O
y o
. d =
r x
o s
o s
y
į y d
n
o
o
c
y 3 n +
o y a x a x
y + - u n
x +
y 3 y q s
- y x e
r + c -
o
y
a
e
s y -
n
a
g
n
2
x -
w y y
y z o x
- n = -
+ y
o
x y
a ¥ o
_
y o
x + s x 3
o 2 e y
_ x c h .
+ + y x
y "
. + e .
2
2 r
d c '

ĝ d
u
g d
y
-

R Z

Scanned by CamScanner
A
p
4
p
' 2
s e
5
u d
» m
A "
M x
y
M
d
( (
d o
r - h
e i
d
r m h
+ N + a + e
P y
e - N r m
)
+ a
y
)
q
d
x o u y
a c
=
Q
h
e
n
o
/ / s
e
d
x
s

n M N x
a
-
P M c
s s
t s
a .
- o a
D
N
ý
" .
n n
d
v h
" c

' o
s e ' n
d " "
e a y
b n o f f "
y
x e
n
m y
' " ð
M O
" g " "
a r y y 6
a - 2
n
d x s s ð
n y a a
p g y y N
u
f f
a

J
c y x
Į ダ y
o
F d
i h h
x e e
- n n
V +
e e
J
p D
2
y q
x d e
y y r e
n
s s
a a o
× n n
A E
d n n n
y e e ı q
=
g g \
a a ı
P O n n + o
v
g g
a ,
i
n a a t
d c c ļ
o Y i
o
u

Scanned by CamScanner
aiĮ i ţ *ť ą(ļ +* q :U QŞĮ qttį

ın th e p re v io u s c h a p te r s w e h a v e ı e a r n t s o m e te c h n iq u e s o f s o lļ ińg d iffe re n tia ıe q u a tio n s o f

c e rta in ty p e s W e h a v e a ı s o re m a r k e d th a t th e d iffe re n tia ıe q u a tio n s a ris e in th e s tu d y o f s o m e

e n g in e e r in g s c ie n c e a n d s o c ia ı p ro b ıe m s Ĥ o w e v e r fo rm u la tin g á d iffe re n tia ı e q u a tio n in a p a r tic u ıa r

i ti d d t iı d t d f th b j t t W h i h th b l b ı W e s h a lıre m a in s a tis fie d


s tu a o n n e e s e a e s u y o e s u e c o c e p ro e m e o n g s
he th e
fa c to r He re w ith v in
so ı g d iĦe re n tia ıe q u a tio n s re ı
a te d to

ctri.a! ą d M echa n ic a ı
Ņ o b le T s
:
w n

e q u a tio n s a re i
g ven
0 = 3 0 y U = \ n u rį v ł J V
l
ju E

fa c to t ia ıE q t io f
r
2 A ppıic a t io n s o f D iff e r e n u a n s o
. .

s i
.

Ħrs t o rd e r a n d F ir s t D e g re e (M e c h a n ic a ı ģineering )
C ı (b » 6 M a rk s
S o v e d Ex
ı a m p ı
e s a s s

S b

e 1 (b ) A n e qu a tio n in th . \h . *į ř bâ'iiį . . ėp i is G . Ąi v ,

E . .

b s e rv e d th a t a t tim
iićiv if - 0
t = O , th e iié ı S oı
ve
in te g r a tin g ity d g k b e in g c o n s ta n ts t is
ı o e
b e in g v e ı
o c a n
v '
1 I.
l 1}j
,
"

th e e q u a tio n c o m pıe te ı
y . į ,
' ' ..

f
tia ıe q u a tio n is o v a
r ia b le se p a ra b ı
e ty p e
S o ı T h e g iv e n d iffe re n

ı
ogg co s a - C Lb
he t. O V 0 i
B y d a ta w n

t =
1
Io g g co s a
lo g (g co s . kv ) = ŕ"g bitk)
k
T k ţ1 i
e N b \
cos a kt =
g = e Y
.

í\0 J£, L IT
'
g cos a
a kv

E ' ' " . 2


ı (b .T h
. E q u a tio n
o f. o tio n o f. B o d y m i
: Ijo #
,

F in d th e v e lo c ity a n d Į Ś¢į1
ļ fo r c o n v e n ie n c e
Now g9 k
ta ķı =

dv ļ v
2
. 02 2 v
= g 2 À
À
U 。


Scanned by CamScanner
Scanned by CamScanner
t ĝ ĝ ! . K ı
一 一 '
e
ロ Z 。 ' ' 隽じ
e 。
一 巴 .

8 .
一 ゆ 0


시璀

' 。
一 h 一 y


m
.
"
.

.

、 づ ぞ 、
.
。 专
. 一 @ 。 。
一 " ヨ 。 鼋
.
。 s
一 敌: P .
。 、

. 一 ・ 。



一 一 h 個 a 、 。 、


国 。

. 聞

一 。 .
。 으
a
.


。 e




。 .
。 (
。 , 宮





. .
e 身 。
a の
h


。 。 官 . の
.
. a 一 の
口 . g 、 。 i 、

么 四
. 仍
Ş一
・ 。 . + 。 . コ 一
e 。 、
. . 。


.
# Ş 一
@
a

国 4 a



, : .
隻き 二 一 セ



。 。 コ コ 3 、 。 二 了



。 次

e : 一 .
门 。 P \ 。 '
-
.


。 。


e の 一 コ
・ ・ 。 - a 己 . 白 一 。 一 ・ 、 。

. 袅 一



W 8 d . 气 .
。 닳 田

收 啦
a 。 、 。 f 。 、 X
。 。 3 。 。 ,

- 。 己 . 静

. @ C 、



( ヨ

.
u
、 コ ,
= \


.
个 一 。 难 刁
一 一 .
。 e 。 。 一 。 、 の
、 a 、 、 . . 3
。 . ヨ ノ 、

楽 柴
一 S 、 n , 。 聞
身咚

e : : 、 .
田 一 e 、 . 一 一 。
= : 。 。 。
- 田
一 < 、 . 一 。 蹇
。 十 。
一 e 。 ・ 。 一 、 巴 の
一 自 。 . d . 。 。 。
聞 。
沁 . 一 ら の
= ひ


;
.
, 一 一 .
.
一 ,

、 の
飞 e


。 。
.

; の 。 。 .
。 飞


立 、 e ぞ 諂
\ 、 ー 。
.
習 弓


聞 。 .
廿 ヨ 召 。 ,

。 。
年 飞 皂 园





皆 臥ー く
a
b

.
.



。 召 0
。 茭 ,
+ 一 e 々 、 田

: )

画 一

@
,
。 。

一 丁 :
一 一



引 U
.
。 .



。 +

二 引
; ー . . 、
一 ゆ : ぷ 一
。 。

飞 召
一 ニ ー '
。 、
一 巳
.
.
ヒ 一 也
一 凇 : 。



。 一
- . e


の -
.
.


. パ ビ
一 己

一 ; 。 び
一 。 . 々
。 ,
乃 - 녘 ・

一 . 、
。 、
e 一 。 .
挙 。 。 。 の

이 苯


、 ぴ
6 一
一 。 气 囑 .



っ っ 。 . 、

、 一 っ
ー : 一 一 ・ 。 。
: 一 。 n - 、
一 一 。 园
口 。
、 一 一 . 、 好
、 ; 、 .


一 、
。 ,
ミ 吐


协 口
、 、

P ヨ 、 、 、


: ー
、 」 。
、 。

e ヨ 。 。
@ 。 。
、 、 \ 、
= 己 器 。

Scanned by CamScanner
APPlléilMėtı
idtrátiäil・ ň (2 4) ÀPbiiiiii
R e s u b s tı
tu tln g y .
fe ģ o w : iJ i!Ţl Ĥ ßx ĵ nį a\ W , i JĐ
,
R
2 Zbr 2 b lr 2b*
(\9 1, *
y e . ' e . e + d
T 2b
2 Q

ŢYÏ ţ
IW lu

Scanned by CamScanner

厂甲上
一一二' " 圈团团

11c ı ı
ı

1 o n 0 3 łV
į \k 0 0
he n X 0 V = C =
ìi o v Į ;z d) q
B y d a ta
- o 13 9 o
w , :) o tlv i 3 Jn E ,

is d ire c te d to w id s o rig in : a ih £ i
s in c e Ţa c c e ı
e ra tio n 3 7o "
g a tiv e s ig n a
e ta k e th e n
e
: W ,
i R o ll v i ţ 9
lih c ů o

\ o $ ŲC

Scanned by CamScanner
'
(l ・¢)
àih&Miii
'
11
"

vb
v Į ï rlie f7 c ? b ow p
)t ost?ï ib į .

ļ ">
$
.

m o b "
j v erv . Gŕ ţ '
x

11 fjs o v : fr ł\ Ji lßfjl S V U fQ
2 r
2 S fn ıJ tn }{ī 9 Ð il fĥ p lţ o 9
rı nij£
į
= + C

h e a rth w h e re x ・ r th e n Ęi v B ítĤ W ldį ・


d o c lty th e s u a c e o f t e .
f u ls th e m q u ire
ı v
2
2
U ijß1 :3 ?Y w n gl 9 v t9 u r¥
9 6:
.
ib einJ
qn$û (} í1Ç
-
.
G r+
2 ßlin o ì : » iit iï
:ī'ć
2
a q v$ d
2
2g r
. + Gr
u

ñ a ti. fm o tio n o f a b o d y p ro Þ d fro m trie s u rfa c e o f th e e a A w ith m aal


T h is is . e q .

O n s rÝw ĵb
£iï ı
d e c re a s e s H e n c e ,
v w l b e p o s itiv e if
iı ,

2 2
u 2gr 0 u 2gr Ie u
l

le a s t v e lo c ity o iòro je c tio n


» l
, T he =

A p a rtic le p ro je c te d w ith th is v e ı
o c ity w ill n e v e r Re tu rn to Th e e a rth T h is ïs c a lle d th e ııc ıpe
ve ı
o c ity fro m th e e a rth
/ b

o u t to be 7 iı
Ēn į r)ļ , r
m e s pe r sec Lļ b \ c
ir ņ \Į ・

Exa m e 10
pı (b ) T h e d iffe re n tia ıe q u a tio n f a bo dy
o o fM ass m p ro je c te d v e rtic a lly u p w a n lı

--mesĮ-.įf <ř
' " y a t the
g

:
T h is ls a d iffe re n tia l e q u a tio n o f v a ria b le se p a ra b le ty p e°
dv n iı l» n ia
= dt
g + (k / m )v o

beJJhfheinlbīi v f og r g .
= )' v
r q
ix 3 2 0 r g\ 1

W h e n th e b o d y a tta ïn s m a x im u m h e ig h t, v - 0

Scanned by CamScanner


韮 v
w
A o
S
o
a c
o N
? h
e
n
s v
a
n
n
s P
- a e y
n 3 2 B ę E ı
o n .
y x d

m
a h
A T s
s
T e m n
a
h n e
e h g
c
e = F e
h o e
g n k g a
a , O d
o d o s
h n a Į
O v w g

)
' h e ' 1
c C = e o v ą
o n à
' e
y O m ņ
e
g
n c
v
e
n
ī

"
b
w
a C
d o
x ä e w b
x e y
u .
p m e a
g x
e
.
n n . u q m e T
h
e m u
a
p
e
=
o

C
s a ļ s e i g
- d
T
g p ? s
e k ó
h n t
v e e g
e
n
e
e
d d o C = k
g
'
P
e
e
a a a Ï y
d n n
y
b
g
į
n
d b
s
s
ı g a
x
e
.
h
t
ę
y -
i
o į ¥ b E d T e
. e
a
ä d
X ・ v e
- .
q
t n E u
L g
s
n s 6 " a
+ m a
Ţ
v
R p
T
k
n
M C +
- o 2
o i t
v
o
s
c t
a I c
f F n l

h
e " k
S . ș o
g s E
. p
뇨 g a
i a s -
9
v
T a
e v = w
x b
n e
g
v
I
'
Ħ h w b
e e o
- e e e
S s E ' h d
y d n ) y 门 e
h ß " n 口
a y
a
o w b , E i u p
w r h
e
y o
a
i
3
8
h
e o
-
A
i 9 z e
h v
h
d
a - n g 门 c
l 门 e ?
s - b e
k
v n
Ţ
e a u T d
A
. o
v
ĺ
・ T
o
1
2
0 陜
c
e
v
e
p
8 e . u p
= £ 1 ×
ê
1 ł
w
I
l T p い e c e
h -
"
ą a ų a
d
国 e
t v
l o
0
o .
y

e

g
d
A 0 "
T g S
봬 p ?
d u .
9 p
国 ;
Į
e n
s
į
Ţ k
T s
6
Į
Q
G
k 6
r
y w
a o
国 a
T
h v ° a ņ
f

e e d
e 2 s
回 s

回 " v
e
J n
=
S
p
a
E
9
v d n


国 o h " a

= y
c
Ţ p
w e '

Scanned by CamScanner
A P Þı
ıed M h (t a ) A p p ıc o tı
r
o e
w!ı
ı ı! , .
o nl or
D lfr .

4 . T he e q u a tı
o n o f m o tio n o f a p a rtic le m o v in g ı
n a e tra ı
g h t lin e Is g iv e n b y v g . k
ůr ı
f
In ı
tia lı
y th . ĒartiėieNSaireètį t :

s ta n c áfio m tĥ ' n , s ho w
' " gı th a t ı ll b ' " '
tw ı
a
"snce!

5 T he e q u a tio n o fm o n a s tra ig h t ı
tio n o f a p a rtic le m o v in g ı h a re s is tin g m e d i
in e ı
u n iı
s gb e n
by - k f u is th e In itı
ı aï v e lo c ity , p ro v e th a t v =

n in A nd t-
ī ・
I!( Jı' ıv Ł

6 T e d įffe re n tia l e q u a tio f a b o d y fa ı


ıin g fro m re s t s u b je c te d ta th e fo
-f g
ı n o rc e o

X
ra v it
y an d aı
r
2
re ◆s ta n c e is iv e n b g N
2
g y v
ak
.
g
.
g p ro v e th a t t
Te velociyis g iv e n b y y .
1 e
2 ・
# /g

(V . O a tx . O) i

Ħ rs t o rd e r a n d F ir s t ;D e g re e e c tr i
«E ı E ĥg i n e e r in gt
W e h a ll id e r s im e le c tr ic a
s co n s p le ıc irc u its co n t in in g ristance !R ) įņd yc ta n c e (L) ,
,

, o t. .. X X ,
°rg ' " q a n d th e ra te o f fı
ow o f e '" c tric ity i . c u r re n t b y J W ith th
e se

1 i一
安 o r q 一
Ji lt c

2 V o lta g e d r o p a c ro s s re s is ta n c e R = Ri

dr
3 vo ı
ta g e d ro p a c ro s s in d u c ta n c e L = L
o lt

4 Vo ı
'" g e d ,0 P a ' '" ' '" a. ita n ' " -
å
:
. "
K irc h h o ff s L a w '
s

1 T he lg e b ra lc s u m o f th e
a vo lta g e d ro p s a ro u n d a n y c lo s e d c irc u it is e u a ıto th
q m
e le c tro m o tiv e fo rc e in th e c irc u it

W . . .. X X X h f
' " s fl' " n g i, to or
fhYtf.ílŤ " ıo f th ' " . U i is z e .

