Optimization of Cost and Emission For Dynamic Load Dispatch Problem With Hybrid Renewable Energy Sources
Optimization of Cost and Emission For Dynamic Load Dispatch Problem With Hybrid Renewable Energy Sources
https://doi.org/10.1007/s00500-023-08584-0   (0123456789().,-volV)(0123456789().
                                                                            ,- volV)
OPTIMIZATION
Abstract
In the power system, the economic dispatch (ED) problem is the key issue, while fossil fuels cause environmental
pollution. The allocation of power generation is included in the actual economic load dispatch issue of power generation
for reducing the operating cost. This creates the economic load dispatch issue, a large-scale, highly nonlinear controlled
optimization issue. The major issue in the power systems is the loss, fuel cost, and emission. The existing algorithms can
optimize the parameters mentioned above, but it is not much better. Hence, this paper presents the multi-objective multi-
verse optimization (MOMVO) for the dynamic load dispatch problem. The dynamic load dispatch issue is evaluated by
cost and emission evaluation with hybrid renewable energy Sources (RES). Here, the proposed algorithm generates the
thermal, photovoltaic (PV) and wind power values, reducing the cost and emission values. The unit’s power generation is
the foremost aim of dynamic economic load dispatch (DELD) to meet the load demand while sustaining various opera-
tional constrictions; the generation’s total cost is reduced. The MVO algorithm is applied to nonlinear DELD issues and is
a reliable and robust optimization algorithm. The introduced scheme is implemented and tested over three test systems,
such as 6, 10, and 11 generating units. The implementation is performed on the MATLAB R2016a platform, and the
performance results are evaluated based on with and without valve-point loading (VPL). Finally, VPL produced better
solutions than the without VPL case.
Keywords Emission Economic load dispatch MOMVO algorithm Fuel cost Generation units Fuel cost coefficients
                                                                                                                                         123
                                                                                                                             S. Acharya et al.
Lagrangian relaxation (LR) approach was used in the             Table 1 List of parameters
computationally more efficient approach, which was very         Symbols                 Parameters
grateful to the power generation industry. Different
approaches are introduced to resolve the reserve-con-           Vi or V~i               Generator unity’s fuel cost
strained ED issue with a forbidden operating zone (Nari-        mi ; ni ; and oi        Cost coefficients
mani et al. 2018). An efficient Tabu Search (TS) (Joshi         pi and qi               Valve-point loading coefficients
2017) is developed to eliminate the SCED issue. To              Xi                      Generating power
overcome the SCED issue, the exact procedure can be             XD                      The total demand for the system
employed. Here, the problems are subjected to the equiv-        XL                      Losses in total line
alence constraints of power balance, limits on the MVA          Ximin     and   Ximax   Generating the unit i’s maximum and minimum
line flow, and the active power creations as the disparity                               operation output
limits related to the contingency and base case states. TS is   Pthermal ðtÞ            The output power of thermal
a metaheuristic algorithm and is used to search the solution    Ps ðtÞ                  Solar power unit
space without entrapping into a local optimum using some        t                       Dispatch period
strategies for managing a local approach. The GWO               bij ; b0i and b00       Loss coefficient
algorithm was utilized for the non-convex solution and          Ftotal                  Minimized total operating cost
electric power system’s DELD issue (Kamboj et al. 2017).        Ffuel ðPi Þ             Generator’s fuel cost
    In previous studies, the load dispatch problems are         Eemission ðPi Þ         Generator’s emission
addressed by many other solutions, such as the Newton           Pi                      Generator’s output power
Raphson method (Chen et al. 2018), Analytical methods           N                       Total generators
(Pandey et al. 2019), and a Lagrangian method (Tang et al.      h                       A penalty factor of price
2019) are the initial schemes. The artificial immune system     hi                      Climbing order
(Aragón et al. 2019), simulated annealing (Ziane et al.        di ; gi                 Valve point effect emission coefficients
2017), frog algorithm (Anita and Raglend 2015), differ-         Icost                   Investment costs
ential evolution (Pandit et al. 2015), genetic algorithm        Mcost                   Maintenance costs
(Yeh et al. 2020) and particle swarm optimization (PSO)         N                       Investment lifetime
(Al-Rubayi et al. 2020) are the evolutionary methods for        R                       Interest rate
addressing the load dispatch issue. To get an economic
                                                                Ps                      Solar power
power flow with the optimum costs, the PSO-SIL algorithm
                                                                q                       Density of air
is introduced in Dong et al. (2023). There are many
                                                                Cp                      Wind power coefficient
advanced attempts to face the emission load dispatch
                                                                Sw                      Wind turbine blade’s swept area
(EELD) issue to reduce pollution control and generation
                                                                Vw                      Speed of the wind
costs simultaneously. The ELD problem is solved by
                                                                ristart ðtÞ             Start-up ramp rate
employing many optimization strategies, namely linear
                                                                Ui ðtÞ                  Start-up state variable
programming (LP), classical, quadratic programming (QP),
                                                                Vi ðtÞ                  State variable of the shut-down process
and nonlinear programming (NLP) (Abbas et al. 2017). The
list of parameters used in this work is explained in Table 1.   rishut ðtÞ              Ramp rate shut-down
    The foremost contribution of this research is given         m                       Number of parameters
below:                                                          n                       Number of universes
                                                                Pm
                                                                 n                      Element of the matrix G
• The optimal power creation of the units is the foremost       r 2 ½0; 1              Random number in uniform
  objective of DELD for getting load demand. Hence the          WEP and TDR             Coefficients
  total generation cost is reduced while sustaining             R2 ; R3 ; and R4        Random numbers
  different operational constraints.
                                                                UBj                     jth variable’s upper bound
• Simultaneously, the DELD reduces emission dispersion
                                                                Pj                      jth parameter of the best universe
  objectives and the total cost of thermal generating units.
                                                                LBj                     A lower bound of jth variable
  Besides, wind power is combined with the grid to
                                                                min and max             Constants
  minimize the objectives and generate demand.
                                                                q                       Current iteration
• The increasing rate of the generation units makes the
                                                                Q                       Maximum iterations
  cost high, making the system lose and emission. This
                                                                D                       Number of objects
  can be optimized by the MOMVO algorithm, which is a
                                                                N                       Number of universes
  reliable and robust optimization algorithm and is
  illustrated in the nonlinear DELD issues.                     L                       High iterations
123
Optimization of cost and emission for dynamic load dispatch problem with...
                                                                                                              Analysis
                                                                                                   •   With valve point effect
                                                                                                   •   Without valve point
                                                                                                       effect
                                                                                                   •   Thermal generating
                                                                                                       units
            Considerations                                                                         •   PV, wind turbine and
        •   Fuel cost                                        Constraints                               thermal generating unit
        •   Emission                                   •   Ramp rate limit
        •   Solar cost function                        •   Shut-down and start-
        •   Turbine cost                                   up constraint
            function                                   •   Prohibited operating
        •   Start-up and shut-                             zones                                            Parameters
            down cost                                                                                  •   Transmission loss
                                                                                                       •   Power generation
                                                                                                       •   Emission cost
                                                                                                       •   Fuel cost
                                                                                                       •   Total cost
   Research organization: The remaining structure of this                disturbance updating method, a moth-flame optimization
research paper is organized as follows: Sect. 2 discussed                algorithm was developed, which aimed at high-dimen-
the recent related works review. Next, Sect. 3 gives the                 sional, nonlinear and non-convex characteristics of
proposed methodology, which includes the MOMVO                           HDEED issues. Second, the mathematical model of
algorithm, Sect. 4 gives the results and discussion, and                 HDEED was constructed based on the RES like solar, wind
Sect. 5 gives the overall conclusion.                                    and thermal energy.
                                                                            Ishraque et al. (2021) designed an islanded hybrid
                                                                         microgrid by assessing different cost analyses, power sys-
2 Recent related works: a review                                         tem responses and optimal component sizing for various
                                                                         load dispatch strategies. Four islanded hybrid microgrids
Some of the recent techniques related to the economic load               were designed using wind, solar, diesel generator and
dispatch problem are listed below                                        battery for optimal resource planning and reliable opera-
    To resolve the Combined Economic Emission Dispatch                   tion. The five dispatch methods were HOMER predictive
(CEED) with RES, Nagarajan et al. (2022) presented an                    dispatch method, load following, combined dispatch, gen-
improved mayfly optimization algorithm (IMA). Here,                      erator order and cycle charging. The microgrids were
wind and solar power were considered as cost functions.                  optimized to reduce the levelized cost of energy, CO2
The cost optimization method was examined to reduce the                  emission and Net present cost.
emission level and operational cost while satisfying the                    The greenhouse gas emission was reduced with the help
microgrid load demand. A novel IMA combined Levy                         of plug-in EVs and RESs. Ten units thermal system was
flight to solve CEED issues encountered in microgrids. In a              rigorously analyzed along with plug-in EVs and RESs for
microgrid, the IMA was validated for its supremacy and                   dynamic CEED; moreover, the integrated system efficiency
efficiency under varying conditions. The minimization of                 was investigated. Behera et al. (2022) presented a fuzzy
emissions and the total cost were attained for different                 decision-making method for solving multi-objective CEED
scenarios.                                                               issues. The fuzzy decision-making method was tuned with
    The mathematical model of RES-based hybrid dynamic                   the help of a constriction factor-based particle swarm
economic emission dispatch (HDEED) was constructed,                      optimization algorithm in ten-unit thermal generators with
and the enhanced moth-flame optimization algorithm was                   RESs and plug-in EVs. The optimal dynamic CEED
proposed by Liu et al. (2021). Based on the position
                                                                                                                          123
                                                                                                             S. Acharya et al.
                                                                          No                  Is Maximum
                                                                                                 iteration
                                                                                                      Yes
                                                                                      Display the best optimal
                                                                                        solution and system
                                                                                     specification determination
End
problem outcomes were improved further using solar             3 Proposed methodology: formulation
power, wind power and plug-in EVs.                               of emission and DELD problems
   Hazra et al. (2021) investigated the effectiveness of the
Grasshopper Optimization Algorithm (GOA) in the ELD            Solar PV and wind are typically uncertain power sources
operation for minimizing the total cost of a 30-bus test       on the source side, affected by weather conditions. There is
system. Minimizing the total cost was considered the main      a large number of other uncertainties in modern renewable
objective of evaluating the system’s performance. The          energy sources, like uncertainties of source through a
underestimation and overestimation cases were included         transmission line, air conditioning load and leading to
for the uncertain nature of wind power availability. To        power flow uncertainty. The electrical power market has
obtain an optimal solution, the GOA method requires fewer      become more inexpensive since the last eras. The optimal
iterations.                                                    power generation that survives the environment minimizes
123
Optimization of cost and emission for dynamic load dispatch problem with...
Table 2 Parameters setting of MOMVO algorithm                            generating units controlled the fluctuation to regain the
Parameters                                                    Values
                                                                         balance constraint. The power dispatch issue further com-
                                                                         plicated pollution reduction in environmental dispatch in
Maximum number of archive elements                            15         addition to minimizing fuel costs and total power loss. The
z                                                             6          optimized model minimized the total cost, fuel cost and
Min                                                           0.2        pollutant emission. Several algorithms optimized the
Max                                                           1          environmental/economic dispatch issue because of its
Maximum number of iterations                                  200        complexity.
Number of universes                                           50
                                                                         3.1 Mathematical model of EELD/CEED Issues
the total cost. The main aim was to minimize the total cost              Without violating any power system constraints, mini-
of generation while sustaining the operational constraints.              mizing the total fuel cost at thermal power plants is the
In various existing workings, algorithms have been dis-                  foremost goal of EELD. Without VPE and with VPE are
cussed to solve the problem, even making the system                      the two types of EELD issues studied in this paper, which
expensive. But the proposed system can better eliminate                  are expressed below,
problems like emission and fuel costs. Figure 1 gives the
                                                                              Xn             X
                                                                                             n                      
considerations and measures of the proposed method.                      min     Vi ð Xi Þ ¼     mi Xi2 þ ni Xi þ oi
   DELD simultaneously reduces the aim of emission                              i¼1                  i¼1
dispersion and the total cost of thermal generating units.                      X                   X                            
                                                                                n                   n                                               
With the grid, wind power is integrated to aid this process               min         V~i ðXi Þ ¼          mi Xi2 þ ni Xi þ oi þ pi sin qi Ximin  P 
to minimize the objectives and meet the demand. The                             i¼1                 i¼1
                                                                                                                                              123
      S. Acharya et al.
123
   Optimization of cost and emission for dynamic load dispatch problem with...
b Fig. 3 The total generated power of thermal units (a), (c), (e) 6, 10,               Here Ftotal represents the minimized total operating cost,
   and 11 generation units without VPL, (b), (d), (f) 6, 10, and 11                 Ffuel ðPi Þ represents the generator’s fuel cost in ($/h),
   generation units with VPL for case 1
                                                                                    Eemission ðPi Þ denotes the generator’s emission in ($/h), Pi
                                                                                    represents the generator’s output power, the total genera-
                                                                                    tors are represented as N and h indicates the penalty factor
   valve-point loading coefficients are indicated as pi and qi ,
                                                                                    of price, $/lb ($/kg), which is evaluated by Eq. (6),
   the generating power is represented as Xi (in MW) and n                                               max
   represents the overall generators quantity. Besides satis-                               Ffuel Pmaxi     Pi
                                                                                    hi ¼                         ; i ¼ 1; 2; 3; . . .; 24     ð6Þ
   fying the two types of necessities, such as inequality and                              Eemission ðPi Þ=Pmax
                                                                                                        max
                                                                                                               i
   equality constraints given by,
                                                                                       The values hi are organized in climbing order. Each
   X
   n
                                                                                    generating unit’s maximum capacity is added one at a time,
         Xi  X L  XD ¼ 0
                                                                                    initiating from the unit taking the minimum hi until
   i¼1                                                                              P max
                                                                                        Pi  Pdemand . hi represents the price penalty factor
   Ximin  Xi  Ximax                                                         ð2Þ   associated with the last unit for the given load.
