PM172EH Modbus
PM172EH Modbus
COMMUNICATIONS
REFERENCE GUIDE
Every effort has been made to ensure that the material herein is complete and accurate. However, the
manufacturer is not responsible for any mistakes in printing or faulty instructions contained in this
book. Notification of any errors or misprints will be received with appreciation.
REVISION HISTORY
BG0363 REV.A2
2
Table of Contents
1 GENERAL ......................................................................................................4
2 MODBUS FRAMING ......................................................................................5
2.1 Transmission Mode ..........................................................................................................................5
2.2 The RTU Frame Format ...................................................................................................................5
2.3 Address Field....................................................................................................................................5
2.4 Function Field ...................................................................................................................................5
2.5 Data Field .........................................................................................................................................5
2.6 Error Check Field..............................................................................................................................6
3
1 GENERAL
This document specifies a subset of the Modbus serial communications protocol used to transfer data between a
master computer station and the PM172EH. The document provides the complete information necessary to
develop third-party communications software capable of communication with the Series PM172EH Powermeters.
Additional information concerning communications operation, configuring the communications parameters, and
communications connections is found in "PM172EH Series Powermeter, Installation and Operation Manual".
IMPORTANT
1. In 3-wire connection schemes, the unbalanced current and phase readings for power factor, active
power, and reactive power will be zeros, because they have no meaning. Only the total three-phase
power values can be used.
2. In 4LN3, 4LL3, 3LN3 and 3LL3 wiring modes, harmonic voltages will be line-to-neutral voltages; in other
modes, they will be line-to-line voltages. In a 3-wire direct connection, harmonic voltages and waveforms
will represent line-to-neutral voltages as they appear on the instrument's input transformers. In 3OP2 and
3OP3 wiring modes, voltage harmonics and waveforms will be given only for phases L12 and L23.
3. Most of the advanced features are configured using multiple setup parameters that can be accessed in
some contiguous registers. When writing the setup registers, it is recommended to write all the registers
at once using a single request, or to clear (zero) the setup before writing into separate registers.
4
2 MODBUS FRAMING
2.1 Transmission Mode
The protocol uses the Modbus Remote Terminal Unit (RTU) transmission mode. In RTU mode, data is sent in 8-
bit binary characters. The 8 bit even parity or 8 bit no parity data format must be selected when configuring the
instrument communications. The data format is shown in the following table.
The maximum query and response message length is 256 bytes including check characters.
RTU Message Frame Format
T1 T2 T3 Address Function Data CRC Check T1 T2 T3
8 bits 8 bits N * 8 bits 16 bits
NOTE Broadcast mode available only for functions code 06 and 16.
IMPORTANT Fields composed of two bytes are sent in the order high byte first, low byte second.
5
2.6 Error Check Field
The error check field contains the Cyclical Redundancy Check (CRC) word. For detailed information about CRC
calculation, refer to the “Modicon Modbus Protocol Reference Guide”. It can be downloaded from the Modicon’s
Web site at www.modicon.com.
6
3 MODBUS MESSAGE FORMATS
3.1 Function 03 - Read Multiple Registers
This command allows the user to obtain contents of up to 125 contiguous registers from a single data table.
Request
Instrument Function Starting Word Count Error Check
Address (03) Address
1 byte 1 byte 2 bytes 2 bytes 2 bytes
Request
Instrument Function Starting Word Count Error Check
Address (04) Address
1 byte 1 byte 2 bytes 2 bytes 2 bytes
Request
Instrument Function Starting Data Error check
Address (06) Address Word
1 byte 1 byte 2 bytes 2 bytes 2 bytes
7
Request
Instrument Function Starting Word Count Byte Count
Address (16) Address
1 byte 1 byte 2 bytes 2 bytes 1 byte
Diagnostic Code Designates action to be taken in Loop-back test. The protocol supports only Diagnostic Code
0 - return query data.
Data Query data. The data passed in this field will be returned to the master through the
instrument. The entire message returned will be identical to the message transmitted by the
master, field-per-field.
Response
Instrument Function Diagnostic Data Error
Address (08) Code (0) Check
1 byte 1 byte 2 bytes 2 bytes 2 bytes
NOTE When the character framing, parity, or redundancy check detects a communication error, processing of
the master's request stops. The instrument will not act on or respond to the message.
8
4 PROTOCOL IMPLEMENTATION
4.1 Modbus Register Addresses
The PM172EH Modbus registers are referred to by using addresses in the range of 0 to 65535. From within the
Modbus applications, the PM172EH Modbus registers can be accessed by simulating holding registers of the
Modicon 584, 884 or 984 Programmable Controller, using a 5-digit “4XXXX” or 6-digit “4XXXXX” addressing
scheme. To map the PM172EH register address to the range of the Modbus holding registers, add a value of
40001 to the PM172EH register address. When a register address exceeds 9999, use a 6-digit addressing
scheme by adding 400001 to the PM172EH register address.
Non-scaled data
The data will be presented exactly as retrieved by the communications program from the instrument. The value
range for unsigned data is 0 to 65535; for signed data the range is -32768 to 32767.
When data conversion is necessary, the HI and LO scales, and data conversion method are indicated for the
corresponding registers.
CONVERSION EXAMPLES
1. Voltage readings
a) Assume device settings (690V input, direct wiring): PT ratio = 1.
If the raw data reading is 1449 then the voltage reading in engineering units will be as follows:
Volts reading = 1449 × (828.0 - 0)/9999 + 0 = 120.0V
b) Assume device settings (wiring via PT): PT ratio = 14,400V : 120V = 120.
If the raw data reading is 8314 then the voltage reading in engineering units will be as follows:
Volts reading = 8314 × (17,280 - 0)/9999 + 0 = 14,368V
9
2. Current readings
Assume device settings: CT primary current = 200A; current input overload = 120% (6A).
If the raw data reading is 250 then the current reading in engineering units will be as follows:
Amps reading = 250 × (240.00 - 0)/9999 + 0 = 6.00A
3. Power readings
a) Assume device settings (690V input, direct wiring): wiring configuration 4LN3; PT = 1; CT primary current = 200A.
If the raw data reading is 5500 then the power reading in engineering units will be as follows:
Watts reading = 5500 × (596.160 - (-596.160))/9999 + (-596.160) = 59.682kW
If the raw data reading is 500 then the power reading in engineering units will be as follows:
Watts reading = 500 × (596.160 - (-596.160))/9999 + (-596.160) = -536.538kW
b) Assume device settings (wiring via PT): wiring configuration 4LL3; PT = 120; CT primary current = 200A.
If the raw data reading is 5500 then the power reading in engineering units will be as follows:
Watts reading = 5500 × (8294 - (-8294))/9999 + (-8294) = 830kW
If the raw data reading is 500 then the power reading in engineering units will be as follows:
Watts reading = 500 × (8294 - (-8294))/9999 + (-8294) = -7465kW
If the raw data reading is 8900 then the power factor in engineering units will be as follows:
Power factor reading = 8900 × (1.000 - (-1.000))/9999 + (-1.000) = 0.78
Decimal Scaling
Decimal pre-scaling is used to accommodate fractional numbers to an integer register format. Fractional numbers
pre-multiplied by 10 in power N, where N is the number of digits in the fractional part. For example, the frequency
reading of 50.01 Hz is transmitted as 5001, having been pre-multiplied by 100. Whenever a data register contains
a fractional number, the register measurement unit is given with a multiplier ×0.1, ×0.01 or ×0.001, showing an
actual register resolution (the weight of the least significant decimal digit). To get an actual fractional number with
specified precision, scale the register value with the given multiplier. To write a fractional number into the register,
divide the number by the given multiplier.
10
4.2.3 32-bit Long Integer Format
In a 32-bit long integer format, data is transmitted in two adjacent 16-bit Modbus registers as unsigned (UINT32)
or signed (INT32) long integer (whole) numbers. The first register contains the low-order word (lower 16 bits) and
the second register contains the high order word (higher 16 bits) of the 32-bit long number. The low-order word
always starts at an even Modbus address. The value range for unsigned data is 0 to 4,294,967,295; for signed
data the range is -2,147,483,648 to 2,147,483,647.
A 32-bit data can be transmitted without conversion as is, or by using decimal pre-scaling to transform fractional
numbers to an integer format as described above (see Decimal Scaling in Section 4.2.1).
The actual addresses of the assignable registers which are accessed via addresses 0 to 119 are specified in the
user assignable register map (see Table 4-2). This map occupies addresses from 120 to 239, where map register
120 should contain the actual address of the register accessed via assignable register 0, register 121 should
contain the actual address of the register accessed via assignable register 1, and so on. Note that the assignable
register addresses and the map register addresses may not be re-mapped.
To build your own register map, write to map registers (120 to 239) the actual addresses you want to read from or
write to via the assignable area (0 to 119). Note that long word registers should always be aligned at even
addresses. For example, if you want to read registers 7136 (real-time voltage of phase A, word) and 7576/7577
(kWh import, long word) via registers 0-2, then do the following:
- write 7576 to register 120
- write 7577 to register 121
- write 7136 to register 122
Reading from registers 0-2 will return the kWh reading in registers 0 (low word) and 1 (high word), and the voltage
reading in register 2.
Table 4-1 User Assignable Registers
Address Register contents Type
0 Assigned register #0 INT16
1 Assigned register #1 INT16
2 Assigned register #2 INT16
… … …
119 Assigned register #119 INT16
11
Each memory partition you allocated for logging is organized as a sequential file of records where all data is
recorded in chronological order with a time and date stamp. When a partition is filled up, recording can be stopped
or can continue over the oldest records if you specified a partition with a wrap-around (circular) attribute. TOU
profile log partitions are automatically configured as wrap-around.
Each record within a log file has a unique sequence number that guards against missing or duplicated records
when reading the log file. This number is incremented (modulo 65536) with each log and will not be replicated
within the following 65535 logs. If a record is missing because of a communication problem, the read sequence for
the log can be restored from the record with the desired sequence number.
Accessing Log Files
Each log file has a separate file read pointer which always points to the current file record that will be read next,
and a separate register window which gives access to the record pointed to by this pointer. Initially, the read
pointer is associated with the oldest record in the file. Reading a record via the file window returns the current
record data, and then the pointer automatically advances to the following record in the file. Consequent requests
addressed to the file window will return a new record each time in the direction from the oldest record to the more
recent records. Because the file window advances automatically after the instrument responds to the master
request (regardless of the number of registers in the window being accessed), the entire window must be read at
once using a single request.
After the last record of the file has been read, the file read pointer is automatically shifted to the beginning of the
file. Using circular read requests always allows you to read the entire log file regardless of the current file status.
You can simply poll the file window registers just as you poll ordinal data in your SCADA applications, without the
need to manipulate the file pointer. Refer to Sections 5.29, 5.30 and 5.31 for information on read requests you can
use to access your log files.
A log file can be read both in an arbitrary order and in sequence as explained above. To access the log records in
a random order, the file read pointer can be re-written with the desired sequence number to point to the desired
record. Refer to Sections 5.5 and 5.6 for information on how to check the log file status and how to re-write the file
read pointer. Writing to the memory partition command register (see Section 5.6) allows you to force the file
pointer to point to the oldest record in the file or to the first new, unread record in the file. You can also use the
instrument reset registers (see Section 5.7) to restore the file read pointer to the oldest record in your log file if you
want to re-read the file from the beginning.
IMPORTANT: Take into consideration the fact that in a wrap-around (circular) log partition, the oldest records may
be overwritten by the most recent records since you have read either log status register. An attempt to point to the
particular record directly by using its sequence number may fail if the addressed record has just been overwritten.
