0% found this document useful (0 votes)
53 views34 pages

TAFL Unit-1

Uploaded by

Md Mohsin
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
0% found this document useful (0 votes)
53 views34 pages

TAFL Unit-1

Uploaded by

Md Mohsin
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
You are on page 1/ 34
Ut: — Basic Concept & Automata Theory Automation: a systems where energy waterils and information are Lransformecd, Lranemitted cond used fer performing Some function without oltrect particibatton of human Exambtes- Automate Resign Machine ofp Inputi- at each of desorete instance of time T; Treeta. | the input value Ty, T).Tye--- Ta. each of which = con take fintte no. of fired value fron arput olphaber. Output:~ Op, Op ---- O, are the output of model each’ of which can take finite no of valreos from putput 0. = Skate!- Nest state of an automatum ot on ine instant - 3 of time f& determine by present and present frput + State Relation Next state of an automatun at ans Enstont of time £s detorméne by present state anol present snput. Output Relatio:- Output fs related either ctate ony or 40 boty frput and state» Finite Automata int mata abut Finite Autos a WEBS Outpub PFA NEA B-NFEA Moore, abet, Mocktne Machine Finite Autometat— Tt hos sot of states and ite controb mene frow state to state in responce to ercternal snput. Fintte Automate witheut 6 Apt: * 2" Dea ( Boterministic Finite Automate A finite automatinm can be represented: he 6° Auptes Q@,=.6- Ws F- lherey | is Finite ren-empte get of states "y g Ls finite. non ember set of fnput alphabet. 6 fs transition Functor which moths (Oxy) into Q and. J direct frensition function. Yo fs Enitial State 16 @ F Zs sub-set of @» F xs set of Firal otates ( there may be more, than one fina tats). Auaxtion@)s- Basign, a DFA S(o,L) fer Aorguage: | accepting oll otras Starts ult 0. at ony Enatant of Line the automation con be by one of Ww states 199% »---Tn- i = {o, 000, 001, OO1DL ---} PUeee sere eee edd UCU eT lal 0 rT rm & Contruct 0 OFA He e tet accept set of alk string, sv Z={OLt every atriy wtantel ol Soft is {o- 00. O10 0110, o1010, oLors0f Qe Construct ® DEA with set of ot’ ehdtrg with 0- ye {ott 7 ¢ Lz {0 ,00, 100, 110, O10, t1o0; ox Lor--- df 0 cP t Co) ie @) Qe odLol ok Hi & aia ——s se RRPORRR RR ARM wean annn i __ - > Ques :- Le [or by Star kira with a andl ange wily by & - fob, aab,aacb, abbb, a-..-- b 7 i } Trorkition table b > ee G& Uy a Ve ca de 3 Ques: Besign o DAA that exeept ale string ever 9 Le {or} «is Length of ) G) (We & ‘String > ab jw <2 | * ro. =p Sl sy Le fab, am 4 = ba, bb 3 ~ =» =» == =— =3 2 =3 = UCU L=fott » Starting ond ending lity different seymbod L= fot, 10, oL0t , Loto ___. } : Qa % Ee fOd} starting and ending with orm symbol. OL “4 ¢ be foe. Lt, OL0L0, {0104 bal ; M4 Rentgr 0 OFA over Lz fab] uch that org atrtng aceepted must Start ult. aa or bb. he [an bb, @ab, bba, aba ———.