       The total demand of the system is represented as XD , the                       The total emission can be formulated by inserting the
   losses in total line are represented as XL (in MW); the                          VPL effect can be expressed as Eq. (7),
   generating unit i’s maximum and minimum operation                                                    M X
                                                                                                        X N                                        
                                                                                    Eemission ðPi Þ ¼             ai P2i þ bi Pi þ ci þ g exp dPi       ðlb=hrÞ
   output is indicated as Ximin and Ximax respectively. Then the
                                                                                                        m¼1 i¼1
   output power of thermal Pthermal ðtÞ and solar power units
                                                                                                                                                           ð7Þ
   Ps ðtÞ is determined as Pi ðtÞ, which is described in Eq. (3),
   X
   N                                                                                   Here, Eemission ðPi Þ is the total emission with the valve
                                                                                                                                    
         Pi ðtÞ ¼ Ps ðtÞ þ Pthermal ðtÞ                                       ð3Þ   point effect ai ðkg=hÞ; bi ðkg=MWhÞ and ci ðkg MW2 hÞ are
   i¼1                                                                              the coefficients of emission for the generator i and di ; gi are
      Here, Pdemand ðtÞ and Ploss ðtÞ represents the system load                    described as the valve point effect emission coefficients of
   demand and loss of transmission network for the dispatch                         jth the generating unit.
   period t, respectively. A power flow computation is utilized
   to evaluate the transmission power losses. A mutual prac-                        3.1.1 Solar power sources cost function
   tice is to imprecise the overall transmission losses through
   a simplified linear formula or as a power output’s quadratic                     Based on the DELD solution, the rest of the load demand is
   function of the generating units called Kron’s loss for                          distributed over the conventional generators. The following
   abruption and simplification of the issue. The b-coefficients                    Eq. (8) describes the solar power cost function as,
                                                                                                                                 !
   are utilized to express the transmission loss as Eq. (4),                                              r
                    N X
                    X N                               X
                                                      N                             Scost ðPs Þ ¼                   Icost þ Mcost Ps        ð8Þ
                                                                                                  ½1  ð1 þ r ÞN 
   Ploss ðP; tÞ ¼              Pi ðtÞ:bij :Pj ðtÞ þ         b0i :Pi ðtÞþb00
                     i¼1 j¼1                          i¼1
                                                                                        Here, Icost and Mcost indicates the investment and
                                                                              ð4Þ   maintenance costs per unit installed power ($/kW),
                                                                                    respectively, N indicates the investment lifetime, r repre-
      Here, bij ; b0i and b00 are the elements of the loss
                                                                                    sents the interest rate, and the solar power is represented as
   coefficient. During the dispatch procedure, b matrix coef-
                                                                                    Ps .
   ficients are constant. When the original operating settings
                                                                                        Uncertainty modeling of solar
   adjacent to coefficients were computed, reasonable accu-
                                                                                        The Weibull probability distribution function is used for
   racy was evaluated. The power flow program must be run
                                                                                    modeling the solar PV system, which is expressed as
   in advance to regulate the b-coefficients.
                                                                                    follows,
      The main objective of the EELD/CEED issue is to                                                                 "   #
                                                                                                   k1 1
   reduce the total emission and generation cost of the power                                     k1     G                  G k1
   system inside a defined time duration; it can be expressed                       fG ðGÞ ¼ x                    exp 
                                                                                                  c1     c1                 c1
   as Eq. (5),                                                                                              k2 1          "   #
                                                                                                             k2    G                 G k2
              X
              N                                                                               þ ð1  xÞ                    exp             0
                                                                                                             c2   c2                 c2
   Ftotal ¼         Ffuel ðPi Þ þ ðh  Eemission ðPi ÞÞ                       ð5Þ
              i¼1                                                                          G1
                                                                                                                                                           ð9Þ
                                                                                                                                                123
123
      Table 4 The analysis of with VPL effect presence in 6 generating units
      Time     Generation schedule                                                     Total Generated power   Load demand   Power loss   With VPL
      (h)                                                                              (MW)                    (MW)          (MW)
               P1 (MW)    P2 (MW)    P3 (MW)      P4 (MW)     P5 (MW)      P6 (MW)                                                        Fuel cost   Emission cost   Total cost
                                                                                                                                          ($/h)       (lb/h)          ($/h)
      1        28.62047   57.24095    85.86142    114.48190   143.10238    171.72285    603.1703               598           5.17028      3785.212    1890.541         5675.752
      2        28.71476   57.42952    86.14428    114.85904   143.5738     172.28857    605.2425               600           5.24254      3787.898    1896.379         5684.277
      3        29.14595   58.29190    87.43785    116.58381   145.72976    174.87571    614.3273               609           5.32728      3790.537    1980.769         5771.306
      4        31.68285   63.36571    95.04857    126.73142   158.41428    190.09714    667.6853               662           5.68528      4238.482    2075.53          6314.012
      5        32.21023   64.42047    96.63071    128.84095   161.0511     193.26142    678.7455               673           5.74548      4298.168    2106.959         6405.127
      6        32.54333   65.08666    97.63       130.17333   162.71666    195.26       685.7865               680           5.78654      4349.336    2122.893         6472.228
      7        33.83547   67.67095   101.5064     135.34190   169.17738    203.01285    712.9599               707           5.95988      4528.695    2221.193         6749.888
      8        34.79309   69.58619   104.3792     139.17238   173.96547    208.75857    733.115                727           6.11498      4689.372    2267.036         6956.409
      9        35.17690   70.35380   105.5307     140.70761   175.88452    211.06142    741.1881               735           6.1881       4740.592    2297.253         7037.845
      10       35.56023   71.12047   106.6807     142.24095   177.80119    213.36142    749.2962               743           6.29617      4792.755    2305.499         7098.254
      11       35.84690   71.69380   107.5407     143.38761   179.23452    215.08142    755.3211               749           6.32114      4836.336    2325.806         7162.142
      12       35.94214   71.88428   107.8264     143.76857   179.71071    215.65285    757.3587               751           6.35874      4836.74     2360.476         7197.217
      13       36.08619   72.17238   108.2585     144.34476   180.43095    216.51714    760.3971               754           6.39713      4842.951    2360.784         7203.734
      14       36.37238   72.74476   109.1171     145.48952   181.86190    218.23428    766.4278               760           6.42776      4903.709    2361.959         7265.668
      15       37.23523   74.47047   111.7057     148.94095   186.17619    223.41142    784.6141               778           6.61406      5046.415    2434.913         7481.329
      16       37.85595   75.71190   113.5678     151.42381   189.27976    227.13571    797.6586               791           6.65864      5173.387    2456.766         7630.153
      17       39.62809   79.25619   118.8842     158.51238   198.14047    237.76857    834.9333               828           6.9333       5356.825    2594.641         7951.466
      18       40.77523   81.55047   122.3257     163.10095   203.87619    244.65142    859.1256               852           7.12564      5530.275    2655.627         8185.902
      19       44.17357   88.34714   132.5207     176.69428   220.86785    265.04142    930.4891               923           7.48912      5998.392    2879.839         8878.231
      20       44.31761   88.63523   132.9528     177.27047   221.58809    265.90571    933.567                926           7.56697      6022.407    2908.991         8931.398
      21       45.13166   90.26333   135.395      180.52666   225.65833    270.79       950.655                943           7.65501      6133.274    2952.275         9085.55
      22       45.65619   91.31238   136.9685     182.62476   228.28095    273.93714    961.7093               954           7.70929      6195.564    3002.106         9197.67
      23       45.89785   91.79571   137.6935     183.59142   229.48928    275.38714    966.8022               959           7.80225      6235.975    3002.983         9238.958
      24       49.77380   99.54761   149.3214     199.09523   248.86904    298.64285   1048.243                1040          8.24318      6766.352    3267.492        10,033.84
                                                                                                                                                                                   S. Acharya et al.
      Table 5 The analysis of without VPL effect presence in 6 generating units
      Time     Generation schedule                                                     Total Generated power   Load demand   Power loss   Without VPL
      (h)                                                                              (MW)                    (MW)          (MW)
               P1 (MW)      P2 (MW)    P3 (MW)      P4 (MW)     P5 (MW)     P6 (MW)                                                       Fuel cost     Emission cost   Total cost
                                                                                                                                          ($/h)         (lb/h)          ($/h)
      1        28.618762    57.2375      85.85628   114.47505   143.0938    171.7125    601.6243               598           3.624253     3784.319      1868.113         5652.432
      2        28.714321    57.42864     86.14296   114.85728   143.5716    172.2859    603.7014               600           3.701371     3784.882      1869.472         5654.354
      3        29.145114    58.29022     87.43534   116.58045   145.7255    174.8706    612.7452               609           3.745245     3784.968      1869.985         5654.953
      4        31.681487    63.36297     95.04446   126.72594   158.4074    190.0889    666.0156               662           4.015565     4211.015      2048.604         6259.619
      5        32.207944    64.41588     96.62383   128.83177   161.0397    193.2476    677.1472               673           4.147173     4298.054      2104.535         6402.589
      6        32.5429714   65.08594     97.62891   130.17188   162.7148    195.2578    684.1921               680           4.192058     4322.214      2110.489         6432.703
      7        33.8351987   67.67039   101.5055     135.34079   169.1759    203.0111    711.3365               707           4.336514     4526.918      2220.886         6747.804
      8        34.7921665   69.58433   104.3764     139.16866   173.9608    208.7529    731.4632               727           4.463237     4643.714      2267.023         6910.737
      9        35.1754298   70.35085   105.5262     140.70171   175.8771    211.0525    739.5347               735           4.534711     4729.432      2295.635         7025.067
      10       35.5583070   71.11661   106.6749     142.23322   177.7915    213.3498    747.5769               743           4.576866     4755.208      2305.293         7060.501
      11       35.8452337   71.69046   107.5357     143.38093   179.2261    215.0714    753.6163               749           4.616299     4815.259      2323.496         7138.754
                                                                                                                                                                                     Optimization of cost and emission for dynamic load dispatch problem with...
