Chapter-3: Elementary Functions
Dr. Jajati Keshari Sahoo
Department of Mathematics
BITS Pilani K.K. Birla Goa Campus
June 06, 2023
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 1 / 16
Examples
Example. Find the
(a) complex exponents i i and principal value of i i .
(b) complex exponents (1 − i)4i .
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 2 / 16
Examples
Example. Find the
(a) complex exponents i i and principal value of i i .
(b) complex exponents (1 − i)4i .
Solution:(A)
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 2 / 16
Examples
Example. Find the
(a) complex exponents i i and principal value of i i .
(b) complex exponents (1 − i)4i .
Solution:(A)
Since i i = e i log i ,and log i = ln |i| + i π2 + 2nπi = ( 21 + 2n)πi.
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 2 / 16
Examples
Example. Find the
(a) complex exponents i i and principal value of i i .
(b) complex exponents (1 − i)4i .
Solution:(A)
Since i i = e i log i ,and log i = ln |i| + i π2 + 2nπi = ( 21 + 2n)πi.
1 1
So the complex exponent is e i×( 2 +2n)πi = e −( 2 +2n)π .
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 2 / 16
Examples
Example. Find the
(a) complex exponents i i and principal value of i i .
(b) complex exponents (1 − i)4i .
Solution:(A)
Since i i = e i log i ,and log i = ln |i| + i π2 + 2nπi = ( 21 + 2n)πi.
1 1
So the complex exponent is e i×( 2 +2n)πi = e −( 2 +2n)π .
For the principal part we have to take Logi = π2 i and hence the principal
part of the exponent
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 2 / 16
Examples
Example. Find the
(a) complex exponents i i and principal value of i i .
(b) complex exponents (1 − i)4i .
Solution:(A)
Since i i = e i log i ,and log i = ln |i| + i π2 + 2nπi = ( 21 + 2n)πi.
1 1
So the complex exponent is e i×( 2 +2n)πi = e −( 2 +2n)π .
For the principal part we have to take Logi = π2 i and hence the principal
π π
part of the exponent i i = e i 2 i = e − 2
Solution:(B)
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 2 / 16
Examples
Example. Find the
(a) complex exponents i i and principal value of i i .
(b) complex exponents (1 − i)4i .
Solution:(A)
Since i i = e i log i ,and log i = ln |i| + i π2 + 2nπi = ( 21 + 2n)πi.
1 1
So the complex exponent is e i×( 2 +2n)πi = e −( 2 +2n)π .
For the principal part we have to take Logi = π2 i and hence the principal
π π
part of the exponent i i = e i 2 i = e − 2
Solution:(B) √
Since (1 − i)4i = e 4i log(1−i) and log(1 − i) = ln 2 + (− π4 + 2nπ)i
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 2 / 16
Examples
Example. Find the
(a) complex exponents i i and principal value of i i .
(b) complex exponents (1 − i)4i .
Solution:(A)
Since i i = e i log i ,and log i = ln |i| + i π2 + 2nπi = ( 21 + 2n)πi.
1 1
So the complex exponent is e i×( 2 +2n)πi = e −( 2 +2n)π .
For the principal part we have to take Logi = π2 i and hence the principal
π π
part of the exponent i i = e i 2 i = e − 2
Solution:(B) √
Since (1 − i)4i = e 4i log(1−i) and log(1 − i) = ln 2 + (− π4 + 2nπ)i
√
2+(− π4 +2nπ)i
So the exponent is e 4i(ln and the principal part is e π+2 ln 2i .
