Tensor decomposition
In multilinear algebra, a tensor decomposition[1][2] [3] is any scheme for expressing a "data tensor" (M-
way array) as a sequence of elementary operations acting on other, often simpler tensors. Many tensor
decompositions generalize some matrix decompositions.[4]
Tensors are generalizations of matrices to higher dimensions (or rather to higher orders, i.e. the higher
number of dimensions) and can consequently be treated as multidimensional fields.[1][5] The main tensor
decompositions are:
    Tensor rank decomposition;[6]
    Higher-order singular value decomposition;[7]
    Tucker decomposition;
    matrix product states, and operators or tensor trains;
    Online Tensor Decompositions[8][9][10]
    hierarchical Tucker decomposition;[11]
    block term decomposition[12][13][11][14]
Notation
This section introduces basic notations and operations that are widely used in the field.
        Table of symbols and their description.
   Symbols                     Definition
                 scalar, vector, row, matrix, tensor
                 vectorizing either a matrix or a tensor
                 matrixized tensor
                 mode-m product
Introduction
A multi-way graph with K perspectives is a collection of K matrices                      with dimensions I ×
J (where I, J are the number of nodes). This collection of matrices is naturally represented as a tensor X of
size I × J × K. In order to avoid overloading the term “dimension”, we call an I × J × K tensor a three
“mode” tensor, where “modes” are the numbers of indices used to index the tensor.
References
 1. Vasilescu, MAO; Terzopoulos, D. "Multilinear (tensor) image synthesis, analysis, and
    recognition [exploratory dsp]". IEEE Signal Processing Magazine. 24 (6): 118–123.
 2. Kolda, Tamara G.; Bader, Brett W. (2009-08-06). "Tensor Decompositions and Applications"
    (http://epubs.siam.org/doi/10.1137/07070111X). SIAM Review. 51 (3): 455–500.
    Bibcode:2009SIAMR..51..455K (https://ui.adsabs.harvard.edu/abs/2009SIAMR..51..455K).
    doi:10.1137/07070111X (https://doi.org/10.1137%2F07070111X). ISSN 0036-1445 (https://
    www.worldcat.org/issn/0036-1445). S2CID 16074195 (https://api.semanticscholar.org/Corpu
    sID:16074195).
 3. Sidiropoulos, Nicholas D.; De Lathauwer, Lieven; Fu, Xiao; Huang, Kejun; Papalexakis,
    Evangelos E.; Faloutsos, Christos (2017-07-01). "Tensor Decomposition for Signal
    Processing and Machine Learning" (https://ieeexplore.ieee.org/document/7891546). IEEE
    Transactions on Signal Processing. 65 (13): 3551–3582. arXiv:1607.01668 (https://arxiv.org/
    abs/1607.01668). Bibcode:2017ITSP...65.3551S (https://ui.adsabs.harvard.edu/abs/2017ITS
    P...65.3551S). doi:10.1109/TSP.2017.2690524 (https://doi.org/10.1109%2FTSP.2017.26905
    24). ISSN 1053-587X (https://www.worldcat.org/issn/1053-587X). S2CID 16321768 (https://a
    pi.semanticscholar.org/CorpusID:16321768).
 4. Bernardi, A.; Brachat, J.; Comon, P.; Mourrain, B. (2013-05-01). "General tensor
    decomposition, moment matrices and applications" (https://www.sciencedirect.com/science/
    article/pii/S0747717112001290). Journal of Symbolic Computation. 52: 51–71.
    arXiv:1105.1229 (https://arxiv.org/abs/1105.1229). doi:10.1016/j.jsc.2012.05.012 (https://doi.
    org/10.1016%2Fj.jsc.2012.05.012). ISSN 0747-7171 (https://www.worldcat.org/issn/0747-71
    71). S2CID 14181289 (https://api.semanticscholar.org/CorpusID:14181289).
 5. Rabanser, Stephan; Shchur, Oleksandr; Günnemann, Stephan (2017). "Introduction to
    Tensor Decompositions and their Applications in Machine Learning". arXiv:1711.10781 (http
    s://arxiv.org/abs/1711.10781) [stat.ML (https://arxiv.org/archive/stat.ML)].
 6. Papalexakis, Evangelos E. (2016-06-30). "Automatic Unsupervised Tensor Mining with
    Quality Assessment" (https://epubs.siam.org/doi/10.1137/1.9781611974348.80).
    Proceedings of the 2016 SIAM International Conference on Data Mining. Society for
    Industrial and Applied Mathematics: 711–719. arXiv:1503.03355 (https://arxiv.org/abs/1503.0
    3355). doi:10.1137/1.9781611974348.80 (https://doi.org/10.1137%2F1.9781611974348.80).