      12       35.9409472   71.88189   107.8228     143.76378   179.7047    215.6456    755.6593               751           4.659308     4816.613      2360.373         7176.986
      13       36.0844465   72.16889   108.2533     144.33778   180.4222    216.5066    758.6785               754           4.67853      4817.761      2360.716         7178.477
      14       36.3718571   72.74371   109.1155     145.48742   181.8592    218.2311    764.7605               760           4.760497     4833.055      2361.532         7194.587
      15       37.2330329   74.46606   111.6990     148.93213   186.1651    223.3981    782.8563               778           4.856267     5009.998      2432.459         7442.456
      16       37.8550529   75.71010   113.5651     151.42021   189.2752    227.1303    795.9429               791           4.942851     5132.039      2456.266         7588.305
      17       39.6260858   79.25217   118.8782     158.50434   198.1304    237.7565    833.1317               828           5.131747     5333.02       2592.256         7925.276
      18       40.7744713   81.54894   122.3234     163.09788   203.8723    244.6468    857.274                852           5.274037     5509.402      2655.411         8164.813
      19       44.1722579   88.34451   132.5167     176.68903   220.8612    265.0335    928.6333               923           5.633265     5945.762      2878.957         8824.719
      20       44.3159066   88.63181   132.9477     177.26362   221.5795    265.8954    931.6612               926           5.661219     5971.105      2908.425         8879.53
      21       45.1293316   90.25866   135.3879     180.51732   225.6466    270.7759    948.8109               943           5.810896     6110.893      2950.29          9061.183
      22       45.6557771   91.31155   136.9673     182.62310   228.2788    273.9346    959.8766               954           5.876563     6176.609      2979.723         9156.332
      23       45.8954486   91.79089   137.6863     183.58179   229.4772    275.3726    964.9102               959           5.91021      6178.401      2984.472         9162.873
      24       49.7718838   99.54376   149.3156     199.08753   248.8594    298.6313   1046.373                1040          6.372944     6759.506      3267.203        10,026.71
123
123
      Table 6 The analysis of with VPL effect presence in 10 generating units
      Time    Generation schedule                                                                                                    Total       Load     Power    With VPL
      (h)                                                                                                                            Generated   demand   loss
              P1         P2         P3          P4 (MW)      P5          P6          P7          P8          P9          P10         power       (MW)     (MW)     Fuel       Emission      Total
              (MW)       (MW)       (MW)                     (MW)        (MW)        (MW)        (MW)        (MW)        (MW)        (MW)                          cost ($/   cost (lb/h)   cost ($/
                                                                                                                                                                   h)                       h)
      1       16.40751   32.81503    49.22254    65.63006     82.03757    98.44509   114.8526    131.2601    147.6676    164.0751     902.47     900      2.4700   5822.29    2879.31        8701.617
      2       20.24436   40.48873    60.73310    80.977472   101.22184   121.46620   141.71057   161.95494   182.19931   202.44368   1113.434    1110     3.4337   7218.49    3602.44       10,820.94
      3       21.59686   43.19373    64.79059    86.387465   107.98433   129.58119   151.17806   172.77493   194.37179   215.96866   1187.814    1184     3.8143   7717.70    3850.95       11,568.65
      4       22.94770   45.89541    68.84311    91.790821   114.73852   137.68623   160.63393   183.58164   206.52934   229.47705   1262.173    1258     4.1732   8201.48    4072.24       12,273.73
      5       24.29756   48.59512    72.89268    97.190243   121.48780   145.78536   170.08292   194.38048   218.67804   242.97560   1336.526    1332     4.5261   8729.69    4346.75       13,076.45
      6       25.65190   51.30381    76.95572   102.60763    128.25954   153.91145   179.56336   205.21527   230.86718   256.51908   1410.77     1406     4.7701   9205.96    4568.54       13,774.5
      7       27.00262   54.00525    81.00788   108.01051    135.01314   162.01577   189.01840   216.02103   243.02366   270.02629   1485.122    1480     5.1221   9632.32    4788.76       14,421.09
      8       26.99965   53.99930    80.99896   107.99861    134.99826   161.99792   188.99757   215.99722   242.99688   269.99653   1485.146    1480     5.1456   9645.73    4789.98       14,435.72
      9       27.36790   54.73580    82.10370   109.47161    136.83951   164.20741   191.57532   218.94322   246.31112   273.67903   1505.226    1500     5.2261   9846.08    4835.28       14,681.37
      10      28.34981   56.69963    85.04945   113.39926    141.74908   170.09890   198.44872   226.79853   255.14835   283.49817   1559.33     1554     5.3302   10,182.2   5036.58       15,218.82
      11      29.70203   59.40407    89.10611   118.80815    148.51019   178.21223   207.91427   237.61631   267.31835   297.02039   1633.64     1628     5.6395   10,672.3   5249.28       15,921.6
      12      29.70160   59.40320    89.10481   118.80641    148.50801   178.20962   207.91122   237.61283   267.31443   297.01603   1633.695    1628     5.6953   10,673.8   5266.85       15,940.72
      13      31.12822   62.25645    93.38468   124.51291    155.64113   186.76936   217.89759   249.02581   280.15404   311.28227   1712.121    1706     6.1212   11,218.2   5544.86       16,763.06
      14      32.40586   64.81173    97.21760   129.62346    162.02933   194.43520   226.84107   259.24693   291.65280   324.05867   1782.149    1776     6.1489   11,649.0   5751.74       17,400.78
      15      32.40271   64.80543    97.20814   129.61086    162.01358   194.4163    226.81901   259.22173   291.62445   324.02716   1782.248    1776     6.2480   11,674.9   5767.26       17,442.19
      16      32.40399   64.80798    97.21197   129.61596    162.01996   194.42395   226.82794   259.23193   291.63592   324.03992   1782.291    1776     6.2912   11,679.6   5768.95       17,448.62
      17      35.10852   70.21704   105.3255    140.43408    175.54260   210.65112   245.75964   280.86816   315.97668   351.08520   1930.78     1924     6.7802   12,613     6240.37       18,853.38
      18      35.10724   70.21448   105.3217    140.42896    175.53620   210.64344   245.75068   280.85792   315.96516   351.07240   1930.938    1924     6.9382   12,621.6   6243.15       18,864.78
      19      35.10617   70.21235   105.3185    140.4247     175.5308    210.63705   245.74323   280.84941   315.95558   351.06176   1930.94     1924     6.9401   12,642.6   6245.46       18,888.08
      20      37.80775   75.61550   113.4232    151.2310     189.0387    226.8465    264.6542    302.4620    340.2697    378.0775    2079.441    2072     7.4409   13,590.7   6750.82       20,341.54
      21      37.80811   75.61622   113.4243    151.2324     189.0405    226.8486    264.6568    302.4649    340.2730    378.0811    2079.448    2072     7.4483   13,593.9   6755.89       20,349.81
      22      37.80868   75.61736   113.4260    151.2347     189.0434    226.8520    264.6607    302.4694    340.2781    378.0868    2079.646    2072     7.6455   13,659.4   6793.20       20,452.6
      23      39.16082   78.32165   117.4824    156.6433     195.8041    234.9649    274.1258    313.2866    352.4474    391.6082    2153.816    2146     7.8159   14,113.5   6980.23       21,093.78
      24      40.51096   81.02193   121.5328    162.0438     202.5548    243.0657    283.5767    324.0877    364.5986    405.1096    2228.103    2220     8.1025   14,637.9   7205.08       21,843.06
                                                                                                                                                                                                        S. Acharya et al.
      Table 7 The analysis of without VPL effect presence in 10 generating units
      Time    Generation schedule                                                                                       Total       Load     Power     With Out VPL
      (h)                                                                                                               Generated   demand   loss
              P1        P2          P3 (MW)    P4 (MW)    P5 (MW)    P6 (MW)    P7        P8        P9        P10       power       (MW)     (MW)      Fuel cost   Emission    Total cost
              (MW)      (MW)                                                    (MW)      (MW)      (MW)      (MW)      (MW)                           ($/h)       cost (lb/   ($/h)
                                                                                                                                                                   h)
      1       16.3721   32.7443      49.1165    65.4887    81.8609    98.2331   114.605   130.977   147.349   163.721    900.4913   900      0.49127    5801.485   2876.047     8677.532
      2       20.2082   40.4164      60.6246    80.8328   101.041    121.249    141.457   161.665   181.873   202.082   1111.503    1110     1.50286    7197.677   3555.777    10,753.45
      3       21.5610   43.1221      64.6832    86.2443   107.805    129.366    150.927   172.488   194.049   215.610   1185.859    1184     1.85927    7696.886   3798.436    11,495.32
      4       22.9124   45.8248      68.7372    91.6497   114.562    137.474    160.387   183.299   206.211   229.124   1260.187    1258     2.18748    8180.671   4045.931    12,226.6
      5       24.2629   48.5258      72.7888    97.0517   121.314    145.577    169.840   194.103   218.366   242.629   1334.365    1332     2.36476    8708.884   4304.73     13,013.61
      6       25.6146   51.2292      76.8438   102.458    128.073    153.687    179.302   204.916   230.531   256.146   1408.887    1406     2.88654    9185.147   4527.868    13,713.01
      7       26.9661   53.9323      80.8985   107.864    134.830    161.797    188.763   215.729   242.695   269.661   1483.091    1480     3.09101    9620.511   4788.641    14,409.15
      8       26.9649   53.9299      80.8949   107.859    134.824    161.789    188.754   215.719   242.684   269.649   1483.109    1480     3.10878    9644.917   4789.268    14,434.19
      9       27.3293   54.6586      81.9879   109.317    136.646    163.975    191.305   218.634   245.963   273.293   1503.176    1500     3.1764     9827.068   4835.182    14,662.25
      10      28.3172   56.6344      84.9516   113.268    141.586    169.903    198.220   226.537   254.855   283.172   1557.417    1554     3.41733   10,161.42   5029.372    15,190.79
                                                                                                                                                                                            Optimization of cost and emission for dynamic load dispatch problem with...
      11      29.6646   59.3293      88.9940   118.658    148.323    177.988    207.652   237.317   266.982   296.646   1631.489    1628     3.48914   10,352.01   5238.067    15,590.07
      12      29.6653   59.3307      88.9961   118.661    148.326    177.992    207.657   237.323   266.988   296.653   1631.738    1628     3.73796   10,668.05   5250.99     15,919.04
      13      31.0917   62.1834      93.2751   124.366    155.458    186.550    217.642   248.733   279.825   310.917   1710.158    1706     4.15846   11,197.38   5517.411    16,714.79
      14      32.3674   64.7348      97.1022   129.469    161.837    194.204    226.572   258.939   291.306   323.674   1780.208    1776     4.2083    11,628.22   5739.561    17,367.79
      15      32.3699   64.7398      97.1097   129.479    161.849    194.219    226.589   258.959   291.329   323.699   1780.335    1776     4.33507   11,638.11   5740.149    17,378.26
      16      32.3648   64.7296      97.0944   129.459    161.824    194.188    226.553   258.918   291.283   323.648   1780.427    1776     4.42678   11,651.85   5746.988    17,398.84
      17      35.0719   70.1439     105.215    140.287    175.359    210.431    245.503   280.575   315.647   350.719   1928.795    1924     4.79546   12,612.19   6220.032    18,832.22
      18      35.0737   70.1474     105.221    140.294    175.368    210.442    245.516   280.589   315.663   350.737   1928.841    1924     4.84131   12,615.81   6220.399    18,836.21
      19      35.0683   70.1367     105.205    140.273    175.341    210.410    245.478   280.547   315.615   350.683   1928.917    1924     4.91669   12,640.8    6222.545    18,863.35
      20      37.7730   75.5461     113.319    151.092    188.865    226.638    264.411   302.184   339.957   377.730   2077.437    2072     5.43664   13,443.9    6695.54     20,139.44
      21      37.7748   75.5496     113.324    151.099    188.874    226.648    264.423   302.198   339.973   377.748   2077.461    2072     5.461     13,546.49   6703.276    20,249.77
      22      37.7720   75.5441     113.316    151.088    188.860    226.632    264.404   302.176   339.948   377.720   2077.493    2072     5.49269   13,656.28   6713.556    20,369.84
      23      39.1263   78.2527     117.379    156.505    195.631    234.758    273.884   313.010   352.137   391.263   2151.821    2146     5.82141   14,092.73   6953.217    21,045.95
      24      40.4750   80.9501     121.425    161.900    202.375    242.850    283.325   323.800   364.275   404.750   2226.152    2220     6.15221   14,617.15   7161.282    21,778.43
123
123
      Table 8 The analysis of with VPL effect presence in 11 generating units
      Time    Generation schedule                                                                                                     Total        Load     Power    With VPL
      (h)                                                                                                                             Generated    demand   loss
              P1        P2       P3          P4          P5          P6         P7         P8         P9         P10        P11       power (MW)   (MW)     (MW)     Fuel cost   Emission    Total
              (MW)      (MW)     (MW)        (MW)        (MW)        (MW)       (MW)       (MW)       (MW)       (MW)       (MW)                                     ($/h)       cost (lb/   cost ($/
                                                                                                                                                                                 h)          h)
      1       19.6288   39.257    58.88645    78.51527    98.14409   117.7729   137.4017   157.0305   176.6593   196.2881   215.917   1079.449     1077     2.4493    6990.073   3485.676    10,475.75
      2       20.9992   41.998    62.99781    83.99709   104.9963    125.9956   146.9949   167.9941   188.9934   209.9927   230.992   1155.448     1152     3.4482    7517.401   3746.346    11,263.75
      3       22.0225   44.045    66.06763    88.09018   110.1127    132.1352   154.1578   176.1803   198.2029   220.2254   242.248   1211.812     1208     3.8115    7890.09    3929.67     11,819.76
      4       22.5707   45.141    67.71218    90.28290   112.8536    135.4243   157.9950   180.5658   203.1365   225.7072   248.278   1242.155     1238     4.1548    8068.779   4003.213    12,071.99
      5       23.3199   46.639    69.95972    93.27963   116.5995    139.9194   163.2393   186.5592   209.8791   233.1990   256.519   1283.576     1279     4.5756    8329.979   4126.453    12,456.43
      6       23.7219   47.443    71.16572    94.88763   118.6095    142.3314   166.0533   189.7752   213.4971   237.2190   260.941   1305.882     1301     4.8823    8522.995   4181.41     12,704.4
      7       23.7401   47.480    71.22054    94.96072   118.7009    142.4410   166.1812   189.9214   213.6616   237.4018   261.142   1307.044     1302     5.0443    8525.184   4182.147    12,707.33
      8       23.8680   47.736    71.60427    95.47236   119.3404    143.2085   167.0766   190.9447   214.8128   238.6809   262.549   1314.146     1309     5.1463    8561.034   4232.072    12,793.11
      9       24.5259   49.051    73.57772    98.10363   122.6295    147.1554   171.6813   196.2072   220.7331   245.2590   269.785   1350.238     1345     5.2378    8801.684   4322.42     13,124.1
      10      24.7269   49.453    74.18072    98.90763   123.6345    148.3614   173.0883   197.8152   222.5421   247.2690   271.996   1361.306     1356     5.3059    8840.655   4362.027    13,202.68
      11      24.8548   49.709    74.56445    99.41927   124.2740    149.1289   173.9837   198.8385   223.6933   248.5481   273.403   1368.651     1363     5.6506    8927.377   4402.9      13,330.28
      12      33.041    66.082    99.123     132.164     165.205     198.246    231.287    264.328    297.369    330.41     363.451   1816.698     1811     5.6983   11,905.72   5855.275    17,761
      13      33.4795   66.959   100.4386    133.9181    167.3977    200.8772   234.3568   267.8363   301.3159   334.7954   368.275   1840.979     1835     5.9792   12,060.87   5927.4      17,988.27
      14      34.0642   68.128   102.1928    136.2570    170.3213    204.3856   238.4499   272.5141   306.5784   340.6427   374.707   1873.351     1867     6.3512   12,273.42   6038.204    18,311.62
      15      34.8317   69.663   104.4951    139.3269    174.1586    208.9903   243.8220   278.6538   313.4855   348.3172   383.149   1915.37      1909     6.3697   12,534.32   6170.154    18,704.47
      16      37.1340   74.268   111.4022    148.5363    185.6704    222.8045   259.9386   297.0727   334.2068   371.3409   408.475   2041.376     2035     6.3760   13,382.6    6609.849    19,992.45
      17      38.4131   76.826   115.2395    153.6527    192.0659    230.4790   268.8922   307.3054   345.7186   384.1318   422.545   2111.853     2105     6.8526   13,878.12   6807.38     20,685.5
      18      39.0161   78.032   117.0485    156.0647    195.0809    234.0970   273.1132   312.1294   351.1456   390.1618   429.178   2144.98      2138     6.9795   14,055.1    6938.323    20,993.42
      19      39.6374   79.274   118.9123    158.5498    198.1872    237.8247   277.4621   317.0996   356.7370   396.3745   436.012   2179.017     2172     7.0171   14,311.75   7030.725    21,342.47
      20      40.7338   81.467   122.2014    162.9352    203.6690    244.4029   285.1367   325.8705   366.6043   407.3381   448.072   2239.642     2232     7.6419   14,723.93   7224.302    21,948.23
      21      42.7620   85.524   128.2862    171.0483    213.8104    256.5725   299.3346   342.0967   384.8588   427.6209   470.383   2350.653     2343     7.6534   15,447.07   7578.856    23,025.93
      22      43.0179   86.035   129.0537    172.0716    215.0895    258.1074   301.1253   344.1432   387.1611   430.1790   473.197   2364.739     2357     7.7388   15,558.43   7636.202    23,194.63
      23      43.0361   86.072   129.1085    172.1447    215.1809    258.2170   301.2532   344.2894   387.3256   430.3618   473.398   2365.827     2358     7.8274   16,583.66   7667.274    24,250.93
      24      45.6309   91.261   136.8927    182.5236    228.1545    273.7854   319.4163   365.0472   410.6781   456.3090   501.94    2508.117     2500     8.1171   16,688.68   8124.152    24,812.84
