0 ratings0% found this document useful (0 votes) 53 views34 pagesTAFL Unit-1
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content,
claim it here.
Available Formats
Download as PDF or read online on Scribd
Ut:
— Basic Concept & Automata Theory
Automation: a systems where energy waterils and
information are Lransformecd, Lranemitted
cond used fer performing Some function without oltrect
particibatton of human
Exambtes- Automate Resign Machine
ofp
Inputi- at each of desorete instance of time T; Treeta. |
the input value Ty, T).Tye--- Ta. each of which
= con take fintte no. of fired value fron
arput olphaber.
Output:~ Op, Op ---- O, are the output of model each’
of which can take finite no of valreos
from putput 0.
= Skate!- Nest state of an automatum ot on ine instant -
3 of time f& determine by present
and present frput +State Relation Next state of an automatun at ans
Enstont of time £s detorméne by
present state anol present snput.
Output Relatio:- Output fs related either ctate ony
or 40 boty frput and state»
Finite Automata
int mata
abut Finite Autos
a WEBS Outpub
PFA NEA B-NFEA Moore, abet,
Mocktne Machine
Finite Autometat— Tt hos sot of states and ite controb
mene frow state to state in responce
to ercternal snput.
Fintte Automate witheut 6 Apt:
*
2" Dea ( Boterministic Finite Automate
A finite automatinm can be represented: he 6° Auptes
Q@,=.6- Ws F-
lherey
| is Finite ren-empte get of states"y
g
Ls finite. non ember set of fnput alphabet.
6 fs transition Functor which moths (Oxy) into Q
and. J direct frensition function.
Yo fs Enitial State 16 @
F Zs sub-set of @» F xs set of Firal otates ( there
may be more, than one fina tats).
Auaxtion@)s- Basign, a DFA S(o,L) fer Aorguage: |
accepting oll otras Starts ult 0.
at ony Enatant of Line the automation con be by
one of Ww states 199% »---Tn-
i = {o, 000, 001, OO1DL ---}
PUeee sere eee edd
UCU eT
lal
0
rT
rm& Contruct 0 OFA He e tet accept set of
alk string, sv Z={OLt every atriy wtantel ol
Soft
is {o- 00. O10 0110, o1010, oLors0f
Qe Construct ® DEA with set of ot’ ehdtrg with 0-
ye {ott 7 ¢
Lz {0 ,00, 100, 110, O10, t1o0; ox Lor--- df
0 cP t Co) ie
@) Qe odLol
ok
Hi & aia
——s se
RRPORRR RR ARM wean annn i __ ->
Ques :- Le [or by Star kira with a andl ange wily by
&
- fob, aab,aacb, abbb, a-..-- b
7 i } Trorkition table
b
> ee G&
Uy a
Ve ca
de 3
Ques: Besign o DAA that exeept ale string ever
9 Le {or} «is Length of
) G) (We & ‘String
> ab jw <2 |
* ro.
=p Sl sy Le fab, am 4
= ba, bb
3
~
=»
=»
==
=—
=3
2
=3
=
UCUL=fott » Starting ond ending lity different seymbod
L= fot, 10, oL0t , Loto ___. }
: Qa %
Ee fOd} starting and ending with orm symbol.
OL “4 ¢
be foe. Lt, OL0L0, {0104 bal
; M4
Rentgr 0 OFA over Lz fab] uch that org atrtng
aceepted must Start ult. aa or bb.
he [an bb, @ab, bba, aba ———.}
Aaa. bbb
°
LAPP P PNA ARMM MMM OM mam mn -°
J
5%
d
HEADY
a}
}
1
aH
,
J
Must Rowe aa or bb
he { an, bbs aob, abba » baab ~~~ fends uth an or bb
Le {ans AOn » bap 3 baw -—~ uf
bb , Obb + bbb +
Non- Beterministic Finite Automata (NFA):
VA Finite automatum can be represintid by 5 tuples
Q.2, 6. de. F
Where
Q. fs finite non-empty gut of States
Ls findte none embry sit of dnput alphabet
& is transkttm function with maths (ax)
ano 2s urine direct trantitton function:
2
4, us dnittal state 4 68
fF £8 sub + sof of O. Fides Set of Frab atates( thore
moony be more thor one final state).