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 2 / 16
Branches of logarithm function
The multi-valued logarithm function is
log z = ln |z| + iθ, where θ = Arg(z) + 2πn, n ∈ Z. (1)
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 3 / 16
Branches of logarithm function
The multi-valued logarithm function is
log z = ln |z| + iθ, where θ = Arg(z) + 2πn, n ∈ Z. (1)
For any α ∈ R, if we restrict θ in the interval α < θ < α + 2π, then, we
obtain asingle-valuedd logarithm function called branch and denoted by
log z = ln r + iθ, where r = |z|, r > 0, α < θ < α + 2π. (2)
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 3 / 16
Branches of logarithm function
The multi-valued logarithm function is
log z = ln |z| + iθ, where θ = Arg(z) + 2πn, n ∈ Z. (1)
For any α ∈ R, if we restrict θ in the interval α < θ < α + 2π, then, we
obtain asingle-valuedd logarithm function called branch and denoted by
log z = ln r + iθ, where r = |z|, r > 0, α < θ < α + 2π. (2)
Principal Branch: If α = −π, then the branch is called principal branch
denoted by Log z. That is
Log z = ln r + iθ, where r = |z|, r > 0, −π < θ < π. (3)
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 3 / 16
Branches of logarithm function
The multi-valued logarithm function is
log z = ln |z| + iθ, where θ = Arg(z) + 2πn, n ∈ Z. (1)
For any α ∈ R, if we restrict θ in the interval α < θ < α + 2π, then, we
obtain asingle-valuedd logarithm function called branch and denoted by
log z = ln r + iθ, where r = |z|, r > 0, α < θ < α + 2π. (2)
Principal Branch: If α = −π, then the branch is called principal branch
denoted by Log z. That is
Log z = ln r + iθ, where r = |z|, r > 0, −π < θ < π. (3)
Note that for principal both sides strictly inequality
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 3 / 16
Analyticity of logarithm functions
Consider the single-valued logarithm function
log z = ln r + iθ, where r = |z|, r > 0, α < θ < α + 2π.
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 4 / 16
Analyticity of logarithm functions
Consider the single-valued logarithm function
log z = ln r + iθ, where r = |z|, r > 0, α < θ < α + 2π.
In the polar coordinates, we have u(r , θ) = ln r and v (r , θ) = θ.
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 4 / 16
Analyticity of logarithm functions
Consider the single-valued logarithm function
log z = ln r + iθ, where r = |z|, r > 0, α < θ < α + 2π.
In the polar coordinates, we have u(r , θ) = ln r and v (r , θ) = θ.
Since ur = 1/r , uθ = 0, vr = 0, vθ = 1. So it satisfies the CR equations in
polar form ( recall rur = vθ , uθ = −rvr .) Thus the derivative is :
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 4 / 16
Analyticity of logarithm functions
Consider the single-valued logarithm function
log z = ln r + iθ, where r = |z|, r > 0, α < θ < α + 2π.
In the polar coordinates, we have u(r , θ) = ln r and v (r , θ) = θ.
Since ur = 1/r , uθ = 0, vr = 0, vθ = 1. So it satisfies the CR equations in
polar form ( recall rur = vθ , uθ = −rvr .) Thus the derivative is :
d 1 1
log z = e −iθ (ur + ivr ) = e −iθ (1/r + i0) = iθ = ,
dz re z
where |z| > 0, α < argz < α + 2π.
Similarly
d 1 1
Log z = e −iθ (ur + ivr ) = e −iθ (1/r + i0) = iθ = ,
dz re z
where |z| > 0, −π < argz < π.
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 4 / 16
Nature of branches at the ray θ = α
Consider the principal branch at the ray θ = π ( ⇐⇒ z ∈ (−∞, 0)).
Log z = ln r + iθ, (−π < θ < π).
Figure: Nature of Log z on (−∞, 0)
Ray: Θ=π
-π
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 5 / 16
Nature of branches at the ray θ = α
From the previous Figure, it is clearly true that the Arg z is not
continuous on (−∞, 0). Therefore, the principal branch Log z is not
continuous on (−∞, 0) or θ = π.
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 6 / 16
Nature of branches at the ray θ = α
From the previous Figure, it is clearly true that the Arg z is not
continuous on (−∞, 0). Therefore, the principal branch Log z is not
continuous on (−∞, 0) or θ = π.
Similarly, other branches are not continuous at the respective ray
θ = α. Hence the branches are not analytic on the ray θ = α.
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 6 / 16
Nature of branches at the ray θ = α
From the previous Figure, it is clearly true that the Arg z is not
continuous on (−∞, 0). Therefore, the principal branch Log z is not
continuous on (−∞, 0) or θ = π.
