The Fourier Transform
time
      frequency
      (Hz)
                         1
Jean Joseph Baptiste Fourier
 March 21, 1768 to May 16, 1830
                                  2
Review: Fourier Trignometric Series (for Periodic Waveforms)
                        ∑(
         f (t) = a0 +         an cos(nω0t) + bn sin(nω0t)
                                                               )
                        n=1
                  2π            and f        1
         where ω = T0                   0   =T
       and
                T
             1                    (DC term)
             T∫
         a0 = 0 f (t)dt
                T
             2                              for n = 1, 2, 3,
             T∫
         an = 0 f (t) cos(nω0t)dt           etc.
                T
             2                              for n = 1, 2, 3,
             T∫
         bn = 0 f (t) sin(nω0t)dt           etc.
                                                                   3
Fourier Trigonometric Series in Amplitude-Phase
Format
                             ∑
         f (t) = A0 +         ∞     An cos(nω0t + φn )
                             n=1
                                (                    )
         a0 = A0
         An        2n   + bn2 and
                   a
         φ=n= − tan ⎛⎜ n ⎟⎞
                        −1
                      b
                     ⎝a n
       Also known as⎠ Polar form of Fourier series.
                                                         4
Example: Periodic Square Wave as Sum of
Sinusoids                               Line
 f0
                                        Spectra
                                        Even or
 3f0                                    Odd?
 5f0
 7f0
               EE 442 Fourier                     5
               Transform
Example: Periodic Square Wave (continued)                   Question:
                                                             What
       This is an odd function
                                                             would
                                                           make this an
                                                      ⎦
                                                              even
                                                      Fundamental
                                                      only
                                                               function?
                                                      Five
                                                      terms
                                                      Eleven
                                                      terms
                                                      Forty-nine
                                                      terms
    http://ceng.gazi.edu.tr/dsp/fourier_series/description.aspx
                                                                           6
            Fourier Series versus Fourier Transform
                  Continuous time          Discrete time
                                             Discrete
                     Fourier
    Periodic                                  Fourier
                     Series                  Transfor
                                                m
                                             Discrete
   Aperiodic        Fourier
                                              Fourier
                   Transform                 Transfor
                                                m
Fourier series for continuous-time periodic signals → discrete
spectra Fourier transform for continuous aperiodic signals →
continuous spectra
                                                                 7
           Definition of Fourier Transform
The Fourier transform (i.e., spectrum) of f(t) is   F
(ω):                     ∞
                      = f (t)e−
                  { } ∫ ∞
      F (ω) = F f (t) −∞
      jωt
          dt              1
                −
       f (t) = F 1 F     2π−∞ F (ω)e jωtdω
                   {            ∫
Therefore, f (t)⇔ F (ω) is a Fourier Transform pair
      (ω) =
          }    Note: Remember ω = 2π f
                                                        1
                                                        1
Examples
                   Example: Impulse Function δ(t)
                                             − j ωt            −
                                                                        = e j0=
                             } ∫
         F (ω) = F δ(t) =            δ(t)e            dt = e       t
                                                                        1
         j ωt
                         {                                         =0
                     δ(t) ⇔ 1 −∞
                    1 ⇔ 2πδ(ω)
                                                                   F δ
                                                                        {
                             ↔                                     (t) 1
                                                                        }
                                                                                  ω
            ∞ if t = 0
δ(t) =      0 if t ≠ 0
                                      Delta function has unity
                                      area.
                                                                                      1
                                                                                      3
        Example: Fourier Transform of Single Rectangular Pulse
                                                                  τ
                                                                          τ
                                                     1      for − 2 ≤ t2≤
              f (t) = rect(t ) = II(t /τ)
              =                                                                τ
                                                     0      for all       t> 2
f (t) = rect(t ) = II(t                          ∞       τ/ 2
/τ)
                                   F (ω) = f (t)e− jωt dt =                                 e−
Pulse             1                jωt
                                       dt ∫                                          ∫
of                                                     τ/ 2         − jωτ/ 2
                                            − jωt −∞      −τ/ 2                    jωτ/ 2
width
                                   = ⎛⎜ e ⎞⎟                        e−e
τ                                                               =
                                      ⎝ − j ω⎠                         − jω
                                                   −τ/ 2
                  τ       time t                                        ⎡                    ⎤
         τ
        − 2                            − j2sin(ωτ 2)     sin(ωτ 2)
                      2            =                 =τ⋅ ⎢           ⎥
              0                             − jω          ⎣ ⎦(ωτ 2 )
    Remember ω =
    2πf
                                                                                                 1
                                                                                                 4
Fourier Transform of Single Rectangular Pulse (continued)
                ⎡sin
                ⎢
                     (ωτ 2)⎤
      F (ω) =τ⋅ ⎣ (ωτ 2) ⎦=τ⋅sinc(πfτ)
                    ⎥
          1
                                                                sinc
                                             F(ω)               function
                                                        τ
 τ        ττ       time t
− 2            2
               2
      0
Note the
pulse is
                            − 3π             −π             π       2π     3π   ω
  time                             − 2π
                                      τ      τ              τ       τ      τ
centered                     τ                      0
                            ES 442 Fourier                                      1
                            Transform                                           5
                 Properties of the Sinc
                 Function
Definition of the sinc
function:
                                sin(x)
                       sinc(x) = x
   Sinc Properties:
             1. sinc(x) is an even function of x.