(1 ) R L E c ir c u ĺ t r1 4
i U
C o n s id e r a c irc u it c o n ta in in g i
re s s ta n c e R an dın d u c ta n c e L in s e rie s
w ith a v o lta g e s o u rc e (b a tte ry ) E L e t / b e th e c u rr n t In tlie c irċ u it a t
ė any
tim e f T h e n b y K irc h h o ff's la w

S um o f v o lta g e d ro p s a c ro s s R an d L . E

: R i4 L . E .
R
i "
dt dt L L
T h is is th e re q u ire d d iĦe re n tia ıe q u a tio n o f th e c irc u it
g 2 1

Scanned by CamScanner
( 9)
j l l i)
i Appı
ıc a llo m o fD M EQ n ı
,

(2) xx (=
e
.. C O n ta iin lńg °
b a tte ry ) E L e t i b e th Ġ
'

ţ . . .
c u m e n t at a n
Á ıd n UC
tariceLaŕidė*,aąı

timi t T h e q b y K ı
nce Cı
n a e rı
es w ı
th a
s o u rc y rc h h o fr s La w
to e
vo l g ta g e d ro p s
ı a c ro s s R L C E
m o fv
o , ,
.
° \ ů Į n v tv !
su Ę ・

. .
putting:rdıw ,
e į gd t R
n
iqnBeËìğovz
į iuwi?sĺ Jtbcjł
:' :İ , ' :

g 2 2
R Q
z$ ? u 9 1
? nı
ďq
.
T dt
+
į -
Ș J 3 o r{ĵ t ßr iJ W 0 rla 0 19 1 a ' ' " 1' ' "i'" f1!
.

..

d th e follQWlg tw o integrais o fte n in s o lv in g lh ?じ q$w e n ti


?ıe q ila tįp?īi£
ţf ą!
¥ e nee . ,
,

È
c ir u
i
i Ĵ !Ts!1uJ ġ rif r ia m ó x s n i a l 30 2

1 Q
ax
s in bx d x =
h (į sinbj,bcosbx i n ü V ı ' e .

! V m t
: tĮ 3a Ðu E
' .

tÐp e wr N EĴ N

p u ïtı
ng

e
ax
s in bx dx =
. !

ÐtiT Rĺ l
g u il w o d 0 8 3 n o
łĮ lį U P u nůvi
as
Ħ \b
3

9 1j gr ţ īu q
Ħ îo ? 9 ıĺ E n o V Q
U0
J\ 0 Y r
i .

c u rre n t
=

a n d vo iá g e EF th e
n a
,

re s is ta n c
e
c ta n c e
L, ,

it c o n ta in in g in d u È a re c o n s ta n
ts
E x a m p le 1 ( n a c irc u
b) : ı o an d L R
t= o i-
, ,

tim e t if a t
,

n t ia t
lis giv e n b L d l + R î E F in d th e c u rre
y =
r
dt

f th e ty p e à L !
ř
*

ål
r o
r

so l : T he ı -
is lin e a
g ven e q u a tio n ・
\M g ・

k R /L Įd t E
J(n /L )d l Į ď + C
įů
o1
. 0 Ł ・

.
: ı
ts s o lu tio n is i E
CJ S

Scanned by CamScanner
O
rl t
=
w he

i e

i=

ı
e
rxa m p
f
+
" T

n i=
0 at
(G iv e
W e h ąv
so\

T h is is a

\s o ,l iu o \g n t

'
e d łb í \ı

(b e t Į e f

By da

Scanned by CamScanner




翱 w ¥ $ ș ・ i=
:
.
A f s ho
w th a t th e
Fu '" a t an y tı
m '' " .' '" ・
e
R t"
)


s a lin d iĦe
T h is ı e a r re n tia l e q u a tio n o f tl e : Pė + py - Q ï ı
ts so ı
u tio n ı
s
\bu , k
í e
J (R /L )d t
. .
J
(R /L )d t E
e
a t
dt+ C

: f:Ĵ !o n o į ir Łn t r o IT ir j} ? q & !Ħ s x a


($ e r e r
,
I ę
'"/L
- i . . =
. e
[(R /L » '
':!}
g = 3 f le rl\ \ Ðm Įt Y ;n Ľ }ß i In û Ħu Ð

iīS io ļo 3
B y d a ta , w he n ig 0 ,
i- 0 , C =
o lıD 9 n o v e rtl n \ \ o) nii u 3 = 3 p r :ılīu Į

l9 12 e w t j iW ! e n ı!G iį n Jì s i)iG
R tLL E 【
lR IL ) a lt
・ i ・ e _ e

E 1 \h
E
一 :, i= 트 a t
. e '
。 ゆ
°t
eT \
R La R La La
L i\ T : p e lß1 n ,lsib £init SS z ī p D T
n t) ij(į ĵ I
。 '
b

ę 5 (þ) T h e
Fx ą m p ı c u r re n t in a c irc u ň ėo n ta in in g a n in d u c ta n c e ,
L r e s is ta n c R ,
a n d
,
o!tage

th a t " \b [ ħ \ \ 1l
E s in wrii g iv e n þy L ・ Pi = E s in o ) t I"
S H = u ,
s
w !. i -


Ss o l T h g ģiv e ń ėġ uatipn ş} ŕ '
+ ' "

î .. r û
'
Ĥ ţ !v
"
w .N ou M "
H e n c e , th e ş e lu tio n ls N ,R
.

\ıp » )) m a
.j{ > łł 2 9 w Ei g e t,
. Į ,:
Inrgrulng b y p a rts ,
i e B y (1 ), p a g e

.
1

Scanned by CamScanner
\ lĮ
' g
ţ į įĮ '


e


月 罗 卜


一 て

千 丽

8 。 の

、 因

か 一 に

。 一 田

。 っ コ
.
。 ( 零

女 户

4
3
. の
. に




山 亡

日 。

罅 の

一 亡

니 一
自 晉
昌 号
十 - .
- 心 く
二 。
乌 . 阴
良 。 一





客 。




昏 一 昏
冬 玉 十


区 导
の 司 コ
-

丽 习
)
山 に 晉

雀 雀


枯 。 丽
臼 。


パ っ
니 盯

位 山 一 三

の 一



く 。

二 杉

军 良

Scanned by CamScanner
l. Ih im o ı
ı ・
c ı l i (a 15» ppnlońıláifi:ı
ł ņ\
Ĥı
id
.

6 7 (b ) T h e o h a rg ig o ri ı
ha þlllia*ndı rdclpıolEı
C h w
o ıı d m in u d r a

ı
tınce
R by a e te a d y v o na ge v " " He . M d lfl tlal ?qtr
ı
pd å '
'" .n ・ ' .
Iï q = q q ttņ p ,

s◆
W e a re gM . thai i ・ . . -
ļ
i!]

ne n RC

R
t ı C . CV CV
q e
í rlu
n j r !o oonß}Į į a
cv g cv ei
t /R C g c v il L e
! /R C ) ĵ b íıł nß

: 3 i! : q
e -
O S }o v1 Ð
4

'" ; *
in i ł A io v

R ž
c n ß jļ ĵ í3 Đ 1 w ) E)f
FT/RC ・ : e ° t/n
i= - Cv
.

c u rre n t, i is g iv e n b y
:
Ēirċtoi ŕġ ģi ta n R se f in d u c ta n c e L , th e
ı
[(
" "
E.a A àıe 8 (b ) ı
n a
s ce ,

L + TH = C u u a v
◆ 2 0 13)
(M U
rre n t i a t tim e
t
fin d th e cu
:
ihěïi Ind p a re c o n s ta
n ts ,

SO l W e ha v e ・
Ï Î i= .OS Pt

f th e fo rm
g , py - Q
d iffe re n tia l e q u a tio n o
dx
T h is is a in e a r
ı

S(R IL ) d t = e
lR tL }t
1F = e

ts so l ut ion i s

i e
(fU L )t . e
(R /L )t .
ş cos p t d t+
C

E ( ln lL )t
e
. cos pt dt+ C

is t o f b rm uı
ae ]
L (R /L Y i th e ı
a e F 6 n
[S e e (2 3 ) p g ,

+
a
F Z'
.
(R /L y
[ę .os p t + P s in P
+ c

(R /L )t

ftï
+ c e
.os p t. p s in pt
1=

p t】
+ c e
s in
- [R cos p t + Lp


国自如
I
Scanned by CamScanner
Ap ı
ı
e lq ??"8WTdl :
(? ļ p

r =
\ņ E X E R C IS E II I ' '

S o iv ó th e fo iı
o \» ı C la s s (b 6 i M a r kb
Ť i:js a V 9 8 13 89 a e dR ^
ï 5 Je e 9 ı
ng exam pı
es

'" CO.
Ĺĺ , d to . '' " t. ' ' " 】E Ĺg i
'

'' " y /.
žå
-

CT
=4T--IÍX§
ÏŢ I/C R
'

ù ・ e r tl ł
o no È1ßu R ; [A n s
Q :T E q .
. e )]
2 W h e n th e in n e r o f tw o c o n c e n tric s h
p e re s o f ra d ı u s rl a n d 62 (r l < 62 ) c a rrie s a n e le c tric
c h a rg e th e d ı
ffe re n tia l e q u a tio n fo r th e o te n tia l v a t á d i t
p r fro m th e c o m m o n c e n tre ı
,
s a ce s
dzy 2 dv
'
, i - o F in d v ln te rm s o r r

r) ľ r)
.
[A n i
ī ' "
1 r
? put
å ・ z ]
Ħ
3 W he n
g
a sw H c h is c lo s e d , th e c u rre n t b u ilt u p ı l c tr c ı
n an e rc u lt is g i en by E - R /+ L
If L = 640 R = 250 E 5 0 0 a n d Ie o w h e n t・ O s ho w th a t th e c L ire n t W iı
=
ia þ
,

p ro a c ti 2 a m p
,
'
w he n
t 每 eo

4 A re s ı
s ta n c e o f 10 0 o hm s an d ı
n d u c tà n c e o f o 5 h e n r ie ś a re c o n n e . Te d ı
n s e rı
es w ith a
b a tte ry o f z ut v o lts F in d th e c u rre n t a t a n y In s t t l ih e
ï re
! io n be een L , R , E ls L
å + R l- E

l11 V Į ı
T al l :naiuJsiJ j ,rsTJuhni:ł) \ą ' ' " .
U
2?!P[A ! (Ē gã!? ı
. ,
e
20 0 t
)]
? 3 z w '

(F O t u M \
\
ȘIŚ 3
L
s RT ı
3 E 1 £ī1 u ) . īi b !: a ï n u
a n o ĵ e 1s ( b n
Į
!q a a D
R
. į

YO
:n lo l S tl! īo rK )iJ£u ps li i; in?īsìï ib 1 ßÐR il B e
: e iriT

1 鲁吕i i frn c lo ĵ ゐ ı l :討 门 台 叫 :S )e o )

lì {3 Ħ }. J3
q rl i? q q Ł0 3

1£ 3
°
ť 3 + Ħ

Scanned by CamScanner
tţ :i
0 1 U T Z P

t£
Ħ

ga c ıty C fa r
a da

= O w he n t=
0

t/c R
5Ç(!T e
)] U q
V
3r l S "3R n
ltrie s a n e ı
e c trl
c
c e n tre is In tro d u c t io n
1
d v /
h a p te r w e s h a lıs tu d y ı
In th is c in e a r d iĦe re n tia l e q u a tio n s w ith c o n s ta n t c o e Ħic ie n ts In th is
Cz Pu t
d r
。 z 】 typ e
i ı
o f d iffe
t a e q u a tio n th e d e r iv a tiv e o f a n y o rd e r M a
re n y o c c u r b u t its p o w e r ls u n ity . A n d ıts
t t F ı t h f lı i Ħ i ó ėf h i t Ę
i
c o e ffic e n t is c o n s a n o r e x a m p e e o o w n g d i e re n tia ı e q ła ti n s a re t s y p e

L
・ Ļ :ılG U V
h
E = R i+
p9 :1 W ī E f D y
a
á r 1 D ' ? ıJ ıe ' '" ' ' " 9 P ī c !m Qn c
n O I ßu
a .
. 2 . y :
ti 2 'a m p w he n T
Bm 3 n ĉ łe h ĵ ! i ßo k Ąs 1o (£) n o į!:3 u r l e jn

d
¢Q 0 ( 1
M ĮF 6 1S
1.
y 2
+
:o ? w o M
ı
n s e rie s w ith a
D e fin it io n
i
+ R l - E
P2 + P ny X
A q u a tio n o f th e fo rm . . . ľ

K
n e

ł
eoo t .
02 (l T e )1 d x is fu o f ' ' " y iî
į ıie \ĥ . " d iffe r e n t\a ı
p p p a re c o n s ta n ts a n a
w he re 1 2 n

ith c o n s ta n t c o e Ħic ie n ts
e q u a tio n w
x D
a
cb

¡1 o l łp ł
q g ų o rij[\

nķ K şĶ ß】

t to x say o f th e iu n btio ń wich


iff re n tia tio in w ith
b o l w h ic h d e n o te s d e
re s p e c

w L e t D b e th é s ym n r il ü le z n ļļ )a
e d
it i e D s ta n d s fo r d l x
N c
im m lo w
e ia te ly fo ı
d s
ofx t h e n o ftl
T hu s if y is a d iffe re n tia b le fu n c tio n
IŃT

ŕa tio n o fD ł
e pe a te d tw ic e th ric e ,
: q tim e ķ 9fļ o 4
:
ď

L e t u s fu rth e r d e n o te th e o p e
W ith th is n o ta tio n

ď "
D y -

%
3
ď D y -
y -
on w h ic h it
F n c tio n y
To r m d M . u
.

tia ıe q u a tio n
th e d iĦe re n
O p e ra te s d W ith th is n o ta tio n
is ıı
ca e d o p e r a n

y P2
ća n b e tte n a s
w rı
+ n y = x
. r\
+
. .
į ła ï li ł
n

Scanned by CamScanner
A þp lı
ed M Dı
o h e m o lle s lı (3 ' 2 ) Lı
ne a r ffe re n tlo l Eq u
*
q l

c o n s ta n t is a ls o a s o lu ti
o n o f (4 )

y - Cz e
*
, y = C3 e
2x
s a tis fy th e
Simiları
ywecanverifythaiyį'exandy E-2xandoregene@ .
e q u a tio
( F ŕ ih i n 4 o
' '

s ŕe a s o n Y . C1 e X + × 2x
W
C2 ť + '
e i s a tis ñ d

įį Ĺ
F u rth e r
į(
Î
W e c a n a ls o
V e r ify th a t '
U =
. :
. '
f (3 ) . tis fi. .
o )and . . .. is a M @
,

N "
,y H U.jsa'"osoı
ion f !3 ) b o e
:ų !
X Ū
Ų

ęauș
ș.þy P Ųtţ g y - Y i l e
.
? lh . o f (3 1w ? ge

ī į
◆ C 2x
3 e w h ic h

:
a ls o is th e T h e p a rt Y
a n d th e p a rt
co m p le te Șo lu tı
on o f (4 ) is ca lle d th e c o Iï \p le
m e n la r
y

Ħ
Ĺ:
;
;
Scanned by CamScanner
麟蘸 一


5
0
m



S
3








\
0 亡
く g
了 山 か
ロ ロ a 了 ロ
门 어 了 良
コ コ 5 コ
巴 丁 V の

ロ P 5
W W W 巳 ぐ
니 m ロ h h の 。
了 U h ヨ
X の e e e 己 の 一
の 国 コ 3 a の
コ 。
コ 亡 了

ロ ヨ 国
h h = 어 。 孓

亘 e 了 己 ロ
a
亡 の 기 y e の
ロ 。
口 に 门
ロ の
刀 m 国

ユ - 闰
h
h h
으 国

コ 峒 仁 の
了 e S S 。
十 n 5 ロ
八 の .