12
5 POWERMETER REGISTERS DESCRIPTION
5.1 Basic Data Registers (16-bit)
Table 5-1 Basic Data Registers
Parameter Register Type R/W Unit 2 Scale 1 Con-
Low High version
Voltage L1/L12 6 256 UINT16 R 0.1V/1V 0 Vmax LIN3
Voltage L2/L23 6 257 UINT16 R 0.1V/1V 0 Vmax LIN3
Voltage L3/L31 6 258 UINT16 R 0.1V/1V 0 Vmax LIN3
Current L1 259 UINT16 R 0.01A 0 Imax LIN3
Current L2 260 UINT16 R 0.01A 0 Imax LIN3
Current L3 261 UINT16 R 0.01A 0 Imax LIN3
kW L1 262 UINT16 R 0.001kW/1kW -Pmax Pmax LIN3
kW L2 263 UINT16 R 0.001kW/1kW -Pmax Pmax LIN3
kW L3 264 UINT16 R 0.001kW/1kW -Pmax Pmax LIN3
kvar L1 265 UINT16 R 0.001kvar/1kvar -Pmax Pmax LIN3
kvar L2 266 UINT16 R 0.001kvar/1kvar -Pmax Pmax LIN3
kvar L3 267 UINT16 R 0.001kvar/1kvar -Pmax Pmax LIN3
kVA L1 268 UINT16 R 0.001kVA/1kVA -Pmax Pmax LIN3
kVA L2 269 UINT16 R 0.001kVA/1kVA -Pmax Pmax LIN3
kVA L3 270 UINT16 R 0.001kVA/1kVA -Pmax Pmax LIN3
Power factor L1 271 UINT16 R 0.001 -1.000 1.000 LIN3
Power factor L2 272 UINT16 R 0.001 -1.000 1.000 LIN3
Power factor L3 273 UINT16 R 0.001 -1.000 1.000 LIN3
Total power factor 274 UINT16 R 0.001 -1.000 1.000 LIN3
Total kW 275 UINT16 R 0.001kW/1kW -Pmax Pmax LIN3
Total kvar 276 UINT16 R 0.001kvar/1kvar -Pmax Pmax LIN3
Total kVA 277 UINT16 R 0.001kVA/1kVA -Pmax Pmax LIN3
Neutral current 278 UINT16 R 0.01A 0 Imax LIN3
Frequency 279 UINT16 R 0.01Hz 45.00 65.00 LIN3
Max. kW import sliding window demand 5 280 UINT16 R/W 0.001kW/1kW -Pmax Pmax LIN3
Accumulated kW import demand 281 UINT16 R/W 0.001kW/1kW -Pmax Pmax LIN3
Max. kVA sliding window demand 5 282 UINT16 R/W 0.001kVA/1kVA -Pmax Pmax LIN3
Accumulated kVA demand 283 UINT16 R/W 0.001kVA/1kVA -Pmax Pmax LIN3
Max. ampere demand L1 284 UINT16 R/W 0.01A 0 Imax LIN3
Max. ampere demand L2 285 UINT16 R/W 0.01A 0 Imax LIN3
Max. ampere demand L3 286 UINT16 R/W 0.01A 0 Imax LIN3
kWh import (low) 287 UINT16 R/W 1kWh 0 9999 NONE
kWh import (high) 288 UINT16 R/W 10,000 kWh 0 9999 NONE
kWh export (low) 289 UINT16 R/W 1kWh 0 9999 NONE
kWh export (high) 290 UINT16 R/W 10,000 kWh 0 9999 NONE
+kvarh net (low) 3 291 UINT16 R/W 1kvarh 0 9999 NONE
+kvarh net (high) 3 292 UINT16 R/W 10,000 kvarh 0 9999 NONE
-kvarh net (low) 4 293 UINT16 R/W 1kvarh 0 9999 NONE
-kvarh net (high) 4 294 UINT16 R/W 10,000 kvarh 0 999 NONE
Voltage THD L1/L12 295 UINT16 R 0.1% 0 999.9 LIN3
Voltage THD L2/L23 296 UINT16 R 0.1% 0 999.9 LIN3
Voltage THD L3/L31 297 UINT16 R 0.1% 0 999.9 LIN3
Current THD L1 298 UINT16 R 0.1% 0 999.9 LIN3
Current THD L2 299 UINT16 R 0.1% 0 999.9 LIN3
Current THD L3 300 UINT16 R 0.1% 0 999.9 LIN3
kVAh (low) 301 UINT16 R/W 1kVAh 0 9999 NONE
kVAh (high) 302 UINT16 R/W 10,000 kVAh 0 9999 NONE
Present kW sliding window demand 5 303 UINT16 R 0.001kW/1kW -Pmax Pmax LIN3
Present kVA sliding window demand 5 304 UINT16 R 0.001kVA/1kVA -Pmax Pmax LIN3
PF at maximum kVA import sliding window 305 UINT16 R 0.001 -1.000 1.000 LIN3
demand
Current TDD L1 306 UINT16 R 0.1% 0 100.0 LIN3
Current TDD L2 307 UINT16 R 0.1% 0 100.0 LIN3
Current TDD L3 308 UINT16 R 0.1% 0 100.0 LIN3
1 The parameter limits are as follows:
13
Imax (×120% over-range) = 1.2 × CT primary current [A]
Direct wiring (PT Ratio = 1):
Vmax (690 V input option) = 828.0 V
Vmax (120 V input option) = 144.0 V
Pmax = (Imax × Vmax × 3) [kW x 0.001] if wiring mode is 4LN3 or 3LN3
Pmax = (Imax × Vmax × 2) [kW x 0.001] if wiring mode is 4LL3, 3OP2, 3DIR2, 3OP3, 3LL3 or 2LL1
NOTE: Pmax is rounded to whole kilowatts. If Pmax is greater than 9,999,000 W, it is truncated to 9,999,000 W.
Wiring via PTs (PT Ratio > 1):
Vmax (690 V input option) = 144 × PT Ratio [V]
Vmax (120 V input option) = 144 × PT Ratio [V]
Pmax = (Imax × Vmax × 3)/1000 [MW x 0.001] if wiring mode is 4LN3 or 3LN3
Pmax = (Imax × Vmax × 2)/1000 [MW x 0.001] if wiring mode is 4LL3, 3OP2, 3DIR2, 3OP3, 3LL3 or 2LL1
2 When using direct wiring (PT Ratio = 1), voltages are transmitted in 0.1 V units, currents in 0.01 A units, and powers in
0.001 kW/kvar/kVA units. For wiring via PT (PT Ratio > 1), voltages are transmitted in 1V units, currents in 0.01 A units,
and powers in 0.001 MW/Mvar/MVA units.
3 Positive readings of kvarh net
4 Negative readings of kvarh net
5 To get block interval demand readings, specify the number of demand periods equal to 1 (see Table 5-19)
6 When the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other wiring mode, they will be
line-to-line voltages.
NOTE: Writing a zero to one of registers 280-286 causes reset of all maximum demands. Writing a zero to one of registers
287-294 and 301-302 causes reset of all accumulated energies. This does not apply to the TOU system registers.
Along with the register address, the table shows for each data item its point identifier (ID). This is a one word
containing a data group ID in the high byte and the parameter offset in a group in the low byte. Data IDs are used
to specify input or output parameters whenever a data parameter specification is needed.
14
Parameter UINT16 INT32 Point R/W Unit2 Range/Scale1
Reg. Conv. ID Low High
Current L2 7140 LIN3 13320-13321 0x0C04 R 0.01A 0 Imax
Current L3 7141 LIN3 13322-13323 0x0C05 R 0.01A 0 Imax
kW L1 7142 LIN3 13324-13325 0x0C06 R 0.001kW/1kW -Pmax Pmax
kW L2 7143 LIN3 13326-13327 0x0C07 R 0.001kW/1kW -Pmax Pmax
kW L3 7144 LIN3 13328-13329 0x0C08 R 0.001kW/1kW -Pmax Pmax
kvar L1 7145 LIN3 13330-13331 0x0C09 R 0.001kvar/1kvar -Pmax Pmax
kvar L2 7146 LIN3 13332-13333 0x0C0A R 0.001kvar/1kvar -Pmax Pmax
kvar L3 7147 LIN3 13334-13335 0x0C0B R 0.001kvar/1kvar -Pmax Pmax
kVA L1 7148 LIN3 13336-13337 0x0C0C R 0.001kVA/1kVA 0 Pmax
kVA L2 7149 LIN3 13338-13339 0x0C0D R 0.001kVA/1kVA 0 Pmax
kVA L3 7150 LIN3 13340-13341 0x0C0E R 0.001kVA/1kVA 0 Pmax
Power factor L1 7151 LIN3 13342-13343 0x0C0F R 0.001 -1.000 1.000
Power factor L2 7152 LIN3 13344-13345 0x0C10 R 0.001 -1.000 1.000
Power factor L3 7153 LIN3 13346-13347 0x0C11 R 0.001 -1.000 1.000
Voltage THD L1/L12 7154 LIN3 13348-13349 0x0C12 R 0.1% 0 999.9
Voltage THD L2/L23 7155 LIN3 13350-13351 0x0C13 R 0.1% 0 999.9
Voltage THD L3/L31 7156 LIN3 13352-13353 0x0C14 R 0.1% 0 999.9
Current THD L1 7157 LIN3 13354-13355 0x0C15 R 0.1% 0 999.9
Current THD L2 7158 LIN3 13356-13357 0x0C16 R 0.1% 0 999.9
Current THD L3 7159 LIN3 13358-13359 0x0C17 R 0.1% 0 999.9
K-Factor L1 7160 LIN3 13360-13361 0x0C18 R 0.1 1.0 999.9
K-Factor L2 7161 LIN3 13362-13363 0x0C19 R 0.1 1.0 999.9
K-Factor L3 7162 LIN3 13364-13365 0x0C1A R 0.1 1.0 999.9
Current TDD L1 7163 LIN3 13366-13367 0x0C1B R 0.1% 0 100.0
Current TDD L2 7164 LIN3 13368-13369 0x0C1C R 0.1% 0 100.0
Current TDD L3 7165 LIN3 13370-13371 0x0C1D R 0.1% 0 100.0
Voltage L12 7166 LIN3 13372-13373 0x0C1E R 0.1V/1V 0 Vmax
Voltage L23 7167 LIN3 13374-13375 0x0C1F R 0.1V/1V 0 Vmax
Voltage L31 7168 LIN3 13376-13377 0x0C20 R 0.1V/1V 0 Vmax
Real-time total values
Total kW 7256 LIN3 13696-13697 0x0F00 R 0.001kW/1kW -Pmax Pmax
Total kvar 7257 LIN3 13698-13699 0x0F01 R 0.001kvar/1kvar -Pmax Pmax
Total kVA 7258 LIN3 13700-13701 0x0F02 R 0.001kVA/1kVA 0 Pmax
Total PF 7259 LIN3 13702-13703 0x0F03 R 0.001 -1.000 1.000
Real-time auxiliary values
Reserved 7296 13824-13825 0x1000 R 0 0
Neutral current 7297 LIN3 13826-13827 0x1001 R 0.01A 0 Imax
Frequency 3 7298 LIN3 13828-13829 0x1002 R 0.01Hz 0 100.00
Voltage unbalance 7299 LIN3 13830-13831 0x1003 R 1% 0 300
Current unbalance 7300 LIN3 13832-13833 0x1004 R 1% 0 300
Average values per phase
Voltage L1/L12 6 7336 LIN3 13952-13953 0x1100 R 0.1V/1V 0 Vmax
Voltage L2/L23 6 7337 LIN3 13954-13955 0x1101 R 0.1V/1V 0 Vmax
Voltage L3/L31 6 7338 LIN3 13956-13957 0x1102 R 0.1V/1V 0 Vmax
Current L1 7339 LIN3 13958-13959 0x1103 R 0.01A 0 Imax
Current L2 7340 LIN3 13960-13961 0x1104 R 0.01A 0 Imax
Current L3 7341 LIN3 13962-13963 0x1105 R 0.01A 0 Imax
kW L1 7342 LIN3 13964-13965 0x1106 R 0.001kW/1kW -Pmax Pmax
kW L2 7343 LIN3 13966-13967 0x1107 R 0.001kW/1kW -Pmax Pmax
kW L3 7344 LIN3 13968-13969 0x1108 R 0.001kW/1kW -Pmax Pmax
kvar L1 7345 LIN3 13970-13971 0x1109 R 0.001kvar/1kvar -Pmax Pmax
kvar L2 7346 LIN3 13972-13973 0x110A R 0.001kvar/1kvar -Pmax Pmax
kvar L3 7347 LIN3 13974-13975 0x110B R 0.001kvar/1kvar -Pmax Pmax
kVA L1 7348 LIN3 13976-13977 0x110C R 0.001kVA/1kVA 0 Pmax
kVA L2 7349 LIN3 13978-13979 0x110D R 0.001kVA/1kVA 0 Pmax
kVA L3 7350 LIN3 13980-13981 0x110E R 0.001kVA/1kVA 0 Pmax
Power factor L1 7351 LIN3 13982-13983 0x110F R 0.001 -1.000 1.000
Power factor L2 7352 LIN3 13984-13985 0x1110 R 0.001 -1.000 1.000
Power factor L3 7353 LIN3 13986-13987 0x1111 R 0.001 -1.000 1.000
Voltage THD L1/L12 7354 LIN3 13988-13989 0x1112 R 0.1% 0 999.9
Voltage THD L2/L23 7355 LIN3 13990-13991 0x1113 R 0.1% 0 999.9
Voltage THD L3/L31 7356 LIN3 13992-13993 0x1114 R 0.1% 0 999.9
Current THD L1 7357 LIN3 13994-13995 0x1115 R 0.1% 0 999.9
15
Parameter UINT16 INT32 Point R/W Unit2 Range/Scale1
Reg. Conv. ID Low High
Current THD L2 7358 LIN3 13996-13997 0x1116 R 0.1% 0 999.9
Current THD L3 7359 LIN3 13998-13999 0x1117 R 0.1% 0 999.9
K-Factor L1 7360 LIN3 14000-14001 0x1118 R 0.1 1.0 999.9