                                                                                                                                                                                                         S. Acharya et al.
      Table 9 The analysis of without VPL effect presence in 11 generating units
      Time    Generation schedule                                                                                 Total        Load     Power     Without VPL
      (h)                                                                                                         generated    demand   loss
              P1       P2       P3        P4        P5        P6       P7      P8      P9       P10      P11      power (MW)   (MW)     (MW)      Fuel cost   Emission    Total cost
              (MW)     (MW)     (MW)      (MW)      (MW)      (MW)     (MW)    (MW)    (MW)     (MW)     (MW)                                     ($/h)       cost (lb/   ($/h)
                                                                                                                                                              h)
      1       19.625   39.250    58.875    78.500    98.125   117.75   137.37 157.00   176.62   196.25   215.87   1079.376     1077     2.37625    6969.492   3474.477    10,443.97
      2       20.995   41.991    62.986    83.982   104.97    125.97   146.96 167.96   188.96   209.95   230.95   1154.753     1152     2.75321    7496.82    3720.351    11,217.17
      3       22.018   44.037    66.056    88.075   110.09    132.11   154.13 176.15   198.16   220.18   242.20   1211.031     1208     3.03102    7869.509   3904.806    11,774.31
      4       22.566   45.133    67.700    90.267   112.83    135.40   157.96 180.53   203.10   225.66   248.23   1241.186     1238     3.18641    8048.198   3980.82     12,029.02
      5       23.316   46.632    69.948    93.264   116.58    139.89   163.21 186.52   209.84   233.16   256.47   1282.394     1279     3.39413    8309.397   4105.588    12,414.98
      6       23.718   47.436    71.154    94.872   118.59    142.30   166.02 189.74   213.46   237.18   260.89   1304.503     1301     3.50348    8507.414   4181.022    12,688.44
      7       23.736   47.472    71.209    94.945   118.68    142.41   166.15 189.89   213.62   237.36   261.10   1305.505     1302     3.5047     8516.603   4181.966    12,698.57
      8       23.864   47.728    71.593    95.457   119.32    143.18   167.05 190.91   214.77   238.64   262.50   1312.54      1309     3.53967    8540.452   4215.842    12,756.29
      9       24.522   49.044    73.566    98.088   122.61    147.13   171.65 196.17   220.69   245.22   269.74   1348.718     1345     3.71777    8784.103   4321.117    13,105.22
      10      24.723   49.446    74.169    98.892   123.61    148.33   173.06 197.78   222.50   247.23   271.95   1359.777     1356     3.77656    8820.074   4350.381    13,170.45
                                                                                                                                                                                       Optimization of cost and emission for dynamic load dispatch problem with...
      11      24.851   49.702    74.553    99.404   124.25    149.10   173.95 198.80   223.65   248.51   273.36   1366.812     1363     3.81242    8886.796   4354.359    13,241.15
      12      33.037   66.074    99.111   132.14    165.18    198.22   231.26 264.29   297.33   330.37   363.40   1816.055     1811     5.05489   11,885.14   5810.432    17,695.58
      13      33.475   66.951   100.42    133.90    167.37    200.85   234.33 267.80   301.28   334.75   368.23   1840.167     1835     5.16669   12,040.29   5875.564    17,915.85
      14      34.060   68.121   102.18    136.24    170.30    204.36   238.42 272.48   306.54   340.60   374.66   1873.228     1867     6.22793   12,252.84   6001.713    18,254.55
      15      34.828   69.656   104.48    139.31    174.14    208.96   243.79 278.62   313.45   348.28   383.10   1915.239     1909     6.2393    12,513.74   6143.508    18,657.25
      16      37.130   74.260   111.39    148.52    185.65    222.78   259.91 297.04   334.17   371.30   408.43   2041.373     2035     6.37274   13,362.02   6543.969    19,905.99
      17      38.409   76.818   115.22    153.63    192.04    230.45   268.86 307.27   345.68   384.09   422.50   2111.522     2105     6.52166   13,857.54   6757.754    20,615.29
      18      39.012   78.024   117.03    156.04    195.06    234.07   273.08 312.09   351.11   390.12   429.13   2144.687     2138     6.68665   14,034.51   6845.97     20,880.48
      19      39.633   79.267   118.90    158.53    198.16    237.80   277.43 317.06   356.70   396.33   435.97   2179.002     2172     7.00231   14,291.16   6979.197    21,270.36
      20      40.730   81.460   122.19    162.92    203.65    244.38   285.11 325.84   366.57   407.30   448.03   2239.155     2232     7.15529   14,703.34   7173.763    21,877.11
      21      42.758   85.516   128.27    171.03    213.79    256.55   299.30 342.06   384.82   427.58   470.34   2350.606     2343     7.60564   15,426.49   7544.34     22,970.83
      22      43.014   86.028   129.04    172.05    215.07    258.08   301.09 344.11   387.12   430.14   473.15   2364.713     2357     7.71285   15,537.85   7593.727    23,131.58
      23      43.032   86.064   129.09    172.12    215.16    258.19   301.22 344.25   387.29   430.32   473.35   2365.785     2358     7.78492   15,540.08   7600.14     23,140.22
      24      45.627   91.254   136.88    182.50    228.13    273.76   319.38 365.01   410.64   456.27   501.89   2508.098     2500     8.09762   16,468.1    8042.265    24,510.37
123
                                                                                                                                                                                                                        S. Acharya et al.
350 350
300 300
250 250
                         200                                                                                                  200
             Power(MW)
                                                                                                                  Power(MW)
                         150                                                                                                  150
100 100
50 50
                               0                                                                                                    0
                                       2       4       6   8   10       12        14   16   18   20   22    24                                   2       4       6       8       10          12     14        16   18      20   22    24
                                                                    Time (Hour)                                                                                                       Time (Hour)
                                                                    (a)                                                                                                                    (b)
                 500                                                                                                          500
450 450
400 400
350 350
300 300
                                                                                                                  Power(MW)
 Power(MW)
250 250
                                                                                                                              200
                 200
                                                                                                                              150
                 150
                                                                                                                              100
                 100
                                                                                                                                 50
                         50
                                                                                                                                       0
                          0                                                                                                                      2       4       6       8       10          12     14        16   18     20    22    24
                                   2       4       6       8   10       12        14   16   18   20    22    24
                                                                                                                                                                                      Time (Hour)
                                                                    Time (Hour)
                                                                                                                                                                                           (d)
                         450                                                                                                               450
                         400
                                                                                                                                           400
                         350
                                                                                                                                           350
                         300
                                                                                                                                           300
                         250
         Power(MW)
                                                                                                                                           250
                                                                                                                               Power(MW)
                         200
                                                                                                                                           200
                         150
                                                                                                                                           150
                         100
                                                                                                                                           100
                          50
                                                                                                                                            50
                              0
                                       2       4   6       8   10       12        14   16   18   20   22    24
                                                                                                                                             0
                                                                    Time (Hour)
                                                                                                                                                     2       4       6       8        10       12        14   16   18     20    22   24
Fig. 4 The total generated power of thermal units (a), (c), (e) 6, 10, and 11 generation units without VPL, (b), (d), (f) 6, 10, and 11 generation
units with VPL for case 2
123
      Table 10 The analysis of without VPL effect presence in 6 generating units
      Time    Thermal power               PV power            Wind      Total power   Load     Power       Without VPL
      (h)                                                     power     P (MW)        demand   loss (MW)
              p1        p2       p3       P4       P5         P6                      MW)                  Fuel       Thermal              Thermal      PV cost   Wind cost   Total
                                                                                                           cost ($/   emission cost (lb/   cost ($/h)   ($/kW)    ($/kW)      cost ($/
                                                                                                           h)         h)                                                      h)
      1        66.777   133.55   200.33   44.520     89.041    66.781    601.00       598      2.99         995.61     899.00              1894.62      282.52    282.52      2459.6
      2        67.001   134.00   201.00   44.669     89.339    67.004    603.02       600      3.00         996.23     903.70              1899.94      283.75    283.75      2467.4
      3        68.005   136.01   204.01   45.339     90.678    68.005    612.05       609      3.04        1021.8      908.65              1930.47      289.26    289.26      2508.9
      4        73.924   147.84   221.77   49.284     98.569    73.926    665.32       662      3.31        1102.3      991.19              2093.57      321.67    321.70      2736.9
      5        75.152   150.30   225.45   50.101 100.20        75.160    676.38       673      3.37        1126.4      999.24              2125.73      328.40    328.42      2782.5
      6        75.933   151.86   227.8    50.623 101.24        75.935    683.40       680      3.40        1128.5     1025.3               2153.95      332.66    332.70      2819.3
      7        78.949   157.89   236.84   52.633 105.26        78.957    710.55       707      3.53        1189.8     1062.1               2252.04      349.18    349.19      2950.4
      8        81.181   162.36   243.54   54.123 108.24        81.188    730.64       727      3.63        1229.6     1094.4               2324.08      361.42    361.46      3046.9
      9        82.076   164.15   246.23   54.717 109.43        82.077    738.68       735      3.67        1252.4     1104.6               2357.14      366.32    366.31      3089.7
      10       82.968   165.93   248.90   55.315 110.63        82.976    746.73       743      3.72        1252.9     1115.4               2368.37      371.22    371.23      3110.8
                                                                                                                                                                                         Optimization of cost and emission for dynamic load dispatch problem with...
      11       83.639   167.27   250.91   55.759 111.52        83.647    752.76       749      3.75        1266.4     1121.9               2388.31      374.89    374.91      3138.1
      12       83.862   167.72   251.58   55.908 111.81        83.862    754.75       751      3.75        1275.6     1126.9               2402.58      376.11    376.10      3154.7
      13       84.197   168.39   252.59   56.131 112.26        84.205    757.78       754      3.77        1275.7     1132.9               2408.71      377.95    377.96      3164.6
      14       84.867   169.73   254.60   56.579 113.15        84.873    763.81       760      3.80        1287.7     1136.3               2424.07      381.61    381.63      3187.3
      15       86.876   173.75   260.63   57.920 115.84        86.884    781.90       778      3.89        1322.5     1162.9               2485.5       392.60    392.65      3270.7
      16       88.329   176.65   264.98   58.888 117.77        88.333    794.97       791      3.95        1349.0     1196.8               2545.94      400.58    400.57      3347.1
      17       92.461   184.92   277.38   61.641 123.28        92.464    832.15       828      4.14        1411.7     1256.9               2668.66      423.20    423.23      3515.1
      18       95.141   190.28   285.42   63.428 126.85        95.148    856.28       852      4.26        1452.4     1288.2               2740.69      437.87    437.88      3616.4
      19      103.06    206.13   309.20   68.714 137.42       103.06     927.62       923      4.62        1566.0     1397.1               2963.28      481.31    481.35      3925.9
      20      103.40    206.80   310.21   68.937 137.87       103.41     930.64       926      4.63        1586.2     1398.2               2984.44      483.13    483.15      3950.7
      21      105.30    210.60   315.90   70.202 140.40       105.30     947.72       943      4.71        1609.0     1420.7               3029.8       493.55    493.56      4016.9
      22      106.53    213.06   319.59   71.020 142.04       106.53     958.78       954      4.77        1628.7     1442.5               3071.3       500.26    500.26      4071.8
      23      107.09    214.18   321.26   71.394 142.78       107.09     963.81       959      4.79        1629.4     1467.1               3096.57      503.31    503.33      4103.2
      24      116.13    232.26   348.40   77.422 154.84       116.14    1045.2        1040     5.20        1706.3     1646.2               3352.64      552.88    552.91      4458.4
123
123
      Table 11 The analysis of with VPL effect presence in 6 generating units
      Time    Thermal power            PV power          Wind      Total        Load     Power loss   With VPL
      (h)                                                power     power        demand   (MW)
              p1      p2       p3      P4      P5        P6        p (MW)       (MW)                  Fuel cost   Thermal emission   Thermal      PV cost   Wind cost   Total cost
                                                                                                      ($/h)       cost (lb/h)        cost ($/h)   ($/kW)    ($/kW)      ($/h)
      1       66.78   133.56   200.34 44.52     89.049    66.8       601.05     598      3            988.19      902.41             1890.6       365.93    366.04      2622.6
      2       67      134.01   201.01 44.68     89.36     67.02      603.08     600      3.05         994.56      911.21             1905.77      367.02    367.1       2639.9
      3       68.01   136.02   204.03 45.34     90.687    68.06      612.14     609      3.065        1024.2      916.76             1940.92      372.63    372.66      2686.2
      4       73.93   147.85   221.78 49.29     98.578    73.96      665.39     662      3.34         1135.9      978.51             2114.4       405       405.13      2924.5
      5       75.16   150.31   225.47 50.11    100.23     75.2       676.48     673      3.415        1152.7      999.3              2152.03      411.75    411.92      2975.7
      6       75.94   151.87   227.81 50.63    101.25     75.97      683.46     680      3.43         1169.2      1005.6             2174.83      416.01    415.98      3006.8
      7       78.95   157.9    236.86 52.65    105.29     78.97      710.62     707      3.585        1223.1      1042.8             2265.93      432.52    432.49      3130.9
      8       81.18   162.37   243.55 54.13    108.26     81.24      730.73     727      3.675        1255.1      1073.4             2328.5       444.75    445         3218.2
      9       82.08   164.15   246.23 54.72    109.45     82.09      738.72     735      3.705        1259.6      1107               2366.6       449.62    449.89      3266.1
      10      82.97   165.94   248.91 55.32    110.64     82.98      746.76     743      3.735        1276.9      1111.3             2388.2       454.51    454.68      3297.4
      11      83.64   167.28   250.92 55.77    111.54     83.66      752.82     749      3.765        1289.5      1111.4             2400.85      458.18    458.18      3317.2
      12      83.87   167.73   251.6   55.91   111.83     83.88      754.82     751      3.775        1290.5      1133.7             2424.19      459.38    459.68      3343.2
      13      84.2    168.4    252.6   56.13   112.27     84.22      757.82     754      3.82         1290.5      1133.7             2424.22      461.21    461.51      3346.9
      14      84.87   169.74   254.61 56.59    113.19     84.92      763.91     760      3.85         1290.6      1154.4             2445.05      465.02    465.02      3375.1
      15      86.88   173.76   260.64 57.92    115.84     86.89      781.93     778      3.9          1342.8      1171.5             2514.31      475.89    476.03      3466.2
      16      88.33   176.66   264.99 58.9     117.79     88.38      795.05     791      4.005        1355.7      1195               2550.64      483.93    483.93      3518.5
      17      92.46   184.92   277.39 61.66    123.31     92.51      832.25     828      4.18         1402.4      1260.5             2662.94      506.59    506.56      3676.1
      18      95.14   190.29   285.43 63.44    126.89     95.19      856.38     852      4.3          1466.7      1294.1             2760.74      521.29    521.35      3803.4
      19      103.1   206.14   309.21 68.73    137.46    103.1       927.74     923      4.655        1577.9      1405.5             2983.45      564.66    564.72      4112.8
      20      103.4   206.81   310.22 68.95    137.89    103.5       930.72     926      4.68         1599.6      1408.7             3008.26      566.5     566.66      4141.4
      21      105.3   210.61   315.92 70.2     140.41    105.4       947.8      943      4.775        1624        1430.2             3054.26      576.82    576.84      4207.9
      22      106.5   213.06   319.6   71.03   142.07    106.6       958.86     954      4.82         1625.5      1463.4             3088.84      583.57    583.63      4256
      23      107.1   214.18   321.28 71.4     142.79    107.1       963.85     959      4.845        1646.3      1464.2             3110.51      586.74    586.74      4284
      24      116.1   232.27   348.41 77.44    154.88    116.2     1045.3       1040     5.23         1745.4      1628.3             3373.68      636.17    636.17      4646