切 m を 丘

a
飞 e X

国团
)
っ 3 丁 コ

气 e
ヨ 乏 の
d 幻

国 ロ
U 仍 乙 =
e
战 闻
の 门
口 a
.
e U の

了 国团

团团
\ 仁 の
夕 ユ 十


コ 5 S Pt

( e 工 の の 島
仍 十 门 コ
团国
了 .
次 国 e の 鸢
孕 S の コ コ ヨ 印 の
十 门 W
e ヨ の
。 b 田

门 ロ く e 5 e の

旧 3 状 の .

仍 ー 了 自 . 自
十 a
阳 卫 e の 了 コ

. タ

国 十 e 门 中 P ロ



十 1 ロ P 亡
ズ e
门 十 ヨ 넛 < っ . 竺
口 团 a コ
门 \l e ロ
の 十 e の 闻 a コ
◆ 国 门
コ の
奴 乒 ヨ
の 聞 a V
阴 の
コ U 口
ロ ヨ
。 じ 状 5 ロ て
a C
了 U
ロ の

フ 5 ヨ 紫 尸
ロ e 莲 P
S
己 .
ロ e 口 。
e で ロ



ヨ V コ
m b 位

沁 e て
a 黌 鸢
C 。
a 仁
a
? で W
= ロ
S ヨ V


e 名
沁 a 子
e = 了
e の 一
5
コ ー
印 a 三 画 じ
a 阴 良

コ 。 ユ
ヨ d の 分
二 e 子
沁 1
e 。 a 吸
b

a 弓
C 。 韜 の
t
e e
S

UJ a
4

し닐三

Scanned by CamScanner
A P Þł
ıe d M e M e m o \ie * ı
l (3 4 ) li ne or D lĦe re n ï io l E u
q qł
lo


三 司
し E X E R C IS E I
S o ı
v e th e fo ı
ıo w in g ł
e ¢u a tï o n s C la s s (a ) 3 M a rk s

Ī 6y =
O
n s

13 ? , .

(5 ) y C1e
" 2* 3x
- + C e + Cb e
(6 ) x 2x 3x
y = c1e + C e + c
B e + q e

j
5 A u x iı
ia r y E q t io
.
u a n w it h R e p e a te d R o o ts
f th e
ı ilia ry tio n
a ux e qu a (2 ) o f §4 ha s re p e a te d ro o ts s a tin g tw ic e th e
y m ıre pe a n th e g e n
e !d

B t th is s o lu tio n h a s n
u
1 a r b itra ry c o n s ta n ts a d
n is n ot th e g e n e ra l s o l ti
g e n e ra ıs o ı
u tio n o f th e d iĦe re n ti ı u o n be c a u
s e 1he
a e q u a tio n o f n th
o rd e r s h o u ld h a v e n a r b itra r
y c o n s ta n ts
T o fin d th e g e n e ra ıs o lu tio n w he n r o o ts a r e r e
p e a te d
S u p p o s e th e ilia ry
a ux e qu a tio n s f (D ) O h a s th e
=
ro o t m l re p e a te d tw ic
e H e nce s u p p o se
f(D ) O (D )(D 2 ,

l)
=
m

ł
og v m lo g
lx +
=
c

P u ttin g th is v a lu e o f v in (6 ) ,
w e ge t m ly = c le
m ' x
dx .

B u t th is is a lin d iffe
ea r re n tia l e q u a tio n o f th e ty p e g py Q
+ = an d he nce its o n ls
s o lu tı
cf
x
" X m X
, m x
y e . e ,
C 1e ï
dx + C - C
2 1 o K + C2 C1 X +
C
-

1x
w h ic h is th e s o lu tio n o f th e e u ti
s im ila rly ií th e q a on (5 )
ro o t m 'l1 is re p e a te d th ric e
,
th e so littio n c o r re s p o n is t!e
d in g to th e ro o ts
,

s o lu tio n 3 se
o f (D m l ) y - o
Scanned by CamScanner
lı fe re n lla l E q u a tlm r
th e m o tı
c s (3 5) li n e o r D ı
ı :" r
d M o
AP P lie

m i1 x
e d in g a s a bov e w e get y = (c 1 + c2 x + c 3 )e t
p ro c e , ,

t m l is re p e a te d r tim e s th e c o rre s p o n d in g p a r t o f th e s o lu tio n ı


s
f th is
ı ro o

o r

v e d Ex
a m pı
e s C ı
a s s «a ) 3 M a r ks
so ı

Exa m pı
e (a ) S o ı
v e 5 .
. 4y - 0 (M U .
2 002, 16)

T he a u x ilia ry e qu a tio n is D 3 5 0 + 8D 4 - 0
So l
ď 2 l 3 ď + 6D + 2D 4 - 0 (D 2 ) (ď 3D + 2 ) = O

(D 2 ) (D 2 ) (D 1)= O D ・ 1 2, ,
2
2x x
T he u tio n
so ı is y - (C 1 + C2 X )e + c3 e

E X E R C IS E II

v e th e fo ı
Soı lo w in g e q u a t io n s C la s s (a ) 3 M a rk s

2x X

lA n s (1 ) y - (c \ + c2 x )e (2 ) y - (c 1 + c2 x )+ c3 e

2 "
2× X

(3 » y -
(c l + C x + c3 x )e じり y \비 丁
哩 석 ワ 丁
叼 リ

3x ×

(5 ) y - (c t + c2 x )e
3 X
+ (c 3 + c4 x )e (6 ) y = (c 1 + c2 x ) + (c 3 + c4 x )e 1

6 . A u x ilia ry Eq u a t io n w it h I m a g in a ry R o o ts

Scanned by CamScanner

ıedMoı
lleiił
ics: n ' iŢ j
(3 6 ) L In e a r Dı
fre re n t

F u rth e r, If a a ir f lm ls c e th e
p e a te d tw ı c o rr e s p o n d in g p a rt o f th e
p o a gı
n a ry r o o ts re soı

can b e w ritte n a s
lp
)e ' h ic h be w ritte n a s
ip)X x
)e (a
a w ca n
y =
(c i + c2 x
+
+ (c 3 + c4x

y ° .
°"
[{A , +
A 2x )c o s Px + (A a
+ 44x ) m l
S o ı
v e d Ex a m pı
e s C ı
a s s «a ) 3 M a r ks

T he /2 1
s o lu
X x
tio n is y =
q e + e c2 cos x + c b s in X
2 2

(M U 2 01 4 )




¢y d y
Z
E x a m pı
e 3 (a ) S o ı
ve + 6 + 9y 0
F dp
=

d


S o ı: T h e a ux ilia ry e q u a tio n is D 4
+ 6D 2
+ 9 - 0
2
(ď + 3) _ 0 D
2
一 3 D 一 į J3 i 土 J3 i
T he ro o ts a r e r e p e a te d co m p le x ro o ts

ー T he s o lu tio n is y =
(c i + c2 x )c o s l3 x + ( c3 +c 4 x ) si n 3
J ・x .


4
轟 E x a m p le 4 (a ) S o lv e + k y 0
U 2 0 0 3)
=

(M
吕 4
S o l T he a ux ilia ry e q u a tio n is D + k 4
. 0

Scanned by CamScanner
,įĥı
4t44ņ9!7ęș !!
'
,
" )
Uneg r D lffe re n tla ıE u o tı
g o ns

E
'w J z þ q Ca S (k / J a )・ "
y .
2 s in (k / h ,

LCCOS(k/Jį )X+ ċ 4sln(k/) '

4 (AXa) s o lv e + 4y
le o
Ew m p
=

(M U 2 0 13 )

pu t k
- 2 ,
kz . 2 in th e a bo ve exam
p le a n d s o lv e
so l
,

J r

4 3
a u x ilia ry
e q u a tio n is D 2D + aD z
2D + 1= 0
T he
(ď D + 1)
2
. o
1į Ja ・ í 1t J3 ・ i
D
2
ro o ts a re c o m p le x a n d r e p e a te d
S in c e , th e

4 3 2
4D 8D 8D 4 )y 0 (M U 2 0 14 )
e 6
Ex a m p ı (a ) : S o ı
ve (D + + -

q u a tio n is
So ı: T h e a u x ilia ry e
3 2 4 0
ď 4D + 8D 8D + =

2
2 2
0 D 2D + 2 - 0
: (D 2D + 2) .

ıR o o ts
it h R e a l, I r r a t io n a
7 A u x ilia r y E q u a t io n w o th e r
,
th e n w e k n o w th a t th e

ts a + and a Ji
f irra tio n a l ro o
2 ) o f §4 h a s
a p a ir o
rootis a If th e a u x ilia ry e q u a tio n (

Scanned by CamScanner
t"
g .ġ
§
§w

A p ◆ie d M (3 8 )
ł Iinear Dlfferenlł
oır
o ïc ı ı
th e m o ı ı

e
" [
ı
( (C1 + c z) os h c ・+ ( c1 -
X 2) sı
nhj ・] x

: y = e
" "
tA c o s h ・ x 4 Bslnh ・ x)

by cl a n d c2
R e p la c in g A an d B w hı
ch tra ry c o n s ta n ts
a ro a rb ı

y = e
a X
tc \ c o s h ・ x + c 2 s ln h ・ X )
c e th e
F u rth e rIf a p a ir o f re a r ra tio
lı n a ıro o ts a r e re p e a te d tw ı c o r re s p o n dı
n g p a rt
o f th
e
s o lu tio n c a n b e w r itte n as

'a )X 'a )X
y =
(C 1 + C 2X )e
+
+ (C 3 + C4X )e
y = e
a X
[(A 1 + A2x )C O S h ・ x + (A 3 + A 4x )s in h ・ x ]
R e p la c in g 4 s by c s
'
w e ge t
,

y - C
a X
[(c 1 + C 2X )C O S h ・ X + (c 3 + C4X )s in h ・ x ]

S o ı
v e d Ex a m p le Cı
a s s «a ) 3 M a rk s

2 N Ï þ° ' :, 3 t ¢t 0 æ r
{fł i a i ï ła
E
,
x a m pı
e (a ) S o lv e (D 2D 4 )y - 0
S o ı T h e A E Is D 2
2D 4 0
=
ĹTO l :1
,
, \

2 į ノヰ了6 2 土2 石
D ・ - . 1土 5 J

xE . o ts a re aı d i a n ,m ti . A l a n d h e n c e th e c o m p le m e n ta ry fu n c tio n l e Th e com pı
e te
.o ı
u ti

y = e
X
ţc \co s h ・ x + c z s in h Js x )

E X E R C IS E III

L
S o ı
v e th e fo lı
o w in g e q u a tı
o n s C ı
as s (a ) : 3 M a rk s

4
- 0 0 y - 0
4
O K O¥

6 H g¥ 5Į g . 8 ・ ° . 4y = O
(M U 2 0 14)

d óy
8 64 y - 0 3
ď
9 (D + D 1) y
2
= O

4 2 2
10 (D 1) (D 2D 2) 0
(M U 2 00 2)
+ + y -
11 2 3
(D + 1) (ď + D + 1)
2
y - O

Scanned by CamScanner
lı (3 9)
b
Lı o ıE q ü o ł
D llï e re n tı ıo ń. .
M o lle s
n e a r
M o th .
p rle d
p
°"
"
. Cz ť 1 c o s m x + c « s ln m ・
q e
(3 ) y
-

3x + c z s ïn s x + q c o s 2 x + q s ln 2 x
q cos
(4 j y
-

,
"JŹ q cos (x / Jį ) ・ c z s ln , / ß)

(5 ) y
.