K-Factor L2 7361 LIN3 14002-14003 0x1119 R 0.1 1.0 999.9
K-Factor L3 7362 LIN3 14004-14005 0x111A R 0.1 1.0 999.9
Current TDD L1 7363 LIN3 14006-14007 0x111B R 0.1% 0 100.0
Current TDD L2 7364 LIN3 14008-14009 0x111C R 0.1% 0 100.0
Current TDD L3 7365 LIN3 14010-14011 0x111D R 0.1% 0 100.0
Voltage L12 7366 LIN3 14012-14013 0x111E R 0.1V/1V 0 Vmax
Voltage L23 7367 LIN3 14014-14015 0x111F R 0.1V/1V 0 Vmax
Voltage L31 7368 LIN3 14016-14017 0x1120 R 0.1V/1V 0 Vmax
Average total values
Total kW 7456 LIN3 14336-14337 0x1400 R 0.001kW/1kW -Pmax Pmax
Total kvar 7457 LIN3 14338-14339 0x1401 R 0.001kvar/1kvar -Pmax Pmax
Total kVA 7458 LIN3 14340-14341 0x1402 R 0.001kVA/1kVA 0 Pmax
Total PF 7459 LIN3 14342-14343 0x1403 R 0.001 -1.000 1.000
Average auxiliary values
Reserved 7496 14464-14465 0x1500 R 0 0
Neutral current 7497 LIN3 14466-14467 0x1501 R 0.01A 0 Imax
Frequency 3 7498 LIN3 14468-14469 0x1502 R 0.01Hz 0 100.00
Voltage unbalance 7499 LIN3 14470-14471 0x1503 R 1% 0 300
Current unbalance 7500 LIN3 14472-14473 0x1504 R 1% 0 300
Present demands
Volt demand L1/L12 6 7536 LIN3 14592-14593 0x1600 R 0.1V/1V 0 Vmax
Volt demand L2/L23 6 7537 LIN3 14594-14595 0x1601 R 0.1V/1V 0 Vmax
Volt demand L3/L31 6 7538 LIN3 14596-14597 0x1602 R 0.1V/1V 0 Vmax
Ampere demand L1 7539 LIN3 14598-14599 0x1603 R 0.01A 0 Imax
Ampere demand L2 7540 LIN3 14600-14601 0x1604 R 0.01A 0 Imax
Ampere demand L3 7541 LIN3 14602-14603 0x1605 R 0.01A 0 Imax
Block kW demand 7542 LIN3 14604-14605 0x1606 R 0.001kW/1kW 0 Pmax
Block kvar import demand 7543 LIN3 14606-14607 0x1607 R 0.001kvar/1kvar 0 Pmax
Block kVA demand 7544 LIN3 14608-14609 0x1608 R 0.001kVA/1kVA 0 Pmax
Sliding window kW demand 7545 LIN3 14610-14611 0x1609 R 0.001kW/1kW 0 Pmax
Sliding window kvar import 7546 LIN3 14612-14613 0x160A R 0.001kvar/1kvar 0 Pmax
demand
Sliding window kVA demand 7547 LIN3 14614-14615 0x160B R 0.001kVA/1kVA 0 Pmax
Reserved 7548 14616-14617 0x160C R 0 0
Reserved 7549 14618-14619 0x160D R 0 0
Reserved 7550 14620-14621 0x160E R 0 0
Accumulated kW demand 7551 LIN3 14622-14623 0x160F R 0.001kW/1kW 0 Pmax
(import)
Accumulated kvar import 7552 LIN3 14624-14625 0x1610 R 0.001kvar/1kvar 0 Pmax
demand
Accumulated kVA demand 7553 LIN3 14626-14627 0x1611 R 0.001kVA/1kVA 0 Pmax
Predicted sliding window kW 7554 LIN3 14628-14629 0x1612 R 0.001kW/1kW 0 Pmax
demand (import)
Predicted sliding window kvar 7555 LIN3 14630-14631 0x1613 R 0.001kvar/1kvar 0 Pmax
import demand
Predicted sliding window kVA 7556 LIN3 14632-14633 0x1614 R 0.001kVA/1kVA 0 Pmax
demand
PF (import) at maximum kVA 7557 LIN3 14634-14635 0x1615 R 0.001 -1.000 1.000
sliding window demand
Block kW export demand 7558 LIN3 14636-14637 0x1616 R 0.001kW/1kW 0 Pmax
Block kvar export demand 7559 LIN3 14638-14639 0x1617 R 0.001kvar/1kvar 0 Pmax
Sliding window kW export 7560 LIN3 14640-14641 0x1618 R 0.001kW/1kW 0 Pmax
demand
Sliding window kvar export 7561 LIN3 14642-14643 0x1619 R 0.001kvar/1kvar 0 Pmax
demand
Accumulated kW export 7562 LIN3 14644-14645 0x161A R 0.001kW/1kW 0 Pmax
demand
Accumulated kvar export 7563 LIN3 14646-14647 0x161B R 0.001kvar/1kvar 0 Pmax
demand
Predicted sliding window kW 7564 LIN3 14648-14649 0x161C R 0.001kW/1kW 0 Pmax
export demand
16
Parameter UINT16 INT32 Point R/W Unit2 Range/Scale1
Reg. Conv. ID Low High
Predicted sliding window kvar 7565 LIN3 14650-14651 0x161D R 0.001kvar/1kvar 0 Pmax
export demand
Total energies
kWh import 7576- 14720-14721 0x1700 R kWh 0 109-1
7577
kWh export 5 7578- 14722-14723 0x1701 R kWh 0 109-1
7579
Reserved 7580- 14724-14727 0x1702- R 0 0
7583 0x1703
kvarh import 7584- 14728-14729 0x1704 R kvarh 0 109-1
7585
kvarh export 5 7586- 14730-14731 0x1705 R kvarh 0 109-1
7587
Reserved 7588- 14732-14735 0x1706- R 0 0
7591 0x1707
kVAh total 7592- 14736-14737 0x1708 R kVAh 0 109-1
7593
Reserved 7594- 14738-14745 0x1709- R 0 0
7601 0x170C
Harmonic kWh import 7602- 14746-14747 0x170D R kWh 0 109-1
7603
Harmonic kWh export 7604- 14748-14749 0x170E R kWh 0 109-1
7605
Reserved 7606- 14750-14753 0x170F- R 0 0
7609 0x1710
Harmonic kVAh 7610- 14754-14755 0x1711 R kVAh 0 109-1
7611
Phase energies
kWh import L1 7616- 14848-14849 0x1800 R kWh 0 109-1
7617
kWh import L2 7618- 14850-14851 0x1801 R kWh 0 109-1
7619
kWh import L3 7620- 14852-14853 0x1802 R kWh 0 109-1
7621
kvarh import L1 7622- 14854-14855 0x1803 R kvarh 0 109-1
7623
kvarh import L2 7624- 14856-14857 0x1804 R kvarh 0 109-1
7625
kvarh import L3 7626- 14858-14859 0x1805 R kvarh 0 109-1
7627
kVAh total L1 7628- 14860-14861 0x1806 R kVAh 0 109-1
7629
kVAh total L2 7630- 14862-14863 0x1807 R kVAh 0 109-1
7631
kVAh total L3 7632- 14864-14865 0x1808 R kVAh 0 109-1
7633
L1/L12 voltage harmonics
Harmonic H01 7656 LIN3 14976-14977 0x1900 R 0.01% 0 100.00
Harmonic H02 7657 LIN3 14978-14979 0x1901 R 0.01% 0 100.00
... ... ...
Harmonic H40 7695 LIN3 14054-14055 0x193E R 0.01% 0 100.00
L2/L23 voltage harmonics
Harmonic H01 7696 LIN3 15104-15105 0x1A00 R 0.01% 0 100.00
Harmonic H02 7697 LIN3 15106-15107 0x1A01 R 0.01% 0 100.00
... ... ...
Harmonic H40 7735 LIN3 15182-15183 0x1A3E R 0.01% 0 100.00
L3 voltage harmonics
Harmonic H01 7736 LIN3 15232-15233 0x1B00 R 0.01% 0 100.00
Harmonic H02 7737 LIN3 15234-15235 0x1B01 R 0.01% 0 100.00
... ... ...
Harmonic H40 7775 LIN3 15310-15311 0x1B3E R 0.01% 0 100.00
L1 current harmonics
Harmonic H01 7776 LIN3 15360-15361 0x1C00 R 0.01% 0 100.00
Harmonic H02 7777 LIN3 15362-15363 0x1C01 R 0.01% 0 100.00
... ... ...
17
Parameter UINT16 INT32 Point R/W Unit2 Range/Scale1
Reg. Conv. ID Low High
Harmonic H40 7815 LIN3 15438-15439 0x1C3E R 0.01% 0 100.00
L2 current harmonics
Harmonic H01 7816 LIN3 15488-15489 0x1D00 R 0.01% 0 100.00
Harmonic H02 7817 LIN3 15490-15491 0x1D01 R 0.01% 0 100.00
... ... ...
Harmonic H40 7855 LIN3 15566-15567 0x1D3E R 0.01% 0 100.00
L3 current harmonics
Harmonic H01 7856 LIN3 15616-15617 0x1E00 R 0.01% 0 100.00
Harmonic H02 7857 LIN3 15618-15619 0x1E01 R 0.01% 0 100.00
... ... ...
Harmonic H40 7895 LIN3 15694-15695 0x1E3E R 0.01% 0 100.00
Fundamental's (H01) real-time values per phase
Voltage L1/L12 7 8296 LIN3 17024-17025 0x2900 R 0.1V/1V 0 Vmax
Voltage L2/L23 7 8297 LIN3 17026-17027 0x2901 R 0.1V/1V 0 Vmax
Voltage L3/L31 7 8298 LIN3 17028-17029 0x2902 R 0.1V/1V 0 Vmax
Current L1 8299 LIN3 17030-17031 0x2903 R 0.01A 0 Imax
Current L2 8300 LIN3 17032-17033 0x2904 R 0.01A 0 Imax
Current L3 8301 LIN3 17034-17035 0x2905 R 0.01A 0 Imax
kW L1 8302 LIN3 17036-17037 0x2906 R 0.001kW/1kW -Pmax Pmax
kW L2 8303 LIN3 17038-17039 0x2907 R 0.001kW/1kW -Pmax Pmax
kW L3 8304 LIN3 17040-17041 0x2908 R 0.001kW/1kW -Pmax Pmax
kvar L1 8305 LIN3 17042-17043 0x2909 R 0.001kvar/1kvar -Pmax Pmax
kvar L2 8306 LIN3 17044-17045 0x290A R 0.001kvar/1kvar -Pmax Pmax
kvar L3 8307 LIN3 17046-17047 0x290B R 0.001kvar/1kvar -Pmax Pmax
kVA L1 8308 LIN3 17048-17049 0x290C R 0.001kVA/1kVA 0 Pmax
kVA L2 8309 LIN3 17050-17051 0x290D R 0.001kVA/1kVA 0 Pmax
kVA L3 8310 LIN3 17052-17053 0x290E R 0.001kVA/1kVA 0 Pmax
Power factor L1 8311 LIN3 17054-17055 0x290F R 0.001 -1.000 1.000
Power factor L2 8312 LIN3 17056-17055 0x2910 R 0.001 -1.000 1.000
Power factor L3 8313 LIN3 17058-17059 0x2911 R 0.001 -1.000 1.000
Harmonic real-time total values
Total fundamental kW 8336 LIN3 17152-17153 0x2A00 R 0.001kW/1kW -Pmax Pmax
Total fundamental kvar 8337 LIN3 17154-17155 0x2A01 R 0.001kvar/1kvar -Pmax Pmax
Total fundamental kVA 8338 LIN3 17156-17157 0x2A02 R 0.001kVA/1kVA 0 Pmax
Total fundamental PF 8339 LIN3 17158-17159 0x2A03 R 0.001 -1.000 1.000
Total harmonic kW 8340 LIN3 17160-17161 0x2A04 R 0.001kW/1kW -Pmax Pmax
Reserved 8341 LIN3 17162-17162 0x2A05 R 0 0
Total harmonic kVA 8342 LIN3 17164-17163 0x2A06 R 0.001kVA/1kVA 0 Pmax
Reserved 8343 LIN3 17166-17164 0x2A07 R 0 0
Minimum real-time values per phase (M)
Voltage L1/L12 6 8416 LIN3 17408-17409 0x2C00 R 0.1V/1V 0 Vmax
Voltage L2/L23 6 8417 LIN3 17410-17411 0x2C01 R 0.1V/1V 0 Vmax
Voltage L3/L31 6 8418 LIN3 17412-17413 0x2C02 R 0.1V/1V 0 Vmax
Current L1 8419 LIN3 17414-17415 0x2C03 R 0.01A 0 Imax
Current L2 8420 LIN3 17416-17417 0x2C04 R 0.01A 0 Imax
Current L3 8421 LIN3 17418-17419 0x2C05 R 0.01A 0 Imax
Reserved R 0 0
Voltage THD L1/L12 8434 LIN3 17444-17445 0x2C12 R 0.1% 0 999.9
Voltage THD L2/L23 8435 LIN3 17446-17447 0x2C13 R 0.1% 0 999.9
Voltage THD L3/L31 8436 LIN3 17448-17449 0x2C14 R 0.1% 0 999.9
Current THD L1 8437 LIN3 17450-17451 0x2C15 R 0.1% 0 999.9
Current THD L2 8438 LIN3 17452-17453 0x2C16 R 0.1% 0 999.9
Current THD L3 8439 LIN3 17454-17455 0x2C17 R 0.1% 0 999.9
K-Factor L1 8440 LIN3 17456-17457 0x2C18 R 0.1 1.0 999.9
K-Factor L2 8441 LIN3 17458-17459 0x2C19 R 0.1 1.0 999.9
K-Factor L3 8442 LIN3 17460-17461 0x2C1A R 0.1 1.0 999.9
Current TDD L1 8443 LIN3 17462-17463 0x2C1B R 0.1% 0 100.0
Current TDD L2 8444 LIN3 17464-17465 0x2C1C R 0.1% 0 100.0
Current TDD L3 8445 LIN3 17466-17467 0x2C1D R 0.1% 0 100.0
Minimum real-time total values (M)
Total kW 8456 LIN3 17536-17537 0x2D00 R 0.001kW/1kW -Pmax Pmax