                                                                                                                                                                                     S. Acharya et al.
      Table 12 The analysis of without VPL effect presence in 10 generating units
      Time    Thermal power                           PV power                Wind power     Total    Load     Power   Without VPL
      (h)                                                                                    power    demand   loss
              P1     P2       P3      P4      P5      P6     P7      P8       P9     P10     p(MW)    (MW)     (MW)    Fuel       Thermal       Thermal    PV       Wind       Total cost
                                                                                                                       cost ($/   emission      cost ($/   cost     cost ($/   ($/h)
                                                                                                                       h)         cost (lb/h)   h)         ($/      kW)
                                                                                                                                                           kW)
      1       39.9    79.87   119.8   159.7   199.7   33.5   67      100.5    33.5   66.99   900.49   900      0.499   1522.87    1386.2        2909.08    1081.9    543.17     4534.203
      2       49.4    98.76   148.1   197.5   246.9   41.3   82.63   123.95   41.3   82.62   1112.5   1110     1.526   1858.65    1736          3594.61    1310.2    657.3      5562.117
      3       52.7   105.4    158.1   210.7   263.4   44.1   88.14   132.21   44.1   88.13   1186.9   1184     1.863   2015.11    1830.4        3845.46    1390.7    697.51     5933.639
      4       55.9   111.8    167.8   223.7   279.6   46.8   93.65   140.48   46.8   93.64   1260.3   1258     1.995   2126.95    1960.6        4087.53    1471.1    737.73     6296.341
      5       59.2   118.5    177.7   236.9   296.1   49.6   99.16   148.74   49.6   99.15   1334.6   1332     2.571   2267.27    2074.3        4341.62    1551.5    777.95     6671.075
      6       62.5   125.1    187.6   250.1   312.7   52.3   104.7   157      52.3   104.7   1409     1406     2.865   2413.47    2185.5        4598.97    1632      818.17     7049.111
      7       65.8   131.7    197.5   263.4   329.2   55.1   110.2   165.26   55.1   110.2   1483.4   1480     3.107   2536.24    2308.9        4845.17    1712.4    858.38     7415.934
      8       65.8   131.7    197.5   263.4   329.2   55.1   110.2   165.26   55.1   110.2   1483.4   1480     3.135   2538.99    2309.7        4848.69    1712.4    858.39     7419.478
      9       66.8   133.6    200.4   267.2   334     55.8   111.7   167.5    55.8   111.7   1504.5   1500     3.139   2539.34    2355.8        4895.11    1734.1    869.25     7498.467
      10      69.1   138.3    207.4   276.6   345.7   57.8   115.7   173.53   57.8   115.7   1557.7   1554     3.492   2645.36    2436.4        5081.71    1792.8    898.6      7773.126
                                                                                                                                                                                            Optimization of cost and emission for dynamic load dispatch problem with...
      11      72.5   144.9    217.4   289.8   362.3   60.6   121.2   181.79   60.6   121.2   1632.1   1628     3.627   2781.65    2558.5        5340.18    1873.2    938.81     8152.241
      12      72.5   144.9    217.4   289.8   362.3   60.6   121.2   181.79   60.6   121.2   1632.1   1628     3.725   2811.19    2559.4        5370.63    1873.2    938.82     8182.695
      13      75.9   151.9    227.8   303.7   379.7   63.5   127     190.5    63.5   127     1710.5   1706     3.814   2926       2664.6        5590.6     1958      981.21     8529.828
      14      79.1   158.3    237.4   316.5   395.6   66.1   132.2   198.32   66.1   132.2   1781.8   1776     4.235   3020.35    2794.5        5814.82    2034.1   1019.3      8868.206
      15      79.1   158.3    237.4   316.5   395.6   66.1   132.2   198.32   66.1   132.2   1781.9   1776     4.423   3027.79    2795.5        5823.34    2034.1   1019.3      8876.735
      16      79.1   158.3    237.2   316.2   395.3   66.1   132.2   198.39   66.1   133     1781.9   1776     4.446   3028.06    2796          5824.04    2034.1   1019.3      8877.444
      17      85.7   171.3    257     342.7   428.4   71.6   143.2   214.85   71.6   143.2   1929.6   1924     4.885   3300.92    3024          6324.95    2195     1099.7      9619.615
      18      85.7   171.3    257     342.7   428.4   71.6   143.2   214.85   71.6   143.2   1929.6   1924     4.91    3301.27    3025.7        6326.96    2195     1099.7      9621.643
      19      85.7   171.5    257.1   342.7   428.4   71.6   143.2   214.86   71.6   143.2   1930     1924     4.924   3301.28    3027          6328.24    2195     1099.7      9622.949
      20      92.3   184.6    276.8   369.1   461.4   77.1   154.2   231.37   77.1   154.2   2078.3   2072     5.478   3545.29    3258.3        6803.61    2355.9   1180.1     10,339.6
      21      92.3   184.6    277     369.4   461.5   77.1   154.2   231.37   77.1   154.2   2078.9   2072     5.482   3561.84    3259.4        6821.26    2355.9   1180.1     10,357.26
      22      92.3   184.6    276.8   369.1   461.4   77.1   154.2   231.6    77.1   154.6   2078.9   2072     5.581   3561.87    3260.1        6821.96    2355.9   1180.1     10,357.98
      23      95.7   191.3    287     382.6   478.3   79.9   159.8   239.63   79.9   159.7   2153.7   2146     5.798   3654.49    3414.4        7068.91    2436.3   1220.3     10,725.56
      24      98.9   197.8    296.7   395.6   494.5   82.6   165.3   247.9    82.6   165.2   2227.1   2220     6.114   3655.97    3655.7        7311.7     2516.7   1260.6     11,088.99
123
123
      Table 13 The analysis of with VPL effect presence in 10 generating units
      Time    Thermal power                          PV power                 Wind power     Total    Load     Power   With VPL
      (h)                                                                                    power    demand   loss
              P1     P2      P3      P4      P5      P6       P7      P8      P9     P10     p(MW)    (MW)     (MW)    Fuel     Thermal         Thermal    PV         Wind      Total
                                                                                                                       cost     emission cost   cost ($/   cost ($/   cost $/   cost ($/
                                                                                                                       ($/h)    (lb/h)          h)         kW)        kW)       h)
      1       40     80      120     160     200     33.5     67      100.5   33.5   67      901.5    900      2.447   1523.2   1388.7          2911.9     1119.3     554.7     4585.95
      2       49.4   98.76   148.1   197.5   246.9   41.317   82.63   124     41.3   82.63   1112.6   1110     3.353   1872.1   1750.7          3622.7     1347.2     669.5     5639.41
      3       52.7   105.4   158.1   210.7   263.4   44.072   88.14   132.2   44.1   88.13   1186.9   1184     3.724   1992     1876.8          3868.7     1428.2     708.8     6005.76
      4       55.9   111.8   167.8   223.7   279.6   46.827   93.65   140.5   46.8   93.65   1260.3   1258     4.164   2115.1   1993.6          4108.7     1508.7     749.5     6366.87
      5       59.2   118.5   177.7   236.9   296.1   49.581   99.16   148.7   49.6   99.16   1334.7   1332     4.427   2241.5   2103.5          4345       1589.1     790.1     6724.2
      6       62.5   125.1   187.6   250.1   312.7   52.336   104.7   157     52.3   104.7   1409     1406     4.828   2385.2   2219.6          4604.8     1670.7     830.5     7105.98
      7       65.9   131.8   197.7   263.6   329.5   55.089   110.2   165.3   55.1   110.2   1484.4   1480     5.071   2502.4   2334.7          4837.1     1749.3     870.4     7456.77
      8       65.9   131.8   197.7   263.6   329.5   55.089   110.2   165.3   55.1   110.2   1484.4   1480     5.112   2507.9   2345.2          4853.1     1750.9     871.5     7475.45
      9       66.7   133.5   200.2   266.9   333.7   55.833   111.7   167.5   55.8   111.7   1503.5   1500     5.186   2529.1   2377.8          4906.9     1771.8     881       7559.6
      10      69.1   138.3   207.4   276.6   345.7   57.844   115.7   173.5   57.8   115.7   1557.8   1554     5.452   2634.1   2455.4          5089.6     1831.9     910.2     7831.66
      11      72.5   145     217.6   290.1   362.6   60.599   121.2   181.8   60.6   121.2   1633.1   1628     5.657   2769.5   2576.7          5346.1     1911       951.3     8208.41
      12      72.5   145     217.6   290.1   362.6   60.609   121.2   181.8   60.6   121.2   1633.2   1628     5.859   2770.5   2578.6          5349.1     1912.1     951.9     8213.12
      13      75.9   151.9   227.8   303.7   379.7   63.502   127     190.5   63.5   127     1710.5   1706     6.026   2886.2   2705.7          5591.9     1995.1     993.6     8580.57
      14      79.1   158.1   237.2   316.2   395.3   66.108   132.2   198.3   66.1   132.2   1780.9   1776     6.209   3022.1   2815.9          5838       2071.9     1031      8941.06
      15      79.1   158.1   237.2   316.2   395.3   66.107   132.2   198.3   66.1   132.2   1780.9   1776     6.341   3024     2820.6          5844.5     2072.1     1031      8947.96
      16      79.1   158.1   237.2   316.2   395.3   66.108   132.2   198.3   66.2   132.3   1781     1776     6.48    3024.1   2821.8          5845.9     2073.1     1032      8950.6
      17      85.7   171.5   257.2   343     428.7   71.616   143.2   214.8   71.6   143.2   1930.6   1924     6.733   3277.3   3058.3          6335.6     2232.7     1113      9681.09
      18      85.8   171.5   257.3   343     428.7   71.616   143.2   214.8   71.6   143.2   1930.8   1924     6.771   3277.9   3058.6          6336.5     2233.4     1113      9682.74
      19      85.7   171.5   257.2   343     428.7   71.617   143.2   214.9   71.6   143.5   1930.9   1924     6.961   3279.6   3058.6          6338.2     2235       1113      9686.01
      20      92.3   184.6   276.8   369.1   461.4   77.126   154.3   231.4   77.1   154.2   2078.4   2072     7.472   3527.9   3286.2          6814.2     2392.8     1192      10,399
      21      92.3   184.7   277     369.4   461.7   77.125   154.2   231.4   77.1   154.2   2079.4   2072     7.527   3530.6   3300.2          6830.8     2392.9     1192      10,415.9
      22      92.3   184.6   276.8   369.1   461.4   77.126   154.3   231.4   77.1   154.2   2078.3   2072     7.569   3542.2   3303.4          6845.6     2394.1     1192      10,432.2
      23      95.6   191.2   286.8   382.4   477.9   79.879   159.8   239.6   79.9   159.7   2152.7   2146     7.78    3597.4   3459.1          7056.4     2473.7     1233      10,762.9
      24      99     197.9   296.9   395.8   494.8   82.634   165.3   247.9   82.6   165.3   2228.1   2220     8.112   3639.5   3664.3          7303.8     2553.6     1275      11,131.9