/l 2
(x / l2 ) + q (x / 4 2
x
+ e c3 c o s s in

e
"
[(c ı+ C2X )c o s x + (c b + c4 x )s in x 】
(6 ) y
°

2 x
+ c 2e
2x
+ e
x
(C 3 CO s X + C 4 S \n J3 X )
q e
(8 ) y
-

+ e
X
(c 5 co s J3 . x + c 6 s in J3 ・ x )

)e
x
+ (C 3 + C4 X )C O S X + (C 5 + cóx )s in x

(9 ) y
- (C , + C2X

2
+ c4 X
3
)e
"
+ e
"
{(c 5 + c6 X )c o s x + (c T + caX )s in x }
(c l 1 CX+C3 x
(1 0 ) y
-

x "
)c o s (ß x / 2 ) + (c g + c 1o x )s in (J 3 x / 2 )]
+ e [(c 7 + c8 x

2x (c 3 + c4 X )s in 2x ]
(c l 4 c2 X )c o s +
(1 2 ) y -

X is Fu n c t io n o f x
X h e re a
8, S o lu t io n o f f «D ) y - w

C o n s id e r th e e q u a tio n

h
u tio n o f (1 ) is t e
tio n fx ly T h e g e n e ra ıs o ı
o n
n d X is a fu n c
o
i
p2 pn t a
a re c o n s ta n s le m e n ta ry fu n c tio n s
w he re pl ti u la r in te g ra l T h e c o m p
a n d th e p a r
, ,
c
c tio n
su m o f th e c o m pı e m e n ta ry fu n
ti
x ilia r y e q u a o
n
o bta in e d b y s o lv in g th e a u (3 )

X
b e w ritte n a s y =

s in c e f (D )y - x th e p a
,
r tic u ı
a r in te g r a l c a n ÃĎ
to r o f f (D )
d e fin a s th e in v e rs e o p e ra
To fin d x w e e
fio i f(D )
ra te d u P o n
b y f (D )
ti f X w h ic h w he n o pe
t fu n c o n o
(a ) D e fin itio n X is d e fin e d a s th a
f(D )
gl iıvv ee s XX
he n o pe ra te u
f x w h ic h w
x is th a t fu n c tio n o
(b )M e a n in f x B y th e a bo ve d e fin itio n
g o
is in v e rs e
s in c e in te g ra tio n
D g iv e ļ tia tio n w r t x a nd
oy
i e D iffe
' "
x re n
s ButD s ta n d s fo r
dx
ere '
"atiqı】

ıa a m us t s ta n d fo r in te g r a tio n

Scanned by CamScanner
A P P lie d M th e m o llc ı ı
l (3 1 0 ) L In e a Dı
ffe re n tl
q ; : r

Thu . ,

S o ı
v e d Ex a m pı
e s c ı
a s s «a ) 3 M a r ks

E 2
x a m p le 1 (a ) : F in d th e p a r tic u la r in te g ra l o f D (y ) = x
S o ı A s d is c u sse d a bo ve

P a rtic u la r ı
n te g ra l p ı - / . x
2
. -

E x a m pı
e 2 (a ) F in d th e p a rtic in te g r a ıo f D
u la r (y ) = ď
S o ı P a rtic u la r In te g r a ı P I ・ x x
= e = e c br ・ e

E x a m pı
e 3 (a ) F in d th e p a r tic 2
u la r in te g r a l o f D (y ) = sec x

S o l p 1 2
a rtic u ı
a r In te g r a ı p I sec
2
,
=
x = se c x d K = ta n x
D

(c ) M e a n in g o f X c o n s id e r th e e qu a tio n
g a y = X
D a

iie (D a )y 一 X
lIts a u x illi
ia ry e qu a tio n is D L
aa == oO ıÈe
D ・
= a

lts c o m pı
e m e n ta ry fu n c tio n is y - ce
ax
Its p a rtic u la r in te g r a l is
l=

H e n ce itś g e n e ra l s o lu tio n is a x
,
y = c e IT X

a n d its s o lu tio n is dx

C o m p a r in g (2 ) a n d (3 ) w e fin d th a t

x e
. e a -
x .
・x
X d

S im ila r ı
y w e ca n p ro ve th a t

T h is m e a n s th e p a rtic u ı
a r in te g r a l (P I ) o f th e e q u a tio n g ay - X ie (D a)y = x is
c br
g iv e n by

Scanned by CamScanner
? Ķ

M !h e m a llc s ı
ı
・d o .

A p p I! (3 1 1 )
L1n e o r D \fı
・r ın n o ı
WqntrF . :

E xa m e 2 (a )
pı Ħ n d th e p a rtic u la r in te g ra ıo f (D 3)y - x

p ı. X e
3 x
e
3 x
x dx
Sol D 3

JJ E ) ¢į

Exa m e 3
pı (a ) F in d th e p a r tic u la r in tc g r ái f (D + 3)y - s i 2 Á x

soı p I- in s n î 2 x .
e
3x
e
3 x
s in 2x dK

3 3 x l
. e
x
e (3 s in 2x 2 co s 2x e

-
l (3 s in 2x 2 cos 2x )
13

e
ax
s in b x dx = e
a"
A2 ( a s in bx b ' " bx )

ax
(a co s bx + b s in bx
an d e
ax
c o s b x dx = e

2x

F in d th e p a rtic u la r in te
į
g r i o f (D
2
4D + 3)y - e
E Xx a m e 4
pı () a
1

1 2 x
e
e
2
(D 4 D + 3)
3× X
3x 2×
3x
ť
X
c fx - e ( ť )
3x
e E c fx - e
D 1
E 1
=
D
D 1 2x
x X
2× x x
c fx E . E . E
2x x x
e c fx - e e .

e e .

.
. E .

tio n s a s sho w n
b e lo w
u s in g p a rtia l fra c
fin d a r in te
th e p a rtic u ı g ra l b y
A lte rn a tiv e ı
y w e c a n

2 3
D 4D +

ļį

Ł §
ĹJĴĴį
;

§ Ï
歹 핼三翩
Scanned by CamScanner

コ =

田 d 三
e 늬 4 岫
h
e

Ū ロ 口 口 P く

閏 a 璽
ヒ 4
名 a 3
\ 聞 卫 e
回 @
4

Ū ヒ 阴
U 国 ヨ
の U 却 コ a 。 。 ロ
N 出



仍 状 一 一 口
\ コ
= 一 箇

十 e 。 。
と 。 、
日 5 9 、
鬮 、
0 a 一
自 m 一
ム * S 。 。
却 - -
e 、 。



ー =
の 8 5 闖 e 。
-

a 。 、
口 ロ 口 、

十 ー

0 一 昏
閹 ヒ W 。 -
、 U
= 。
N ヒ 气

9

身 一

N
阳 d
门 の と ・ 。
口 # -
: コ
田 e 一 、
9 却 e 一

コ 。 。
0 。 、
、 、
a
+
e
- 鲁
q 。 一
U -
0 9 a
a 、
I

a - コ
\ Ū Ū
= 。 の
。 + S 、 自
- \
5 C 。 ロ
Đ \
X N a )
、 ミ
n 昏
S
\ X S 參
H N コ
a 叁
X 島
3
)

P
U
a

Scanned by CamScanner
>
d M a lh e m l in ċ ıl lı
T / t,
!
ı
tıe (a 1 3 ): Ť

u n ・o r e r・in lla ıE q u e lı
D lfı ī
onr . . į .

(3 ) y - c1e
x
+C e
2x
. 1 .


m . x . . . m

p a r t ic u ı
a r I n te g ra ıw h e n X = e
a x
ax
W he n X = e th e p a rtlc u ı
a r ı
n te g ra l ı
s g iv e n b
y
ax

R isi
ax
lia ie
e =
ı
f 1(a ) + o
Y 1p 1l£? r
'
r

ax
p ro o f S in c e D e = a e
ax
D 2
e
ax 2 ax
, = a e D n ax r} ax
. e = a e
ge t f(D )e
ax
(D " " 1
w e =
+ R D + P2 D " 2
+ + r n )e a x

o pe ra tin g o . B? h s id e s by
ūi

S ln "
ìtù i
and f (D ) a re in v o rs o o e ra o '
p "ey " " te a c h h . I, e

iĎĵ iøj
0 t w / ・
u e - e
a x
f
Ãa j
X 2x 2x
e g 2
( . ・
e . e
D + 2D + 1 4 1 4 + 1

(a ) P a r tic u la r c a s e

T he m e th o d , h o w e v e r, fa iı
s if f (a ) O ie D is
= a a fa c to r o f f (D )b e c a u s e in th is case
ax ax ax
e = e = e
f(D ) f(a ) 0
Now s in c e D is fa c to f f (D
, a a r o ) ,
su p po se

f (D ) = (D a ) 0 (D ) a n d 0 (a ) + 0

T he n p I一 上 e
a・

上 .
上 e
a。

f(D ) D a Q (D )

Scanned by CamScanner
App ı
!e d M o h e m a t!c s ī !
¡
1 0 t :T J
(3 14 ) Lı
n e a r
D ıĦe E cı
u o tı
o ns

2
If D a is a fa c to r re p e a te d tw ic e i e If f (D ) (D- a ) V (D )w h e re V (a ) * O th e n p ro c e e d
in g

In g e l if D is fa c to tim e s th e n
n e ra a a r re p e a te d r

A n o th e r F o T he
rm a bo v e re s u lts (1 ) a n d (2 ) c a n b e p u T in a n o th e r fo rm a s fo llo w s
S in ce f (D ) (D a ) 0 (D ) d iĦe re n tia tin g it w r t D g e t,
=
,
, ,
w e

f (D )
'
=
(D a ) 0 '
(D ) + O (D )
f '
( )
a = O (a ) i e 中 (a ) = f '
(a )

H e n ce (1 ) b e c o m e s if f '
(a ) # O

P ro c e e d in g in th is w a y if f
'
(a ) = O

2
(a ) +
" ax


. _ x .
E if f " O

ı
ff "
(a ) ・ o th e n
fin .
"
. x
3
e
ax
e tc

C o rro ı
la r y 2
围困m
r m u la w ę h a v e to
, re p la ce a by ı
o g a

(S e e E x 6. p a ge 3 16 )

L in e a r d iĦe re n tia l e q u a tio n o f th e firs t o rd e d fir s t d e g r e m e th o d


r a n
e c a n a ls o be s o lv e d b y th e
d is c u sse d a bo ve Śe e E x 1 o f th e e x e rc is e

S o lv e d Ex a m pı
e s C ı
a s s «b ) 6 M a r ks

e 1 (b ) S o lv e 3
Ex pı 3 Jr
a m + 4y e
d
=

3
S o l T he a ux ilia ry e q u a tio n is D 30 + 4 - o

Scanned by CamScanner

歹:

d M th e m b tı

ĹĹ,Ĺ ĺ
'" :
o e s ı
ı
Appı
ıe
(3 1 6 ) r ī A
. m , a lfū n \ M E . .:
ヘ D a
2D 2 D Z
+ z bī
2D440

C o m p le m e n ta ry F u n c tı
o n C F ls \( = tB \ Łr ļ
,
y = C1e X
+ (C 2 2 Jr
+ C BX )e

E xa m pı
e 2 «b ) S o ı
v e (D
3
2D 2
啕 5D + 6 )y e
3 x
+ 8
So ı T he a u x iı
ia ry e q u a tio n is D 3
20 5D + 6 . o
(D 1 ) (ď D 6)= O
(D 1 ) (D 3 ) (D + 2 )= O

C o m p le m e n ta ry F u n c tio n C F is y - c 1e
x
, + c2 e
2 x
+ ca e
3x


3× 4
10 3

x 2 x " "
is . . . .
T he co m p le te s o lu tio n y - cle " " . "

2x 2
3
2D
2
5D 6 )y (e + 3)
Ex a m e 3
pı (b ) S o ı
v e (D + =


ia r y tio n is D 3 2 5D + 6 = 0
So ı T he a u x e qu a

A s in th e a bo v e e x a m p le
D 1 2 3
1 ) (D 3 ) (D + 2 )= O =

(D 2x 3x
x + c3 e
c1e + c2 e
F u n c tio n c F is y -

c o m p le m e n ta ry

4 x
6e + 9)
(e +
p a r tic u ı
a r In te g ra l P I- 3 2
5D + 6
,
D 2D
1
2x
4x e + 9 2
e + 6 2 D
3
2D 5D + 6
- D
3
2D 5D + 6
2 6
D
3
2D 5D +

18 2
s o lu tio n is
T he co m p le te 4× 3
e 3 2x
3x 1 e +
2x 1

y - cle
X
+ c2 e
+ c3 e
Ti 2 2

X
1 )y e
3l 3D -
+
v e (ď
+ +
Ex a m p le 4 (b ) : S o ı 3D 1 0
3l
+ =
3 + +
S o ı: T h e a u x ilia ry e qu a tio n is D

, 國
姓 鱸 園


点 Scanned by CamScanner
LIn e a r D lffe re n « o ıE q u o tı
(3 16 ) o ru
e d M
A p p lı o th e m a tı
c s . l
ı

c? x + c a } ? )r x

F u n c tio n , c F ı
s y - (c l +
c p le m e n ta ry
,
: o m
Jr
ı e
P I° ť .

a r In te g ra l 3!
-

p a rtlc u ı ,

T he com p le te s o lu tio n is y - (C 1 + C2 X + C 3
X
2
)e
X
. g e
"

. (M U
2 1 9 9 3 , 9 4 2 0 02
2 CO S h 2x , , 0 9)
p le 5 (b » S o lv e
-
Exa m

is ď 4D O
q u a tio
.
S o l T he a ux iı
ia ry e n

D 0, 2 2
D (ď 4 )= O ・ ,

2x 2x
C F is y + c2 e + ca e
-
q
'

p ı-
4 2" "
2
(2 x ) =

D3 4D
2
Ĺ )
ı ı i ì s lu ı īï L r

:ĵ 3 4x 4 x
・ (e + 2 + e

ď
e
4 x
+ 2
ii e
o x

D
3 h 4D
e
4 x

:[ 4 x 4x
e e

p I一 -

飞 e 二

) 一 ・

s in h 4×

T he co m p le te s o lu tio n is y = cl + c2e + c3 e

-
i s in h 4x

E xa m pı
e 6 (b ) S o lv e 6 . 1
, . 12 y - .
3 Jr/2
+ 2
×
(M U 1999)

S o ı T he a ux ilia ry e q u a tio n is 6 0 + 17 D + 12 ・ O

(3 D + 4 ) (2 D + 3 )= O D - 4 /3 ,
D - 3 /2
4 x /3 3 x /2
T h e C F is y - C1e + 62 e

It
Scanned by CamScanner
, II111īīī444. aa ・177) )iii+$+ŁŁ・
1

n・o
ı r rDı
ıı
rrr・
nlllllloı
ı ¢
qu d
ı¢ lq or »l !!¢
¢ ¢
H į

u tio n
soı l8
The co m p le te

40 3 a * /2 3 # /2 2x
c ie ł C2 e 2x e +
y £
6 (lo g 2 )2 + og2
17 ı + 12

E X E R C IS E VI

n g d iffe r e
o w ı n tı
a ıe q u a tio n e C la s s (b ) : 6 M a rk a
ve th e fo lı
so ı

4 D + 4 )y h 2× 4 (ď D 6 )y Ia # h 2x
(ď +
- co s . co s
3
(M U 19 88, 93, 97)

(M U 1994)

