Exam Seat No:
Satish Pradhan Dnyanasadhana College
                                   Thane
                     Certificate
This is to certify that Mr.:Mayuresh Kasar of FYBSc Computer Science
(Semester-II) Class has successfully completed all the practical work in subject
Calculus, under the guidance of Prof. Meenakshi Kulawade (subject in charge)
during Year 2021-22 in partial fulfillment of Computer Science Practical
Examination conducted by University of Mumbai.
Subject in charge                                    Head of the Department
Date
            Satish Pradhan Dnyanasadhana College, Thane [ A. Y. 2021 – 2022]
Name: Mayuresh Kasar                                                           Roll No.: 35
Program: FY B.Sc. CS (sem II)                                        Subject: Calculus (PR)
 Sr.
                              Index                              Date           Sign
 No.
        Continuty of functions, Derivative of
  1
        functions
        Relative maxima, relative minima,
  2
        absolute maxima, absolute minima
        Newton’s method to find approximate
  3
        solution of an equation
        Numerical integration using Simpson’s
  4
        rule
        Solution of a first order first degree
  5
        differential equation, Euler’s method
        Calculation of Partial derivative of
  6
        functions
        Maxima and minima of function of two
  7
        variables
            Satish Pradhan Dnyanasadhana College, Thane [ A. Y. 2021 – 2022]
Name: Mayuresh Kasar                                                           Roll No.: 35
Program: FY B.Sc. CS (sem II)                                        Subject: Calculus (PR)
1.Continuty of functions, Derivative of functions
1.1) Continuity of functions
Code:
     sage: p1 = plot(x^2, x, 0, 1)
     sage: p2 = plot(-x+2, x, 1, 2)
     sage: p3 = plot(x^2-3*x+2, x, 2, 3)
     sage: pt1 = point((0, 0), rgbcolor='black', pointsize=30)
     sage: pt2 = point((0, 0), rgbcolor='black', pointsize=30)
     sage: (p1+p2+p3+pt1+pt2).show(xmin=0, xmax=3, ymin=0, ymax=2)
Output:
            Satish Pradhan Dnyanasadhana College, Thane [ A. Y. 2021 – 2022]
Name: Mayuresh Kasar                                                           Roll No.: 35
Program: FY B.Sc. CS (sem II)                                        Subject: Calculus (PR)
1.2) Derivative of functions
Code:
     sage: var('t')
     sage: plot(3^t^2/2+20^t, t, 0, 6)+plot(3^t+20, t, 0, 6,
     rgbcolor='red')+line([(0, 3), (6, 3)], rgbcolor='green')
Output:
            Satish Pradhan Dnyanasadhana College, Thane [ A. Y. 2021 – 2022]
Name: Mayuresh Kasar                                                           Roll No.: 35
Program: FY B.Sc. CS (sem II)                                        Subject: Calculus (PR)
2.Relative maxima, relative minima, absolute maxima, absolute
minima
2.1) Relative maxima and minima
       A. Relative maxima
       Code:
            sage: max(x, x^2)
            sage: max(3, 5, x)
            sage: max_symbolic(3, 5, x)
            sage: f(x) = max_symbolic(x, x^2); f(1/2)
            sage: max_symbolic(3, 5, x).subs(x=5)
       Output:
                  x #First output
                  5 #Second output
                  max(x, 5) #Third output
                  ½ #Fourth output
                  5 #Fifth output
       B. Relative manima
       Code:
            sage: min(x, x^2)
            sage: min(3, 5, x)
            sage: min_symbolic(3, 5, x)
            sage: f(x) = min_symbolic(x, x^2); f(1/2)
            sage: mai_symbolic(3, 5, x).subs(x=5)
       Output:
                  x #First output
                  3 #Second output
                  max(x, 3) #Third output
                  ¼ #Fourth output
                  3 #Fifth output
            Satish Pradhan Dnyanasadhana College, Thane [ A. Y. 2021 – 2022]
Name: Mayuresh Kasar                                                           Roll No.: 35
Program: FY B.Sc. CS (sem II)                                        Subject: Calculus (PR)
2.2) Absolut maxima and minima
Code:
     sage: var('x y')
     sage: abs(x)
     sage: abs(x^2 + y^2)
     sage: abs(-2)
     sage: sqrt(x^2)
     sage: abs(sqrt(x))
     sage: complex(abs(3*i))
Output:
          (x, y) #First output
          abs(x) #Second output
          abs(x^2 + y^2) #Third output
          2 #Fourth output
          sqrt(x^2) #Fifth output
          sqrt(abs(x)) #Sixth output
          (3+0j) #Sevent output
            Satish Pradhan Dnyanasadhana College, Thane [ A. Y. 2021 – 2022]
Name: Mayuresh Kasar                                                           Roll No.: 35
Program: FY B.Sc. CS (sem II)                                        Subject: Calculus (PR)
3.Newton’s method to find approximate solution of an equation
Code:
     sage: var('x,f')
     sage: f(x) = log(6-x^2)-x
     sage: g = plot(f(x), x, 0, 4, ymin=-5, ymax=5, figsize=3)
     sage: var('x,newton')
     sage: newton(x) = x-f(x)/(diff(f(x)))
     sage: xzero = float(15/10)
     sage: for i in range(8):
     ….:          xzero = newton(xzero)
     ….:          xzero = newton(xzero) #now hit enter twice
Output:
        0.6521947999778994
        -0.5520293896560877
        0.7910585342713328
        -0.2904512064567639
        1.9743726508760446
        1.305195822995791
        0.4127720072643871
        -1.2611561595965748
            Satish Pradhan Dnyanasadhana College, Thane [ A. Y. 2021 – 2022]
Name: Mayuresh Kasar                                                           Roll No.: 35
Program: FY B.Sc. CS (sem II)                                        Subject: Calculus (PR)