> aH eRe ew
PPppnebuos- Resign @ NPA tk vere ne must starts ulsho.
r
—)
mS
=
a)
xefot}
“3 he {o, ot, of tt---~-f
=3
=9 © >,
~ ©
=3
“3S Ending wit 1.
ae
= heft, OL, 00L, DOLL, Lozoo,——- a
my :
==9 oO, _ °
—=3 (1) f > fo de Got
~ Must Rave 0. @}~ ~
- hefo Qos ;
2 0
==3 al
3 ey PR lt
2 % 4%
~=3 Cottruct NEA accepting the etring Ey,
( =f{0t} where
— > nd tout symbok cs V4, 0 Tony
—=9
——y d= [£0 010, 1 _| oo ft
sy 41 >} 40 tend
—? pt 4] a te °
O——@)—4 @. -
Construct a NPA willl exactly Longe of tuco uihere Letay
Af
TUGuat Corstruct ao NPA that accebt ate string. over- fort}
Where
w Stort with o1
ad Cmtain ot
di) Rnd with 00
WM stort with Of
A= {Oly O10, O41, o144.-..7
(&) o @) fi. Or
WW Ogntain ot
A= {ow oto, oot, dott ~—f
OQ
—(f§— @ 7 Ort.
ay End with 60
t= fo0,100, 000, t100~-— }
a
PHM HMMA Ame
9
!Transition Tables
Besign a DRA Refor}
ops he f w]e pus even not of- 0's Even no.
of 1's.
k= { 00, oro] ti .. - 4}
WhyEven no of 0's k odd no. of {'s
421 00,1, Ovi , OVI , 010, ;o108-~~ f
2 De a
_ >
Odd no: of-d's b odd no of t's
nef eb, Cll!
Cstruct » DPA E=fab} Bhat query otrtrg acetpe
socond syrebdl ss a ond foarte Mymbol Le b
fm given languages
; aabb» boubb ~-- ~ }
04
Ay
ddd?
A
Ta
AnD
nTConvert DFA Equivalence tuto NRA
Ee{arb} Contain obb
Ae [obb: aabb, abbw,-— ~-- f
, 2 Qa
CQ Qos ‘
(ho Gb 8 6
Abuses o L
> Yo UY
Ml] A Gott
Consider wo giver jporsition table, emstruct a
deterministic Findte automaton , equtvatent
(8. Fa & , % )
met faesayp otf s 6) de te)
IARAANAAAARAMR ARAMA AM DR Be
”
T
n
AAT ILuhtre 6 26 define by stab table/ transition table
The stater are sub-set of Aidit bes be , dot
qe ds tre initial State , 4, and Got, ave Ane ferabstoto.
8 ts defined by The Sate stable
© L
(401 [tJ
fy [2041]
(aoa Bots]
HULA
HR
fodedure 2 A DEA can simulate the boknw'our
3 OF NDEA by Increasing Bre no, of Sintes
(A DPA 8.3.6, Gos) Caw be Weured os an NOAA
ie, 6, 4.6) by define
s(t.) = {560.0}° NDEA sis a more generat machine without bere
Powers 1
sbhs |
dures ffir o OPA equivalent to M = (4 hig forrh ,
Ss 40542}
where & i givon oY
“9AM HA BO aw oa
409, 34
PAAANRP ODMH HDS 4{ors
Ve
GU V4)
VU, ° Lose
V9 Ty 11409.
Lot) a 4) byAANXVANVV ADE
ate
wwe
Minimizotion of DFA.
ANVIL
iow of _[o..
Construction of Minimum 2-By definition of Me ~ enone b
Constrckion ef feo re= fal as e} a 1s Sat of all
fidl stote » OP tvs rot final state =
as
Q= A-Ay, =—
Construction of Teg From Me g-
hot &* bo subcot fn Te, Jf Grand Fy are shy oa
qh, Hep are’ k+t equivalent provided transition. e——
of 8(4,,0) ant 6%, ,0) ore in the Sahav k
equivalance «
Chrok out whether 6(%4)0) and §( 4,0) are dn the
Some equivalence cles giv Mk for ew aes
FE 805 Oy ond Ys are KH equivalent, — Tn yes
Qt fs furtrer oleviced into te equivalance
clames. Repeat thes fw exery oF in Me
to get al te elments Je Meet:* Skebe32- Construct For for net, 2, %- =. UNeeL
- Pen = Fonte
>
SSPE Construction of rtnibum autrreatums— for the
> require wintinum ctelt autawalim » Fhe The stute table ts obtained replact ea Et,
> the corresponding. equivalonce class [a].
Conetruct o. minimum gtote automatuns equiv
de the finete autoratun closer?bod by figures
State © ,
“4 % 4s
Q, de Wy
® Yo a,
Ya de, Ce
ay ay ds
ts ‘ta 6
oy VW ty
4a de&
w
Onp= Mel
T= 11 { whi G0, 44 50 der daff
MT IQL{ tedardey {Bry {te tef
ma={ {topo {totah {teh of trots} ofte ef}
ma={ {tape f{ trot} [9h {ooh} +f dan dsfh
State o 1
ie Ves 45
BY) Bal Gas] ens
[a, a4] [te] [a4] ‘
&) [\. a] Be]
LAA
[as 4s] [ay [as] =
[ts] [tJ] etal wl
=
—_,
=54. a; Le
4 qo te
Ve, Ve 4 3
Ms Yo
4 as as
Ls Ve, Vey
Le ds Ge
Vr Ve 43
r= fat f testi he, Ua te, Yeitrfh.