Total kvar 8457 LIN3 17538-17539 0x2D01 R 0.001kvar/1kvar -Pmax Pmax
Total kVA 8458 LIN3 17540-17541 0x2D02 R 0.001kVA/1kVA 0 Pmax
18
Parameter UINT16 INT32 Point R/W Unit2 Range/Scale1
Reg. Conv. ID Low High
Total PF 4 8459 LIN3 17542-17543 0x2D03 R 0.001 0 1.000
Minimum real-time auxiliary values (M)
Reserved 8496 17664-17665 0x2E00 R 0 0
Neutral current 8497 LIN3 17666-17667 0x2E01 R 0.01A 0 Imax
Frequency 3 8498 LIN3 17668-17669 0x2E02 R 0.01Hz 0 100.00
Maximum real-time values per phase (M)
Voltage L1/L12 6 8736 LIN3 18432-18433 0x3400 R 0.1V/1V 0 Vmax
Voltage L2/L23 6 8737 LIN3 18434-18435 0x3401 R 0.1V/1V 0 Vmax
Voltage L3/L31 6 8738 LIN3 18436-18437 0x3402 R 0.1V/1V 0 Vmax
Current L1 8739 LIN3 18438-18439 0x3403 R 0.01A 0 Imax
Current L2 8740 LIN3 18440-18441 0x3404 R 0.01A 0 Imax
Current L3 8741 LIN3 18442-18443 0x3405 R 0.01A 0 Imax
Reserved R 0 0
Voltage THD L1/L12 8754 LIN3 18468-18469 0x3412 R 0.1% 0 999.9
Voltage THD L2/L23 8755 LIN3 18470-18471 0x3413 R 0.1% 0 999.9
Voltage THD L3/L31 8756 LIN3 18472-18473 0x3414 R 0.1% 0 999.9
Current THD L1 8757 LIN3 18474-18475 0x3415 R 0.1% 0 999.9
Current THD L2 8758 LIN3 18476-18477 0x3416 R 0.1% 0 999.9
Current THD L3 8759 LIN3 18478-18479 0x3417 R 0.1% 0 999.9
K-Factor L1 8760 LIN3 18480-18481 0x3418 R 0.1 1.0 999.9
K-Factor L2 8761 LIN3 18482-18483 0x3419 R 0.1 1.0 999.9
K-Factor L3 8762 LIN3 18484-18485 0x341A R 0.1 1.0 999.9
Current TDD L1 8763 LIN3 18486-18487 0x341B R 0.1% 0 100.0
Current TDD L2 8764 LIN3 18488-18489 0x341C R 0.1% 0 100.0
Current TDD L3 8765 LIN3 18490-18491 0x341D R 0.1% 0 100.0
Maximum real-time total values (M)
Total kW 8776 LIN3 18560-18561 0x3500 R 0.001kW/1kW -Pmax Pmax
Total kvar 8777 LIN3 18562-18563 0x3501 R 0.001kvar/1kvar -Pmax Pmax
Total kVA 8778 LIN3 18564-18565 0x3502 R 0.001kVA/1kVA 0 Pmax
Total PF 6 8779 LIN3 18566-18567 0x3503 R 0.001 0 1.000
Maximum real-time auxiliary values (M)
Reserved 8816 18688-18689 0x3600 R 0
Neutral current 8817 LIN3 18680-18681 0x3601 R 0.01A 0 Imax
Frequency 3 8818 LIN3 18682-18683 0x3602 R 0.01Hz 0 100.00
Maximum demands (M)
Max. volt demand L1/L12 6 8856 LIN3 18816-18817 0x3700 R 0.1V/1V 0 Vmax
Max. volt demand L2/L23 6 8857 LIN3 18818-18819 0x3701 R 0.1V/1V 0 Vmax
Max. volt demand L3/L31 6 8858 LIN3 18820-18821 0x3702 R 0.1V/1V 0 Vmax
Max. ampere demand L1 8859 LIN3 18822-18823 0x3703 R 0.01A 0 Imax
Max. ampere demand L2 8860 LIN3 18824-18825 0x3704 R 0.01A 0 Imax
Max. ampere demand L3 8861 LIN3 18826-18827 0x3705 R 0.01A 0 Imax
Reserved 8862- 18828-18833 0x3706- R 0 0
8864 0x3708
Max. sliding window kW 8865 LIN3 18834-18835 0x3709 R 0.001kW/1kW 0 Pmax
import demand
Max. sliding window kvar 8866 LIN3 18836-18837 0x370A R 0.001kvar/1kvar 0 Pmax
import demand
Max. sliding window kVA 8867 LIN3 18838-18839 0x370B R 0.001kVA/1kVA 0 Pmax
demand
Reserved 8868- 18840-18845 0x370C- R 0 0
8870 0x370E-
Max. sliding window kW 8871 LIN3 18846-18847 0x370F R 0.001kW/1kW 0 Pmax
export demand
Max. sliding window kvar 8872 LIN3 18848-18849 0x3710 R 0.001kvar/1kvar 0 Pmax
export demand
TOU system parameters
Active tariff 9056 19456-19457 0x3C00 R 0 15
Active profile 9057 19458-19459 0x3C01 R 0 15
TOU energy register #1
Tariff #1 register 9096 19584-19585 0x3D00 R 7 0 109-1
9097
Tariff #2 register 9098 19586-19587 0x3D01 R 7 0 109-1
9099
... ... ... ...
19
Parameter UINT16 INT32 Point R/W Unit2 Range/Scale1
Reg. Conv. ID Low High
Tariff #16 register 9126 19614-19615 0x3D0F R 7 0 109-1
9127
TOU energy register #2
Tariff #1 register 9136 19712-19713 0x3E00 R 7 0 109-1
9137
Tariff #2 register 9138 19714-19715 0x3E01 R 7 0 109-1
9139
... ... ... ...
Tariff #16 register 9166 19742-19743 0x3E0F R 7 0 109-1
9167
TOU energy register #3
Tariff #1 register 9176 19840-19841 0x3F00 R 7 0 109-1
9177
Tariff #2 register 9178 19842-19843 0x3F01 R 7 0 109-1
9179
... ... ... ...
Tariff #16 register 9206 19870-19871 0x3F0F R 7 0 109-1
9207
TOU energy register #4
Tariff #1 register 9216 19968-19969 0x4000 R 7 0 109-1
9217
Tariff #2 register 9218 19970-19971 0x4001 R 7 0 109-1
9219
... ... ... ...
Tariff #16 register 9246 19998-19999 0x400F R 7 0 109-1
9247
TOU energy register #5
Tariff #1 register 9256 20096-20097 0x4100 R 7 0 109-1
9257
Tariff #2 register 9258 20098-20099 0x4101 R 7 0 109-1
9259
... ... ... ...
Tariff #16 register 9286 20126-20127 0x410F R 7 0 109-1
9287
TOU energy register #6
Tariff #1 register 9296 20224-20225 0x4200 R 7 0 109-1
9297
Tariff #2 register 9298 20226-20227 0x4201 R 7 0 109-1
9299
... ... ... ...
Tariff #16 register 9326 20254-20255 0x420F R 7 0 109-1
9327
TOU energy register #7
Tariff #1 register 9336 20352-20353 0x4300 R 7 0 109-1
9337
Tariff #2 register 9338 20354-20355 0x4301 R 7 0 109-1
9339
... ... ... ...
Tariff #16 register 9366 20382-20383 0x430F R 7 0 109-1
9367
TOU energy register #8
Tariff #1 register 9376 20480-20481 0x4400 R 7 0 109-1
9377
Tariff #2 register 9378 20482-20483 0x4401 R 7 0 109-1
9379
... ... ... ...
Tariff #16 register 9406 20510-20511 0x440F R 7 0 109-1
9407
TOU maximum demand register #1 (M)
Tariff #1 register 9536 LIN3 20992-20993 0x4800 R 0.001kW/1kW 0 Pmax
Tariff #2 register 9537 LIN3 20994-20995 0x4801 R 0.001kW/1kW 0 Pmax
... ... ... ...
Tariff #16 register 9551 LIN3 21022-21023 0x480F R 0.001kW/1kW 0 Pmax
TOU maximum demand register #2 (M)
Tariff #1 register 9576 LIN3 21120-21121 0x4900 R 0.001kW/1kW 0 Pmax
20
Parameter UINT16 INT32 Point R/W Unit2 Range/Scale1
Reg. Conv. ID Low High
Tariff #2 register 9577 LIN3 21122-21123 0x4901 R 0.001kW/1kW 0 Pmax
... ... ... ...
Tariff #16 register 9591 LIN3 21150-21151 0x490F R 0.001kW/1kW 0 Pmax
TOU maximum demand register #3 (M)
Tariff #1 register 9616 LIN3 21248-21249 0x4A00 R 0.001kVA/1kVA 0 Pmax
Tariff #2 register 9617 LIN3 21250-21251 0x4A01 R 0.001kVA/1kVA 0 Pmax
... ... ... ...
Tariff #16 register 9631 LIN3 21278-21279 0x4A0F R 0.001kVA/1kVA 0 Pmax
L1/L12 voltage harmonic angles 8
Harmonic H01 angle 10656 LIN3 24576-24577 0x6400 R 0.1 degree -180.0 180.0
Harmonic H02 angle 10657 LIN3 24578-24579 0x6401 R 0.1 degree -180.0 180.0
... ... ...
Harmonic H40 angle 10695 LIN3 24654-24655 0x6427 R 0.1 degree -180.0 180.0
L2/L23 voltage harmonic angles 8
Harmonic H01 angle 10696 LIN3 24704-24705 0x6400 R 0.1 degree -180.0 180.0
Harmonic H02 angle 10697 LIN3 24706-24707 0x6401 R 0.1 degree -180.0 180.0
... ... ...
Harmonic H40 angle 10735 LIN3 24782-24783 0x6427 R 0.1 degree -180.0 180.0
L3 voltage harmonic angles 8
Harmonic H01 angle 10736 LIN3 24832-24833 0x6400 R 0.1 degree -180.0 180.0
Harmonic H02 angle 10737 LIN3 24834-24835 0x6401 R 0.1 degree -180.0 180.0
... ... ...
Harmonic H40 angle 10775 LIN3 24910-24911 0x6427 R 0.1 degree -180.0 180.0
L1 current harmonic angles 8
Harmonic H01 angle 10816 LIN3 25088-25089 0x6400 R 0.1 degree -180.0 180.0
Harmonic H02 angle 10817 LIN3 25099-25091 0x6401 R 0.1 degree -180.0 180.0
... ... ...
Harmonic H40 angle 10855 LIN3 25166-25167 0x6427 R 0.1 degree -180.0 180.0
L2 current harmonic angles 8
Harmonic H01 angle 10856 LIN3 25216-25216 0x6400 R 0.1 degree -180.0 180.0
Harmonic H02 angle 10857 LIN3 25218-25219 0x6401 R 0.1 degree -180.0 180.0
... ... ...
Harmonic H40 angle 10895 LIN3 25294-25295 0x6427 R 0.1 degree -180.0 180.0
L3 current harmonic angles 8
Harmonic H01 angle 10896 LIN3 25344-25345 0x6400 R 0.1 degree -180.0 180.0
Harmonic H02 angle 10897 LIN3 25346-25347 0x6401 R 0.1 degree -180.0 180.0
... ... ...
Harmonic H40 angle 10935 LIN3 25422-25423 0x6427 R 0.1 degree -180.0 180.0
Generic TOU season tariff energy registers - only as a reference for TOU profile logs
Season tariff #1 register 0x7000 R 0 109-1
Season tariff #2 register 0x7001 R 0 109-1
... ...
Season tariff #16 register 0x700F R 0 109-1
Generic TOU season tariff maximum demand registers - only as a reference for TOU profile logs
Season tariff #1 register LIN3 0x7100 R 0 Pmax
Season tariff #2 register LIN3 0x7101 R 0 Pmax
... ...
Season tariff #16 register LIN3 0x710F R 0 Pmax
1 For the parameter limits, see Note 1 to Table 5-1.
2 When using direct wiring (PT Ratio = 1), voltages are transmitted in 0.1 V units, currents in 0.01 A units, and powers in
0.001 kW/kvar/kVA units. For wiring via PTs (PT Ratio > 1), voltages are transmitted in 1V units, currents in 0.01 A units,
and powers in 1 kW/kvar/kVA units.
3 The actual frequency range is 45.00 - 65.00 Hz.
4 Absolute min/max value (lag or lead).
5 The exported energy registers are read as positive unsigned long (32-bit) integers.
6 When the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other wiring mode, they will be
line-to-line voltages.
7 When the 4LN3, 4LL3 or 3LN3 wiring mode is selected, the harmonic voltages will be line-to-neutral; for any other wiring
mode, they will be line-to-line voltages. The line-to-line harmonic voltages in the 3DIR2, 3LL3 and 2LL1 wiring modes, and the
L31 harmonic voltage in the 3OP2 and 3OP3 wiring modes will be calculated accurately if the voltages are balanced.