                                                                                                                                                                                           S. Acharya et al.
      Table 14 The analysis of without VPL effect presence in 11 generating units
      Time    Thermal power                         PV power                 Wind power              Total     Load     Power   Without VPL
      (h)                                                                                            power     demand   loss
              P1     P2     P3      P4      P5      P6       P7      P8      P9      P10     P11     p(MW)     (MW)     (MW)    Fuel     Thermal         Thermal    PV
                                                                                                                                cost     emission cost   cost ($/   cost ($/
                                                                                                                                ($/h)    (lb/h)          h)         kW)
      1       26.7   53.3   79.99   106.7   133.3    53.62   95.54   137.5   74.06   126.7   190.1   1077.43   1077     2.38    1786.7   1713.2          3499.9     1409.5     1902.3   6811.7
      2       28.7   57.3   86.02   114.7   143.4    56.39   101.1   145.8   78.47   135.5   203.3   1150.66   1152     2.76    1931.2   1814.4          3745.7     1511.5     2031.1   7288.3
      3       30.2   60.3   90.52   120.7   150.9    60.33   108     157.6   81.77   142.1   213.2   1215.62   1208     3.03    2030.3   1894.7          3925.1     1605.6     2127.3   7658
      4       31     62     92.94   123.9   154.9    61.18   110.7   160.1   83.53   145.7   218.5   1244.35   1238     3.18    2095.5   1939.2          4034.6     1626.1     2178.9   7839.6
      5       32.1   64.2   96.23   128.3   160.4    64.05   116.4   168.8   85.94   150.5   225.7   1292.52   1279     3.39    2148.4   2002.9          4151.3     1676.1     2249.3   8076.7
      6       32.7   65.3   98      130.7   163.3    64.62   117.5   170.5   87.24   153.1   229.6   1312.57   1301     3.5     2191.8   2032.8          4224.6     1718.2     2287.1   8229.9
      7       32.7   65.4   98.08   130.8   163.5    64.64   117.8   170.5   87.3    153.2   229.8   1313.64   1302     3.51    2206.1   2032.9          4238.9     1724       2288.8   8251.7
      8       32.9   65.8   98.65   131.5   164.4    64.9    118.1   171.3   87.71   154     231     1320.26   1309     3.54    2216.5   2049.3          4265.8     1726.2     2300.8   8292.9
      9       33.8   67.7   101.5   135.4   169.2    66.49   121.3   176.1   89.83   158.3   237.4   1357.01   1345     3.72    2274.6   2105.9          4380.4     1798.2     2362.7   8541.3
      10      34.1   68.3   102.4   136.6   170.7    67.36   123     178.7   90.47   159.5   239.3   1370.5    1356     3.77    2284.8   2126.8          4411.6     1815       2381.6   8608.2
                                                                                                                                                                                                 Optimization of cost and emission for dynamic load dispatch problem with...
      11      34.3   68.7   103     137.3   171.6    68.01   124.3   180.6   90.88   160.4   240.6   1379.72   1363     3.81    2285.1   2144.4          4429.6     1838.4     2393.6   8661.6
      12      46.3   92.7   139     185.3   231.7    91.91   171.1   252.3   117.2   213.1   319.6   1860.29   1811     6.05    3086.8   2853.9          5940.7     2510.7     3163.2   11,615
      13      47     94     140.9   187.9   234.9    92.58   173.5   254.3   118.7   215.9   323.9   1883.48   1835     6.17    3088.9   2918.4          6007.3     2568.5     3204.5   11,780
      14      47.8   95.7   143.5   191.3   239.2    93.97   176.2   258.5   120.5   219.7   329.5   1915.96   1867     6.33    3154.1   2968.7          6122.8     2579.4     3259.4   11,962
      15      49     97.9   146.9   195.8   244.8    97.18   181.7   268.1   123     224.6   335.9   1964.94   1909     6.54    3233.3   3040.1          6273.4     2673.2     3331.6   12,278
      16      52.3   105    157     209.4   261.7   103.1    194.4   285.8   130.4   239.4   359.2   2097.31   2035     7.17    3452.5   3228.8          6681.3     2848.9     3548.1   13,078
      17      54.2   108    162.6   216.9   271.1   107.3    202.9   298.5   134.5   247.7   371.5   2175.62   2105     7.52    3569     3340.1          6909.2     2964.4     3668.3   13,542
      18      55.1   110    165.3   220.4   275.5   107.9    204     300.2   136.5   251.6   377.3   2203.96   2138     7.69    3643.7   3387.6          7031.3     3006.4     3725     13,763
      19      56     112    168     224     280     110.2    208.8   307.3   138.5   255.6   383.3   2243.78   2172     7.86    3690.2   3442            7132.1     3075.3     3783.4   13,991
      20      57.6   115    172.9   230.5   288.1   113.4    215     316.7   142     262.6   393.9   2307.93   2232     8.16    3795.5   3553.9          7349.3     3141.7     3886.5   14,378
      21      60.6   121    181.8   242.4   303     118.6    225.5   332.4   148.5   275.7   413.5   2423.13   2343     8.71    3941.7   3765.1          7706.8     3341       4077.2   15,125
      22      61     122    182.9   243.9   304.8   119.5    227.3   335     149.4   277.3   416     2438.97   2357     8.78    3982.2   3782.2          7764.4     3354       4101.2   15,220
      23      61     122    183     244     305     120.4    229.1   337.8   149.4   277.4   416.2   2445.25   2358     8.78    3996.6   3770.3          7766.9     3354.8     4102.9   15,225
      24      64.8   130    194.4   259.2   324     127.5    243.4   359.2   157.8   294.1   441.2   2595.32   2500     9.5     4231.3   4007.3          8238.6     3572.6     4346.9   16,158
123
123
      Table 15 The analysis of with VPL effect presence in 11 generating units
      Time    Thermal power                          PV power                Wind power               Total    Load     Power   With VPL
      (h)                                                                                             power    demand   loss
              P1     P2      P3      P4      P5      P6      P7      P8      P9      P10     P11      p(MW)    (MW)     (MW)    Fuel     Thermal       Thermal    PV       Wind       Total
                                                                                                                                cost     emission      cost ($/   cost     cost ($/   cost
                                                                                                                                ($/h)    cost (lb/h)   h)         ($/      kW)        ($/h)
                                                                                                                                                                  kW)
      1       26.9   53.73   80.59   107.5   134.3   53.44   96.28   136.1   74.32   127     190.57   1080.7   1077     2.59    1787     1728.7        3515.7     1646.7   1917.4     7079.8
      2       28.9   57.75   86.62   115.5   144.4   57.22   103.8   147.5   78.73   135.9   203.8    1160     1152     2.96    1930.5   1830.9        3761.5     1761.4   2013       7535.9
      3       30.4   60.75   91.12   121.5   151.9   59.72   108.8   155     82.03   142.5   213.69   1217.3   1208     3.24    2028.9   1911.9        3940.8     1847     2128.2     7916.1
      4       31.2   62.36   93.54   124.7   155.9   61      111.4   158.8   83.79   146     218.98   1247.6   1238     3.39    2081.1   1969.4        4050.4     1892.9   2179.8     8123.1
      5       32.3   64.55   96.83   129.1   161.4   63.44   116.5   166.1   86.21   150.8   226.22   1293.4   1279     3.6     2143.2   2023.9        4167.1     1955.6   2250.2     8372.9
      6       32.9   65.73   98.6    131.5   164.3   65.31   120     171.7   87.5    153.4   230.1    1321.1   1301     3.71    2175.7   2064.7        4240.4     1989.2   2288.3     8517.9
      7       32.9   65.79   98.68   131.6   164.5   65.37   120.1   171.9   87.56   153.5   230.27   1322.1   1302     3.71    2208.4   2046.4        4254.7     1990.7   2299.2     8544.7
      8       33.1   66.16   99.24   132.3   165.4   65.4    121     172     87.97   154.3   231.51   1328.4   1309     3.75    2210.8   2070.8        4281.6     2001.4   2306.5     8589.5
      9       34     68.09   102.1   136.2   170.2   66.89   123.2   176.5   90.09   158.6   237.86   1363.8   1345     3.92    2273     2133.3        4406.2     2056.5   2358.8     8821.5
      10      34.3   68.68   103     137.4   171.7   68.34   126.1   180.8   90.74   159.9   239.81   1380.7   1356     3.98    2287.8   2139.7        4427.4     2073.3   2389.3     8890
      11      34.5   69.06   103.6   138.1   172.6   68.55   126.5   181.4   91.15   160.7   241.04   1387.3   1363     4.02    2289.1   2171.2        4460.4     2084     2394.5     8938.9
      12      46.5   93.07   139.6   186.1   232.7   91.29   172     249.7   117.5   213.4   320.11   1862     1811     6.26    3067.9   2888.6        5956.5     2769     3164.7     11,890
      13      47.2   94.36   141.5   188.7   235.9   92.69   174.8   253.9   118.9   216.2   324.34   1888.5   1835     6.38    3081.7   2941.3        6023.1     2805.7   3205.6     12,034
      14      48     96.07   144.1   192.1   240.2   95.09   179.6   261.1   120.8   220     329.99   1927.1   1867     6.54    3165     2973.5        6138.6     2854.6   3260.9     12,254
      15      49.2   98.32   147.5   196.6   245.8   96.28   182     264.6   123.3   224.9   337.4    1965.9   1909     6.75    3232.3   3056.8        6289.2     2918.8   3332.5     12,540
      16      52.5   105.1   157.6   210.2   262.7   103.6   196.6   286.6   130.7   239.8   359.64   2104.9   2035     7.38    3436.2   3260.9        6697.1     3111.5   3553.7     13,362
      17      54.4   108.8   163.2   217.7   272.1   106.8   203.1   296.3   134.8   248     371.99   2177.2   2105     7.72    3547.6   3377.4        6925       3218.5   3683.5     13,827
      18      55.3   110.6   165.9   221.2   276.5   108.1   205.6   300.2   136.7   251.9   377.82   2209.9   2138     7.89    3625.1   3422          7047.1     3269     3730.7     14,047
      19      56.2   112.4   168.6   224.8   281     110.5   210.4   307.3   138.7   255.9   383.82   2249.7   2172     8.06    3649.6   3498.3        7147.9     3320.9   3790.1     14,259
      20      57.8   115.6   173.5   231.3   289.1   113.3   216.1   315.8   142.3   262.9   394.41   2312.1   2232     8.36    3789.5   3575.6        7365.1     3412.7   3887.1     14,665
      21      60.8   121.6   182.4   243.2   304     119.4   228.3   334.1   148.8   276     414      2432.5   2343     8.91    3949.2   3773.4        7722.6     3582.4   4078.6     15,384
      22      61.2   122.3   183.5   244.7   305.8   120.2   229.7   336.3   149.6   277.6   416.47   2447.5   2357     8.98    3990.9   3789.2        7780.2     3603.8   4116.4     15,500
      23      61.2   122.4   183.6   244.8   306     120.8   231     338.2   149.7   277.8   416.65   2452     2358     8.99    3991     3797.7        7788.7     3605.3   4170.6     15,565
      24      65     130     195     260     325     127.8   245     359.2   158     294.5   441.71   2601.2   2500     9.7     4219.3   4035.1        8254.4     3822.4   4348.8     16,426
                                                                                                                                                                                               S. Acharya et al.
Optimization of cost and emission for dynamic load dispatch problem with...
3 1.6
2.5
                                                                                           1.5
              Cost S/h
                                                                                Cost S/h
                             2
1.5 1.4
                                                                              (a)
                                     Optimal Emission With VPL                                       Optimal Emission Without VPL
                     2.5                                                                   1.5
         Cost S/h
                         2                                                     Cost S/h
                                                                                           1.4
1.5
                                                                                           1.3
                             0            50        100          150   200                       0          50          100         150    200
                                                 Iteration                                                          Iteration
                                                                              (b)
Fig. 5 The 6 generating units (a) optimal fuel cost and (b) emission with and without VPL
                                                                                                                                                 123
                                                                                                                                            S. Acharya et al.
                          1.45
                                                                                              1.68
               Cost S/h
                                                                                   Cost S/h
                           1.4
                                                                                              1.66
                          1.35
                                                                                              1.64
                                                                                  (a)
                                        Optimal Emission With VPL                                        Optimal Emission Without VPL
                     0.75
                                                                                              0.78
                          0.7
                                                                                              0.76
          Cost S/h
                                                                                   Cost S/h
                     0.65
                                                                                              0.74
                          0.6
                                                                                              0.72
                                                                                  (b)
Fig. 6 The 10 generating units (a) optimal fuel cost and (b) emission with and without VPL
0  Pi ðtÞ  Pmin Vi ðtÞ ¼ 1; rishut ðtÞ ¼ 1;                             ð16Þ        solution sets, the process of optimization is initiated. In the
              i
                                                                                      recommended MVO algorithm, every candidate solution
Pi ðtÞ  Pi ðt þ 1Þ ¼ Pshut
                       i Vi ðtÞ ¼ 1                                       ð17Þ        agrees with the cosmos, and the variables are handled as
where Vi ðtÞ is the state variable of the shut-down process                           gadgets in the universe. Similarly, to associate the results
and rishut ðtÞ is the ramp rate shut-down variable.                                   and save the best one(s), the MVO has operators. Black and
                                                                                      White holes are randomly generated in the universes to
                                                                                      combine the solutions and cause objects’ movement. The
3.2 Multi-objective cost minimization using MVO
                                                                                      inflation rate is the objective value of the objective func-
    algorithm
                                                                                      tion. The growing speed of a universe is defined as the
                                                                                      inflation rate and is evaluated proportionally to the objec-
MVO is considered in the evolutionary algorithm’s family
                                                                                      tive function. Sort the universes at every iteration based on
and is the population-based algorithm. With candidate
                                                                                      inflation rates, and roulette wheel selection (RWS) is used
                                                                       
 Pi ðxÞ  0; i ¼ 1; 2; . . .; m
min Fobj ð xÞ ¼ min Ftotal ; Ffuel ; Femission ; FScost ; Ftwind :::; Fm ;                                                                             ð18Þ
                                                                           hi ðxÞ ¼ 0; i ¼ 1; 2; . . .; p
123
Optimization of cost and emission for dynamic load dispatch problem with...