m=] {as}ed a ag. hfe walfaty |
mae [{astef to det fas} faset fart
ro (Mah ete) Latch fasted ta}State o b
=. a) Tart) —- E4ode]
Ia, %s] Bet) [4.90]
[Re ta] [4%] Lays
[43] Tt]
L410] [uy [to]
Tu Tate] [42]
[49 Tas] Tad
mead
"7" ARAHRAMA
p
@ a
opera
€
WD ar
HH
° 1
% a2
a
uy “ts _
ts Ly .
a, =e 4
ae fy '
: ! 2
moe [i deta}s{ tis Os dys ff
ry Ef testa} d Gd 1ty aed UT
IT3= {
M= Ral
Qe
Gor Gay farts {arash {rat}
5 L
se) Te Tas]
fw]
143%)
Tr.)
Bal [sho]
(ee as] Tray
Bad Tay7Gmatruct o DPA equivalent to an NDEA whose
Anantifin table sa olefiined sb
w Stole
4,
a
Ge
Aston
tn StaBe
4
uy
rS
4
@
14
o
Us
oe
fe
9243"
de
Ve
VADNAIS
}Gi) Qvatruct 0 minimum auteratuin DEA
Stoty oO b
tay Ut i Ye
uy Vy 43
Ys 1a. ee
i) ds 4
4, Ve
ts 4s 4e
Le 46 de
% Vey 4%
gol. D State ow b
> [Ae] Ta. a2] [4048]
[2 ‘7 [4a]
Ga) [42] 12.7
it GE fat
[a] yl [as]
[As] : ray L ; J
) $ g
% ) oWVVOCVEEUUTI YT ud LU Y
bYdUEs
oO
ty
>
>
>
uwPi oy six fupte
Moore Machine -°- A moore Machine a
(@,2,4,8.4,4.) where
WQ fs the pinite set op strates.
GOS B the fnput alphaber .
(if) 4 ts the output alphabet.
iw) § is the transition function QxX¥ 3Q
W) A tw the Output function mapping Qxa
Wid Y, i the fnfttat state.
Praesent stare Next state Output
y aso a=i a
Me Vs Us
‘a, °
“ Vv Ve 1
Vs W Ys é
ws VW Ue o
8 Gisp°
j Mey Meloy machines A melay machine has six
| tuples (@ 3, 0,644.) where
MQ iS the Finite set op states.
@ = B&B the fnpur alphabet.
(ia fs the purput alphabet.
(15 is the transition func. @x¥ 9Q
cere
row
iG %a
e/
=
=
Ts the output gunction mapping QxS> 46
the jnitfal stote.
a:
Pxerent State Next State
FV
Prepreceer
pe Covetston Meoly Machine to Moore Machine: ~
From preufous quustéen
Ps. N's
azo az olp
UY i Qs :
dae 4
Va ‘ oe ®
‘
vs Veo 1
Vs
Veo
VasMelay Machine
= i.
A relay machine # a gtx tuple (0,2,4.8,A0,4%)
where
Q ss tre fihrete set of states.
= fs the snput alphabet
A is the output alphabet
& is the transition function from OX —> @
aA is te output funclion mapbing from = QxXEA
q, ss th Sriltal tote «
~~ fresont state Nest fate
azo | asi,
State ole Stote o/e
4 4 | © 43, ©
Ge 4 L ty °
ds ts t ut t
Ly Y | 4 ty 9
0» t oO
4, —— 1, v- O10
77] 2 v Yh ofp:
° L °
ditol
t i ° t
—— 12. >". ——> 4 ——> 4. ——>4,
"4 ¥ 4 nt a 4
0 ° , ,
Op:- 00010
uw
Conversion of Melee te Moore Machine
Present State Next State
Stott Op etude | OP
wo | 0
> yy es ° ”
L Q
cache fom) | el
qs 4) % 4 fe
ty 2 q 4, Lot twye
+ Say nur ! 4, #4
ps eve NS vt any yee
~ No |
q :
* 9,790
3 Lo Geo
/
ay Guin)Ns
WY ps
of
ofp
4
4,
%
Tao °
dyo
a)
A
fat
Qa
4s
43
machine nest page
441
4
TAHT 4
RePR
APP PP
PPP PORConstruct, a Moore Machine equivalent bo Melay mechine)
ond defined ’y
7 ©
Machine od
CPrévfous question)
“PPAPAPARARAPMRAHHNNODOADRAOTRDAR
>A a
> ADP
>eee enn
Present StateYYUWVUUUEsuuaeee
p.S N-S
azo! az|\"
sate} ole) Stare | ofp
4, Vex, zy) 4az, a hoe
yz?) Garg) ze) Ha fe
4s
2g V2] 22] %z,] 2,
4. .
Bz y Az, J AV} Az, | 2,
Yaz
4 42, z
a ‘| 42,1 2Mosre to Mélay Machine
Z Construct a mackene while is equivatent
be He moore machine defined by tee table