} Aaa. bbb ° LAPP P PNA ARMM MMM OM mam mn - ° J 5% d HEADY a} } 1 aH , J Must Rowe aa or bb he { an, bbs aob, abba » baab ~~~ f ends uth an or bb Le {ans AOn » bap 3 baw -—~ uf bb , Obb + bbb + Non- Beterministic Finite Automata (NFA): VA Finite automatum can be represintid by 5 tuples Q.2, 6. de. F Where Q. fs finite non-empty gut of States Ls findte none embry sit of dnput alphabet & is transkttm function with maths (ax) ano 2s urine direct trantitton function: 2 4, us dnittal state 4 68 fF £8 sub + sof of O. Fides Set of Frab atates( thore moony be more thor one final state). > aH eRe ew PPppne buos- Resign @ NPA tk vere ne must starts ulsho. r —) mS = a) xefot} “3 he {o, ot, of tt---~-f =3 =9 © >, ~ © =3 “3S Ending wit 1. ae = heft, OL, 00L, DOLL, Lozoo,——- a my : ==9 oO, _ ° —=3 (1) f > fo de Got ~ Must Rave 0. @}~ ~ - hefo Qos ; 2 0 ==3 al 3 ey PR lt 2 % 4% ~=3 Cottruct NEA accepting the etring Ey, ( =f{0t} where — > nd tout symbok cs V4, 0 Tony —=9 ——y d= [£0 010, 1 _| oo ft sy 41 >} 40 tend —? pt 4] a te ° O——@)—4 @. - Construct a NPA willl exactly Longe of tuco uihere Letay Af TU Guat Corstruct ao NPA that accebt ate string. over- fort} Where w Stort with o1 ad Cmtain ot di) Rnd with 00 WM stort with Of A= {Oly O10, O41, o144.-..7 (&) o @) fi. Or WW Ogntain ot A= {ow oto, oot, dott ~—f OQ —(f§— @ 7 Ort. ay End with 60 t= fo0,100, 000, t100~-— } a PHM HMMA Ame 9 ! Transition Tables Besign a DRA Refor} ops he f w]e pus even not of- 0's Even no. of 1's. k= { 00, oro] ti .. - 4} Why Even no of 0's k odd no. of {'s 421 00,1, Ovi , OVI , 010, ;o108-~~ f 2 De a _ > Odd no: of-d's b odd no of t's nef eb, Cll! Cstruct » DPA E=fab} Bhat query otrtrg acetpe socond syrebdl ss a ond foarte Mymbol Le b fm given languages ; aabb» boubb ~-- ~ } 04 Ay ddd? A Ta AnD nT Convert DFA Equivalence tuto NRA Ee{arb} Contain obb Ae [obb: aabb, abbw,-— ~-- f , 2 Qa CQ Qos ‘ (ho Gb 8 6 Abuses o L > Yo UY Ml] A Gott Consider wo giver jporsition table, emstruct a deterministic Findte automaton , equtvatent (8. Fa & , % ) met faesayp otf s 6) de te) IARAANAAAARAMR ARAMA AM DR Be ” T n AAT IL uhtre 6 26 define by stab table/ transition table The stater are sub-set of Aidit bes be , dot qe ds tre initial State , 4, and Got, ave Ane ferabstoto. 8 ts defined by The Sate stable © L (401 [tJ fy [2041] (aoa Bots] HULA HR fodedure 2 A DEA can simulate the boknw'our 3 OF NDEA by Increasing Bre no, of Sintes (A DPA 8.3.6, Gos) Caw be Weured os an NOAA ie, 6, 4.6) by define s(t.) = {560.0} ° NDEA sis a more generat machine without bere Powers 1 sbhs | dures ffir o OPA equivalent to M = (4 hig forrh , Ss 40542} where & i givon oY “9AM HA BO aw oa 409, 34 PAAANRP ODMH HDS 4 {ors Ve GU V4) VU, ° Lose V9 Ty 11409. Lot) a 4) by AANXVANVV ADE ate wwe Minimizotion of DFA. ANVIL iow of _[o.. Construction of Minimum 2-By definition of Me ~ enone b Constrckion ef feo re= fal as e} a 1s Sat of all fidl stote » OP tvs rot final state = as Q= A-Ay, =— Construction of Teg From Me g- hot &* bo subcot fn Te, Jf Grand Fy are shy oa qh, Hep are’ k+t equivalent provided transition. e—— of 8(4,,0) ant 6%, ,0) ore in the Sahav k equivalance « Chrok out whether 6(%4)0) and §( 4,0) are dn the Some equivalence cles giv Mk for ew aes FE 805 Oy ond Ys are KH equivalent, — Tn yes Qt fs furtrer oleviced into te equivalance clames. Repeat thes fw exery oF in Me to get al te elments Je Meet: * Skebe32- Construct For for net, 2, %- =. UNeeL - Pen = Fonte > SSPE Construction of rtnibum autrreatums— for the > require wintinum ctelt autawalim » Fhe The stute table ts obtained replact ea Et, > the corresponding. equivalonce class [a]. Conetruct o. minimum gtote automatuns equiv de the finete autoratun closer?bod by figures State © , “4 % 4s Q, de Wy ® Yo a, Ya de, Ce ay ay ds ts ‘ta 6 oy VW ty 4a de & w Onp= Mel T= 11 { whi G0, 44 50 der daff MT IQL{ tedardey {Bry {te tef ma={ {topo {totah {teh of trots} ofte ef} ma={ {tape f{ trot} [9h {ooh} +f dan dsfh State o 1 ie Ves 45 BY) Bal Gas] ens [a, a4] [te] [a4] ‘ &) [\. a] Be] LAA [as 4s] [ay [as] = [ts] [tJ] etal wl = —_, = 54. a; Le 4 qo te Ve, Ve 4 3 Ms Yo 4 as as Ls Ve, Vey Le ds Ge Vr Ve 43 r= fat f testi he, Ua te, Yeitrfh. m=] {as}ed a ag. hfe walfaty | mae [{astef to det fas} faset fart ro (Mah ete) Latch fasted ta} State o b =. a) Tart) —- E4ode] Ia, %s] Bet) [4.90] [Re ta] [4%] Lays [43] Tt] L410] [uy [to] Tu Tate] [42] [49 Tas] Tad mead "7" ARAHRAMA p @ a oper a € WD ar HH ° 1 % a2 a uy “ts _ ts Ly . a, =e 4 ae fy ' : ! 2 moe [i deta}s{ tis Os dys ff ry Ef testa} d Gd 1ty aed UT IT3= { M= Ral Qe Gor Gay farts {arash {rat} 5 L se) Te Tas] fw] 143%) Tr.) Bal [sho] (ee as] Tray Bad Tay7 Gmatruct o DPA equivalent to an NDEA whose Anantifin table sa olefiined sb w Stole 4, a Ge Aston tn StaBe 4 uy rS 4 @ 14 o Us oe fe 9243" de Ve VADNAIS } Gi) Qvatruct 0 minimum auteratuin DEA Stoty oO b tay Ut i Ye uy Vy 43 Ys 1a. ee i) ds 4 4, Ve ts 4s 4e Le 46 de % Vey 4% gol. D State ow b > [Ae] Ta. a2] [4048] [2 ‘7 [4a] Ga) [42] 12.7 it GE fat [a] yl [as] [As] : ray L ; J ) $ g % ) o WVVOCVEEUUTI YT ud LU Y bYdUEs oO ty > > > uw Pi oy six fupte Moore Machine -°- A moore Machine a (@,2,4,8.4,4.) where WQ fs the pinite set op strates. GOS B the fnput alphaber . (if) 4 ts the output alphabet. iw) § is the transition function QxX¥ 3Q W) A tw the Output function mapping Qxa Wid Y, i the fnfttat state. Praesent stare Next state Output y aso a=i a Me Vs Us ‘a, ° “ Vv Ve 1 Vs W Ys é ws VW Ue o 8 Gisp° j Mey Meloy machines A melay machine has six | tuples (@ 3, 0,644.) where MQ iS the Finite set op states. @ = B&B the fnpur alphabet. (ia fs the purput alphabet. (15 is the transition func. @x¥ 9Q cere row iG % a e/ = = Ts the output gunction mapping QxS> 46 the jnitfal stote. a: Pxerent State Next State FV Prepreceer pe Covetston Meoly Machine to Moore Machine: ~ From preufous quustéen Ps. N's azo az olp UY i Qs : dae 4 Va ‘ oe ® ‘ vs Veo 1 Vs Veo Vas Melay Machine = i. A relay machine # a gtx tuple (0,2,4.8,A0,4%) where Q ss tre fihrete set of states. = fs the snput alphabet A is the output alphabet & is the transition function from OX —> @ aA is te output funclion mapbing from = QxXEA q, ss th Sriltal tote « ~~ fresont state Nest fate azo | asi, State ole Stote o/e 4 4 | © 43, © Ge 4 L ty ° ds ts t ut t Ly Y | 4 ty 9 0 » t oO 4, —— 1, v- O10 77] 2 v Yh ofp: ° L ° ditol t i ° t —— 12. >". ——> 4 ——> 4. ——>4, "4 ¥ 4 nt a 4 0 ° , , Op:- 00010 uw Conversion of Melee te Moore Machine Present State Next State Stott Op etude | OP wo | 0 > yy es ° ” L Q cache fom) | el qs 4) % 4 fe ty 2 q 4, Lot twye + Say nur ! 4, #4 ps eve NS vt any yee ~ No | q : * 9,790 3 Lo Geo / ay Guin) Ns WY ps of ofp 4 4, % Tao ° dyo a) A fat Qa 4s 43 machine nest page 441 4 TAHT 4 RePR APP PP PPP POR Construct, a Moore Machine equivalent bo Melay mechine) ond defined ’y 7 © Machine od CPrévfous question) “PPAPAPARARAPMRAHHNNODOADRAOTRDAR >A a > ADP > eee enn Present State YYUWVUUUEsuuaeee p.S N-S azo! az|\" sate} ole) Stare | ofp 4, Vex, zy) 4az, a hoe yz?) Garg) ze) Ha fe 4s 2g V2] 22] %z,] 2, 4. . Bz y Az, J AV} Az, | 2, Yaz 4 42, z a ‘| 42,1 2 Mosre to Mélay Machine Z Construct a mackene while is equivatent be He moore machine defined by tee table

You might also like