8 Harmonic angles are referenced to the fundamental voltage harmonic H01 on the same phase.
(M) These parameters are logged to the Min/Max log
21
5.3 Min/Max Log Registers (32-bit)
Table 5-3 Min/Max Log Registers
Parameter Registers Type
Minimum real-time values per phase
Min. Voltage L1/L12 35840-35841 INT32
Timestamp 35842-35843 UINT32
Min. Voltage L2/L23 35844-35845 INT32
Timestamp 35846-35847 UINT32
Min. Voltage L3/L31 35848-35849 INT32
Timestamp 35850-35851 UINT32
Min. Current L1 35852-35853 INT32
Timestamp 35854-35855 UINT32
Min. Current L2 35856-35857 INT32
Timestamp 35858-35859 UINT32
Min. Current L3 35860-35861 INT32
Timestamp 35862-35863 UINT32
Reserved 35864-35911
Min. Voltage THD L1/L12 35912-35913 INT32
Timestamp 35914-35915 UINT32
Min. Voltage THD L2/L23 35916-35917 INT32
Timestamp 35918-35919 UINT32
Min. Voltage THD L3/L31 35920-35921 INT32
Timestamp 35922-35923 UINT32
Min. Current THD L1 35924-35925 INT32
Timestamp 35926-35927 UINT32
Min. Current THD L2 35928-35929 INT32
Timestamp 35930-35931 UINT32
Min. Current THD L3 35932-35933 INT32
Timestamp 35934-35935 UINT32
Min. Current K-Factor L1 35936-35937 INT32
Timestamp 35938-35939 UINT32
Min. Current K-Factor L2 35940-35941 INT32
Timestamp 35942-35943 UINT32
Min. Current K-Factor L3 35944-35945 INT32
Timestamp 35946-35947 UINT32
Min. Current TDD L1 35948-35949 INT32
Timestamp 35950-35951 UINT32
Min. Current TDD L2 35952-35953 INT32
Timestamp 35954-35955 UINT32
Min. Current TDD L3 35956-35957 INT32
Timestamp 35958-35959 UINT32
Minimum real-time total values
Min. Total kW 36096-36097 INT32
Timestamp 36098-36099 UINT32
Min. Total kvar 36100-36101 INT32
Timestamp 36102-36103 UINT32
Min. Total kVA 36104-36105 INT32
Timestamp 36106-36107 UINT32
Total PF 36108-36109 INT32
Timestamp 36110-36111 UINT32
Minimum real-time auxiliary values
Reserved 36352-36355 INT32
Min. Neutral current 36356-36357 INT32
Timestamp 36358-36359 UINT32
Min. Frequency 36360-36361 INT32
Timestamp 36362-36362 UINT32
Maximum real-time values per phase
Max. Voltage L1/L12 36864-36865 INT32
Timestamp 36866-36867 UINT32
Max. Voltage L2/L23 36868-36869 INT32
Timestamp 36870-36871 UINT32
Max. Voltage L3/L31 36872-36873 INT32
Timestamp 36874-36875 UINT32
22
Parameter Registers Type
Max. Current L1 36876-36877 INT32
Timestamp 36878-36879 UINT32
Max. Current L2 36880-36881 INT32
Timestamp 36882-36883 UINT32
Max. Current L3 36884-36885 INT32
Timestamp 36886-36887 UINT32
Reserved 36889-36935
Max. Voltage THD L1/L12 36936-36937 INT32
Timestamp 36938-36939 UINT32
Max. Voltage THD L2/L23 36940-36941 INT32
Timestamp 36942-36943 UINT32
Max. Voltage THD L3/L31 36944-36945 INT32
Timestamp 36946-36947 UINT32
Max. Current THD L1 36948-36949 INT32
Timestamp 36950-36951 UINT32
Max. Current THD L2 36952-36953 INT32
Timestamp 36954-36955 UINT32
Max. Current THD L3 36956-36957 INT32
Timestamp 36858-36959 UINT32
Max. Current K-Factor L1 36960-36961 INT32
Timestamp 36962-36963 UINT32
Max. Current K-Factor L2 36964-36965 INT32
Timestamp 36966-36967 UINT32
Max. Current K-Factor L3 36968-36969 INT32
Timestamp 36970-36971 UINT32
Max. Current TDD L1 36972-36973 INT32
Timestamp 36974-36975 UINT32
Max. Current TDD L2 36976-36977 INT32
Timestamp 36978-36979 UINT32
Max. Current TDD L3 36980-36981 INT32
Timestamp 36982-36983 UINT32
Maximum real-time total values
Max. Total kW 37120-37121 INT32
Timestamp 37122-37123 UINT32
Max. Total kvar 37124-37125 INT32
Timestamp 37126-37127 UINT32
Total kVA 37128-37129 INT32
Timestamp 37130-37131 UINT32
Max. Total PF 37132-37133 INT32
Timestamp 37134-37135 UINT32
Maximum real-time auxiliary values
Reserved 37376-37379 INT32
Max. Neutral current 37380-37381 INT32
Timestamp 37382-37383 UINT32
Max. Frequency 37384-37385 INT32
Timestamp 37386-37387 UINT32
Maximum demands (M)
Max. volt demand L1/L12 37632-37633 INT32
Timestamp 37634-37635 UINT32
Max. volt demand L2/L23 37636-37637 INT32
Timestamp 37638-37639 UINT32
Max. volt demand L3/L31 37640-37641 INT32
Timestamp 37642-37643 UINT32
Max. ampere demand L1 37644-37645 INT32
Timestamp 37646-37647 UINT32
Max. ampere demand L2 37648-37649 INT32
Timestamp 37650-37651 UINT32
Max. ampere demand L3 37652-37653 INT32
Timestamp 37654-37657 UINT32
Reserved 37656-37667 INT32
Max. sliding window kW import demand 37668-37669 INT32
Timestamp 37670-37671 UINT32
Reserved 37672-37675 INT32
Max. sliding window kVA demand 37676-37677 INT32
23
Parameter Registers Type
Timestamp 37678-37679 UINT32
Reserved 37680-37691 INT32
Max. sliding window kW export demand 37692-37693 INT32
Timestamp 37694-37695 UINT32
TOU maximum demand register #1
Max. Demand Tariff #1 register 38144-38145 INT32
Timestamp 38146-38147 UINT32
Max. Demand Tariff #2 register 38148-38149 INT32
Timestamp 38150-38151 UINT32
... ...
Max. Demand Tariff #16 register 38204-38205 INT32
Timestamp 38206-38207 UINT32
TOU maximum demand register #2
Max. Demand Tariff #1 register 38400-38401 INT32
Timestamp 38402-38403 UINT32
Max. Demand Tariff #2 register 38404-38405 INT32
Timestamp 38406-38407 UINT32
... ...
Max. Demand Tariff #16 register 38460-38461 INT32
Timestamp 38462-38463 UINT32
TOU maximum demands register #3
Max. Demand Tariff #1 register 38656-38657 INT32
Timestamp 38658-38659 UINT32
Max. Demand Tariff #2 register 38650-38651 INT32
Timestamp 38652-38653 UINT32
... ...
Max. Demand Tariff #16 register 38716-38717 INT32
Timestamp 38718-38719 UINT32
1. Timestamp is given in local time in a UNIX-style time format: it represents the number of seconds since midnight (00:00:00),
January 1, 1970. The time is valid after January 1, 2000.
2. The Min/Max log parameters are read in 32-bit registers. For the value ranges and scales, refer to Table 5-2.
24
5.4 Instrument Status Registers
Table 5-4 Instrument Status Registers
Parameter Register Type R/W Range
Instrument reset register 1 2560 UINT16 R/W 0 (when read)
65535 (when written) = reset the instrument
Reserved 2561-2562 UINT16 R Read as 0
Firmware build number 2 2563 UINT16 R 0-65535
Reserved 2564 UINT16 R Read as 0
Firmware version number 2565 UINT16 R 0-65535
Instrument options 1 2566 UINT16 R See Table 5-5
Instrument options 2 2567 UINT16 R See Table 5-5
Relay status 3452 UINT16 R See Table 5-6
Event flags 3453 UINT16 R See Table 5-7
Status inputs 3454 UINT16 R See Table 5-8
Setpoints status 3455 UINT16 R See Table 5-9
Log status 3456 UINT16 R See Table 5-10
Data log status 3457 UINT16 R See Table 5-11
Reserved 3458-3473 UINT16 R Read as 0
Setpoint alarm status 3474 UINT16 R/W See Table 5-12
Self-check alarm status 3475 UINT16 R/W See Table 5-13
Reserved 3476-3483 UINT16 R Read as 0
Active serial port number 3484 UINT16 R 0 = Port 1, 1 = Port 2
Battery status 3485 UINT16 R 0 = low, 1 = normal
1 Writing a value of 65535 into register 2560 will cause the instrument to perform a warm restart.
2 Available starting with F/W Version 4.93.2 or later.
25
5 Event flag #6
6 Event flag #7
7 Event flag #8
8-15 Not used (permanently set to 0)
Bit meaning: 0 = flag is cleared, 1 = flag is set
Bit meaning: 0 = no new logs, 1 = new log recorded (the new log flag is reset when the user reads the first log record after the
flag has been set)
Bit meaning: 0 = no new logs, 1 = new log recorded (the new log flag is reset when the user reads the first log record after the
flag has been set)
26
Table 5-12 Setpoint Alarm Status
Bit Description
0 Alarm #1
1 Alarm #2
2 Alarm #3
3 Alarm #4
4 Alarm #5
5 Alarm #6
6 Alarm #7
7 Alarm #8
8 Alarm #9
9 Alarm #10
10 Alarm #11
11 Alarm #12
12 Alarm #13
13 Alarm #14
14 Alarm #15
15 Alarm #16
Bit meaning: 1 = setpoint has been operated
The setpoint alarm register stores the status of the operated setpoints by setting the appropriate bits to 1. The
alarm status bits can be reset all together by writing zero to the setpoint alarm register. It is possible to reset each
alarm status bit separately by writing back the contents of the alarm register with a corresponding alarm bit set to
0.
The self-check alarm register indicates possible problems with the instrument hardware or setup configuration.
The hardware problems are indicated by the appropriate bits which are set whenever the instrument fails self-test
diagnostics or in the event of loss of power. The setup configuration problems are indicated by the dedicated bit
which is set when either configuration register is corrupted. In this event, the instrument will use the default
configuration. The configuration corrupt bit may also be set as a result of the legal changes in the setup
configuration since the instrument might implicitly change or clear other setups if they are affected by the changes
made.
Hardware fault bits can be reset by writing zero to the self-check alarm register. The configuration corrupt status
bit and RTC synchronization bit are also reset automatically when you change setup or update RTC either via the
front panel or through communications.
27
Parameter Register Type R/W Range
Daily profile log partition map 3504, 3505 UINT32 R See Table 5-15
Total memory size, Byte 3506, 3507 UINT32 R 524288
Free memory size, Byte 3508, 3509 UINT32 R 0 - 505568
The total number of event log records 3510 UINT16 R 0 - 65535
The total number of data log #1 records 3511 UINT16 R 0 - 65535
The total number of data log #2 records 3512 UINT16 R 0 - 65535
The total number of data log #3 records 3513 UINT16 R 0 - 65535
The total number of data log #4 records 3514 UINT16 R 0 - 65535
The total number of data log #5 records 3515 UINT16 R 0 - 65535
The total number of data log #6 records 3516 UINT16 R 0 - 65535
The total number of data log #7 records 3517 UINT16 R 0 - 65535
The total number of data log #8 records 3518 UINT16 R 0 - 65535
Reserved 3519-3526 UINT16 R 0
The total number of waveform log #1 records 3527 UINT16 R 0 - 65535
The total number of waveform log #2 records 3528 UINT16 R 0 - 65535
The number of new event log records 3529 UINT16 R 0 - 65535
The number of new data log #1 records 3530 UINT16 R 0 - 65535
The number of new data log #2 records 3531 UINT16 R 0 - 65535
The number of new data log #3 records 3532 UINT16 R 0 - 65535
The number of new data log #4 records 3533 UINT16 R 0 - 65535
The number of new data log #5 records 3534 UINT16 R 0 - 65535
The number of new data log #6 records 3535 UINT16 R 0 - 65535
The number of new data log #7 records 3536 UINT16 R 0 - 65535
The number of new data log #8 records 3537 UINT16 R 0 - 65535
Reserved 3538-3545 UINT16 R 0
The number of new waveform log #1 records 3546 UINT16 R 0 - 65535
The number of new waveform log #2 records 3547 UINT16 R 0 - 65535
The total number of records shows all the records logged in the memory partition. The number of new records
indicates the number of records never read before.
28
Memory Partition/Sub-partition Bit
TOU Daily Profile Log. Energy Reg. #6 5
TOU Daily Profile Log. Energy Reg. #7 6
TOU Daily Profile Log. Energy Reg. #8 7
Reserved 8-15
TOU Daily Profile Log. Max. Demand Reg. #1 16
TOU Daily Profile Log. Max. Demand Reg. #2 17
TOU Daily Profile Log. Max. Demand Reg. #3 18
Reserved 19-31
Bit meaning: 0 = partition is not allocated, 1 = partition is allocated
If data log partition #7 is configured as a TOU monthly profile partition, registers 28216-28223 are mapped to
registers 28416-28423 for the first TOU monthly profile sub-partition allocated for TOU energy register #1, or for
the first following available TOU register if register #1 is not configured.
If data log partition #8 is configured as a TOU daily profile partition, registers 28224-28231 are mapped to
registers 28672-28679 for the first TOU daily profile sub-partition allocated for TOU energy register #1, or for the
first following available TOU register if register #1 is not configured.