             2. sinc(x) = 0 at points where sin(x) = 0, that is,
                sinc(x) = 0 when x = ±π, ±2π, ±3π, … .
             3. Using L’Hôpital’s rule, it can be shown that sinc(0) = 1.
             4. sinc(x) oscillates as sin(x) oscillates and
                monotonically decreases as 1/ x decreases as |
                x | increases.
             5. sinc(x) is the Fourier transform of a single rectangular
                pulse.
   Warning:
   There are two definitions for the sinc(x) function. They are
                          sin(x)                     sin(πx)
               sinc(x) = x           and sinc(x) = πx
                                                                            1
                                                                            6
             Periodic Pulse Train Morphing Into a
             Single Pulse
                                                                                    Frequency
                                                                                    resolution
                                                             Ck                     inversely
                                                                                    proportional to the
                                                                                    period.
                                                             Ck
                                                             Ck
https://www.quora.com/What-is-the-exact-difference-between-continuous-fourier-transform-discrete-Time-Fourier-Tran
sform-
DTFT-Discrete-Fourier-Transform-DFT-Fourier-series-and-Discrete-Fourier-Series-DFS-In-which-cases-is-which-one-
used
                                                                                                                     1
                                                                                                                     7
Sinc Function Tradeoff: Pulse Duration versus
Bandwidth G1 ( f
                 )       T1
                                                                G2 ( f
                                                                )      T2
               1
           −              1
                          T1
               T1
                                                f                                       f
                                                              −1             1
  ❶                  g1 (t)                                   T2
                                                                    g2 (t)
                                                                             T2
                                                                                            ❷
         −T1                   T1           t                 −T2 T2                    t
          2                    2             G3 ( f            2     2
                                             ) T3
                                                                   f
                                                          1
                                                                    ❸
                                        1                                           Also called the
                                    −           g3 (t)
  T1 > T2 > T3                          T3               T3                          Time Scaling
                                                                                  Property (Section 2)
                                         −T3 T3                 t
                                          2
                                          2
                                                                                                     15
Properties of Fourier Transforms
 1 Linearity (Superposition) Property
2.   Time-Scaling Property
3.   Time-Shifting Property
4.   Frequency-Shifting Property
5.   Time Differentiation Property
6.    Frequency Differentiation Property
7.   Time Integration Property
8.   Time-Frequency Duality Property
9.   Convolution Property
                                           16
         1 Linearity (Superposition) Property
Given f(t) ↔ F(ω) and g(t) ↔ G(ω) ;
    Then f(t) + g(t) ↔ F(ω) + G(ω)          (additivity)
  also kf(t) ↔ kF(ω) and mg(t) ↔             (homogeneity)
         mG(ω) Note: k and m are
         constants
  Combining these we
  have,
            kf(t) + mg(t) ↔ kF (ω) + mG
            (ω)
Hence, the Fourier Transform is a linear transformation.
                                                             18
        2 Time Scaling
        Property
                       1 ⎛ω⎞
              f (at) =a F⎜⎝ ⎟
          {         }       a
                          ⎠
                   ∞
                       f (at)e− jωt
           } ∫
       f (at) =
  {
  dt
               −∞
                                       λd      ω
Let λ= at & dλ= adt,          − j ωt         ⎛ ⎞⎟
                                            F a
           } ∫                               ⎝⎜ ⎠
     f (at) =−∞
              ∞ f
  {                                     1
 (λ)e
Hence,                         =
                   f ( - t) = F a(−ωa) = F
              {*          }
               (ω)
                                                    2
                                                    1
         Time-Scaling Property (continued)
                             1 ⎛ω⎞
                    f (at) =a F⎝⎜ ⎟
                {         }      a
                               ⎠
Time compression of a signal results in spectral
  expansion and time expansion of a signal results in
  spectral compression.