2 x /2 4
h 4 x s in h 3 x
(2 D + 1) y - 4 e 8 (D + 1)y = co s
7

1 3x
à
X
e
lA n s (1 ) y - c1 e +

2x 2 x
2x l 2x 2 x
e + e
h 2x y - (c j + C2X )e + e + ・ e
(3 ) H in t cos =

2
32 4


(4 ) y = cje + c2 e 十
10
A =
8

(JŹ
2 2 2
(8 ) H in t D 4 + 1 - (D + 1) D )

y = e
x / J2
c ıc o s (X / J )+ C s in (x / Æ ) + e
x lJ 2
c3 c o s (X / l 2 ) + c 4 s in (x / J2 )

9608 8


Scanned by CamScanner
°

(3 1 8 )
L In e a r D k ė re á ıE
n ïı
q tiė11o iiı
İ
ķl
o \ic s ı
ı 区画画■
Appı
ıe d iw o th e m

x
2
(1 2 ) y
- c1 + c2 e
2x
+ c3 e
2 x
+ 48 ( 2
-
e x
+ e 2*
X
x
+ 1

(e
ax
+ e
ax
)] d
42 e
a Jr + 03 e
ax
+ a n
(1 3 ) y C1 4
X
)sin x ]+
e +
x + (c + c 4 x Ī f S\m

t(c + c 2 x )c o s 3
p ro o
(1 4 ) y e ,

h e n X = s in a x
ı I n te g ra l w
10 p a r t ic u a r
rtic u la r in te g ra ıis g iv e n by
(ď ) th e n th p
e a
se f (D ) o
w he n x s in a x s u ppo

' " a x -
aźj s in a x

tin g '

X
' " - u a
S in D (s ı
n ax ) a co s a x ;
ce
'
n ax )
. . "
a
)
3
c o s ax ; D, (s ı
D (s in ax a

2
t
. ( a ) ,
pe ra

(ď ) a re in v e rs e ra to rs th e y ıe h th e r in E ffe c t H e n c e it
s in c e Q (ď ) a n d 1/o o pe c a n c e a c o

2
0 ( a )+ 0

s in a x
fj 0 ( a s in a x
Q (D )
2
n ax

o ( a
2
)

n ax

e g s in 2x s in 2x s in 2x s in 2x
4 2 2 2 2
D + 3D + 2 ( 2 ) + 3 ( 2 )+ 2 16 12 + 2 6

a n d

=
COS 2X =
co s 2x
32 20 + 6 l8
be c . L U °" T h' " O v . . E th o d fa il' " "
a
2
) = o i . If ď + a2isafactorofQ(i

:
s in a x
s i' "
=
-
. i. . . Is in d e te rm in a te
ı
n th is case
NOt į ¢

V n

Scanned by CamScanner
s ı
n a x = X ı
a ln a x
(iř j
ı
o

i s in 'a x
cos ax + ax E W e co nsı
de r
f S in c e
.
,
p ro o
ic o s a x + i s in ax 】
=
e
ıa x

ia x
= x '
e

= X *

2 [c o s a x + i s in a x ]
0 (D )
ı

g in d l p a r ts ge t
E q u a tin g im a a ry a n re a ,
w e .
4 į
,

1 z Ą
s in a x = x ・
s in a x

cos ax = x ・
cos ax

s
ł U
2 th a t
If o
'
( a ) = o ,
w e ca n p ro ve

s in a x = ) s in a X
O (D 2 )

Scanned by CamScanner
y ' Ć} Lı D ı
tte re n tı
A ppı
ıe d M a th e A o llc ı n : sb o f . .
(3 2 o ) n e a r o ıE q u
o ł
lo n ı

a x ax
e e
a n d co s h ax = a n d a ppı
y th e fo r m u ı
a o f §9
2

x X
cos 2×= e cos 2x

x x 1 S in 2× x 1
e . 2 × 湘 - e . 一 e s in 2兄
4 4 2 8

Ex a m p le 2 (b ) S o lv e (D
2
+ 4 )y - co s 2x (M U 2 00 3 , 15)
2
s o ı T he a ux iı
ia ry e q u a tio n is D + 4 - o D - 2 i, 2i
T h e C F is y - cl cos 2x + c 2 s in 2x

l 夏
P I - co s 2x = s in 2x [ B y (1 ) p a g e 3 19 ]
, 2 2 (2 ) ,
. D 1 4

T he c o m pı
e te s o lu tio n is

X
y - cl co s 2x + c z s in 2x + s in 2x 94
4

蹋 Scanned by CamScanner
: ı
ı
: lle ı
o ïn o ヘ萼 砥胄 等械
am
ţ

ı
Eq u a lı
o n * ; łīiq b) S o
w e (ď SD + e )y - s \n ax
e 3 (
m pı ls ď óD + ó = O
w i u a tio n il i
lia ry e q
auA D 2 3
ıĦ
e ı
2) O
=
D = ,

ıp O 3 )(
( 3 *
2 ×
c 1e + c że
C F ls y
-

Ħ e
:ţ :
3x s \n 3x s in 3 x
s \n
-
-
55 i3
P \° 5D + 6

s in 3 × 1 N o rıe 1h \* l
3
°
5D + 3 5D
5D 3
s in 3x
s in 3x -
ī T 25 ( 9) 9
2 9
25D
o f §9
(1 5 3x 3 s in 3x )
i
co s
(5 D 3 ) s in 3 x -

)
= 47 8 {5 co s 3x s in 3x

y cle
2x
+ c2 e
3x
+ 47 8 [5 co s 3x s in 3x)
lu tio n is
-
so
T he co m p le te
:
(k u 2 0 0 5)

e 4 (b )
S o Yv e ď 3 . . 27 y - cos 3x

Ex a m p ı
27 0
is D P 3 l + 9D =

tio n
auxiliary e q u a
s◆ T h e 3)= O

3 3i 3i
D =

3 ) (D
2
+ 9)= 0
: (D 3x)
3X 3x + c a s īn
q e + (c 2 cos
T h e C F is y
-

ı U .
2 0 15»
1 c o s 3 x

d fa ils
2 a l m e th o
) th e g e n e r
fQ (D
s in c e ď + 9 is a fa c to r o (D + 3 )c o s 3 x
cos 3x =

: P ı -
3x cos 3 x )
cos (s in
( 3 .

in
!
-

B o l§ 1 0 (a ) P "
fo r m u la e (A ) a n d ( )
N ow by u s in g th e X dx -
_os
c 3x
,
ĺ in 3 x
1 x
s in 3 x
-
2
ls
s in 3x -

{» u 2 003 , 15)
D
'

:
9
L .os 3x -
åj cos 3 x dx ž s ln 3x

3x .
cos -

c tl )
e 3 1 9 d ire y 匡
2 o fpa g
( 1) a n d ( ) ■
(o r y o u c a n u se fo rm u \a e 區
s o lu tio n \s s \n 3x
: T he co m p le te ı cos 3x
+ C3 S ïn 3 x ) 36 3 iX
3x CoS 3x
y - c1e + (C 2 ls \n 3 x e
CO S 3 x
+
2 7 )y - (
1 3 3D1

+ 9D
Am er C o n s id e r (D

Scanned by CamScanner
=
A
3 11

( 1 g i s in 3 x )
× (c o s 3
x +
=
ľ ı
3x n jA I

3 x ix (C O S
X (C 3 x + s in
36

ıp a rts w e ge t
E q u a tin g re a

n 3x )
p I -
( co s 3x + sı

3x
2 7 )y s in
36
.
9D

+
e 5 (b ) :
Soı
ve
g in a ry p a rts
pı th e im a
Exa m
b ta in e d b y e q u a tin g
and p I
is o
so l T h e c F is as a bo v e
(C O S 3x s in 3x )
3x 3x + C 3 s in 3x )+
c le + (C 2 C O S
y =

x
v e (ď ◆
ı D )y ' " s
Ex a m pı e 6 «b ) : S o

l ď + D = 0
ia ry e q u a tio n s
s o ı T he a u x iı
2 D = O + L i
D (D 1 = O + )
+ C 3 s in X
cj + 62 C O S X
T h e C F is y =

D
COS X

歹六
古 '" X


2
.'"

°
R l D + 1

s in x
s in x

[ B y (A ) §1 0 (a ) P a g e
3 19 ]
s in x
,
= y

P I = cos X

fo rm u la e (2 ) o f p a g e 3 1 9 d ire c tly )
(O r y o u ca n use

s o lu tio n is y c l + c 2 c o s x + c 3 s in x cos x
T he p le te į
-
: com

X
e 7 (b ) S o lv e
Exam pı + 9y e co s 2x

2 3i
S o l T he a u x ilia ry e q u a tio n is D + 9 - 0 D - 3i

T h e C R is y c lcos 3x + c s in
2
3x

P I 'e X COS 2x ) e
x
2
COS 2x
ď + 9 ď + 9 D + 9
X
= e cos 2x
10 5

: T he co m p le te s o lu tio n is y ' " o s 3x "


" in 3 x . .
"
i.os 2*

M
Ħ
Scanned by CamScanner
e ib ) T m rD 4 ° 1 )y "
ıı + 0 0 ıX C
e "
e itııt p O ıa

ıla ry e q u a tı e 0
on ı 4
1 * o
ï ; (聞鳥 唱如 如
auxı

.

solı
V
* X
T h e C F is y c le + CŻ e j
»
+ cb c o s c +
: ca a ı
n x

(e x
+ CO S X COS 3x)

Ĥ :
R\ -

-
[ .

.
å( co s 4x + cos 2
[ N o te th ı
ı ]

(D 1 )(D h °


ġ ・
cos 4x + C <X i 2 x

X X
1
= e + = r cos 4x + cos 2x
4 5 10 30
3
e 9 (b )
S o lv e (D + D )y = s in x
Ex a m pı 3
ia ry e q u a tio n is D
iı + D = o

The a u x
s
H

C 3 s in X Ĥ
T h e C F is y = C 1 + C2 C O S X +

P I = 2
D3 + D D (D + 1)

2 (M U 200 8, 12 )
2 2
1) y e
x
+ s in (x /2)
(b ) S o ı
v e (D 1) (D + -

E x a m p le 1 0 i
2 D 1, 1 + i
1 )2 (D + 1)= 0 =

So l T h e a ux ia ry
iı e q u a tio n is (D
T h e c F is y - (c 1 + c2 x )e
X
+ (CCOSX+C4Sīnx)
:

3 14 1 \
[ B y (2 ) p a g e
,




區国回 回 国

Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
:

A P p lie d M o th e m o tı
c s ll (3 2 6 ) linear D lffe re n llo l E u
q q ti o nı
..

ï 6 (D
4
+ 8D 2 + 1 6 )y = cos
2
× 7 (D 1)
2
(D
2
+
2
1) y =

2
×
(M U 2 0 01
l0)
.
,

4
8 (D + 10 D 2 + 9 )y = 96 s in 2x co s x 9 ď (6 + 1 )y - sı
n x + e *

10 D 2 (D 2 9 )y 3 5 11 (D
4
10 D
2
9 )y (2 x 3 )
+ = co s x + + + - cos + (M U 1988 2
, 00 4)
12 (ď 4 )y = s in
2
x (M U 19 8 8)

[A n Is (1 ) y = e
x /2
C1cos(J3/2)X+CSin(J3/2) į (2 s in 2x + 3 co s 2x )

(2 ) y . C le
x
+ e
x /2
c2 c o s ( l3 / 2 )x + C b s in (l 3 /2 ) ・
[īJt '" ax a
a

n

(3 ) y - c l 1 c co s X + c sı
2 a n X
Š co s X

(4 ) ( H In t M u ltip ly b y s in x : N o te D 4
+ 1- (D
2
+ 1)
2
2D 2 )
l2
(x l J2 ) +
×/
y - . c lcos c z s in (x / l2

i
ax
(5 ) y = c 1e + c2 e
?
+ C c o s a x + c 4 s ln a x + ' x co s ax

(6 ) y =
(C 1 + C2 X )(C 3 CO S 2x + C4 s ı
n 2x )+ 1 1 . x
2
. COS 2x
32 64

(7 ) y (C )e
X
(C 3 1
=
1 + C2 X + + c4 x )(C s C O S X + 0 s in X
6 )+
2
ļ3 X
2
s in X +
1
x
z
e
ł
2 8
(8 ) y = C 1COS X + c 2 s ln x + c c o s 3x + c cos 3x 月四 国国
a 4 + x (c o s 3 x 3 c os X )

(1 0 ) y = c l + C2 X + c3 c o s 3x + c 4 s ln 3x s in 3x +
18
(1 1 ) y = C i C O S X + C s in x + c c
z a o s 3 x + c s in 3x
1
4 cos (2 x + 3)
15
«1 2 ) y c 1 e
x 2x x 1 33 e 4T
+ c
2 e s in
-
2x 1

1 1 P a r t ic u ı
a r I n te g ra lw h e n X m
.
= x w he re m is a p o s it iv e I n te g e r
m
W he n X = x w e w r ite f (D ) in a sce n d įn g p o
,
w e rs o f D b y p u ttin it in h
g e o rm 1 + (D ) T h e n ,

By e x pa n d in g th e b ra c k e t b y th e fo r m u la
,

1
)P
3
(l + x ) ・ 1 x + x + x
4

1 3
o r (1 x ) ・ l + x + ř + x + x
4
+

Scanned by CamScanner

i: d M o ł
he m o tı
el lı
le
Ap p ı (3 2 7 1 : lineor D ı
ffe re n o ıE q u a tı
tı o m . . .

and
b y o p e ra tin g e a c h te rm o f th e e x p a n s io n o n m
x
t h a t in th e e x p a n s io n te rm s b
w e g e t th e re u lre d
g ı
p a rıcuıa r ın te g ra l It is
o bv io u s e y o n d th e ,
m n t h p o w e f D d i
n o t be w r e n s ı
tt n c e th e
s ofx o f p o w e rs h ıg h e r th a n m a re z e
r o n ee
d e riv a tiv e ro

v e d Ex a
so ı
m pı
e s C ı
a s s «b ) 6 M a r ks
S 3
Exa m pı
e 1 o ı
ve (D aD + 2 )y . x

T he a ux ilia ry e q u a tio n ı
s D a
so l 3D + 2 . o
a 2 Z
D D + D D 2 D + 2 0 (D 1 ) (D 2
.
+ D 2 )= O
(D 1 ) (D 1 ) (D + 2 )= 0

: T h e C F is y - (C 1 + c2 x )e x + c3 e
2x

只ı 一
D
3
3D
× 一
X 1 丝の 竺


2
+
D 3
V 百

: T he co m p le te s o lu tio n is y =
(c 1 + c2 x )e x + c e
a

Exa m p le 2 (b » S o ı
v e 20 + 4y = 3×
2
5x + 2
dxa dx
ilia ry 3
S o ı: T h e a ux e qu a tio n is D 2D + 4 . 0

D
3
+ 2 0 2 6 4D + 2D + 4 = 0
2
(D + 2 )(D 2D + 2 )= 0 D . 2 ,
11 i
2X
T h e C F is y ×
(C 2
- c 1 e + e c o s X + c 3 s in x )

4
L田
田回国国国 !

: T he co m p le te s o lu tio n is y = c l e
"
+ .
"
(c 2 c o s x + c 3 s i' " ・
1[ 3 ×2 2x +

SO l
Exa m pı
e e «b ) s o lv e . ¥ . 4y - x
2
+ e
×
+ co s 2x (M U 1 9 9 5 , 2 0 0 5 , 1 0 , 11)

T he ilia ry
aux e q u a tio n is D 2
4D + 4 - 0 (D 2 )2 . 0 D . 2, 2

Scanned by CamScanner
Scanned by CamScanner
ņ'
ı
lıd ı. lh . m o H c ı II
w pı [a q ņ 1
rd lle m
u n a o r m H e re n lla l lq ı .. .. ,

-
Śt r
'
Z ]= J(¢ '
2 )d t -
Ç ..