29
Table 5-17 Log Partition’s Status/Control Window Registers
Parameter Offset Type R/W Range
Log partition status +0 UINT16 R Bit-mapped register:
bit 0 = 0 - non-wrap partition
= 1 - wrap-around partition
bit 4 = 1 - TOU monthly profile partition
bit 5 = 1 - TOU daily profile partition
bit 9 = 1 - reading after the end of file:
the read pointer has rolled over the end of a log file, that
is, the file is being re-read from the beginning. This bit is
cleared when the read pointer [+6] points to a new
record, or either command register [+6] or [+7] is
written.
The total number of records +1 UINT16 R 0 to 65535. Returns the total number of logged records
logged in the partition/sub- available in the partition.
partition
The number of the new records +2 UINT16 R 0 to 65535. Returns the number of records from the first
never read before new one never read before and until the end of the log file.
The next sequence number to be +3 UINT16 R 0 to 65535 (increments modulo 65536 with each log).
used when the next log event will Returns the sequence number that will be applied to the
take place next record being logged.
The sequence number of the first +4 UINT16 R 0 to 65535. Returns the sequence number of the oldest
(oldest) record in the log file record in the log file.
The sequence number of the first +5 UINT16 R 0 to 65535. Returns the sequence number of the first new
new record never read before (most recent) record that has never been read. If this
number is equal to the contents of register [+3], there are
no newest records never read before.
The sequence number of the +6 UINT16 R/W1 0 to 65535. Points to the record that will be read via the
current record to be read partition read window. Can be overwritten to point to the
desired record.
30
5.7 Reset/Clear Registers
Table 5-18 Reset/Clear Registers
Function Register Type R/W Reset
value
Clear total energy registers 3404 UINT16 W 0
Clear total maximum demand registers 3405 UINT16 W 0 = all maximum demands
1 = power demands
2 = volt/ampere demands
Clear TOU energy registers 3406 UINT16 W 0
Clear TOU maximum demand registers 3407 UINT16 W 0
Clear pulse counters 3408 UINT16 W 0 = all counters
1-4 = counter #1 - #4
Clear Min/Max log 3409 UINT16 W 0
Clear event log 3410 UINT16 W 0
Clear data log 3411 UINT16 W 0-7 = data log #1 - #8
16 = all data logs
Clear waveform log #1 3412 UINT16 W 0
Clear waveform log #2 3413 UINT16 W 0
Reserved 3414 UINT16
Restore event log read pointer 3415 UINT16 W 0
Restore data log read pointer 3416 UINT16 W 0-7 = data log #1 - #8
16-23, 32-34 = monthly profile
data log #7 (the same as 6)
48-55, 64-66 = daily profile data
log #8 (the same as 7)
Restore waveform log #1 read pointer 3417 UINT16 W 0
Restore waveform log #2 read pointer 3418 UINT16 W 0
31
5.8 Basic Setup Registers
Table 5-19 Basic Setup Registers
Parameter Register Type R/W Range
Wiring mode 1 2304 UINT16 R/W 0 = 3OP2, 1 = 4LN3, 2 = 3DIR2,
3 = 4LL3, 4 = 3OP3, 5 = 3LN3, 6 = 3LL3,
7 = 2LL1, 8=3BLN3, 9=3BLL3,
10=2LN3
PT ratio 2305 UINT16 R/W 10 to 65000 × 0.1
CT primary current 2306 UINT16 R/W 1 to 10000 A
Power demand period 2307 UINT16 R/W 1,2,5,10,15,20,30,60 min,
255 = external synchronization 2
Volt/ampere demand period 2308 UINT16 R/W 0 to 1800 sec
Averaging buffer size 2309 UINT16 R/W 8, 16, 32
Reset enable/disable 2310 UINT16 R/W 0 = disabled, 1 = enabled
Reserved 2311 UINT16 R Read as 65535
The number of demand periods 2312 UINT16 R/W 1 to 15
Reserved 2313 UINT16 R Read as 65535
The number of pre-event cycles 2314 UINT16 R/W 1 to 8
for the waveform log #1
Nominal frequency 2315 UINT16 R/W 50, 60 Hz
Maximum demand load current 2316 UINT16 R/W 0 to 10000 A (0 = CT primary current)
Reserved 2317-2319 UINT16 R Read as 65535
The number of cycles in one 2320 UINT16 R/W 16 to 1280
waveform series for the
waveform log #1 3
Reserved 2321 UINT16 R Read as 65535
Nominal secondary voltage (L-L) 2322 UINT16 R/W 10 to 690 V
1 The wiring mode options are as follows:
3OP2 - 3-wire open delta using 2 CTs (2 element)
4LN3 - 4-wire WYE using 3 PTs (3 element), line-to-neutral voltage readings
3DIR2 - 3-wire direct connection using 2 CTs (2 element)
4LL3 - 4-wire WYE using 3 PTs (3 element), line-to-line voltage readings
3OP3 - 3-wire open delta using 3 CTs (2 1/2 element)
3LN3 - 4-wire WYE using 2 PTs (2 1/2 element), line-to-neutral voltage readings
3LL3 - 4-wire WYE using 2 PTs (2 1/2 element), line-to-line voltage readings
2LL1 - 2-wire line-to-line connection using 1 PT (1 element)
3BLN3 -
3BLL3 -
2LN3 - 4-wire WYE using 2 PTs (2 element), 3 CTs (3 element), line-to-neutral voltage readings
32
Analog expander output 2 2380 UINT16 R/W 0 = none
1 = 0-20 mA
2 = 4-20 mA
3 = 0-1 mA
4 = ±1 mA
Battery 2381 UINT16 R/W 0 = OFF, 1 = ON
Reserved 2382-2384 UINT16 R/W Read as 65535
Harmonic power/energy calculation 2385 UINT16 R/W 0 = disabled, 1 = enabled
mode
1 For short energy registers (see Table 5-1), the maximum roll value will be 1×108 for positive readings and 1×107 for
negative readings.
2 Do not enable the analog expander output if the analog expander is not connected to the instrument, otherwise the
computer communications will become garbled.
When changing the instrument address, baud rate or data format, the new communications parameters will take
effect 100 ms after the instrument responds to the master's request.
33
5.11 Analog Output Setup Registers
Table 5-22 Analog Output Allocation Registers
Channel Registers (see Table 5-23)
Channel #1 3148-3150
Channel #2 3151-3153
1. Except for the signed power factor (see Note 3 to Table 5-26), the output scale is linear within the value range. The
scale range will be inverted if the full scale specified is less than the zero scale.
2. For bi-directional analog output (±1 mA), the zero scale corresponds to the center of the scale range (0 mA) and the
direction of the current matches the sign of the output parameter. For signed (bi-directional) values, such as powers
and signed power factor, the scale is always symmetrical with regard to 0 mA, and the full scale corresponds to +1
mA output for positive readings and to -1 mA output for negative readings. For these, the zero scale (0 mA output) is
permanently set in the instrument to zero for all parameters except the signed power factor for which it is set to
1.000. In the write request, the zero scale is ignored. No error will occur when you attempt to change it. Unsigned
parameters are output within the current range 0 to +1 mA and can be scaled using both zero and full scales as in
the case of single-ended analog output.
Except for the signed power factor (see Note 3 to Table 5-26), the output scale is linear within the value range. The scale range
will be inverted if the full scale specified is less than the zero scale.
NOTE
Analog expander outputs settings will not be in effect until the analog expander output is globally enabled. To
activate the analog expander output, set the analog expander option to the enabled state in the user selectable
options setup (see Section 5.3).
34
Table 5-26 Analog Output Parameters
Output parameter Point Type Unit 2 Scale 1 Con-
ID Low High version
None
Output disabled 0x0000 UINT16 N/A N/A NONE
Real-time values per phase
Voltage L1/L12 5 0x0C00 UINT16 0.1V/1V 0 Vmax LIN3
Voltage L2/L23 5 0x0C01 UINT16 0.1V/1V 0 Vmax LIN3
Voltage L3/L31 5 0x0C02 UINT16 0.1V/1V 0 Vmax LIN3
Current L1 0x0C03 UINT16 0.01A 0 Imax LIN3
Current L2 0x0C04 UINT16 0.01A 0 Imax LIN3
Current L3 0x0C05 UINT16 0.01A 0 Imax LIN3
Real-time total values
Total kW 0x0F00 UINT16 0.001kW/1kW -Pmax Pmax LIN3
Total kvar 0x0F01 UINT16 0.001kvar/1kvar -Pmax Pmax LIN3
Total kVA 0x0F02 UINT16 0.001kVA/1kVA 0 Pmax LIN3
Total PF 4 0x0F03 UINT16 0.001 -1.000 1.000 LIN3
Total PF Lag 0x0F04 UINT16 0.001 0 1.000 LIN3
Total PF Lead 0x0F05 UINT16 0.001 0 1.000 LIN3
Real-time auxiliary values
Frequency 0x1002 UINT16 0.01Hz 0 100.00 3 LIN3
Average values per phase
Voltage L1/L12 5 0x1100 UINT16 0.1V/1V 0 Vmax LIN3
Voltage L2/L23 5 0x1101 UINT16 0.1V/1V 0 Vmax LIN3
Voltage L3/L31 5 0x1102 UINT16 0.1V/1V 0 Vmax LIN3
Current L1 0x1103 UINT16 0.01A 0 Imax LIN3
Current L2 0x1104 UINT16 0.01A 0 Imax LIN3
Current L3 0x1105 UINT16 0.01A 0 Imax LIN3
Average total values
Total kW 0x1400 UINT16 0.001kW/1kW -Pmax Pmax LIN3
Total kvar 0x1401 UINT16 0.001kvar/1kvar -Pmax Pmax LIN3
Total kVA 0x1402 UINT16 0.001kVA/1kVA 0 Pmax LIN3
Total PF 4 0x1403 UINT16 0.001 -1.000 1.000 LIN3
Total PF Lag 0x1404 UINT16 0.001 0 1.000 LIN3
Total PF Lead 0x1405 UINT16 0.001 0 1.000 LIN3
Average auxiliary values
Neutral current 0x1501 UINT16 0.01A 0 Imax LIN3
Frequency 0x1502 UINT16 0.01Hz 0 100.00 3 LIN3
Present demands
kW import accumulated demand 0x160F UINT16 0.001kW/1kW 0 Pmax LIN3
kvar import accumulated demand 0x1610 UINT16 0.001kvar/1kvar 0 Pmax LIN3
kVA accumulated demand 0x1611 UINT16 0.001kVA/1kVA 0 Pmax LIN3
kW export accumulated demand 0x161A UINT16 0.001kW/1kW 0 Pmax LIN3
kvar export accumulated demand 0x161B UINT16 0.001kvar/1kvar 0 Pmax LIN3
1 For parameter limits, see Note 1 to Table 5-1.
2 When using direct wiring (PT Ratio = 1), voltages are transmitted in 0.1 V units, currents in 0.01 A units, and powers in
0.001 kW/kvar/kVA units. For wiring via PTs (PT Ratio > 1), voltages are transmitted in 1V units, currents in 0.01 A units,
and powers in 1 kW/kvar/kVA units.
3 The actual frequency range is 45.00 to 65.00 Hz.
4 The output scale for signed (bi-directional) power factor is symmetrical with regard to ±1.000 and is linear from -0 to
-1.000, and from 1.000 to +0 (note that -1.000 ≡ +1.000). Negative power factor is output as [-1.000 minus measured
value], and non-negative power factor is output as [+1.000 minus measured value]. To define the entire range for power
factor from -0 to +0, the scales would be specified as -0/0. Because of the fact that negative zero may not be transmitted,
the value of -0.001 is used to specify the scale of -0, and both +0.001 and 0.000 are used to specify the scale of +0. To
define the range of -0 to 0, you must send -0.001/0.001 or -0.001/0.
5 When the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other wiring mode, they will be
line-to-line voltages.
35
5.13 Digital Inputs Allocation Registers
Table 5-27 Digital Inputs Allocation Registers
Parameter Register Type R/W Range
Status inputs allocation mask 3292 UINT16 R1 See Table 5-28
Pulse inputs allocation mask 3293 UINT16 R/W See Table 5-28
Not used 3294 UINT16 R1 Read as 0
External demand synchronization input mask 3295 UINT16 R/W See Table 5-28
Time synchronization input mask 3296 UINT16 R/W See Table 5-28
1 Writing to these locations is ignored. No error will occur.
NOTES
1. All digital inputs that were not allocated as pulse inputs will be automatically configured as status inputs.
2. A digital input allocated for the external demand synchronization pulse or time synchronization pulse will be
automatically configured as a pulse input.