Similarly, other branches are not continuous at the respective ray
θ = α. Hence the branches are not analytic on the ray θ = α.
Also note that, the points lies on the ray θ = α are singular points of
the respective branches.
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 6 / 16
Branch cut
Definition
A branch cut is a minimal set of points so that the branch considered can
be consistently defined by analytic continuation on the complement of the
branch cut.
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 7 / 16
Branch cut
Definition
A branch cut is a minimal set of points so that the branch considered can
be consistently defined by analytic continuation on the complement of the
branch cut.
Note: Points on the branch cut are singular points of the respective
branch.
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 7 / 16
Branch cut
Definition
A branch cut is a minimal set of points so that the branch considered can
be consistently defined by analytic continuation on the complement of the
branch cut.
Note: Points on the branch cut are singular points of the respective
branch.
Example
Consider the logarithm function,
log z = ln r + iθ, (α < θ < α + 2π, α ∈ R). Then each ray θ = α is the
branch cut of log z
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 7 / 16
Branch cut
Definition
A branch cut is a minimal set of points so that the branch considered can
be consistently defined by analytic continuation on the complement of the
branch cut.
Note: Points on the branch cut are singular points of the respective
branch.
Example
Consider the logarithm function,
log z = ln r + iθ, (α < θ < α + 2π, α ∈ R). Then each ray θ = α is the
branch cut of log z
Note: θ = π or the interval (−∞, 0) is the branch cut of Log z.
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 7 / 16
Branch Point
Definition
A point which is common to all branch cuts is called a branch point.
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 8 / 16
Branch Point
Definition
A point which is common to all branch cuts is called a branch point.
Example
Consider the logarithm function,
log z = ln r + iθ, (α < θ < α + 2π, α ∈ R). Since each ray starting at 0,
is a branch cut, so z = 0 is the branch point of log z.
Example
Consider the logarithm function,
log (z − 1) = ln |(z − 1)| + iarg (z − 1), (α < arg (z − 1) < α + 2π, α ∈ R).
Since each ray starting at 1, is a branch cut, so z = 1 is the branch point
of log (z − 1).
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 8 / 16
Some more Properties
Since log z is analytic on α < θ < α + 2π, so the following are analytic on
the same domain:
(a) z c , c ∈ C.
(b) c z , c ∈ C.
d c d z
Also we have dz z = cz c−1 and dz c = c z log c.
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 9 / 16
Outline
1 Trigonometric functions
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 10 / 16
Trigonometric functions
One can motivate the above definitions from Euler’s identity,
e ix = cos x + i sin x and e −ix = cos x − i sin x .
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 11 / 16
Trigonometric functions
One can motivate the above definitions from Euler’s identity,
e ix = cos x + i sin x and e −ix = cos x − i sin x . So we can add and subtract
to get formulas for sin x and cos x in terms of exponentials involving
complex numbers.
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 11 / 16
Trigonometric functions
One can motivate the above definitions from Euler’s identity,
e ix = cos x + i sin x and e −ix = cos x − i sin x . So we can add and subtract
to get formulas for sin x and cos x in terms of exponentials involving
complex numbers.
Now we will define the complex trigonometric functions as follows:
e iz − e −iz
sin z =
2i
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 11 / 16
Trigonometric functions
One can motivate the above definitions from Euler’s identity,
e ix = cos x + i sin x and e −ix = cos x − i sin x . So we can add and subtract
to get formulas for sin x and cos x in terms of exponentials involving
complex numbers.
Now we will define the complex trigonometric functions as follows:
e iz − e −iz
sin z =
2i
and
e iz + e −iz
cos z =
2
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 11 / 16
Properties of sine and cosine functions
d
1
dz sin z = cos z.
d
2
dz cos z = − sin z.
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 12 / 16
Properties of sine and cosine functions
d
1
dz sin z = cos z.
d
2
dz cos z = − sin z.
3 sin(−z) = − sin z and cos(−z) = cos z.
4 e iz = cos z + i sin z.
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 12 / 16
Properties of sine and cosine functions
d
1
dz sin z = cos z.
d
2
dz cos z = − sin z.
