0% found this document useful (0 votes)
72 views3 pages

Tensor Decomposition for Experts

Tensor decomposition is any scheme for expressing a multi-dimensional tensor as a sequence of elementary operations acting on other tensors. Common tensor decompositions include tensor rank decomposition, higher-order singular value decomposition, Tucker decomposition, and tensor trains. Tensors are generalizations of matrices to higher dimensions and can be treated as multidimensional fields.

Uploaded by

emma698
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
72 views3 pages

Tensor Decomposition for Experts

Tensor decomposition is any scheme for expressing a multi-dimensional tensor as a sequence of elementary operations acting on other tensors. Common tensor decompositions include tensor rank decomposition, higher-order singular value decomposition, Tucker decomposition, and tensor trains. Tensors are generalizations of matrices to higher dimensions and can be treated as multidimensional fields.

Uploaded by

emma698
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 3

Tensor decomposition

In multilinear algebra, a tensor decomposition[1][2] [3] is any scheme for expressing a "data tensor" (M-
way array) as a sequence of elementary operations acting on other, often simpler tensors. Many tensor
decompositions generalize some matrix decompositions.[4]

Tensors are generalizations of matrices to higher dimensions (or rather to higher orders, i.e. the higher
number of dimensions) and can consequently be treated as multidimensional fields.[1][5] The main tensor
decompositions are:

Tensor rank decomposition;[6]


Higher-order singular value decomposition;[7]
Tucker decomposition;
matrix product states, and operators or tensor trains;
Online Tensor Decompositions[8][9][10]
hierarchical Tucker decomposition;[11]
block term decomposition[12][13][11][14]

Notation
This section introduces basic notations and operations that are widely used in the field.

Table of symbols and their description.

Symbols Definition

scalar, vector, row, matrix, tensor

vectorizing either a matrix or a tensor

matrixized tensor

mode-m product

Introduction
A multi-way graph with K perspectives is a collection of K matrices with dimensions I ×
J (where I, J are the number of nodes). This collection of matrices is naturally represented as a tensor X of
size I × J × K. In order to avoid overloading the term “dimension”, we call an I × J × K tensor a three
“mode” tensor, where “modes” are the numbers of indices used to index the tensor.

