JEE Mains 2020 Total Marks
80
Chapter wise Tests
1. (c) c +a c + a − 2b
BE = OE − OB = −b =
R = P + Q + 2 PQ cos
2 2 2
Similarly, 2 2 and
a + b − 2c
CF =
( 7 Q) = P + Q + 2 PQ cos 60
2 2 2
2 .
7 Q = P + Q + PQ P + PQ − 6 Q = 0
2 2 2 2
Now, AD + BE + CF
P + 3 PQ − 2 PQ − 6 Q = 0
2 2
b + c − 2a c + a − 2 b a + b − 2c
= + + =0
2 2 2
P(P + 3Q) − 2Q(P + 3Q) = 0
.
5. (c)
(P − 2Q)(P + 3Q) = 0 If x be the position vector of B, then a divides AB in the ratio
P − 2Q = 0 or P + 3Q = 0 2 : 3.
P 2 x + 3(a + 2 b )
=2 a=
P − 2 Q = 0 Q 2+3
From .
2. (b) 5 a − 3 a − 6 b = 2 x x = a − 3 b.
R cos = 6 cos 0 + 2 2 cos(180 o − B) + 5 cos 270 o 6. (c)
a .b = aa cos 120
,
| a | =| b | = a (say)
a2
−8 = − a=4
2
(Negative sign does not occur in moduli).
7. (c)
OA = P1 i, CB = − P1 i, OB = − P1 i + Pj
Let
R cos = 6 − 2 2 cos B …..(i)
R sin = 6 sin 0 + 2 2 sin(180 − B) + 5 sin 270
o o
R sin = 2 2 sin B − 5 …..(ii)
From (i) and (ii),
R 2 = 36 + 8 cos 2 B − 24 2 cos B + 8 sin2 B + 25 − 20 2 sin B
= 61 + 8(cos 2 B + sin2 B) − 24 2 cos B − 20 2 sin B OB . j (− P1i + Pj) . j 1
= cos 60 =
ABC is a right angled isosceles triangle OB P12 + P 2 2
i.e., B = C = 45
2 P = P 2 + P12 P1 = P 3
1 1
= 61 + 8 (1) − 24 2 − 20 2
R2 2 2 = 25 | OB | = P 2 + P12 = P 2 + 3 P 2 = 2 P.
R =5 . 8. (a)
3. (a) It is obvious.
Resultant vector 9. (c)
= (2i + 4 j − 5 k) + (i + 2 j + 3 k) = 3i + 6 j − 2k
| a b | = 1 | sin | = 1 sin = 1 =
3i + 6 j − 2k 1 2.
= = (3 i + 6 j − 2 k)
Unit vector 9 + 36 + 4 7
. 10. (a)
4. (a) (a − b) (a + b) = a a − b a + a b − b b
b +c b + c − 2a = a b − b a = a b + a b = 2(a b).
AD = OD − OA = −a =
2 2 , 11. (d)
(where O is the origin for reference) ab 1
= (2i + k).
| a b| 5
Unit vector is equal to
12. (c)
i j k
ab = 3 2 − 1 = −5 i + 3 j − 9 k.
12 5 − 5
IN ASSOCIATION WITH JEEMAIN.GURU
JEE Mains 2020 Total Marks
80
Chapter wise Tests
−5 i + 3 j − 9 k The vector equation of a plane through the line of intersection
ab = .
Unit vector along 115 of the planes r.(i + 3 j − k) = 0 and r.( j + 2k) =0 can be written
13. (b) as
A vector perpendicular to the plane determined by the points (r.(i + 3 j − k)) + (r.( j + 2k)) = 0 .....(i)
P(1, − 1, 2); Q(2, 0, − 1) R(0, 2, 1)
and is given by This passes through 2i + j − k
QR PR (−2i + 2 j + 2k) (−i + 3 j − k) (2i + j − k).(i + 3 j − k) + (2i + j − k).( j + 2k) = 0
2i + j + k 2i + j + k
= = . or (2 + 3 + 1) + (0 + 1 − 2) = 0 = 6
4 +1 +1 6
Put the value of in (i) we get
Therefore, unit vector
14. (a)
r.(i + 9 j + 11k) = 0 , which is the required plane.
[a b b c c a] = (a b). [(b c ) (c a)]
= (a b). ([b c a] c − [b c c ] a) = (a b). ([b c a] c − 0)
= [b c a][a b c ] = [a b c ][a b c ] = 4.4 = 16.
15. (d)
[i k j] + [k j i] + [j k i] = [i k j] + [i k j] − [i k j] = [i k j] = −1
.
16. (a)
(a b) c = (a . c ) b − (b . c ) a
= (3 + 2 + 4)(2i + j − k) − (2 − 2 − 2)(3i − j + 2k)
= 18i + 9 j − 9 k + 6i − 2 j + 4 k = 24 i + 7 j − 5 k .
17. (a)
The plane is 2 x − y + z = 4 and the line is
x −1 y − 2 z +1
= =
1 −1 1
2 +1 +1 4 2 2 2 2
sin = = = = sin−1
3 3
6 3 18 .
18. (c)
It is obvious.
19. (b)
Let be the angle made by n with z-axis.
1
l = cos 45 o = ,
Then direction cosines of n are 2
1
m = cos 60 o =
2 and n = cos .
2
1 1
2
l 2 + m 2 + n 2 = 1 + + n2 = 1
2 2
1 1
n2 = n=
4 2, [ is acute, n = cos 0 ]
| n|= 8 n =| n | (li + m j + nk)
We have ,
1 1 1
n = 8 i + j + k
2 2 2 = 4 2i + 4 j + 4 k
( 2 ,−1, 1)
The required plane passes through the point having
position vector a = 2 i − j + k .
r. n = a. n
So, its vector equation is (r − a ).n = 0 or
r.(4 2i + 4 j + 4 k) = ( 2 i − j + k).(4 2i + 4 j + 4 k)
r. ( 2 i + j + k) = 2
.
20. (a)
IN ASSOCIATION WITH JEEMAIN.GURU