0% found this document useful (0 votes)
71 views12 pages

TEST 3. Derivatives (2014)

This document appears to be a math test on derivatives with 5 questions. It includes functions like f(x)=1+e^2x/(1-2e^2x) and finding the derivatives of functions such as f(x)=e^3ln(x)+2tan(2/3x). It asks the student to take derivatives from first principles, find the value of dy/dx for various functions at given points, and determine tangent and normal lines to curves at specified x-values. The document provides space for the student to show their work and solutions to earn points towards their total test score out of 100.

Uploaded by

Jane
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
71 views12 pages

TEST 3. Derivatives (2014)

This document appears to be a math test on derivatives with 5 questions. It includes functions like f(x)=1+e^2x/(1-2e^2x) and finding the derivatives of functions such as f(x)=e^3ln(x)+2tan(2/3x). It asks the student to take derivatives from first principles, find the value of dy/dx for various functions at given points, and determine tangent and normal lines to curves at specified x-values. The document provides space for the student to show their work and solutions to earn points towards their total test score out of 100.

Uploaded by

Jane
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 12

MATH HL

TEST
DERIVATIVES
by Christos Nikolaidis

Name:____________________________________ Marks:____/100

Date:________________ Grade: ______

Questions
1. [Maximum mark: 6]
1 + e2x
(a) Show that the function f ( x ) = is increasing. [5 marks]
1 − 2e 2 x
−1
(b) Determine whether f ( x) exists or not. [1 mark]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .

.....................................................................

.....................................................................

.....................................................................

.....................................................................

........................

.....................................................................

.....................................................................

.....................................................................

Page 1
2. [Maximum mark: 14]
Find the derivatives of the following functions
3
(a) f ( x) = e ln x
+ 2 tan 2 3x (b) g ( x) =
x2 +1
(c) h( x) = 23 x + log 23 x + log 23 23 x (d) h( x) = ln x x + ln π

[4+3+3+4 marks]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................
Page 2
3. [Maximum mark: 5]
5
Show from first principles that the derivative of the function f ( x) = 2x 3 + − 1 is
x
5
f ′ ( x) = 6 x 2 − 2
x

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

Page 3
4. [Maximum mark: 6]
Consider the differentiable function g (x) with some values given by

x 0 1 2 3 4
g (x) 2 3 4 5 8
g ′(x) 3 5 2 0 1

dy
Find for the following functions at the given points
dx
(a) y = g ( x) × ln x at x = 2 [2 marks]
(b) y = ln( g ( x)) at x = 1 [2 marks]
(c) y = g (ln x) at x = 1 [2 marks]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

Page 4
5. [Maximum mark: 9]
The line y = −4 x + m is tangent to the curve y = 2 x 3 + nx 2 + 1 at x = 1.
(a) Find the values of m and n. [4 marks]
(b) Find the normal line to the curve at x = 1. [3 marks]
5
(c) Find the normal line to the curve at x = [2 marks]
3

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

Page 5
6. [Maximum mark: 9]
ln x
Consider the function f ( x) = . Find
x3
(a) the first and the second derivative of f (x) ; simplify your answers. [4 marks]
(b) the x-coordinate of the stationary point; determine its nature. [3 marks]
(c) the x-coordinate of the point of inflection; justify your answer. [2 marks]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

Page 6
7. [Maximum mark: 9]
A cubic function has a maximum at (0,5) and a point of inflexion at (1,1). Find
(a) an expression of the cubic function. [6 marks]
(b) the coordinates of the minimum point; justify that it is a minimum. [3 marks]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

Page 7
8. [Maximum mark: 7]
The point A(π,π) lies on the curve
x 2 + sin y − xy = c
(a) Show that the curve passes through the origin. [2 marks]
(b) Find the equation of the tangent line to the curve at the point A. [4 marks]
(c) Find the equation of the normal line to the curve at the origin. [1 mark]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

Page 8
9. [Maximum mark: 8]
The equal sides of an isosceles triangle have a fixed length of 10cm each. The angle θ
contained by the two equal sides is decreasing at a rate of 0.1π rad/sec. Find at the
moment when the triangle is an equilateral
(a) the rate at which the area is changing [4 marks]
(b) the rate at which the length of the third side is changing. [4 marks]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

Page 9
10. [Maximum mark: 7]
The diagram below shows the graph of y = f ′(x) . The tangent lines on this curve at
points A, B, C are parallel to the x-axis.
y

y = f ′(x)

A
C
x

(a) Sketch the graph of the function y = f ′′(x) , by indicating the x-intercepts
y

y = f ′′(x)

[3 marks]
(b) Sketch a graph for the function y = f (x) , given that the function is positive.
Indicate on the graph any local maxima, minima and the points of inflection.
y

y = f (x)

[4 marks]

Page 10
11. [Maximum mark: 8]
1
Show by mathematical induction that the n-th derivative of f ( x) = + e −3 x , is given
x
by
 n! 
f ( n ) ( x) = (−1) n  n +1 + 3 n e −3 x  for all n ≥ 1 .
x 

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

Page 11
12. [Maximum mark: 12]
A rectangle ABCD is enclosed between the x-axis, the curve y = 2 x , and the
vertical line x = 9 , so that the lower vertices are on the x-axis with coordinates A(a,0)
and B(9,0) respectively, the vertex D is on the curve, while the vertex C is on the
vertical line. The area of this rectangle is denoted by S.
(a) Find an expression of S in terms of a. [3 marks]
(b) Find the exact maximum value for the area S ; justify your answer. [5 marks]
(c) Hence find the dimensions of the rectangle of maximum area which
is enclosed by the curve y 2 = 4 x and the vertical line x = 9 . [2 marks]

(d) Write down the values of a for which we obtain a rectangle of


minimum area S. [2 marks]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

Page 12

You might also like