3 sin(−z) = − sin z and cos(−z) = cos z.
4 e iz = cos z + i sin z.
5 sin2 z + cos2 z = 1.
6 sin(z) and cos(z) both are periodic with period 2π.
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 12 / 16
Properties of sine and cosine functions
d
1
dz sin z = cos z.
d
2
dz cos z = − sin z.
3 sin(−z) = − sin z and cos(−z) = cos z.
4 e iz = cos z + i sin z.
5 sin2 z + cos2 z = 1.
6 sin(z) and cos(z) both are periodic with period 2π.
7 sin(z1 + z2 ) = sin z1 cos z2 + cos z1 sin z2 .
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 12 / 16
Properties of sine and cosine functions
d
1
dz sin z = cos z.
d
2
dz cos z = − sin z.
3 sin(−z) = − sin z and cos(−z) = cos z.
4 e iz = cos z + i sin z.
5 sin2 z + cos2 z = 1.
6 sin(z) and cos(z) both are periodic with period 2π.
7 sin(z1 + z2 ) = sin z1 cos z2 + cos z1 sin z2 .
8 cos(z1 + z2 ) = cos z1 cos z2 − sin z1 sin z2 .
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 12 / 16
Properties of sine and cosine functions
d
1
dz sin z = cos z.
d
2
dz cos z = − sin z.
3 sin(−z) = − sin z and cos(−z) = cos z.
4 e iz = cos z + i sin z.
5 sin2 z + cos2 z = 1.
6 sin(z) and cos(z) both are periodic with period 2π.
7 sin(z1 + z2 ) = sin z1 cos z2 + cos z1 sin z2 .
8 cos(z1 + z2 ) = cos z1 cos z2 − sin z1 sin z2 .
9 sin(z + π2 ) = cos z.
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 12 / 16
Properties of sine and cosine functions
d
1
dz sin z = cos z.
d
2
dz cos z = − sin z.
3 sin(−z) = − sin z and cos(−z) = cos z.
4 e iz = cos z + i sin z.
5 sin2 z + cos2 z = 1.
6 sin(z) and cos(z) both are periodic with period 2π.
7 sin(z1 + z2 ) = sin z1 cos z2 + cos z1 sin z2 .
8 cos(z1 + z2 ) = cos z1 cos z2 − sin z1 sin z2 .
9 sin(z + π2 ) = cos z.
10 sin(z − π2 ) = − cos z
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 12 / 16
Further Properties and Definitions
1 sin z = 0 if and only if z = nπ, n ∈ Z.
2 cos z = 0 if and only if z = (2n + 1) π2 , n ∈ Z.
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 13 / 16
Further Properties and Definitions
1 sin z = 0 if and only if z = nπ, n ∈ Z.
2 cos z = 0 if and only if z = (2n + 1) π2 , n ∈ Z.
sin z cos z
3 tan z = cos z and cot z = sin z .
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 13 / 16
Further Properties and Definitions
1 sin z = 0 if and only if z = nπ, n ∈ Z.
2 cos z = 0 if and only if z = (2n + 1) π2 , n ∈ Z.
sin z cos z
3 tan z = cos z and cot z = sin z .
1 1
4 sec z = cos z and csc z = sin z .
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 13 / 16
Further Properties and Definitions
1 sin z = 0 if and only if z = nπ, n ∈ Z.
2 cos z = 0 if and only if z = (2n + 1) π2 , n ∈ Z.
sin z cos z
3 tan z = cos z and cot z = sin z .
1 1
4 sec z = cos z and csc z = sin z .
d
5
dz tan z = sec2 z.
d
6
dz cot z = − csc2 z.
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 13 / 16
Further Properties and Definitions
1 sin z = 0 if and only if z = nπ, n ∈ Z.
2 cos z = 0 if and only if z = (2n + 1) π2 , n ∈ Z.
sin z cos z
3 tan z = cos z and cot z = sin z .
1 1
4 sec z = cos z and csc z = sin z .
d
5
dz tan z = sec2 z.
d
6
dz cot z = − csc2 z.
d
7
dz sec z = sec z tan z.
d
8
dz cot z = − csc z cot z.
