Exercise 7.
02 Absolute value functions
1 Find the x- and y-intercepts of the graph of each function.
a f (x) = |x| + 7 b f (x) = |x| − 2 c y = 5|x|
d f (x) = −|x| + 3 e y = |x + 6| f f (x) = |3x − 2|
g y = |5x + 4| h y = |7x −1| i f (x) = |2x| + 9
2 Sketch the graph of each function.
a y = |x| b f (x) = |x| + 1 c f (x) = |x| − 3
d y = 2|x| e f (x) = −|x| f y = |x + 1|
g f (x) = −|x − 1| h y = |2x − 3| i f (x) = |3x| + 1
3 Find the domain and range of each function.
a y = |x − 1| b f (x) = |x| − 8 c f (x) = |2x + 5|
d y = 2|x| − 3 e f (x) = −|x − 3|
4 Solve each equation graphically.
a |x| = 3 b |x + 2| = 1 c |x − 3| = 0
d |2x − 3| = 1 e |2x + 3| = 11 f |5b − 2| = 8
g |3x + 1| = 2 h 5 = |2x + 1| i 0 = |6t − 3|
Exercise 7.02
1 a No x-intercepts, y-intercept 7 2 a y
b x-intercepts ±2, y-intercept –2 5
c x-intercept 0, y-intercept 0 4
d x-intercepts ±3, y-intercept 3 3
e x-intercept –6, y-intercept 6 2
y = |x|
2 1
f x-intercept , y-intercept 2
3
4 −4 −3 −2 −1 1 2 3 4 5 x
g x-intercept − , y-intercept 4 −1
5
−2
1
h x-intercept , y-intercept 1
7
i No x-intercepts, y-intercept 9
b y f y
5 5
4 4
3 y = |x| + 1 3
2 2
1 1 y = |x + 1|
−4 −3 −2 −1 1 2 3 4 5 x −4 −3 −2 −1 1 2 3 4 5 x
−1 −1
−2 −2
c f (x) g f (x)
3 2
2 1
1
−4 −3 −2 −1 1 2 3 4 5 x
−1
−4 −3 −2 −1 1 2 3 4 5 x
−1 −2
−2 f (x) = |x| − 3 −3
f (x) = −|x − 1|
−3 −4
−4 −5
d y h y
5 5
4 4 y = |2x − 3|
3 y = 2|x| 3
2 2
1 1
−4 −3 −2 −1 1 2 3 4 5 x −4 −3 −2 −1 1 2 3 4 5 x
−1 −1
−2 −2
e f (x) i f (x)
2 5
1 4
3
−4 −3 −2 −1 1 2 3 4 5 x f (x) = |3x| + 1
−1 2
−2 1
f (x) = −|x|
−3
−4 −3 −2 −1 1 2 3 4 5 x
−4 −1
−5 −2
3 a Domain (–∞, ∞), range [0, ∞)
b Domain (–∞, ∞), range [–8, ∞)
c Domain (–∞, ∞), range [0, ∞)
d Domain (–∞, ∞), range [–3, ∞)
e Domain (–∞, ∞), range (–∞, 0]
4 a x = ±3 b x = –1, –3 c x=3
d x = 1, 2 e x = 4, –7 f b = 2, –1.2
1 1
g x = , –1 h x = 2, –3 i t=
3 2