36
Table 5-31 Setpoint Setup Registers
Parameter Offset Type Range
Condition #1 Logical operator +0 UINT16 0 = OR
Trigger ID +1 UINT16 see Table 5-32
Reserved +2, 3 UINT16 0 (N/A)
Operate limit +4, 5 INT32 see Table 5-32
Release limit +6, 7 INT32 see Table 5-32
Condition #2 Logical operator +8 UINT16 0 = OR, 1 = AND
Trigger ID +9 UINT16 see Table 5-32
Reserved +10, 11 UINT16 0 (N/A)
Operate limit +12, 13 INT32 see Table 5-32
Release limit +14, 15 INT32 see Table 5-32
Condition #3 Logical operator +16 UINT16 0 = OR, 1 = AND
Trigger ID +17 UINT16 see Table 5-32
Reserved +18, 19 UINT16 0 (N/A)
Operate limit +20, 21 INT32 see Table 5-32
Release limit +22, 23 INT32 see Table 5-32
Condition #4 Logical operator +24 UINT16 0 = OR, 1 = AND
Trigger ID +25 UINT16 see Table 5-32
Reserved +26, 27 UINT16 0 (N/A)
Operate limit +28, 29 INT32 see Table 5-32
Release limit +30, 31 INT32 see Table 5-32
Action #1 Action type +32 UINT16 see Table 5-33
Action target +33 UINT16 see Table 5-33
Action #2 Action type +34 UINT16 see Table 5-33
Action target +35 UINT16 see Table 5-33
Action #3 Action type +36 UINT16 see Table 5-33
Action target +37 UINT16 see Table 5-33
Action #4 Action type +38 UINT16 see Table 5-33
Action target +39 UINT16 see Table 5-33
Delays Reserved +40 UINT16 0 (N/A)
Operate delay +41 UINT16 0-9999 (x 0.1 sec)
Release delay +42 UINT16 0-9999 (x 0.1 sec)
Reserved +43 UINT16 0 (N/A)
1. The setpoint is disabled when the first trigger ID is set to NONE. To disable the setpoint, write zero into this register.
2. When writing the setpoint registers (except the event when the setpoint is to be disabled), it is recommended to write
all the setpoint registers using a single request, or disable the setpoint before writing into separate registers. Each
value being written is checked for compatibility with the other setpoint parameters; if the new value does not conform
to these, the request will be rejected.
3. Operate and release limits for the trigger parameters and their conversion scales are indicated in Table 5-29. Each
limit value occupies two contiguous registers, the first of which (low word) contains the limit value, and the second
(high word) is reserved for long parameters. This register is always read as zero. When written, its value is ignored.
4. Limits indicated in Table 5-29 by a N/A mark are read as zeros. When writing, they can be omitted or should be
written as zeros.
5. When a setpoint action is directed to a relay allocated to output energy pulses, an attempt to re-allocate it for a
setpoint will result in a negative response.
37
Trigger parameter Trigger Type Unit 2 Limit/scale 1 Con-
ID Low High version
Event flag #7 ON 0x0306 UINT16 N/A N/A NONE
Event flag #8 ON 0x0307 UINT16 N/A N/A NONE
Event flag #1 OFF 0x8300 UINT16 N/A N/A NONE
Event flag #2 OFF 0x8301 UINT16 N/A N/A NONE
Event flag #3 OFF 0x8302 UINT16 N/A N/A NONE
Event flag #4 OFF 0x8303 UINT16 N/A N/A NONE
Event flag #5 OFF 0x8304 UINT16 N/A N/A NONE
Event flag #6 OFF 0x8305 UINT16 N/A N/A NONE
Event flag #7 OFF 0x8306 UINT16 N/A N/A NONE
Event flag #8 OFF 0x8307 UINT16 N/A N/A NONE
Internal events
kWh import pulse 0x0400 UINT16 N/A N/A NONE
kWh export pulse 0x0401 UINT16 N/A N/A NONE
kvarh import pulse 0x0403 UINT16 N/A N/A NONE
kvarh export pulse 0x0404 UINT16 N/A N/A NONE
kvarh total pulse 0x0405 UINT16 N/A N/A NONE
kVAh total pulse 0x0406 UINT16 N/A N/A NONE
Start new demand interval 0x0407 UINT16 N/A N/A NONE
Start new tariff interval 0x0408 UINT16 N/A N/A NONE
Start new volt/ampere demand interval 0x0409 UINT16 N/A N/A NONE
Start new sliding window demand interval 0x040A UINT16 N/A N/A NONE
Timers
Timer #1 0x0500 UINT16 N/A N/A NONE
Timer #2 0x0501 UINT16 N/A N/A NONE
Status inputs
Status input #1 ON 0x0600 UINT16 N/A N/A NONE
Status input #2 ON 0x0601 UINT16 N/A N/A NONE
Status input #1 OFF 0x8600 UINT16 N/A N/A NONE
Status input #2 OFF 0x8601 UINT16 N/A N/A NONE
Pulse inputs
Pulse input #1 0x0700 UINT16 N/A N/A NONE
Pulse input #2 0x0701 UINT16 N/A N/A NONE
Relay status
Relay #1 ON 0x0800 UINT16 N/A N/A NONE
Relay #2 ON 0x0801 UINT16 N/A N/A NONE
Relay #1 OFF 0x8800 UINT16 N/A N/A NONE
Relay #2 OFF 0x8801 UINT16 N/A N/A NONE
Phase reversal
Positive phase rotation reversal 3 0x8901 UINT16 N/A N/A NONE
Negative phase rotation reversal 3 0x8902 UINT16 N/A N/A NONE
Pulse counters
High pulse counter #1 0x0A00 UINT32 0 106-1 NONE
High pulse counter #2 0x0A01 UINT32 0 106-1 NONE
High pulse counter #3 0x0A02 UINT32 0 106-1 NONE
High pulse counter #4 0x0A03 UINT32 0 106-1 NONE
Time/Date parameters
Day of week 0x0B02 UINT16 1=Sun 7=Sat NONE
Year 0x0B03 UINT16 0 99 NONE
Month 0x0B04 UINT16 1 12 NONE
Day of month 0x0B05 UINT16 1 31 NONE
Hour 0x0B06 UINT16 0 23 NONE
Minutes 0x0B07 UINT16 0 59 NONE
Seconds 0x0B08 UINT16 0 59 NONE
High/low real-time values per phase
High current L1 0x0C03 UINT16 0.01A 0 Imax LIN3
High current L2 0x0C04 UINT16 0.01A 0 Imax LIN3
High current L3 0x0C05 UINT16 0.01A 0 Imax LIN3
Low current L1 0x8C03 UINT16 0.01A 0 Imax LIN3
Low current L2 0x8C04 UINT16 0.01A 0 Imax LIN3
Low current L3 0x8C05 UINT16 0.01A 0 Imax LIN3
38
Trigger parameter Trigger Type Unit 2 Limit/scale 1 Con-
ID Low High version
High/low real-time values on any phase
High voltage 5 0x0E00 UINT16 0.1V/1V 0 Vmax LIN3
Low voltage 5 0x8D00 UINT16 0.1V/1V 0 Vmax LIN3
High current 0x0E01 UINT16 0.01A 0 Imax LIN3
Low current 0x8D01 UINT16 0.01A 0 Imax LIN3
High voltage THD 0x0E07 UINT16 0.1% 0 999.9 LIN3
High current THD 0x0E08 UINT16 0.1% 0 999.9 LIN3
High K-Factor 0x0E09 UINT16 0.1 1.0 999.9 LIN3
High current TDD 0x0E0A UINT16 0.1% 0 100.0 LIN3
High/low real-time auxiliary values
High frequency 0x1002 UINT16 0.01Hz 0 100.004 LIN3
Low frequency 0x9002 UINT16 0.01Hz 0 100.004 LIN3
High voltage unbalance 7 0x1003 UINT16 1% 0 300 LIN3
High/low average values per phase
High current L1 0x1103 UINT16 0.01A 0 Imax LIN3
High current L2 0x1104 UINT16 0.01A 0 Imax LIN3
High current L3 0x1105 UINT16 0.01A 0 Imax LIN3
Low current L1 0x9103 UINT16 0.01A 0 Imax LIN3
Low current L2 0x9104 UINT16 0.01A 0 Imax LIN3
Low current L3 0x9105 UINT16 0.01A 0 Imax LIN3
High/low average values on any phase
High voltage 5 0x1300 UINT16 0.1V/1V 0 Vmax LIN3
Low voltage 5 0x9200 UINT16 0.1V/1V 0 Vmax LIN3
High current 0x1301 UINT16 0.1V/1V 0 Vmax LIN3
Low current 0x9201 UINT16 0.1V/1V 0 Vmax LIN3
High/low average total values
High total kW import 0x1406 UINT16 0.001kW/1kW -Pmax Pmax LIN3
High total kW export 0x1407 UINT16 0.001kW/1kW -Pmax Pmax LIN3
High total kvar import 0x1408 UINT16 0.001kvar/1kvar -Pmax Pmax LIN3
High total kvar export 0x1409 UINT16 0.001kvar/1kvar -Pmax Pmax LIN3
High total kVA 0x1402 UINT16 0.001kVA/1kVA 0 Pmax LIN3
Low total PF Lag 0x9404 UINT16 0.001 0 1.000 LIN3
Low total PF Lead 0x9405 UINT16 0.001 0 1.000 LIN3
High/low average auxiliary values
High neutral current 0x1501 UINT16 0.01A 0 Imax LIN3
High frequency 0x1502 UINT16 0.01Hz 0 100.004 LIN3
Low frequency 0x9502 UINT16 0.01Hz 0 100.004 LIN3
High voltage unbalance 7 0x1503 UINT16 1% 0 300 LIN3
High present demands
High volt demand L1/L12 5 0x1600 UINT16 0.1V/1V 0 Vmax LIN3
High volt demand L2/L23 5 0x1601 UINT16 0.1V/1V 0 Vmax LIN3
High volt demand L3/L31 5 0x1602 UINT16 0.1V/1V 0 Vmax LIN3
High ampere demand L1 0x1603 UINT16 0.01A 0 Imax LIN3
High ampere demand L2 0x1604 UINT16 0.01A 0 Imax LIN3
High ampere demand L3 0x1605 UINT16 0.01A 0 Imax LIN3
High block kW import demand 0x1606 UINT16 0.001kW/1kW 0 Pmax LIN3
High block kvar import demand 0x1607 UINT16 0.001kvar/1kvar 0 Pmax LIN3
High block kVA demand 0x1608 UINT16 0.001kVA/1kVA 0 Pmax LIN3
High sliding window kW import demand 0x1609 UINT16 0.001kW/1kW 0 Pmax LIN3
High sliding window kvar import demand 0x160A UINT16 0.001kvar/1kvar 0 Pmax LIN3
High sliding window kVA demand 0x160B UINT16 0.001kVA/1kVA 0 Pmax LIN3
High accumulated kW import demand 0x160F UINT16 0.001kW/1kW 0 Pmax LIN3
High accumulated kvar import demand 0x1610 UINT16 0.001kvar/1kvar 0 Pmax LIN3
High accumulated kVA demand 0x1611 UINT16 0.001kVA/1kVA 0 Pmax LIN3
High predicted kW import demand 0x1612 UINT16 0.001kW/1kW 0 Pmax LIN3
High predicted kvar import demand 0x1613 UINT16 0.001kvar/1kvar 0 Pmax LIN3
High predicted kVA demand 0x1614 UINT16 0.001kVA/1kVA 0 Pmax LIN3
High block kW export demand 0x1616 UINT16 0.001kW/1kW 0 Pmax LIN3
High block kvar export demand 0x1617 UINT16 0.001kvar/1kvar 0 Pmax LIN3
High sliding window kW export demand 0x1618 UINT16 0.001kW/1kW 0 Pmax LIN3
High sliding window kvar export demand 0x1619 UINT16 0.001kvar/1kvar 0 Pmax LIN3
39
Trigger parameter Trigger Type Unit 2 Limit/scale 1 Con-
ID Low High version
High accumulated kW export demand 0x161A UINT16 0.001kW/1kW 0 Pmax LIN3
High accumulated kvar export demand 0x161B UINT16 0.001kvar/1kvar 0 Pmax LIN3
High predicted kW export demand 0x161C UINT16 0.001kW/1kW 0 Pmax LIN3
High predicted kvar export demand 0x161D UINT16 0.001kvar/1kvar 0 Pmax LIN3
Setpoint status
Setpoint #1 ON 0x7C00 UINT16 N/A N/A NONE
Setpoint #2 ON 0x7C01 UINT16 N/A N/A NONE
Setpoint #3 ON 0x7C02 UINT16 N/A N/A NONE
Setpoint #4 ON 0x7C03 UINT16 N/A N/A NONE
Setpoint #5 ON 0x7C04 UINT16 N/A N/A NONE
Setpoint #6 ON 0x7C05 UINT16 N/A N/A NONE
Setpoint #7 ON 0x7C06 UINT16 N/A N/A NONE
Setpoint #8 ON 0x7C07 UINT16 N/A N/A NONE
Setpoint #9 ON 0x7C08 UINT16 N/A N/A NONE
Setpoint #10 ON 0x7C09 UINT16 N/A N/A NONE
Setpoint #11 ON 0x7C0A UINT16 N/A N/A NONE
Setpoint #12 ON 0x7C0B UINT16 N/A N/A NONE
Setpoint #13 ON 0x7C0C UINT16 N/A N/A NONE
Setpoint #14 ON 0x7C0D UINT16 N/A N/A NONE
Setpoint #15 ON 0x7C0E UINT16 N/A N/A NONE
Setpoint #16 ON 0x7C0F UINT16 N/A N/A NONE
1 For parameter limits, see Note1 to Table 5-1
2 When using direct wiring (PT Ratio = 1), voltages are transmitted in 0.1 V units, currents in 0.01 A units, and powers in
0.001 kW/kvar/kVA units. For wiring via PTs (PT Ratio > 1), voltages are transmitted in 1V units, currents in 0.01 A units,
and powers in 1 kW/kvar/kVA units.
3 The setpoint is operated when the actual phase sequence does not match the indicated phase rotation.
4 The actual frequency range is 45.00 - 65.00 Hz.
5 When the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other wiring mode, they will be
line-to-line voltages.