(a)
                                                                     (b)
Fig. 7 The 11 generating units (a) optimal fuel cost and (b) emission with and without VPL
                                                                                                                                  123
                                                                                                                         S. Acharya et al.
balance constriction, and are placed inside the generator                 generation of each generator parameter, which is given in
capacity constraint.                                                      Eq. (21),
         8                                                min                   
               min                      min    m
         < MaxPi ; Pi ðt  1Þ  DRi; Pi ; Pi ðtÞ\ max
         >                                                Pi ; Pi ðt  1Þ  DR
                                                        max                   
Pm
 i ðtÞ ¼      Min PU i þ URi ; Pi
                                 max
                                            Pm
                                             i ðtÞ\ min Pi   ; Pi ðt  1Þ þ UR                                                      ð21Þ
         >
         :
                        Pmi ðtÞ                         otherwise
3.2.2 Handling of ramp-rate constraint                                       The start-up and shut-down ramp constraints are con-
                                                                          sidered for the operation. When the system is offline and is
The ramp-rate limit’s inequality constraints are taken                    started up, then the power trajectory is minimal, as stated in
                                                                                                                         
during every movement of the group by regulating the                      the second condition Min PU                 max
                                                                                                           i þ URi ; Pi        Pmi ðtÞ\
123
Optimization of cost and emission for dynamic load dispatch problem with...
                                                                                   8                    !
min Pmax
       i   ; Pi ðt  1Þ þ UR . Then on a shut-down con-                              >
                                                                                     >              PLi;j                           	
                                                                                     >
                                                                                     >   L
                                                                                                                   if Pm        L      U        m
                                                                                     > P
                                                                                     < i;j
                                                                                             r 1                         i ðtÞ  Pi;j  Pi;j1  Pi ðtÞ
straint, the power trajectory will decrease from the point                                         PU
                min                                                     Pm
                                                                                                    i;j1
                                                                                                                 !
Pm                                                                         i ðtÞ ¼
  i ðtÞ\ max Pi ; Pi ðt  1Þ  DR . This condition is sta-                           >
                                                                                     >
                                                                                     >                 PLi;j
                                                                                     >  U
ted in the above equation at the first condition. At both the                        : Pi;j1 þ r 1  PU
                                                                                     >                               otherwise
                                                                                                         i;j1
constraint, the power achieved is illustrated above.
                                                                                                                                                  ð22Þ
3.2.3 Handling of prohibited operating zones constraint                       Here r 2 ½0; 1 is a random number in uniform.
The inequality constraints are taken by eliminating the                  3.2.4 Handling of constraints
prohibited operating zones by disturbing the ith generator’s
generation randomly at the time of t  1 movement of the                 Step 1: The equality constraint is taken to meet the demand
group given in Eq. (22),                                                 by randomly perturbing the generation, so the power bal-
                                                                         ance condition is satisfied (Hemeida et al. 2022).
                                                                                                                                           123
                                                                                                                          S. Acharya et al.
Equation (23) evaluates the difference in mth member                 period.where, UðkÞ and VðkÞ denotes the start-up and shut-
power demand constraint,                                             down process, respectively, at the period of k interval. The
                                               X
                                               N                     start-up and shut-down constraints are given below;
DPm             m
                                                     Pm                     "                                         #
  demand ðtÞ ¼ Ploss ðtÞ þ Pdemand ðtÞ               i ðtÞ   ð23Þ                  XDR             XUR
                                               i¼1                   Pk  P vðkÞ       Uðk þ iÞ       Vðk  i þ 1Þ
                                                                                       i¼1                i¼1
   The generators share the power demand randomly to
                                                                           X
                                                                           UR
fulfill the equality constraint. Until it is achieved, this            þ         PD ðiÞVðk  i þ 1Þ 8k
generation of updating is repeated. To meet this constraint,               i¼1
the problems faced are the starting and shut-down time of              2K                                                            ð24Þ
the generator, which is a major concern for thermal                         "                                                  #
                                                                                      X
                                                                                      DR                  X
                                                                                                          UR
generators.                                                          Pk  P vðkÞ            Uðk þ iÞ          Vðk  i þ 1Þ
   The conditions involved are given below to handle the                               i¼1                i¼1
shut-down and start-up constraint. At start-up                             X
                                                                           DR
PDR                                                                    þ         PU ðiÞVðk þ DR  i þ 1Þ 8k
   i¼1 Uðk þ iÞ will be 1 at all hourly requirements except                i¼1
at the shut-down time k. At shut-down, the condition is                2K                                                            ð25Þ
PUR
   i¼1 Vðk  i þ 1Þ will be 1 except at time k on the start-up
123
Optimization of cost and emission for dynamic load dispatch problem with...
6 generators
1                   756.80         38.540            0.1525                   0.3300          0.0042            10        125
2                   451.32         46.160            0.1060                   0.3300          0.0042            10        150
3                   1050.0         40.400            0.0280                   -0.5455         0.0068            35        225
4                   1243.5         38.310            0.0355                   -0.5455         0.0068            35        210
5                   1658.5         36.328            0.0211                   -0.5112         0.00046           130       325
6                   1356.6         38.270            0.0180                   -0.5112         0.0046            125       315
10 generators
1                   1000.403       40.5407           0.12951                  0.0174          36.0012           10        55
2                   950.606        39.5804           0.10908                  0.0178          350.0056          20        80
3                   900.705        36.5104           0.12511                  0.0162          330.0056          47        120
4                   800.705        39.5104           0.12111                  0.0168          330.0056          20        130
5                   756.799        38.5390           0.15247                  0.0148          13.8593           50        160
6                   451.325        46.1592           0.10587                  0.0163          13.8593           70        240
7                   1243.531       38.3055           0.03546                  0.0152          40.2669           60        300
8                   1049.998       40.3965           0.02803                  0.0128          40.2669           70        340
9                   1658.569       36.3278           0.02111                  0.0136          42.8955           135       470
10                  1356.659       38.2704           0.01799                  0.0141          42.8955           150       470
11 generators
1                   387.85         192.699           0.00762                  -0.67767        0.00419           20        250
2                   441.62         211.969           0.00838                  -0.69044        0.00419           20        210
3                   422.57         219.196           0.00523                  -0.67767        0.00419           20        250
4                   552.50         201.983           0.00140                  -0.54551        0.00683           60        300
5                   557.75         212.181           0.00154                  -0.40060        0.00751           20        210
6                   562.18         191.528           0.00177                  -0.54551        0.00683           60        300
7                   568.39         210.681           0.00195                  -0.40006        0.00751           20        215
8                   682.93         199.138           0.00106                  -0.51116        0.00355           100       455
9                   741.22         199.802           0.00117                  -0.56228        0.00417           100       455
10                  617.83         212.352           0.00089                  -0.41116        0.00355           110       460
11                  674.61         210.487           0.00098                  -0.56228        0.00417           110       465
   The above two equations are set for the lower power                            X
                                                                                  DR
output limit. If a generator is not involved in both start-up            Pk         PD ðiÞUðk þ DR  i þ 1Þ
and shut-down processes (processing the power genera-                              "
                                                                                  i¼1                 #
                                                                                           X
                                                                                           DR
tion), then the last term of Eq. 17 and the first term of                      þ P vðkÞ      Uðk þ iÞ 8k
Eq. 16 are identical.                                                                       i¼1
       X
       UR                                                                      2K                                               ð27Þ
Pk          PU ðiÞVðk  i þ 1Þ
                                                                            The above constraints are the start-up and shut-down
        "
       i¼1                             #
                  X
                  UR                                                     process for higher power generation. Both constraints
     þ P vðkÞ          Vðk  i þ 1Þ       8k                            induce maximum power for the shut-down and start-up
                  i¼1
                                                                         process.
     2K                                                        ð26Þ
                                                                            Step2: The ith universe’s jth parameter is presented as
                                                                         Eq. (28),
                                                                                ( j
                                                                            j      Pk R1 \NI ðGi Þ
                                                                          Gi ¼                                                 ð28Þ
                                                                                   Pij R1  NI ðGi Þ
                                                                                                                          123
                                                                                                                               S. Acharya et al.
Table 17 Emission cost coefficients of 6, 10, and 11 generator units         where WEP and TDR are the coefficients, R2 ; R3 ; and R4
                                                                             are represented as random numbers, jth variable’s upper
Generator              ai ðlb=hÞ       bi ðlb=MWhÞ        ci ððlb=ðMWÞ2 hÞ
                                                                             bound is denoted as UBj , Pj indicates the jth parameter of
6 generators                                                                 the best universe and LBj shows the lower bound of jth
1                      13.860            0.3300           0.0042             variable. The proposed MVO algorithm flowchart is pre-
2                      13.860            0.3300           0.0042             sented in Fig. 2.
3                      40.267          -0.5455            0.0068                Over the iterations, TDR is improved compared to WEP
4                      40.267          -0.5455            0.0068             to have high exact exploitation around the greatest attained
5                      42.900          -0.5112            0.0046             universe. The WEP coefficient’s adaptive formula is
6                      42.900          -0.5112            0.0046             determined as Eq. (30),
                                                                                                            
10 generators                                                                                      max  min
1                      360.0012        -3.9864            0.04702            WEP ¼ min þq                                           ð30Þ
                                                                                                       Q
2                      350.0056        -3.9524            0.04652
3                      330.0056        -3.9023            0.04652               Here, min and max are constants, q indicates the current
4                      330.0056        -3.9023            0.04652            iteration and Q shows the maximum iterations. The adap-
5                      13.8593           0.3277           0.00420            tive formula for TDR coefficient is determined as Eq. (31),
6                      13.8593           0.3277           0.00420                         q1=z
7                      40.2669         -0.5455            0.00680
                                                                             TDR ¼ 1                                                     ð31Þ
                                                                                          Q1=z
8                      40.2669         -0.5455            0.00680
9                      42.8955         -0.5112            0.00460
                                                                                As z rises, the exploitation/local search’s accuracy also
                                                                             improves. The sooner and more precise local search/ex-
10                     42.8955         -0.5112            0.00460
                                                                             ploitation is obtained in higher z. According to the results,
11 generators
                                                                             the adaptive values are recommended, and the TDR and
1                      33.93           -0.67767           0.00419
                                                                             WEP are considered constants.
2                      24.62           -0.69044           0.00461
                                                                                Step 4: MVO algorithm optimization procedure initiates
3                      33.93           -0.67767           0.00419
                                                                             with setting many random variables. In the iteration process,
4                      27.14           -0.54551           0.00683
                                                                             objects with huge inflation levels shift to the universe with
5                      24.15           -0.40060           0.00751
                                                                             reduced inflation rates through white/black holes. Each
6                      27.14           -0.54551           0.00683
                                                                             universe leads its objects toward the great universe, and this
7                      24.15           -0.40060           0.00751
                                                                             iteration continues until the stopping criterion is satisfied. In
8                      30.45           -0.51116           0.00355
                                                                             every iteration, the sorting universe is activated, and the
9                      25.59           -0.56228           0.00417
                                                                             quicksort algorithm is adopted, which have oðn2 Þ and
10                     30.45           -0.41116           0.00355
                                                                             oðn log nÞ complexity in the worst and best case, corre-
11                     25.59           -0.56228           0.00417
                                                                             spondingly. Based on the implementation, the RWS is rep-
                                                                             resented as oðnÞ or oðlog nÞ. Hence, the entire estimation
where Pij indicates the optimal solution of Gi shows ith                     complexity is given as Eqs. (32) and (33),
universe, NI ðGi Þ is normalized the ith universe’s objective                OðMVOÞ ¼ OðLðOðquick sortÞ þ N  D  ðOðRWÞÞÞÞ
function, a random number in [0, 1] is represented as R1 , and
                                                                                                                                          ð32Þ
Pkj denotes the jth parameter of kth universe. Depending on
the normalized objective function, the determination and                     OðMVOÞ ¼ Oðqðn2 þ N  f  log NÞÞ                            ð33Þ
selection of white holes are activated using RWS. The white/                    Here, D represents the number of objects, a number of
black hole tunnels produce a higher probability of sending                   universes is indicated as N, and L represents the high
objects and a lower inflation rate. For the maximization                     iterations.
issues, NI it should be changed to NI [34].                                    With a set of random universes, the optimization process
    Step 3: By employing wormholes, the formulation of                       is initiated in the MVO algorithm. The white/black holes
this mechanism is introduced for enhancing the objective                     move the objects in the universes with maximum to low
function is given by Eq. (17),                                               inflation rates in every iteration. In the meantime, all single
        8                                           
        < Pj þ TDR   UBj  LBj  R4 þ lbj ; R3 \0:5                     universe faces random teleportation toward the best uni-
                                                           ;   R2 \WEP
Pij   ¼     Pj  TDR  UBj  LBj  R4 þ lbj ; R3  0:5
        : j
         Pi                                                    R2  WEP
                                                                             verse in its objects through wormholes. Depending on the
                                                                             universe sorting mechanism, RWS mechanism, number of
                                                                     ð29Þ
                                                                             universes, and number of iterations, the introduced
                                                                             approach’s computational complexity is evaluated. The
123
Optimization of cost and emission for dynamic load dispatch problem with...
parameters setting of the MOMVO algorithm is given in                     the load demand is determined, and the generator generates
Table 2. The Pseudo code of the MVO algorithm is                          the power for the load without any losses. If any losses are
depicted in Table 3.                                                      present, the generator should generate additional power.
                                                                          Also the corresponding fuel and emission cost is evaluated
                                                                          based on the presence of the valve point effect. The gen-
4 Results and discussion                                                  erated power from the presented 6, 10, and 11 generators is
                                                                          illustrated in Fig. 3.