9 tan(z + π) = tan z
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 13 / 16
Example
Example
Find all roots of f (z) = cos z − 2 or solve cos z = 2.
Let cos z = 2. Which implies e iz + e −iz = 4. Thus
e 2iz − 4e iz + 1 = 0.
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 14 / 16
Example
Example
Find all roots of f (z) = cos z − 2 or solve cos z = 2.
Let cos z = 2. Which implies e√iz + e −iz = 4. Thus
2iz iz iz iz
√
e − 4e + √ 1 = 0. e = 2 ± 3. Consider e = 2 + 3. This implies
e iz = e ln(2+ 3) .
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 14 / 16
Example
Example
Find all roots of f (z) = cos z − 2 or solve cos z = 2.
Let cos z = 2. Which implies e√ iz + e −iz = 4. Thus
2iz iz iz iz
√
e − 4e + √ 1 = 0. e = 2 ± 3. Consider e √= 2 + 3. This implies
e iz = e ln(2+ 3) . Therefore
√ iz = 2nπi + ln(2 + 3). Hence
z = 2nπ − i ln(2 + 3).
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 14 / 16
Example
Example
Find all roots of f (z) = cos z − 2 or solve cos z = 2.
Let cos z = 2. Which implies e√ iz + e −iz = 4. Thus
2iz iz iz iz
√
e − 4e + √ 1 = 0. e = 2 ± 3. Consider e √= 2 + 3. This implies
e iz = e ln(2+ 3) . Therefore
√ iz = 2nπi + ln(2 + 3). Hence
z = 2nπ − i ln(2 + 3). Similarly, from other value, we get
√ 1
√
z = 2nπ − i ln(2 − 3) = 2nπ + i ln √ = 2nπ + i ln(2 + 3).
2− 3
Finally, we have √
z = 2nπ ± i ln(2 + 3).
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 14 / 16
Hyperbolic functions
x −x
Using the real hyperbolic functions namely sinh x = e −e 2 and
e x +e −x
cosh x = 2 one can write the following identities for z = x + iy :
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 15 / 16
Hyperbolic functions
x −x
Using the real hyperbolic functions namely sinh x = e −e 2 and
e x +e −x
cosh x = 2 one can write the following identities for z = x + iy :
sin z = sin x cosh y + i cos x sinh y
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 15 / 16
Hyperbolic functions
x −x
Using the real hyperbolic functions namely sinh x = e −e 2 and
e x +e −x
cosh x = 2 one can write the following identities for z = x + iy :
sin z = sin x cosh y + i cos x sinh y
and
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 15 / 16
Hyperbolic functions
x −x
Using the real hyperbolic functions namely sinh x = e −e 2 and
e x +e −x
cosh x = 2 one can write the following identities for z = x + iy :
sin z = sin x cosh y + i cos x sinh y
and
cos z = cos x cos hy − i sin x sinh y
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 15 / 16
Hyperbolic functions
x −x
Using the real hyperbolic functions namely sinh x = e −e 2 and
e x +e −x
cosh x = 2 one can write the following identities for z = x + iy :
sin z = sin x cosh y + i cos x sinh y
and
cos z = cos x cos hy − i sin x sinh y
These hold because sin(iy ) = i sinh y and cos(iy ) = cosh y .
Exercise: Solve sin z = cosh 4.
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 15 / 16
Exercise
Ex. Show that both sin z and cos z are unbounded.
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 16 / 16
Exercise
Ex. Show that both sin z and cos z are unbounded.
One can use the previous identities to show
| sin z|2 = sin2 x + sinh2 y
and
| cos z|2 = cos2 x + sinh2 y .
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 16 / 16
Exercise
Ex. Show that both sin z and cos z are unbounded.
One can use the previous identities to show
| sin z|2 = sin2 x + sinh2 y
and
| cos z|2 = cos2 x + sinh2 y .
Both are unbounded since the hyperbolic function sinh2 y is unbounded.
J. K. Sahoo (BITS Goa) Complex Variables and Applications Elementary functions 16 / 16