T he c o m p le te s o lu tio n is

y = C 1 + . '" t + . s in t +
į[ t e o s t + . In t -
】 Ç + t

3
Ex a m pı
e 6 (b ) S o ı
ve (D D2 6D )y x
2
1
= +
(M U 2009)
Sol : T he a u x ilia ry e q u a tio n is D 3
D 2
6D . O
2
D (D D 6 )= 0 D {D + 2 ) (D 3 )= O D = O 2, 3
,

T h e C F is y 2x 3X
= c 1 + c e
2 + C e

T he co m p le te s o lu tio n is

ı E X E R C IS E VM ı
So ı 6 M a rk s
v e th e fo ı
ıo w ln g d ı
ffe re n tı
a ıe q u a tio n s : C ı
ass «b ) :F T 9 t 3

2
1 (D 3 + 2D 2 + D )y = x
2
+ x 2 (D
3
+ 3D + 2' )y = J

自一 Scanned by CamScanner
(3 3 0 1
lin eor

fferenlll Equtorı
ı e d
ı
M o th e n i
ı
o Hc ı
lı Ap p
e d M o m e m
A p p lı
2
2 2D 3 )y x x
4 (D + +
e n c
e
§ z x
a H
a D )y -
3 (ď 2D +

(M U 199 6) 2x e t
ı
2 D 2 )y X + e N o w
z
6 (D + 1
2 + s in X
a D 6 D )y - x x
5 (D +
8 (D
3 D )y - 2e + 2x + 1 4 cos X p u
e nc e
zX
z + e ) H
(ď 4D + 4 y i - 8 {x . s in 2 x (M U 2 0 0 6
(M U 1 9 9 7 )
7
2
) ı(【
2 S in 2
10 (D + 4 )y X + x
(M U
J 1 9e a
9 (ď + 4D + 4 )y )
2 2 )y x
2
+ 1 (M U 2004) o pe ra tin g
11 (D + 2D +
3 z
x 3x
X 十 4x
lA n s (1 ) y C 1 + ĺę + ca x )e 3 2

2x 2 2 1)
X
+ ca e + (2 x 9x +
(2 ) y c 1 + c2 e
12

(3 » y C 1 + C2 X + (C a + C4X )e
X
.
g . . 3x
'
12 ×
2

C à)
(1o ) y.c1cos2x+csin2x
Ť .'" " x2

(11 ) y (q COS X +
C s in X )e X
+
åw 2x + 2 )]

Le t V b e a fu n c tio n T he
o f x th e n

Scanned by CamScanner
Scanned by CamScanner
A p p ul
l ıd Meı
h ım n le ı ı
ı l - (l Ili z ı
.
s
Lln ' "
W *i*邕 回 国 国

A n d
面 〒
上 ・ 。
"

흙 ・

,
'
T he oom p to to e o lu llo n le

ax
2
Exa m pı
o a (b ) S o ı
ve (D
2
2a D + a )y -

2 ? O
on ı
8 D 2a D + a . n
q u a tı
U ĵ
S o ı The a u xı
ıla ry e 1

2 D a
: (D a) . 0 - a ,

aX
T he C F ı
s y = (c 1 + C2} e 3 r n ó tt 3 5 3 Ļ

= e
ax
H x
r
c fx = e
ax
į ļ = e
ax
Jt ・

r+ 2
ax
= e
I r J 1 )( r 卜2 )
r + 2
x
aX ax

ı U iUo ı
Uu t ı
nı ıas / y = (c 1 + c 2x )e + e
(\ 1ı))ľ( Ir -+ 2 /)
: The co m p lle tte Ss Uo ı r + c

3x x
2x (M U 2 0 15 )
2
4D 3 )y 2x e + 3e co s
E x a m e 4
pı (b ) S o lv e (D + -

ı
lia ry e o n ls
q u a tı
S o ı: T h e a u x
1, 3
1 ) (D 3 )= 0 D =

D
2
4D + 3 = 0 (D
x 3x
C2 e
: T h e C F is y - c1 e +

3*
(2 x e + 3e
×
co s 2x )
p I -

1 x n n R m
3x . x + 3 e .
2
2 e .
) 4 (D 1 )+ 3
=

(D + 3)
2
4 (D + 3 )+ 3 (D + 1 +

3x X + 3e
x ・ CO s 2 x
2 e .
=
ď 2D

Scanned by CamScanner
Scanned by CamScanner
Ap pı
ıed M he m
ı 34) Lı
ne o r Dı
f¢
e re n H o ıE u
a o lł
c ı ı
l -
(3 4 t q o ïı
onı

T he co m p le te s o lu tio n is c 1e
x
+ c2 e
y -

E x a m p le 7 (b ) S o lv e (D 2
1 )= c o s h x cos x (M U 2 00 2)
S o ı The ilia ry 2
a u x e q u a tio n Is D 1 . o
9 fd : ł!
1・

R l -
[2 s in x s in hx cos x co s h× ]

[2 s in
x
]
"
T he c o m pı
e te so ı
u tio n is y - c 1e + c2 e . x s in hx c os x co s hx

2 z 3 Jr
2 0 0 1 , 0 8 , 12 , 1 4 )
×
Ex a m p le 8 (b ) S o ı
v e (D + 2 )y = e cos x + x e (M U

s o ı T he a ux ilia ry e q u a tio n is D 2
+ 2 = 0 D = + . i
,
l2 ・ i

T h e C F is y = C 1co s l2 ・ X + c 2 s in ・ x

x x
P I= e CO S X = e .

2
CO S X
2 (D + 1) + 2

Scanned by CamScanner
Scanned by CamScanner
r ń CE R C IS E - ix
n ç
Ū
S o ı
ve th e fo ı
ıo w in g d ı a l e q u a tio n a :
ffe re n tı ėıa s s (b ) 6 M a rk s

1 (D 2
4D + 4 )y = e
2× 2
x
} iut
2 (ďi302)y = e

s in x

2 3 "
3 (D 4D + 1 )y - e

s in 2× 4 (D 7D 6f -
ę (x + 1)
(M U 19 92 , 9 6)
4 r

5 (む卢 7D 6 )y 一
(l + ×
2
)e
2x

(M U 19 9 9 , 2 0 0 7) \ rZ r r; (M U 2004)

2
15 (D + 1)y = s in x s in hx

17 (ď 1 )y - co s x cos hx (M U 2 0 02)

4
2x 2. . x
lA n s (1 ) y - (c , + c2x )e + e
12

2x (x Æ J a /

lĮ t i! b tì !ī Ðw
ı ť hlimıņ
,

2x
2x 3 x
e
(了) y - c 1e + c2 e (S eo s 3x + 3 s in 3x )
102

2* ¥
(吕) y - c l e + c e +

x Jr J ł x
(9 ) y - C 1e + C2 e + CO S hx s in hx
4 4

Scanned by CamScanner
r m o n"
" (3 3 7) linear D ı
ffe re n ï a ıE q
ł u a tio n s
M o rn
ı

ł
.FŢ4
,
'

'

(15) y
s c cos X + c2
s in X . ł
[ 2 cos X cos hx ĺ s in x s in hx 】

(17) y
= c 1e
Jr
+ c2 e
X
+ c 3 c o s x + c 4 s in x į COS X COS h× ]
tJÏ Ç \ ' T
ı .rlT

la I n te g ra ıw h e n X = x v w he r xV is a fu n c t io n o f x
13 ,
p a r tic u r JĮ

3 2 T īI
3 D V '
3 D V '
fF î C Q r łl
(x v ) + l

D = X
S im ila rly ,

n ge n e ra l
ı D ,
"
(x v ) = x D "
v '
+ n D " '
. '
. . D "
v :.
{ D "
v
iq ł !ı
ix "

(1 )

N o w le t f(D )V . V , fx ţ l +
r3 ) V i3 l i e f T

f(D ) 13 )' O )

p er at ing by o n bo t h si de s , f
rom ( 1) .
f(D )

L J

f ' (D ) ・ ・ V
ï (O i fiD i fiD )
ej ť ) lJ J a ĝ JÐ: T (O ? ņ i

(y
"
A ļ 5 Į )
+ Ţ j ・

Scanned by CamScanner
Scanned by CamScanner
B æi d * * l ¢» ı
ı

Z
ıe a (b ) s o ı v e (D 4 )y x sı
E )n m p hx
=
n
s D l
d n a ry e q u a H o n ı 4 = o
m o a ı»
s ıL a*
re
Th e C F ı
s y - C 1e ◆ cb * l*
s tłl*

n g th e re a ıp a rt a

a y . s. ı h' " t h o d d §12 to ı


in d m . p " ti' " , In t' " a \ B u t, y ' " M d
U l" " ]. Iy ' "
!. D i. s \h a . Th . A b o " " th o d T ry II
ı, m e n 1o ¢.
(M U 2 0 11)
2
1) y x s i' " ' " S " [M U 1 9 8 0
E M . p l. 4 (b ) S d . e (D .

D e 1 0 D . . 1, 1
l]. ry e q u a tio n is
.
5cL m e . .d

By §12

[ Øy §1 3

Scanned by CamScanner
A p p lie d M a th e m a tic s lı (3 4 0)










.

Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
įf .
W he n r.n . s . )ĺ n o e s n o t b e ıin ' krr t ı
q g ? äı yi' h z
ł /i f{f/ ・ :(ı
m Æ#

co m p le t e ı
y to a n y o ńe o f tı
i
a ı. . . ¢
? o s
' !r' ' ''
T
° '": If) ii

. ,
w he n an y o f th e a bove m e th o d fa ı
ls to
qlv e th e p a rtic u la r in te g ra l W ș a p p ly th e d e fin itio n o f
W Ce
'
ıq
L x d is c u s s e d in th e a rtic le 7 a ga ı i
n n o te h a t I
\
y r n Jp
£i


"
(b ) ß' b
p le : C ı 6 M a
çIp I , .
s a s s '
Ex a m
S o lv e d
(M U 19 9 1)

Scanned by CamScanner
d )
U n o o r D lffe re n tlo l E
ı
A p pıed M o ïh e m a li
cı lı (3 4 4 ) q u o tio n ı
ııı
ı,

'

: T he co m p le te o n l8
u lı
eo ı

X 1
sı o s a x lo g c o s a x
y = c 1 c o s a x + c2 s ı
n ax + n ax +
a Ð
iF o r a n o th e r m e th o d Be e E x 1 p a g e 3 52
, ,
)

= a Ĥ & a l,
Sol Th D
, n o v n s ? Y ls ĵ ß lq lT iO )

i\
Now ,

W )

C h a n g in g

a7 ta n a x =
ļ 1 /e a /×
lo g ta n
î :ş】
p 1=
łŕ ( e
a b r
+ e
a lx
)l g t î
o an -


a
2
c o s a x lo g ta n
・苦」

Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner

LIn e a r D ı
lle re n tla l E
(3 4 8 ) quo
ı
Ap pıed M o ł
he m o tı
cs ! M
2 2x 2x
4 )y 8 X e s ĺn
(ď 4D '
+
e g (b ) : S o ı
ve
.
Jrl łJp
ü ł 'Ĥ ilâM
E xa m pı
(D 2 )2 0 D . 2 2
Ę¥Ħ
D 2
4D + 4 0 .

a u x llla ry e q u a tio n is
. r ,
h S o ı T he d /
d
2x
T h e C F is y - ( c 1 + c2 x )e 1 C c r rT

ii
n 2x 2
2 '' ' . . in 2x
í?řx e

p ı° 8 x e s '
f Fł

2x 2
) s in 2x 8 ・ e . x s in 2x
h

(B y a p p ı
y in g g e n e ra lis e d ru le o f in te g ra tio n b y p a rts ) Y a ł o !į y L tc o ł
cin D ? s rl i

y Į s v ie i L
P ı 8 e
2x
,
J ・
f cos 2 ×l
į +î ir 2 x .
: ." .
'' " " fs v ÉiE m 9 JJA
A pp ı
yın g th e ru le a g a in ĉ w o


P I
ĎT ī e
.
'

ã e
x
e
e
"

e
x
.

餓 n u m e ı
ıo ï ı n re g ra r put e t e
"
or
\ q
d t


Ae9 +
ı

j:

'
e × l ı e
.
Ĺx {ıĴa \ \
e e o r e d t- e E :

n n ro rł
p

Fo r a no th e r m e th o d s e e E x 4 p a g e 3 5 4


Scanned by CamScanner

n ıo r Dı¢btnp !I W *

Z
åj¢ pı
・ 1 1 «b ) s o lv e (D . D )y '
ĪĮĮT , (M U 2 0 0 9 )
. .

E X ım
j
ł
ı / f
・ la ry e q u a «o n la D (D ◆ 1 )= o D 1
a u x iı Oı
/. ıs
M e .

5oı ¥
T he C F ı
e y = c 1 + cz e

p ı-
ī T I å ・ ・ =
ti n J īT
i

tin b rts )
(B y in te g ra g y p
a

»tï u

Exa m e 12
pı (b ) S o lv e (D D 2 )y = 2 Io g x
. +

2
So l T he a ux ilia ry e qu a tio n is (D D 2 )= O

X 2X
T h e C F is y - c 1 e + c2 e

p I -

(D 2 )(D
1
+ 1)
Ĺ

2 Iog X' '


1
)

- . e
D T 2 X

, Ą

、 ■
四■ Scanned by CamScanner
Scanned by CamScanner
APP
ı
ıed MothemaH ?!.ĺ Łl ,
(3 6 1)
LIn ・a r D ı
lf・rņ n tlo ıE q u o tio n ı . . . .