    ISBN 978-1-61197-434-8. S2CID 10147789 (https://api.semanticscholar.org/CorpusID:1014
    7789).
 7. Vasilescu, M.A.O.; Terzopoulos, D. (2002). Multilinear Analysis of Image Ensembles:
    TensorFaces (http://www.cs.toronto.edu/~maov/tensorfaces/Springer%20ECCV%202002_fil
    es/eccv02proceeding_23500447.pdf) (PDF). Lecture Notes in Computer Science;
    (Presented at Proc. 7th European Conference on Computer Vision (ECCV'02),
    Copenhagen, Denmark). Vol. 2350. Springer, Berlin, Heidelberg. doi:10.1007/3-540-47969-
    4_30 (https://doi.org/10.1007%2F3-540-47969-4_30). ISBN 978-3-540-43745-1.
 8. Gujral, Ekta; Pasricha, Ravdeep; Papalexakis, Evangelos E. (7 May 2018). Ester, Martin;
    Pedreschi, Dino (eds.). "SamBaTen: Sampling-based Batch Incremental Tensor
    Decomposition". Proceedings of the 2018 SIAM International Conference on Data Mining.
    doi:10.1137/1.9781611975321 (https://doi.org/10.1137%2F1.9781611975321). ISBN 978-1-
    61197-532-1. S2CID 21674935 (https://api.semanticscholar.org/CorpusID:21674935).
 9. Gujral, Ekta; Papalexakis, Evangelos E. (9 October 2020). "OnlineBTD: Streaming
    Algorithms to Track the Block Term Decomposition of Large Tensors". 2020 IEEE 7th
    International Conference on Data Science and Advanced Analytics (DSAA). pp. 168–177.
    doi:10.1109/DSAA49011.2020.00029 (https://doi.org/10.1109%2FDSAA49011.2020.0002
    9). ISBN 978-1-7281-8206-3. S2CID 227123356 (https://api.semanticscholar.org/CorpusID:2
    27123356).
10. Gujral, Ekta (2022). "Modeling and Mining Multi-Aspect Graphs With Scalable Streaming
    Tensor Decomposition". arXiv:2210.04404 (https://arxiv.org/abs/2210.04404) [cs.SI (https://ar
    xiv.org/archive/cs.SI)].
11. Vasilescu, M.A.O.; Kim, E. (2019). Compositional Hierarchical Tensor Factorization:
    Representing Hierarchical Intrinsic and Extrinsic Causal Factors. In The 25th ACM SIGKDD
    Conference on Knowledge Discovery and Data Mining (KDD’19): Tensor Methods for
    Emerging Data Science Challenges. arXiv:1911.04180 (https://arxiv.org/abs/1911.04180).
12. De Lathauwer, Lieven (2008). "Decompositions of a Higher-Order Tensor in Block Terms—
    Part II: Definitions and Uniqueness" (http://epubs.siam.org/doi/10.1137/070690729). SIAM
    Journal on Matrix Analysis and Applications. 30 (3): 1033–1066. doi:10.1137/070690729 (htt
    ps://doi.org/10.1137%2F070690729).
13. Vasilescu, M.A.O.; Kim, E.; Zeng, X.S. (2021), "CausalX: Causal eXplanations and Block
    Multilinear Factor Analysis", Conference Proc. of the 2020 25th International Conference on
    Pattern Recognition (ICPR 2020), pp. 10736–10743, arXiv:2102.12853 (https://arxiv.org/abs/
    2102.12853), doi:10.1109/ICPR48806.2021.9412780 (https://doi.org/10.1109%2FICPR4880
    6.2021.9412780), ISBN 978-1-7281-8808-9, S2CID 232046205 (https://api.semanticscholar.
    org/CorpusID:232046205)
14. Gujral, Ekta; Pasricha, Ravdeep; Papalexakis, Evangelos (2020-04-20). "Beyond Rank-1:
    Discovering Rich Community Structure in Multi-Aspect Graphs" (https://dl.acm.org/doi/10.11
    45/3366423.3380129). Proceedings of the Web Conference 2020. Taipei Taiwan: ACM:
    452–462. doi:10.1145/3366423.3380129 (https://doi.org/10.1145%2F3366423.3380129).
    ISBN 978-1-4503-7023-3. S2CID 212745714 (https://api.semanticscholar.org/CorpusID:212
    745714).
Retrieved from "https://en.wikipedia.org/w/index.php?title=Tensor_decomposition&oldid=1166536543"