6 Operate limit for the voltage disturbance trigger specifies the voltage deviation allowed in percentage of the nominal
secondary line-to-line voltage. The tested voltage refers to line-to-line voltage in 3OP2 and 3OP3 wiring modes, and to line-
to-neutral voltage in other modes. See Section 5.8, Basic Setup, for information on setting the nominal voltage in your
meter.
7 Available starting with F/W Version 4.93.2 or later.
40
Action Action type Action Target
Reset TOU energy 0x62 0x00
Reset TOU maximum demands 0x63 0x00
Clear Min/Max registers 0x65 0x00
Event log 2 0x70 0x00
Data log #1 0x71 0x00
Data log #2 0x71 0x01
Data log #3 0x71 0x02
Data log #4 0x71 0x03
Data log #5 0x71 0x04
Data log #6 0x71 0x05
Data log #7 0x71 0x06
Data log #8 0x71 0x07
Waveform log #1 0x72 0x00
Waveform log #2 0x73 0x00
1 Operate/release actions via relays are automatically recorded to the event log whenever an electrical quantity, status input,
or phase reversal trigger is used.
2 Either setpoint transition (both operate and release) is recorded to the event log.
NOTES
1. A relay allocated as a pulsing relay may not be manually operated or released. When a relay is allocated
for pulsing, it automatically reverts to normal operation.
2. A relay is energized when manually operated, and is de-energized when manually released.
41
Table 5-38 Relay Operation Status
Operation status Value
Normal operation 0
Force operate 1
Force release 2
These registers allow you to allocate a memory partition for logging and to specify the partition size and type. Before allocating
a partition, it is recommended to check the available memory by reading the extended memory status registers. To help you in
planning memory, Table 5-44 shows the record size for each partition.
42
Note that the existing partition may not be resized. To change the partition properties, you should first delete a partition and
then reallocate it with the desirable properties. To delete a partition, write zero into the first partition's register.
Data log partitions #7 and #8 can be configured as TOU monthly and daily profile log partitions respectively. Both will be set as
wrap-around partitions. Before you configure the partition as a profile partition, set up your TOU registers, daily profiles and
calendars. The memory for a profile log is allocated automatically in accordance with the number of TOU registers you defined
in the TOU setup. For each TOU energy and maximum demand register, a separate log sub-partition will be allocated within a
parent log partition. Each of these can be accessed and read individually (see Section 5.24). The number of log parameters in
the record should specify the maximum number of active season tariffs. The file record size will be set in accordance with this
number. If you specified it as less than the actual number of tariffs that may be in effect within a tariff season, then only part of
the tariff registers will be recorded to the profile.
When allocating a memory partition, all partition registers must be written at once using a single request. After reallocation of
memory, the instrument performs the memory optimization and will not respond to the host requests for approximately 1
second per 128 Kbytes of memory.
Writing into registers at offsets +3, +4 and +5 does not affect the register contents. No error will occur.
1. Parameters that can be selected for data log are listed in Table 5-2. Before setting up the parameters for any data log, the
memory partition must be allocated for the log (see Section 5.19). When writing the data log setup registers, only
parameters that are specified in the partition record setup will be written. When reading registers, those that are not defined
in the data log setup will be read as zeros.
2. If a partition has been allocated as a TOU profile log partition, the data log setup for the partition cannot be written. Write
requests will be ignored. A read request will return identifiers of the TOU season tariff energy registers 28672 to 28687.
43
5.21 Real Time Clock Registers
Table 5-47 RTC Registers
Parameter Register Type R/W Range
Seconds 4352 UINT16 R/W 0-59
Minutes 4353 UINT16 R/W 0-59
Hour 4354 UINT16 R/W 0-23
Day of month 4355 UINT16 R/W 1-31
Month 4356 UINT16 R/W 1-12
Year 4357 UINT16 R/W 0-99
Day of week 4358 UINT16 R/W 1-7 (1=Sunday)
The day of week is not checked when written. It is set automatically when you change the date.
44
5.25 TOU System Registers Setup
Table 5-51 TOU System Setup Registers
TOU system register Setup registers
(see Table 5-52)
TOU energy register #1 4564-4565
TOU energy register #2 4566-4567
TOU energy register #3 4568-4569
TOU energy register #4 4570-4571
TOU energy register #5 4572-4573
TOU energy register #6 4574-4575
TOU energy register #7 4576-4577
TOU energy register #8 4578-4579
TOU maximum demand register #1 4580-4581
TOU maximum demand register #2 4582-4583
TOU maximum demand register #3 4584-4585
45
TOU daily profile Setup registers
(see Table 5-56)
TOU daily profile #6 2128-2143
TOU daily profile #7 2144-2159
TOU daily profile #8 2160-2175
TOU daily profile #9 2176-2191
TOU daily profile #10 2192-2207
TOU daily profile #11 2208-2223
TOU daily profile #12 2224-2239
TOU daily profile #13 2240-2255
TOU daily profile #14 2256-2271
TOU daily profile #15 2272-2287
TOU daily profile #16 2288-2303
The daily start time for each tariff is specified with a resolution of 15 minutes. If another value is specified, it will be
truncated to the lower value divisible by 15 minutes. No error will occur. The first daily tariff change time is always
00:00. It is preserved internally and cannot be changed.
46
TOU calendar #2 January 4464-4471
February 4472-4479
March 4480-4487
April 4488-4495
May 4496-4503
June 4504-4511
July 4512-4519
August 4520-4527
September 4528-4535
October 4536-4543
November 4544-4551
December 4552-4559
Each profile register defines daily profiles for four days of month.
47
5.29 Event Log Registers
These registers allow you to circularly read a packet of consequent records from the event log file. From 1 to 12
event log records can be read at a time via the event log windows, which comprise registers 29440 through
29559. Reading from either register window always returns the next logged event record. All registers within one
window must be read at once using a single request. After reading an event log window, the partition queue
pointer is shifted forward until the end of the log file. After the last record has been read, the file pointer is
automatically restored to the beginning of the log file so that the next read request will return the first (oldest)
event. To point to an arbitrary record, use the log partition status/control registers (see Section 5.6).
NOTES:
1. If a requested record is corrupted (the redundant check fails), the record is reported with all zeros (except the
sequence number) and the bits 9 and 15 in the status indication word being set to 1.
2. If a record is requested when the log file is empty, the record is reported with all zeros and bits 8 and 15 in the
status indication word being set to 1.
48
Table 5-64 Event Log Parameters
Event cause Event cause code Log value Event effect
High byte: Low byte:
cause code event origin (location)
Setpoint event Trigger parameter Trigger parameter ID low byte Trigger parameter 0xE100-0xE10F,
ID high byte (see Table 5-32) value 0xE200-0xE20F
(see Table 5-32) (see Table 5-32) (see Table 5-66)
Communications 0x5B Data location code (see Table 5-65) N/A See Table 5-66
Front panel 0x5C Data location code (see Table 5-65) N/A See Table 5-66
Self-check 0x5D Data location code (see Table 5-65) N/A See Table 5-66
Self-update 0x5E 8 = RTC N/A 0xF500 = RTC set
External event 0x63 0 = power down, 8 = power up N/A N/A
49
Effect code Description
0xF100-0xF10F Setpoint #1-#16 cleared
0xF500 RTC set
If data log partition #7 is configured as a TOU monthly profile partition, registers 29936-29975 are mapped to
registers 30336-30375 for the first TOU monthly profile sub-partition allocated for TOU energy register #1, or if this
register is not configured, for the following first available TOU register.
If data log partition #8 is configured as a TOU daily profile partition, registers 29976-30015 are mapped to
registers 31616-31655 for the first TOU daily profile sub-partition allocated for TOU energy register #1, or if this
register is not configured, for the following first available TOU register.
50
Table 5-68 Data Log Window Registers
Parameter Offset Type R/W Range
Record status +0 UINT16 R Bit-mapped register:
bit 0 = 1 - the end record is being read (the end of a
log file reached)
bit 1 = 1 - reading after the end of file: the read
pointer has rolled over the end of a log file, i.e., the
file is being re-read from the beginning. This bit is
cleared when a new record is being read, or the read
sequence has changed by overwriting the partition
pointer.
bit 8 = 1 - no records logged in the partition
bit 9 = 1 - the record is corrupted
bit 15 = 1 - read error (detailed by bits 8-9)
Record sequence number +1 UINT16 R 0 to 65535 (increments modulo 65536 with each log)
Timestamp 1 +2, 3 UINT32 R Local time (UNIX-style)
Fractional seconds portion of timestamp +4 UINT16 R 0-990 ms (at 10 ms resolution)
Event setpoint ID +5 UINT16 R 0 = TOU profile log, 1 to 16
Parameter #1 value 2 +6, 7 INT32 R See Table 5-2
Parameter #2 value 2 +8, 8 INT32 R See Table 5-2
Parameter #3 value 2 +10, 11 INT32 R See Table 5-2
Parameter #4 value 2 +12, 13 INT32 R See Table 5-2
Parameter #5 value 2 +14, 15 INT32 R See Table 5-2
Parameter #6 value 2 +16, 17 INT32 R See Table 5-2
Parameter #7 value 2 +18, 19 INT32 R See Table 5-2
Parameter #8 value 2 +20, 21 INT32 R See Table 5-2
Parameter #9 value 2 +22, 23 INT32 R See Table 5-2
Parameter #10 value 2 +24, 25 INT32 R See Table 5-2
Parameter #12 value 2 +26, 27 INT32 R See Table 5-2
Parameter #13 value 2 +28, 29 INT32 R See Table 5-2
Parameter #13 value 2 +30, 31 INT32 R See Table 5-2
Parameter #14 value 2 +32, 33 INT32 R See Table 5-2
Parameter #15 value 2 +34, 35 INT32 R See Table 5-2
Parameter #16 value 2 +36, 37 INT32 R See Table 5-2
Reserved +38, 39 INT32 0
1 Timestamp is given in local time in a UNIX-style time format: it represents the number of seconds since midnight
(00:00:00), January 1, 1970. The time is valid after January 1, 2000.
2 The log parameters are read in 32-bit registers. For the value ranges and scales, refer to Table 5-2.
NOTES:
1. If a requested record is corrupted (the redundant check fails), the record is reported with all zeros (except the
sequence number) and bits 9 and 15 in the status indication word as being set to 1.
2. If a record is requested when the log file is empty, the record is reported with all zeros and bits 8 and 15 in the
status indication word as being set to 1.
3. The parameters that reside outside of the specified partition record size will be read as zeros.
51
Waveform header window Registers
(see Table 5-70)
Waveform log #1 channel I L3 35632-35647
Waveform log #2 channel V L1/L12 35648-35663
Waveform log #2 channel V L2/L23 35664-35679
Waveform log #2 channel V L3 35680-35695
Waveform log #2 channel I L1 35696-35711
Waveform log #2 channel I L2 35712-35727
Waveform log #2 channel I L3 35728-35743
Registers at offsets +0,+1, +5 to +7, and +13 are applicable only for waveform log records. For real-time waveforms these are
read as zeros.
1 Timestamp is given in local time in a UNIX-style time format: it represents the number of seconds since midnight
(00:00:00), January 1, 1970. The time is valid after January 1, 2000. Record timestamp shows the time for the last sample
point in the waveform record.
To convert digital samples to their analog equivalents in input measurement units (volts, amps), the following scaling should be
applied:
(DIGITAL _ SAMPLE − ZERO _ OFFSET ) × ANALOG _ SCALE × 2
ANALOG _ SAMPLE [ Volts / Amps ] =
DIGITAL _ SCALE
NOTES
1. If a record is requested when the log file is empty, the record is reported with all zeros and bits 8 and 15 in the status
indication word being set to 1.
52
2. Phase voltage will be line-to-line voltage in 3OP2 and 3OP3 wiring modes, and line-to-neutral voltage in other
configurations.
Through these registers you can capture and read the real-time waveforms (4 cycles x 128 samples per cycle),
and the recorded historical waveform logs - the Waveform log #1 (16 cycles x 32 samples per cycle records), and
the Waveform log #2 (4 cycles x 128 samples per cycle records). The waveform samples are read via the register
window 6144-6655 (see Table 5-71) that can map a record for a single input channel (voltage or current waveform
on either phase). To reload this window with a sampled waveform, a corresponding waveform header window
should be accessed (see Table 5-69).
To reload the waveform header and samples windows with the current waveform data, read the first register in the
current waveform header window for the same phase.
To capture and read waveform data on another phase, repeat the above steps for the phase you want to access.
Recorded waveforms are mapped and accessed through register windows in the same manner as the real-time
waveforms (see above). On log files organization and managing, see Section 4.4, Configuring and Accessing Log
Files. Before reloading waveform window registers with data for a selected channel, the required record must be
obtained from the log file to the communications buffer. This is made automatically when you reload the voltage
waveform on phase L1, i.e., when you read the register at offset +0 in the voltage waveform header on phase L1
for the corresponding log file (registers 35552, 35648). Data in this buffer does not change until you read this
register once again. Each time you access this register, the next record is read form the file and locked to the
communications buffer. To reload waveform windows with data for the current channel or with data for another
phase, read the command/status indication register in the voltage or current header window for the corresponding
channel.
Waveform log files are accessed in a circular manner. When the last record in the file is being read, bit 0 in the
status indication register in the waveform header windows is set to 1. If you continue reading after the end of a file,
the file pointer rolls over to the beginning of the file and the first (oldest) record is returned with bit 1 in the status
indication register being set to 1.
53
NOTES
54