This section discussed the proposed scheme’s viability,                       The cost analysis of the 6, 10, and 11 generator units are
performance, and applicability for real applications that                 considered in Tables 4, 5, 6, 7, 8, and 9 for its corre-
have been tested over two different power system cases.                   sponding load demand. The fuel and emission cost values
The cases 6, 10, and 11 generator systems comprised here                  are changed on time, which is varied at the interval of 24 h,
with and without VPL effect. Case 1 comprises only the                    proving the effectiveness of the proposed technique. The
thermal power generation system, and the next comprises                   following sub-section presents the optimal cost function
the thermal and PV generation systems. The loss coeffi-                   and power losses based fitness in the combination of PV
cient scheme evaluates the network loss by calculating the                and thermal generator systems.
ramp rate restrictions, power balance constraints and the
VPL effect. For the same model, the results of cost and                   4.2 Case 2: DELD with combination of PV, wind
emission are compared with other algorithms to illustrate                     and thermal generator systems
the proposed system’s competitiveness. Simultaneously,
assume the solar power cost function data as Mcost ¼                      In this case, a PV and wind turbine model power generation
0:016ð$=kWÞ Icost ¼ 5000ð$=kWÞ, N ¼ 20 years; and r ¼                     with 6, 10, and 11 generation units and its generated power
0:09: The proposed algorithm has been implemented in                      are presented in Fig. 4. In this PV power generation, the
MATLAB R2016a with 2 GHz core 2duo processor and                          emission is less, so the generation cost is also very low
4 GB RAM. The results are based on the performance of                     compared to the previous case. But the installation and
loss, cost, and emissions.                                                maintenance costs will be presented. Based on this, the
                                                                          installation cost may be higher than other generators.
4.1 Case 1: DELD with thermal generators                                     The cost analysis of the 6, 10, and 11 generator units are
                                                                          considered in Tables 10, 11, 12, 13, 14, and 15 for its
In this case, the traditional system with thermal generators              corresponding load demand. The fuel and emission cost
is used to evaluate the generated power, losses, and cost                 values are changed on time, which is varied at the interval
analysis with the presence and absence of VPE. Initially,                 of 24 h, proving the effectiveness of the proposed
                                                                                                                             123
                                                                                                                     S. Acharya et al.
technique. In addition, the wind power generation and cost            generator is compared with a proposed and existing tech-
values are evaluated in this case. The following sub-section          nique like an Oppositional based Chaotic Grasshopper
presents the optimal cost function and power losses based             Optimization Algorithm (OCGOA) (Mandal and Roy
fitness in the combination of thermal, PV and wind gen-               2021), Particle Swarm Optimization (PSO) (Vaisakh et al.
erator systems.                                                       2012), Differential Evolution (DE) (Vaisakh et al. 2012),
    Estimating fuel charge and discharge repeated 200 times           Bacterial Foraging Optimization Algorithm (BFOA) (Vai-
and attained the least values for both with and without               sakh et al. 2012), Bacterial Foraging PSO-DE (BPSO-DE)
VPL. One common feature from the convergence curves of                (Vaisakh et al. 2012), which is given in Table 21. Table 22
different conditions can be noticed from the 0th to 200th             shows the cost for 10 unit generator comparison with a
iteration: the process starts with lower efficiency and               proposed and existing technique like OCGOA (Mandal and
maximizes at the end. An excellent property of these                  Roy 2021), Hybrid differential evolution-based-chemical
graphs is almost zero cost and emission at the final itera-           reaction optimization (HCRO) (Roy and Bhui 2016),
tion, demonstrated in Figs. 5, 6, and 7.                              MRGA (Zhu et al. 2016), Differential harmony search
    Figures 8, 9, and 10 show that the Pareto optimality and          (DHS) (Li et al. 2019) and Improved Harmony Search
impression of dominance are explained from the given 6,               (HIS) (Li et al. 2019).
10, and 11 generation units. The emission function reduces
two objective functions in the domination concept, which
dominates the cost solution if the objective function for             5 Conclusion
emission is better than the cost. The Pareto optimal front or
optimal solution defines that the test will be applied in the         In this paper, the dynamic load dispatch issue is optimized
entire search space for all individuals in the population to          by the MOMVO algorithm and produces the best cost and
appear with a set of solutions in optimization. The cost and          emission control. This algorithm considers the two objec-
emission values obtained in the proposed work are men-                tive functions: fuel cost and emission. Renewable energy,
tioned in red. The fuel and emission coefficients data for 6,         such as thermal, solar, and wind systems, have been uti-
10, and 11 generating units are given in Tables 16 and 17.            lized in this work. Here, the linear and nonlinear con-
The corresponding fuel and emission costs of all the gen-             straints are also satisfied as the power generation limits are
erating units are presented based on the two cases. The               generated. The 6, 10, and 11 generation units are consid-
best, worst, and average cost for 6, 10, and 11 units is given        ered in this system to optimize the emission and cost values
in Tables 18, 19, and 20. Moreover, the cost for 6 unit               based on with and without VPL. Thus, the result has shown
123
Optimization of cost and emission for dynamic load dispatch problem with...
OCGOA (Mandal and Roy 2021)           2478 378.097                 2478 342.746               2478 353.127               22.89
HCRO (Roy and Bhui 2016)              NR                           2,479,931.38               2,479,962                  NR
MRGA (Zhu 2016)                       NR                           2,497,000                  NR                         NR
DHS (Li 2019)                         NR                           2500 827.66                NR                         NR
IHS (Li 2019)                         NR                           2481 884.498               NR                         NR
MOMVO                                 2452 476.456                 2378 510.630               2393 904.524               21.47
better performance in VPL cases than without. The power                  intelligence-based technique will be used to optimize the
loss is calculated, and it attained less power loss from all             cost and emission for lower and higher-level generators.
the expressions, that the proposed system is better than the
existing one. Compared with existing methods, the pro-
posed approach test results are quite effective and                      Author contributions All authors read and approved the final
                                                                         manuscript.
promising, with good emission and a better quality solution
produced by the generation cost. In future, the artificial               Funding No funding is provided for the preparation of manuscript.
                                                                                                                                 123
                                                                                                                             S. Acharya et al.
Data availability Data sharing is not applicable to this article.        Hemeida AM, Omer AS, Bahaa-Eldin AM, Alkhalaf S, Ahmed M,
                                                                              Senjyu T, El-Saady G (2022) Multi-objective multi-verse
                                                                              optimization of renewable energy sources-based micro-grid
Declarations                                                                  system: Real case. Ain Shams Eng J 13(1):101543
                                                                         Ishraque MF, Shezan SA, Ali MM, Rashid MM (2021) Optimization
Conflict of interest Authors declare that they have no conflict of            of load dispatch strategies for an islanded microgrid connected
interest.                                                                     with renewable energy sources. Appl Energy 292:116879
                                                                         Joshi VK (2017) Optimization of economic load dispatch problem by
Ethical approval This article does not contain any studies with human         using tabu search algorithm. Int J Latest Trends Eng Technol
participants or animals performed by any of the authors.                      8(4–1):182–187
                                                                         Kamboj VK, Bhadoria A, Bath SK (2017) Solution of non-convex
Consent to participate All the authors involved have agreed to par-           economic load dispatch problem for small-scale power systems
ticipate in this submitted article.                                           using ant lion optimizer. Neural Comput Appl 28(8):2181–2192
                                                                         Li Z, Zou D, Kong Z (2019) A harmony search variant and a useful
Consent for publication All the authors involved in this manuscript           constraint handling method for the dynamic economic emission
give full consent for publication of this submitted article.                  dispatch problems considering transmission loss. Eng Appl Artif
                                                                              Intell 84:18–40
                                                                         Liu ZF, Li LL, Liu YW, Liu JQ, Li HY, Shen Q (2021) Dynamic
                                                                              economic emission dispatch considering renewable energy
References                                                                    generation: A novel multi-objective optimization approach.
                                                                              Energy 235:121407
Abbas G, Gu J, Farooq U, Asad MU, El-Hawary M (2017) Solution of         Majd AA, Farjah E, Rastegar M (2020) Composite generation and
     an economic dispatch problem through particle swarm opti-                transmission expansion planning toward high renewable energy
     mization: a detailed survey-part I. IEEE Access 5:15105–15141            penetration in Iran power grid. IET Renew Power Gener
Al-Rubayi RH, Abd MK, Flaih FM (2020) A New Enhancement on                    14(9):1520–1528
     PSO algorithm for combined economic-emission load dispatch          Mandal B, Roy PK (2021) Dynamic economic dispatch problem in
     issues. Int J Intell Eng Syst 13(1):77–85                                hybrid wind based power systems using oppositional based
Anita JM, Raglend IJ (2015) Power flow constrained unit commit-               chaotic grasshopper optimization algorithm. J Renew Sustain
     ment problem using improved shuffled frog leaping algorithm.             Energy 13(1):013306
     Power Electr. Renew. Energy Syst. Springer, pp 1545–55              Nagarajan K, Rajagopalan A, Angalaeswari S, Natrayan L, Mammo
Aragón VS, Coello C, Leguizamón MG (2019) An artificial immune              WD (2022) Combined economic emission dispatch of microgrid
     system for solving dynamic economic power dispatch problems.             with the incorporation of renewable energy sources using
     In: XXV Congreso Argentino de Ciencias de la Computación                improved mayfly optimization algorithm. Comput Intell Neu-
     (CACIC)(Universidad Nacional de Rı́o Cuarto, Córdoba, 14 al             rosci 2022:1–22
     18 de octubre de                                                    Narimani H, Razavi SE, Azizivahed A, Naderi E, Fathi M, Ataei MH,
Behera S, Behera S, Barisal AK (2022) Dynamic combined economic               Narimani MR (2018) A multi-objective framework for multi-
     emission dispatch integrating plug-in electric vehicles and              area economic emission dispatch. Energy 154:126–142
     renewable energy sources. Int J Ambient Energy                      Pandey VC, Gupta N, Niazi KR, Swarnkar A (2019) A scenario-based
     43(1):4683–4700                                                          stochastic dynamic economic load dispatch considering wind
Chen G, Zhao Z, Li Z (2018) Distributed finite-step iterative                 uncertainty. Power Systems (ICPS) IEEE, pp 1–5
     algorithm for economic dispatch of generation. IEEE Trans           Pandit M, Srivastava L, Sharma M (2015) Environmental economic
     Industr Inf 14(12):5221–5232                                             dispatch in multi-area power system employing improved
Daniel L, Chaturvedi KT, Kolhe ML (2018) Dynamic economic load                differential evolution with fuzzy selection. Appl Soft Comput
     dispatch using Levenberg Marquardt algorithm. Energy Procedia            28:498–510
     144:95–103                                                          Qu BY, Zhu YS, Jiao YC, Wu MY, Suganthan PN, Liang JJ (2018) A
Dong R, Ma L, Chen H, Heidari AA, Liang G (2023) Hybrid kernel                survey on multi-objective evolutionary algorithms for the
     search and particle swarm optimization with Cauchy perturba-             solution of the environmental/economic dispatch problems
     tion for economic emission load dispatch with valve point effect.        Elsevier. Swarm Evol Comput 38:1–11
     Frontiers in Energy Research 10:1061408                             Roy PK, Bhui S (2016) A multi-objective hybrid evolutionary
Ebrahimian H, Taheri B, Yousefi N (2015) Optimal operation of                 algorithm for dynamic economic emission load dispatch. Int
     energy at hydrothermal power plants by simultaneous minimiza-            Trans Electr Energy Syst 26(1):49–78
     tion of pollution and costs using improved ABC algorithm. Front     Roy PK, Hazra S (2014) Economic emission dispatch for wind-fossil-
     Energy 9(4):426–432. https://doi.org/10.1007/s11708-0150376-4            fuel-based power system using chemical reaction optimization.
Ghorbani N, Vakili S, Babaei E, Sakhavati A (2014) Particle swarm             Int Trans Electr Energy Syst. https://doi.org/10.1002/etep.2033
     optimization with smart inertia factor for solving non-convex       Tang C, Xu J, Tan Y, Sun Y, Zhang B (2019) Lagrangian relaxation
     economic load dispatch problems. Int Trans Electr Energy Syst            with incremental proximal method for economic dispatch with
     24:1120–1133                                                             large numbers of wind power scenarios. IEEE Trans Power Syst
Hazra S, Pal T, Roy PK (2021) Renewable energy based economic                 34(4):2685–2695
     emission load dispatch using grasshopper optimization algo-         Vaisakh K, Praveena P, Rao SRM, Meah K (2012) Solving dynamic
     rithm. In: Research anthology on clean energy management and             economic dispatch problem with security constraints using
     solutions. IGI Global, pp 869–890                                        bacterial foraging PSO-DE algorithm. Int J Electr Power Energy
                                                                              Syst 39(1):56–67
123
Optimization of cost and emission for dynamic load dispatch problem with...
Yeh WC, He MF, Huang CL, Tan SY, Zhang X, Huang Y, Li L                  Publisher’s Note Springer Nature remains neutral with regard to
    (2020) New genetic algorithm for economic dispatch of stand-         jurisdictional claims in published maps and institutional affiliations.
    alone three-modular microgrid in DongAo Island. Appl Energy
    263:114508                                                           Springer Nature or its licensor (e.g. a society or other partner) holds
Zhu Z, Wang J, Baloch MH (2016) Dynamic economic emission                exclusive rights to this article under a publishing agreement with the
    dispatch using modified NSGA-II. Int Trans Electr Energy Syst        author(s) or other rightsholder(s); author self-archiving of the
    26(12):2684–2698                                                     accepted manuscript version of this article is solely governed by the
Ziane I, Benhamida F, Graa A (2017) Simulated annealing algorithm        terms of such publishing agreement and applicable law.
    for combined economic and emission power dispatch using
    max/max price penalty factor. Neural Comput Appl
    28(1):197–205
123