(2 ) y - (C 1 + C2 X )e X
+ e X
x
2
(2 lo g x 3)

ei
X 2x
(3 ) y - c 1e + c e x ・
e
zx *
cos e

'
) ł lì

P ı-
x ×
te x \
r n
īi l la ' ı
\ ţf
・ e e cos )+ e
x
s in te
x
)oK

x × X x x X
- cos (e ) = e e cos e t )d x - e s in (e )

X X x × X
c 1 e
X
+ c2 e e lo g (l + e ) l+ e lo g je + 1)
(6 ) y -

T h e p a rt
x
in g fro P l can be a b s o rb e d in c2 o fC F )
( H in t e co m m

ł lĺ :A
fV a r ia t io n o f P a ra m e te rs
15 M e th o d o
ds
d he n o th e r m e th o
.

tio fpa ra m e te rs w h ic h is d u e t? L a g ra n g e is u se w
th o d o fv a r ia n o /
T he m e ? L\

th e p a rtic u la r in te g ra l
fa iıto g iv e us
tco e ffic ie n ts
f th e d o rd e r w ith c o n s ta n
d iffe re n tia l e q u a tio n o se co n
C o n s id e r th e lin e a r

fu n c tio n be
p le m e n ta ry tz J
L e t th e co m

y - cl yl + c2 y2
(2 A )

. a n d y2 sa tis fy g g . . . M y - 0

(3 )
s ta n ts c l a n
d
la c e o f th e a rb itra ry c o n
b e d e te rm in e d S in c e in p
d fu nc tio n s o f x to
w h e re U an V a re

LU
D iffe re n tia tin g (3 ) '
'
u
'
yl + v y2 e a ssum e
vy 2 + W
q u a tio n
'
'
uy 1+ s
y .
V W E nee
d tw o e

kn ow n fu n c tio n s
U , (5 )
in e tw o un
S in c e to d e te rm

fro m (4 ) w e ge t ,
H e nce
iv e n b y (3 ) (6 )
th e firs t b e in g g
T h is is th e d co n d itio n ,
seco n
'
'
vy 2
1+
'
y . u y

D iĦe re n tia tin g (6 ) a g a in ,


' '
°
+ V y 2
1 + yz
' '
v
"
u yl
ı
ı
+ u y
y .

Scanned by CamScanner
e d M o th e m a llc s
A p p lı ı
ı (3 5 2 ) LIn e a r D 1ffe re
n ll o lE
q

S in c e y l y s a tis fy 1 (A ) ge t X
' ' ' '
2 , ,
w e u y 1+ v y 2 - O

v in g (8 ) a n d (5 ) b y c ra m e r s ru ı
'

ge t
.
e, w e

y2X y 1X y
'
yz y1 Y
'
y \y
' '
1 2 2 y 1y2

ı
fw e w rite W ・

;
th e n th e bo v e
a e qu a ı
itie s g iv e us

U
ı y2 X Y1 X
=
an d V
'
.
W W

门 N o te J

戢 Yo u a re a d v is e d to u s e th e m e th o d o f v a ria tio n o f p a ra m e te r
e xpı
ic itı
y s o n ly he n
w a s ke d to d o so

S o lv e d Ex a m pı
e s cı
a s s (c ) 8 M a rks
E x a m p le 1 (c ) : A p p ly th e
ゾ m e th o d o f v a ria tio n o f
pa ra m e te rs to s o lv e

2


+ a y =
sec a x
(M U 1 9 9 5 , 9 9 2 0 0 3 15
)
S o l T he a ux iı
ia ry e q u a tio n is D 2 2
, ,


+ a . 0 D i
. a a i
T h e C F is 61
ー y - co s ax + c si
2 n ax
H

e re yl cos ax
-
, y2 " in a x ,
X = sec ax
L e t R ıB e y
じ = u yl + 2

I

. .
姓 ,



w M s in a x sec ax d r

新 :İ

ta n a x ö K =

Ĵ lo g cos ax




a n d v ・
İW . .
İ ''" s e c a x dx =
:İ d* .
š . .

P I - u y\ + v w 2 - ı
o gcos ax
X
cos ax +
p s in a x

T he com p le te s o lu tio n is

y - c lcos ax + c s in a x + ı
ogcos ax cos aX + s in a x

(F o r a n o th e r m e th o d se e E x 1, pa ge 3 4 3 ) ■团日
羽 Scanned by CamScanner
S
o o
r 5
j o
N
o T E
h x L H
w e a e e M
e a m P e e
y p
u w C
u
x y T a
u
= e
= = d y B x
F + ° e
- 一 - a 2 3 e
I c
y - . C
o y e a
y
s
e a

İ ı s

x
s
y
=
0
e
q
.
c e
x
e
× ° c
x
F y
e
}
c v c
u o
s q

2 u
2
=
s c o y
s
y c a s u
x ×
2
o
x y a
s c x
d 改 d = = c
o e
v
e o + =
n o D
x
+ 一
K s
o
s
c
b
s
x e 2 y e n 2
s x 2 ×

一 = _ n
X
y
+ l - s _
d X x + D a
n h 6
.
e
c
D 2
x s
c = x
e 2 n
x c 2
D
ら : a s į o
= n 2 +
m s _
。 x
n
d s + e n t n
s
x 2 2

a X
s ī
X
n Ĺ- " h
x
" x
+ D y
e X o
n
x
一 c
: =
L
d -
e
" X
c
z
+
2
-
x s o s e 3
+
x =
° e - n - ł
a c v c 8
려 e o
x オ
n c a o e × x a 3
o x s x n
x s
a x s a X
2 a n
d n n
x . o x
X n o x D
+ g
o e
s
s
e
"
n p e
2 a c c *
o
x a x s
= m + x
e -
a
e n s n
s x n

o
x
D

e
M

门 U n
2 o
0
0
2 E
q
鼻 M 0 \
9
子 J t
U
门 1 !
2 ?
0

.
1
2

Scanned by CamScanner
h 自
4
o 9
0 3
ų 0


5 0
q 0 2
E
2 U
o 0
H
n
0 M
2


e
e 9
9 s

D 6 e
9 e
r e
a x v
5
m
e a
n n o 9
o
i s
s 9 a
l e E P
x x o e
n U x o
c s - 2z
s e - n
s e M e e o
g e e一
x 万
= a
c
o m e x
a 2 a
e + = - V
s a
x V
g p o X
o s
o
。 d
- -
e
o o =
r c e
+ n e h D s
4 o e
x x o e " o
5 x × - c
n s + a
° 0 2 2
8
m -
e +
3 o e e
a o 4 e
c x İ e
a = 2 - x
3
h s "
x n v 2 一 e x o
-
x a y + . - e e y c
e
c
e +
-
o 2
D D
e e 。 - E
g b +
s x d + 3 C e e a g 0 " n
p
x
+
o K . ダ x
- x
n
- . e s
+ +


n h
x c a x
0
2 X
= e
-
0 w e C '
'
s e s e ' o
- e n _ + e
o s
- n m D e
d
x o
c g n s
x s + s x .
o o e s O 2 e E
= 2 c - a e
n x e X D -
e X
h
・ = 2 u
c ł n -
=
e
ņ J = o
2
-
e
e
h
-
o s
y e o o - 一 e e c ' z
x o + 2 2 s
-
d
v
s y ' y
u e n e y
c s x U
a
+
2
。 o
2
d v o =

J
s + u y = v C y -
c
x
n y
e
e
s
o
q
e
D
s
x
W 卢 v +
s
e
4 h
o
S
o
- a
u
y
2
+
F


a u C y × e s y y
o p c y
- - e e q
e m u
m = m C C y u p c
e
F '
4 a
+ - = -
C y '
e = o = e
o 一 x
= m e c e
h c e D h o = 5 a y
" R y
x
T y b e h
e p u v c e e -
o a P y o h e
M
h m P
g e n p
x
u T y b
T a e e n h a
x h e d T m a
d T e u a e P
E H n o e
e L a P F x h
E T e
p e
H L
p o
A S
o
S

Scanned by CamScanner
ıtï q
j

多名
ğ lle d
M o trï e m e tï c ı ı
ı
II
気 弩 畜 ip p (3 S s )

02 0S
,
, 09
l3
,
)

e 6 (c ) S o lv e b y th e th o d o f v a ria tio fpa


Exa m pı m e n o ra m e te rs

d 2y
十 y
c bŕ + s ın x
2
ilia ry e qu a tio n is D + 1 - o D i i
so ı T he
=
aux

T h e C F is y = C 1 C O S X + C 2 s in X

H e re CO S X y2 s in X X
yl =
1 + s in x

Le t P I b e y = u yl + vy 2

Now w
戈 爻 二二 二 一
一 !

u =
イ수产 イ쁘严石뇨 . ー

[N o te th is 1

J 2 0 0 3)

-
Is e c . 1a n x ・ 4

s in sh x
lo g j1 . ・
4 cos x +

: P I - u y ı+ v h -
i
sec x ta n x +

: Th e com p le te s o Tu tio n ls
lo g j1 + sh ・
Ą+ s rn x ı

y = c l c es x + c s fn x [ 1 s ln x + x c o s

Scanned by CamScanner
ed M
A p p lı o th e m o llės II (3 5 6 i LIn e a r D lff
e re n tr
or
'"onb,į
+ 1)y . i
2 co I
s o ı T he
. au xı
ıı
a ry e q u a tio n ls D + 1 . o D . i, / T ,
;

: T he C F ı
s y - C 1 C O S X + C 2 s in X \ N
l {' 3 I "

H e re yl ・ cos x , y2 " in x ,
X = co tx q

Le t R l b e y - u y\ + v y2

u =
J . -
J
s x
. . o t" " co s x o r ・ s in x

- an d "
Ĵ¥ . .
J
X
.
c o tx o r -
J o rx -
İ o bľ

ン -
(c o s e c x s in x )o r ı
o g jc o s e c
-
x c o tx )+ cos x


P I u yl s in x c o s x +
- + 2 -
lo g (c o s e c x co tx ) s in x + s in x c o s
x
The co m p le te so ı
u tio n is y . c l c o s x + c s in x +
s in x lo g
2 (c o s e c x c o tx )
Exa m pı
e 8 () c S o lv e b y th e
ギ m e th o d o f v a ria tio n o f
p a ra m e te rs

.

2

- (D 6D + 9 )y =

x
2 (MM U 2 0 0000 , 08ı13)
。 S o ı: T he a u x ilia r
砾 y e qa u a tion nn ise { Dn
rv
( Q \2
3) 0
.
D . 3, 3
沪 T h e C F is
y =
(c 1 + C x )e
3x
. c 1e

+ 3x
C xe
H e re 3x 3x
yl = e y2 xe X 3×
/
-
,
,
. e
Le t R ıB e y = u y\ + vy
2

Now , w =
/ . .
l-l: X e
3x
e
3x
= e
6x

イギ 。 廿

x .
u
イ专


。 ー
一 ïo g x



哼 P I= u y 3× 山r

+ v yz 一 o . lo g x xe 3×

.
一 o
下 X
og x + 1)

/ T he com p le te s o lu tio n ls y c 1e
3× 3x 3×
+ C
=
xe e (lo g x + 1)

ー Exa m p le 9 (C ) S o lv e b y th o m e th o d o f v a ria tio n



o fp a ra m e te rs




(ď 4D + 4 )y - e sec
2
x
(M U 2 0 0 8 , 1 0 14 )
.
,
S o ï The a ux ilfa ry e qua tio n l6 (D 2)2 . 0 D . 2 2
.
,
,

T h e C R ís y = (c 1 + cz x )e2" . c 1e
2 Jr
+ c2 x e
2#

2x 2x 2 Jr 2 l ıJ r (
\ H e re y1- e , y2 - x e X = e sec x
l
,

ł

«

Le t R I b e y = u y1 + 2
1

Scanned by CamScanner






出 状

口 の

二 可
の 口
0


自 の

口 . と



"
. に
8
国 仍
コ 四 口

丁 口


も 状 昶

. \ の
了 叫
。 輒 十
の 亡 輒 \
甸 .

;
の 国 自
Š 一


权 ロ
+

N
-
. ・ 闪 自

. の ざ 仁
. ン
。 も 杈 十 圧 :/
N


二 - と 口 奴

- 沁 国 じ H \ 十
自 の . 嘞
、 口 国
の 刁 、
。 じ ー
呐 . - ー
で の
惡 団 . 仁
二 の
ロ 十 の
、 輒 状 日

- 呂 奴
一 ロ \l
马 奴


田 \l 自 、
。 一 国 囝
の \ の

壱 。



仨 十 戟


、 亡 、
-
熨 コ コ 、
囚 裂 ロ -



状 じ
뇨 口 一 自
呂 。


-


/





ヴ 、 巴 の 、 ・ の
毛 、 咸
く亀
輒 人 の 心 -


一 為 自 乙 、

- の
- 號 仨 、 H の

、 、 U 自 一



刀 裂 良

ロ 、
の あ

P
恤 己 の

* iıJ

Scanned by CamScanner
!ı 4
1 m Į

A p p lie d M a th e m a llc s II (3 5 8 ) 見ín e o r D iĦe re


n村日1 佷
E x a m p le 11 (c ) S o lv e (D
2
1 "\ u į
sol
S T he
1. .
. (M U . 19 9 7
, iuällïä
2di
M
a u x iı
ia ry e q u a tio n is ' .

T h e c F is y x x
"
1 e + c e
2 Ė rtc ı } R js . ! = 4 1 Ĵe , ï

x
l+ e
x
Pute = t e
x
ox = ď
U lı ) O { n ic }

t + lo g jl + t) 一 ×
e 4 ł
o g jl + ť x
)
V =
醪 。 一
巴忐 ・
。 ,

山を 。 。 lo g (l ・ e x
)
P I= u y\ + v y2 =
[ e
X
+ lo g jl + X
)Je x
T he
e + [ lo g jl + e
X
)Je x
com p le te s o lu tio n is

ö o ı T he aux ilia ry e q u a tio n is D 2


+ 5D + 6 . 0
(D + 2 ) (D + 3 )= O D . 2 , 3

H 2x 3x
e re yl- e 2X
y2 - e X e 2
=
se c x (l + 2 ta n )r ) L e t R ı° u y1 + 0 2

-
(l + 2 ta n x )s e c
2
x a r =
:( l + 2 ta n x
2
) [P u t l + 2 ta n x . TJ

W 5x
e


j ,
'
(s 。
'
・. 2 s Ec 含。 n 对凼 イ国国虹

Scanned by CamScanner
(3 6 9) ffe r・n 1ï d ıEqleinı. .
linear D ı . "

.
į T1 :,
x 2
V = e sec X

¡
dlR ,
l
. u yi +
vy z
2x
ł
.

