Mathematics                                                                                        PRMO/ RMO - GIF
1   Find the values of x if
      (a) [x] = 7             (b) [x] = –1                         (c) [x] = 0
      Solution:
      [x] = 7
      7  x  8 or x  [7,8)
      (b) [x] = -1
      −1  x  0 or x  [−1, 0)
      (c) [x] = 0
      0  x  1 or x  [0,1)
  2   If [x + 5] = 7 find all the possible values of x.
      Solution:
      [x + 5] > 7
        x  2
       x  3 ….         ([x] is an integer and if this integer is greater than 2 it has to greater than
      or equal to 3)
       x  [3, )
  3   If 3.5 < x < 4.5 and [x] + [-x] = 0, then find the value of x.
      Option:
      (a) 2                  (b)3               (c) 4                      (d) 5
      Answer:(c)
      Solution:
        Note that, x = [x] + {x}                …(i)
      ( −x ) = ( − x ) + ( − x )          …(ii)
      But we know that,
              1 − x .... x is not an integer 
      − x =                                  
               0.... x is an integer           
      Now,  x  +  −x  = ( x − x) + ( ( −x ) − −x)   …(using (i) and (ii))
       = x − x − x − −x
       = − x − −x
     − x − (1 − x ) .... x is not an integer
     
    =
     
     0                 .... x is an integer
     1.... x is not an integer
    =
     0.... x is an integer
     If  x  + −x  = 0
     x is on integer.
    Moreover, 3.5 < x < 4.5,
    So x = 4 is the only possible value for x.
4   Find the possible values of x if:
         x + 25 
    (i)            10     (ii)  x  = 5    (iii)  x  = 5
         5 
      Solution:
     x + 25 
     5   10
         x + 25 
                  10
         5 
      x
       + 5  10
      5
      x
     5
      5
      x
     6
      5
          x
    6 
          5
     x  [30, )
    (ii) Given,  x  = 5
      x  = 5 or   x  = −5
     x   −5, −4 )  5, 6 )
    (iii) Given,  x  = 5
     5  | x |  6 or | x | [5, 6)
    Case − I : If x  0,| x |= x
    5  −x  6
    Case − II : If x  0,| x |= x
    5  −x  6
     −5  x  −6         ....(Multiplying by 1)
    Combining case I and II,
    x  ( −6, −5  5, 6 )
5   If [x + y] = [x] + [y] then is it necessary that both x and y are integers ?
    Solution:
     No
    e.g x = 0.1 and y = 0.2
    L.H.S.  x + y = 0.1 + 0.2 = 0.3 = 0
     x +  y = 0.1 + 0.2 = 0 + 0 = 0 .
    x and y need not be integers.
                   1 1 1  1        2  1    3           1 
6   Find value of:   +  +      + +     + +     + ... +  + 1 , here [.] → G.I.F.
                    3   3 100   3 100   3 100          3 
    Solution:
       1  1    1  1    2             1 66   1 67              1 99   1 100 
      = + +        + +     + .... +  +      + +     + .... +  +       + +
        3   3 100   3 100            3 100   3 100            3 100   3 100 
      = 0 + (1 + 1 + .... + 1) = 34
7   Solve for x
    (i) [x] = {x} + 2
    (ii) 4[x] = 2{x} + 6
    (iii) 2[x] = {x} + 1/2
    (iv) [x] = 3{x} + 1/2
    Solution:
    (i) Given, [x] = {x} + 2
    R.H.S should be integer
    So {x} = 0
    [x] = 2
     x =  x + x = 2
    (ii) Given, 4[x] = 2{x} + 6
    4[x] = 2{x} + 6
    2[x] = {x} + 3
    R.H.S should be integer
     x = 0
    2  x = 3
     x = 1.5
    x 
    (iii) Given, 2[x] = {x} + 1/2
    R.H.S should be integer
    x = 1/ 2
    2[x] = 1, or [x] = 1/2
     x 
    (iv) Given, [x] = 3{x} + 1/2
     [x] = 3{x} + 1/2
    0  x  1
     0  3x  3
                      1
    Case-I : 3x =
                      2
            1
    x =
            6
                 1 1
     x =       + =1
                 2 2
     x =  x  + x
             1 7
    x = 1+    =
             6 6
                        3
    Case-II: 3x =
                        2
            1
    x =
            2
                  3 1
     x =        + =2
                  2 2
     x =  x  + x
                1 5
    x = 2+       =
                2 2
                        5
    Case-III : 3x =
                        2
            5
    x =
            6
                  5 1
     x =        + =3
                  2 2
     x =  x  + x
           5    5
    x = 3+   =3
           6    6
           1 1 5
     x  1 , 2 ,3 
           6 2 6
8   The solution set of x for 2x – 2[x] = 2
    Option:
    (a) x 0, 1, 2...            (b) x 0,1, 2,...   (c) x  R   (d) x  
    Answer:(d)
    Solution:
    2x – 2[x] = 2
     x = [x] + {x}
     Let [x] = I and {x} = f ; 0  f  1
     Now, 2 ( I + f ) − 2I = 2
     2f = 2  f = 1 which is not possible.
     Thus, x  
9   Find range of:
    (i) x
     (ii)  2  x 
     (iii) 2x
     (iv)   sin x 
     Solution:
     (i) Given, x
     x = 0 as 0  x  1
     (ii) Given,  2  x 
      2 x = 0,1 as 0  2x  2
     (iii) Given, 2x
     2x = 0 as 0  2x  1
     (iv) Given,   sin x
     sin x  = 0 as sin x −1,0,1
10   Find number of solutions of : [x] + [2x] + [3x] = 28
     Solution:
     No. of solution [x] + [2x] + [3x] = 28
     Putting x = I + f;f  0,1)
      I + f  + 2 ( I + f ) + 3 ( I + f ) = 28
     I + 2I + 3I + f  + 2f  + 3f  = 28
     6I + (0 or 1 or 2 or 3) = 28
     Not possible for any value.