References
1. Vasilescu, MAO; Terzopoulos, D. "Multilinear (tensor) image synthesis, analysis, and
recognition [exploratory dsp]". IEEE Signal Processing Magazine. 24 (6): 118–123.
2. Kolda, Tamara G.; Bader, Brett W. (2009-08-06). "Tensor Decompositions and Applications"
(http://epubs.siam.org/doi/10.1137/07070111X). SIAM Review. 51 (3): 455–500.
Bibcode:2009SIAMR..51..455K (https://ui.adsabs.harvard.edu/abs/2009SIAMR..51..455K).
doi:10.1137/07070111X (https://doi.org/10.1137%2F07070111X). ISSN 0036-1445 (https://
www.worldcat.org/issn/0036-1445). S2CID 16074195 (https://api.semanticscholar.org/Corpu
sID:16074195).
3. Sidiropoulos, Nicholas D.; De Lathauwer, Lieven; Fu, Xiao; Huang, Kejun; Papalexakis,
Evangelos E.; Faloutsos, Christos (2017-07-01). "Tensor Decomposition for Signal
Processing and Machine Learning" (https://ieeexplore.ieee.org/document/7891546). IEEE
Transactions on Signal Processing. 65 (13): 3551–3582. arXiv:1607.01668 (https://arxiv.org/
abs/1607.01668). Bibcode:2017ITSP...65.3551S (https://ui.adsabs.harvard.edu/abs/2017ITS
P...65.3551S). doi:10.1109/TSP.2017.2690524 (https://doi.org/10.1109%2FTSP.2017.26905
24). ISSN 1053-587X (https://www.worldcat.org/issn/1053-587X). S2CID 16321768 (https://a
pi.semanticscholar.org/CorpusID:16321768).
4. Bernardi, A.; Brachat, J.; Comon, P.; Mourrain, B. (2013-05-01). "General tensor
decomposition, moment matrices and applications" (https://www.sciencedirect.com/science/
article/pii/S0747717112001290). Journal of Symbolic Computation. 52: 51–71.
arXiv:1105.1229 (https://arxiv.org/abs/1105.1229). doi:10.1016/j.jsc.2012.05.012 (https://doi.
org/10.1016%2Fj.jsc.2012.05.012). ISSN 0747-7171 (https://www.worldcat.org/issn/0747-71
71). S2CID 14181289 (https://api.semanticscholar.org/CorpusID:14181289).
5. Rabanser, Stephan; Shchur, Oleksandr; Günnemann, Stephan (2017). "Introduction to
Tensor Decompositions and their Applications in Machine Learning". arXiv:1711.10781 (http
s://arxiv.org/abs/1711.10781) [stat.ML (https://arxiv.org/archive/stat.ML)].
6. Papalexakis, Evangelos E. (2016-06-30). "Automatic Unsupervised Tensor Mining with
Quality Assessment" (https://epubs.siam.org/doi/10.1137/1.9781611974348.80).
Proceedings of the 2016 SIAM International Conference on Data Mining. Society for
Industrial and Applied Mathematics: 711–719. arXiv:1503.03355 (https://arxiv.org/abs/1503.0
3355). doi:10.1137/1.9781611974348.80 (https://doi.org/10.1137%2F1.9781611974348.80).
ISBN 978-1-61197-434-8. S2CID 10147789 (https://api.semanticscholar.org/CorpusID:1014
7789).
7. Vasilescu, M.A.O.; Terzopoulos, D. (2002). Multilinear Analysis of Image Ensembles:
TensorFaces (http://www.cs.toronto.edu/~maov/tensorfaces/Springer%20ECCV%202002_fil
es/eccv02proceeding_23500447.pdf) (PDF). Lecture Notes in Computer Science;
(Presented at Proc. 7th European Conference on Computer Vision (ECCV'02),
Copenhagen, Denmark). Vol. 2350. Springer, Berlin, Heidelberg. doi:10.1007/3-540-47969-
4_30 (https://doi.org/10.1007%2F3-540-47969-4_30). ISBN 978-3-540-43745-1.
8. Gujral, Ekta; Pasricha, Ravdeep; Papalexakis, Evangelos E. (7 May 2018). Ester, Martin;
Pedreschi, Dino (eds.). "SamBaTen: Sampling-based Batch Incremental Tensor
Decomposition". Proceedings of the 2018 SIAM International Conference on Data Mining.
doi:10.1137/1.9781611975321 (https://doi.org/10.1137%2F1.9781611975321). ISBN 978-1-
61197-532-1. S2CID 21674935 (https://api.semanticscholar.org/CorpusID:21674935).
9. Gujral, Ekta; Papalexakis, Evangelos E. (9 October 2020). "OnlineBTD: Streaming
Algorithms to Track the Block Term Decomposition of Large Tensors". 2020 IEEE 7th
International Conference on Data Science and Advanced Analytics (DSAA). pp. 168–177.
doi:10.1109/DSAA49011.2020.00029 (https://doi.org/10.1109%2FDSAA49011.2020.0002
9). ISBN 978-1-7281-8206-3. S2CID 227123356 (https://api.semanticscholar.org/CorpusID:2
27123356).
10. Gujral, Ekta (2022). "Modeling and Mining Multi-Aspect Graphs With Scalable Streaming
Tensor Decomposition". arXiv:2210.04404 (https://arxiv.org/abs/2210.04404) [cs.SI (https://ar
xiv.org/archive/cs.SI)].
11. Vasilescu, M.A.O.; Kim, E. (2019). Compositional Hierarchical Tensor Factorization:
Representing Hierarchical Intrinsic and Extrinsic Causal Factors. In The 25th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD’19): Tensor Methods for
Emerging Data Science Challenges. arXiv:1911.04180 (https://arxiv.org/abs/1911.04180).
12. De Lathauwer, Lieven (2008). "Decompositions of a Higher-Order Tensor in Block Terms—
Part II: Definitions and Uniqueness" (http://epubs.siam.org/doi/10.1137/070690729). SIAM
Journal on Matrix Analysis and Applications. 30 (3): 1033–1066. doi:10.1137/070690729 (htt
ps://doi.org/10.1137%2F070690729).
13. Vasilescu, M.A.O.; Kim, E.; Zeng, X.S. (2021), "CausalX: Causal eXplanations and Block
Multilinear Factor Analysis", Conference Proc. of the 2020 25th International Conference on
Pattern Recognition (ICPR 2020), pp. 10736–10743, arXiv:2102.12853 (https://arxiv.org/abs/
2102.12853), doi:10.1109/ICPR48806.2021.9412780 (https://doi.org/10.1109%2FICPR4880
6.2021.9412780), ISBN 978-1-7281-8808-9, S2CID 232046205 (https://api.semanticscholar.
org/CorpusID:232046205)
14. Gujral, Ekta; Pasricha, Ravdeep; Papalexakis, Evangelos (2020-04-20). "Beyond Rank-1:
Discovering Rich Community Structure in Multi-Aspect Graphs" (https://dl.acm.org/doi/10.11
45/3366423.3380129). Proceedings of the Web Conference 2020. Taipei Taiwan: ACM:
452–462. doi:10.1145/3366423.3380129 (https://doi.org/10.1145%2F3366423.3380129).
ISBN 978-1-4503-7023-3. S2CID 212745714 (https://api.semanticscholar.org/CorpusID:212
745714).

Retrieved from "https://en.wikipedia.org/w/index.php?title=Tensor_decomposition&oldid=1166536543"

You might also like