Jr 2 3x
2
:
ı(1 + 2 ta n x ) . e e sec x ・ e
Ī

z 2# ?
(1 + 4 ta n x + 4 ta n x ) e (l + ta n x ) /ł n 541

.
.

pl
.
4
(1 + 4 ta n x + 4 ta n
z
x 4 4 ta n
2
x ) =
T (4 ta n x - 3)

ą" 3 x
cle + c2 e (4 ı
a n X 3)
o n is y
.
lu tı T
-

p e te s o
ı
com
:
T he
3
A p p ly th e m e th o d o fv a r ia ò
o n o f a r a m e te rs to s o lv e
tı (D + D )y - c o se c x
1 3 (c ) 1997, 2 005 , 08)
p le
Ex a rrı ,
(M U

is D (D
2
+ 1)= O D - O i i
q u a tio n , ,

ilia ry e
e a ux
: Th c 2 C O S X + C 3 s in X
Sol C1 +
he
TT h C F is y =

y3 s in x X - c o se c x
co s x
- ,
= 1 y2 = ,

H e re y l ,

u yl + 2 + W V3
Le t p ı e y
B -

: 1 41
ł

2 2
x + co s X 1
s in
=
=

y
'
2 )X 2
X + s in
2
)c ó s e c d br
U =
c fx = (c o s X x

cose c x dx = !o g (c o s ec x c o tx )

y
ı
' " 1 ) d bc
V ◆ dx =
(s in x ・ 0 ・ CO S X ・ c o se c x

= co t× d x = lo g s in x
1 1

r (y l y )X
ı ı
2 y2 V 1 r r ,

se th e a b e q u a tio is f th ir d S
n o o rd e r th e fo rm u la e u se d ha v e g o t to b e

Scanned by CamScanner
LIn e a r D llle re n ł
ło lE
(3 6 0) gu o
e d M o lh e m
ı
A p pı a llc r ・ i
ı ,
h
liaa ł
tio n o fop a ra D 3 + 4ł
rs to s o lv e (1
ra m e te rs m0
ı th e m e th o dı ¢
o fv a r
u a r .
y' 4 ı

Exa m p ıo 1 4 (c ) : A p p y q
. O
D 0 2 1 2 1
3 O D (D 2
+ 4 ) -
, ,

S o l : T he A E ı s D + 4D =
O S 2x + 自 s n
ï 2x
: C F ı s y = C 1 + C2 C
X - 4 c o t2x
H e re y i ・ 1 y2 ' " 5 2 x y3 " ln 2 x ,
,
,
,

Le t P l b e y - u y1 + vy 2 + w y3

z 2
- 8 (s in 2 x + cos 2 x ). 8

J
2 4 c o t2 x c ůr
. =
・ x ok -
İ .

u = c o t2 x dx =
: lo g s in 2 x

1・ 2 C O S 2 X )
JW
(S Ę 2 X ・ 0
4 t 2 x d lr
a n d v -
・ X ・
. co

-
J . =
í . =
İ( co sec 2x s in 2 x )d )r

v = lo g ta n x + co s 2

İ 2s 0
an d w = . X c br =
İ . 4 co t2 x

= cos 2x o bc =
: s in 2x

R l =
uy + 2 + w y3

: lo g s in 2 x ・ 1 lo g ta n x + co s 2 ・ cos 2x
: s in 2 x (s in 2 x )
T he com pı
e te s o lu tio n is

y - c l + c 2 c o s 2 x + c 3 s in 2 x +
į ・ 1 lo g s in 2 x

1 1 1
lo g ta n x 2 2
・ cos 2x co s 2x s in 2x
2 2 2

l l \
C1+ C2 COs 2x + C 3 s in 2x + ,o g s ln 2 x 1
,o g ta n
-
x .
cos 2× 【 c1 . C 1J
2 2 2
Exa m p le 15 (c ) A p p ly th e m e th o d o f v a ria tio n o fpa ra m e te rs to s o ı
ve
2x
e
(D a
6D Z
+ 12 D 8 )y - 二

X
S o l T he a ux ilia ry e q u a tio n is
a 2
D 6D + 12 D 8 - 0 (D 2 )3 . 0 0 = 2, 2, 2
2
T h e C F is y - ( c l + c 2 x + cb x ) e ?.
C1
6 ?
x + C2
X#
X+q x e
2 ? ・

Scanned by CamScanner


:

= o ¥ = X

an d w -
J o x

2x

-
j
e i@ x e
2x
2 e
Ç dx

-
J dx - lo g x

: P I - u yl + W 2 +
w y3
1 2 2x
) 2x
X ・ x e
2X
+ lo g x ・ x e
. E 2
4
: T he co m pı
e te s o lu tio n is

Scanned by CamScanner
A p p lı
e d M a th e m o llc s n[ ţ (3 6 2 ) U n e o r D ïffe
re n lł
o lE
1lţ
.
qu q ll
on

ÎË :
ı E X E R C ISE m

(2 ) y - C 1co s 2x + c
2 sı
n 2x
ı cos 2x ・ ı
o g js e c 2 x + ta n 2 x )

(4 ) y - c 1 cos x +
c s in x x co s x + si
n x ・ lo g s in x

(5 ) y = e
x
(c 1 c o s 2x s in
+ C 2x ) e
x
cos 2x ・ lo g js e c 2 x 5
+ ta n 2 x )+ e
x

(6 ) ( H in t Ta ke C F as y = c 1cos hx 4
+ c I s in hx
2 )
y = c 1coS hx + C s in hx Cos h x lo g cos hx + x s in hx
(7 ) y - c l
cosx+CSinx+3X B s in x ı
・ o g jc o s e c x co tx )
(8 ) y = c 1 + C e
'
lo g jl + e
"
) e
X
lo g jl + Jr
e )

(9 ) y - c le
"
+ c e
2
"
i e
"
(s ln 2x + co s 2x )
x 2x
(1 0 ) y = C 1e + c2 e e
x
+ (e
x
+ e
2X
)lo g (e X
+ 1)
2× 2x
(1 1 ) y - c 1 e + C )re xe
2x
+ x lo g X ・ e
2 Jr

Scanned by CamScanner
ı°
ı ! 3 : (3 6 3 ) h i) į Unea r n e re n H a l E q u a tı
Dı o n ı; ią ! ,

Hc s ł
em o
MO*
ı

1e d
/p p1
rx z 2 l


1 3x

C 1 Q
x
+ c2 e +
t e

d 3) y
=
.

s in x + X s in X ・ lo g jc o s e c X co tX )
s x + c2
c lco
y 多

(14 ) X
2X e
2x
. s in e
x

+ c2 e
c 1e
y °

(1 5) + c 2 s in a x
l + s in a x ・ ı
og (s e c ax + ta n ax )
£ c, cos ax
y
(16 ) 2x + C x e
2x
+ e

lo g sec x
e 2
c ,
(17 ) y
s

6 M a rks
s Ex a m pı
e s Cc ı
a s s «b »
ı e lm mu §
rm lÐ o

is c e ı
n n
a n
M
U 2 0 07)

Ex a rn p
le " b )
S o ı
ve (D
3
. 1 )= .
×/'
s in
ĹĄ ..

3 1 o
is D + -

q u a tio
n
e
T he a ux
ilia ry 1į J3 ・ i
So l
2

is ]
[ N o te th

He nce by §
x s in

X
x 12 x
x s īn
x - e
9 ď (9 l 4 )
x 12 .
,

P 3 /2 x +
s in
) pĵ / 2 ) ] ×

-
p 3 .o s

Scanned by CamScanner
Scanned by CamScanner
'

0
.

ĊH ,
w

盪 Scanned by CamScanner
A p p lı
ed M a th e m o llc s ı
l (3 6 6 ) lin e a r D lll
e re n l
lq lE

T he C R ı × 3x
: s y - c1e + e

: T he com pı
e te s o lu tio n is y x 3x 2x
c1e 4
+ c2 e
1 2 ×2
=
e .
(x + + 24)

E x a m p le 6 (b
) Soı
ve + y = s in x s in 2x + 2
x

S o ı T he a u x ilia ry e 2
q u a tio n is D + 1 0
.
D . t
,
/
T h e C F is
y - cl cos x + c si
n x
2

L
N ow , (s in x s in 2x ) =
. . . cos .


:万七 ・
.一 3* .
:フ七 ・
。一 。

A nd 2x × lo

.
. g2
. ' " '
.
2x
.
.

The c o m p le te s o ı
u tio n is

y = C 1COS X + 6
2 s in X +
ıCO S 3x X
+ s in X +
16 2x
4 ・

(lo g 2 )2 + 1
Ex a m pı
e 7 (b ) S 3
o lv e (D 2D 2
S ı T he
+ + D )y = x
2
e
3x
+ s in
2
o a ux lı
ia ry x + 2x U 2 0 13)
e q u a tio n is (M
3 2
D + 2D + D 0 2
=
D (D + 2D + 1)= O

C F is y C 1 + (C 2 )ť X
=
+ C
3 X

N O W ı

Scanned by CamScanner
llc s ı
l 6 7 ] iĉ
d Mom o m o (3 ・ L:
U n ・o r D H fııılM lo ıEq u a lm ı
p lla
. . ''

And 6 D
:
s iñ
2
X -

D
a
+ 2D
'
Z
+ D
Ĺ )
DP + 2 +

ť 1)
-

D (D + 1 )(D +
NOW 3 2 D 2
,
D + 2D +
He nce w e u s e w /・ P y
a "

iı h e
f §9 , p a g e 3 1 3 fa s
re ,

th o d o
[T h e m e

r)

ı cos 2x
C Os 2x °
.
(- ) +2 ( -
) +D
And 3 2D
2
+ D 3D 8 2x
D + . cos
1 cos 2x
-
2 64
.
9D
=
3D 8 8 COS 2x
6 s in 2 x
3D 8 2x - 10 0
' cos
i
9 v \

Scanned by CamScanner
Scanned by CamScanner
(每名9 ) LIn e a r D ı o ıEg u e tı
flıte n lı onı
!
. . . ..
ı r 》!
Ë

4F
'
Y
2
:
n Iï
sı 3× 42 . (D 2 )a y . 8[eł+ s ln 2x + x j
9' )y
.

6P +
2004) (M U 2 0 0 2)
«M U
. .


, .

:
"
Þ
-
q tı, lt r 4 0 + 4 )y a e + X ◆ c o a iC A ・

6 )y
- (1 + X
7P
-

3 .

,

2 x c o s ? lir 46 (D ¢
?D 2 )y eı
n r
"
'
+ -
cos
£ co s x
. Aw

X
COS X
s in x
COS X + C4
X C
+ C3 u

į
Scanned by CamScanner

e d M o th e m o llc s
A p p lı ・ II (3 70 ) Lïn e o r D l
tftre n llo l

qlji
2x Ą Jr 2×
e (15 c o s 3 x + S s in 3 x )

2x
X 2X e
! ;Į (1 9 ) y . C 1e + c2 e '7 c o s x 1 1 s in x )
m

(2 0 ) y - c 1e + (C + C X )e
"
(2 0 ř + 20×
3
15 x
4 5 x
+ + 9x )e
X
(2 1 ) y - e (c 1 C O S X + C s in x x cos x )

(22 ) y = '" 。 . ら s i。一


赤ド . in . .一 。

(2 5 ) y
8
" ・
= °I ・ . . þ. .. 2 x + c a s ln 2 ×]
{3 s fn 3 r . 2 . Os 3°

29 ) y = C 1 co S 4x + C si n 4x - x l
4 og x

è
X
(3 6 ) y = c le + c e
X
+ cj c o s X + C
4 s ln X co s X cos hx

×
(3 7 ) y = e (C 1 C o s x + c 2 s in x )1 xe
Jr X
e
×
cos x
2

(3 8 ) y = xe
×
1
å , ïn (3 9 ) y =
(s ïn ax cos ax )

(4 0 ) y =
(q + c2x )e
2x
+ e
2r
x ta n ' x
: lo g (1 + x
2

Scanned by CamScanner
ı
a « c ı ı (3 7 1 )
Ł
ıno o r D
ı
ı¢
ırın 1ı
o l Eq u
en o nı

° (c l + 自幼e

(41)

;
2x ' 2×
. + 4x e + cos 2 x + 2 ×2
. .
+
+ 4x + 3
2x

(g
x 3 J°
+ c2 e + c3 e 2x
° c 1e .
.
y . . '
(łn

2x + c2 sı
n 2X +
y ° c lco s l2 i C' O S 6 X CO S 4X +
X
(45) 2x 2× x
48
16
s in 2x
x
+ c2 e + e (e cos e x
s in e x
c1e ) e
x
cos e x
146) y
.

n u ł t1Ę t P Iq TĦ 3 ef r n Ĥ i\

吋 コ り

4 8 1 )y = n 3x

h x
12 (D
3 1)y 2 cos
(D
.
11
2 D + n 2x
1 )s ı
15 (D
4 16 )y . s ln 2 x
14 (D 2
2 ◆ 1) y = Sïn X

Scanned by CamScanner
Scanned by CamScanner
m em o llc ł ı
ı
ne d M (3 7 a )-

»p þ \ln ¢o r D ł
¢ı
*m lı
ot .. . .

. X - e
ar
th e n
in ・ e
a*
. . .

f (D
(a ) ı a ) ls a fa c to ro f ı(D ), th e n a'
ap

e . x * ・
r

a )ı
i
fa c to r o f r (D ) re e
(b ) ıf (D
řin '
s a
p a te d r tı
-

th e n
m es, l ' ' . ・ '

(C ) in ìi ・ k =
,
k ls . ." " .

fX
ı = s in a x (o r c o s ax ) ,
th e n

s in a x ' ・ s in a x
0 (ď ) 0( a
2
)

c os ax = x ・- c osa x
o (ď ) o ı
(ď )
n p a r tic u la r
(b ) ı
X
・ s in a x ー .
COS ax
구 농 구 2a

c os ax = ĺ
. s
i na x
6 + a
2
2a

m
ı
fX = x ,
th e n

忐 下下
可 1
・ x
m


・ x
m

[! 十 の (汇习 . X
m

1 2 3

8 V a r la tı
o n o fp a r a m e te r s

y = U y1 + V y2

W W Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner

You might also like