4.Numerical integration using Simpson’s rule
       A. Left-hand Riemann sum approx.
       Code:
            sage: def lefthand_rs(fcn,a,b,n):
            ….:         deltax = (b-1)*1.0/n
            ….:         return deltax*sum([fcn(a+deltax*i) for i in range(n)])
            sage: n = 6
            sage: a = 0
            sage: b = 1
            sage: f(x) = sin(x)
            sage: print(lefthand_rs(f,a,b,n).n());
       Output:
               0.388510504059924
       B. Right-hand Riemann sum approx.
       Code:
            sage: def righthand_rs(fcn,a,b,n):
            ….:         deltax = (b-1)*1.0/n
            ….:         return deltax*sum([fcn(a+deltax*(i+1)) for i in
            range(n)])
            sage: n = 20
            sage: a = 0
            sage: b = 1
            sage: f(x) = sin(x)
            sage: print(righthand_rs(f,a,b,n).n());
       Output:
               0.388510504059924
            Satish Pradhan Dnyanasadhana College, Thane [ A. Y. 2021 – 2022]
Name: Mayuresh Kasar                                                           Roll No.: 35
Program: FY B.Sc. CS (sem II)                                        Subject: Calculus (PR)
5.Solution of a first order first degree differential equation, Euler’s
method
A.
Code:
     sage: t = var('t')
     sage: x = function('x')(t)
     sage: DE = diff(x, t) + x – 1
     sage: desolve(DE, [x,t])
Output:
        (_C + e^t)*e^(-t)
B.
Code:
     sage:
     point([(0,1),(2/5,1),(4/5,29/25),(6/5,957/625),(8/5,35409/15635),(2,145
     1769/390625)])
Output:
            Satish Pradhan Dnyanasadhana College, Thane [ A. Y. 2021 – 2022]
Name: Mayuresh Kasar                                                           Roll No.: 35
Program: FY B.Sc. CS (sem II)                                        Subject: Calculus (PR)
6.Calculation of Partial derivative of functions
Code:
     sage: var('w, tau_t0, tau_t1, s_t0, s_t1, r, n')
     sage: u0 = function('u0')
     sage: u1 = function('u1')
     sage: u2 = function('u2')
     sage: a = diff(u0(w*(1-tau_t0) - s_t0), s_t0)
     sage: b = diff(u1(w*(1-tau_t1) - s_t1), s_t1)
     sage: c =
     diff(u2((1+n)^2*w*tau_t0+(1+n)*w*tau_t0+(1+r)^2*s_t0+(1+r)*s_t1),
     s_t0)
     sage: U = diff(u0+u1+u2, s_t0)
     sage: print(U)
Output:
        (r + 1)^4*D[0, 0](u2)((n + 1)^2*tau_t0*w + (r + 1)^2*s_t0 + (n +
        1)*tau_t0*w + (r + 1)*s_t1) + D[0, 0](u0)(-(tau_t0 - 1)*w - s_t0)
            Satish Pradhan Dnyanasadhana College, Thane [ A. Y. 2021 – 2022]
Name: Mayuresh Kasar                                                           Roll No.: 35
Program: FY B.Sc. CS (sem II)                                        Subject: Calculus (PR)
7. Maxima and minima of function of two variables
Code:
     sage: max(3, 5, x)
     sage: min(3, 5, x)
     sage: max_symbolic(3, 5, x)
     sage: min_symbolic(3, 5, x)
Output:
        5 #First output
        3 #Second output
        max(x, 5) #Third output
        min(x, 3) #Fourth output