                                                        20
       3 Time Shifting Property
                                      − jωt
              f (t − t0 ) = e 0 F ω
        {                        }                   ( )
                           ∞
      f (t − t )  0        ∫    f (t − t0 )e− jωt dt
  {                    }   −∞
Let=λ= t − t0 ,             dλ= dt & t = λ+ t0
                           ∞
      f (t − 0t )          ∫ f (λ)e    − jω(λ+t0 )
                                                     dλ=
  {                    }   −∞
  =               ∞
       − j ωt 9
  =e                   f (λ)e− jωλdλ= e− jωt0 F ω
                  ∫
                  −∞
                                                       ( )
                                                             21
                   Time-Shifting Property (continued)
                                             − jωt
                           f (t − t0 ) = e 0 F ω
                       {                 }           ( )
          Delaying a signal by t0 seconds does not change its
            amplitude spectrum, but the phase spectrum is
                            changed by -2πft0.
                          ⎡           ⎤     ⎡          ⎤
                                        2                2
        Note thatFthe phase      ( )
                             spectrum
                    (ω) = ⎣ Re F (ω ⎦ ⎣shift
                                          +   changes
                                              Im  ( ⎦
                                                  F  ( )
                                                      linearly with
                               frequency f. ω
                   f (t)                     F
                                     )       (ω)      )
A time shift
produces a                           t                     ω
                    Even                                         Both
phase shift in      function.
                                                                must be
its spectrum.                                                  identical.
                                                           ω
                                         t
                 This time shifted pulse
                 is both even and odd.
                                                                            22
          4 Frequency Shifting Property
            {} f (t)e jω0t = F (                            )    0
                           ω−ω
                         ∞
      f (t)e jω0t                    f (t)e jω0te−
                    } ∫
                             =
  {dt
  jωt ∞
      ∫    f (t)e − j (ω−∞
                        −ω0 )t
  =                            dλ= F (ω−ω
                                        )0
      −∞
Special application:
Apply to            cos (ω 0t)           1
                                             (e     0
                                                  jωt        − jω0t
                                         2
                                                        +e            );
                                 =
  {f (t)cos (ω t)} (F (ω−ω) + F ( ω+ω) )
                     0
                                 1
                                 2                      0                  0
                         =
                                                                               23
   An Important Formula to Remember
                    Euler's formula
      exp ± jθ = cos(θ) ± j
                [   ]
      sin(θ)
               1
      sin(θ) = 2 exp jθ − exp −
               j (  [ ]      [
       θ θ) = 21 exp jθ + exp −
      jcos(
           ])        (     [ ]          [
      jθ            ⎧1     for n even
         and
 ± j π/2
e ( )=±j   ]) ± jnπ
             e = ⎩⎨
                     −1 for n odd
aa++jbjb==re jθ where r                           ⎛b⎞
                              2
                             a + b2 ,   θ= tan−1 ⎝⎜  ⎟
 reiθ           =                                  a
                                                  ⎠
                                                         24
Frequency Shifting Property is Very Useful in
Communications
        Multiplication of a signal g(t) by the factor
                          [cos(2πfCt)]
              places G(f) centered at f = ± fC.
                   Carrier frequency is fc    G( f
                   &                          )    2
                  g(t) is the message              A
 g(t)
                  signal g(t) ⇔ G( f
                            )
                        t                  −B        B f
                                                          2B
g(t)        g(t) cos(2πfC t)
                                      USB                  A   LS        USB
                                                    LSB        B
                          t               −    fC                   fC    f
                                              2B
g(t)
                         ES 442 Fourier                                        25
                         Transform
       Frequency-Shifting Property
       (continued)
g(t)
              (a) Message                      G( G(
                                                  f) f)             (b)
                     signal
                                                    θg ( f )
g(t) cos(2πfC t) c
               (                                                    (d)
               )
                                 -fC                           fC
g(t) sin(2πfC t) e         Note phase
               (           shift                                    (f
               )                               π2                   )
                                        −π 2
 Multiplication of a signal g(t) by the              cos(2πfCt)
           factor places G(f) centered
           at f = ±EEfC442
                        . Fourier                                         26
                     Transform
Modulation Comes From Frequency Shifting
Property
           Given FT pair: f (t) ⇔ F ω
                                  ( )
          then, f (t) e jω t ⇔ F ω−ω 0
                              0
Amplitude Modulation
                                (     )
Example:
              Audio tone:
               ~ sin(ωt)
  Sinusoidal carrier signal:
                Amplitude
                 Modulate
                 d Signal
                  EE 442 Fourier           27
                  Transform
 Fourier Transform of AM Tone Modulated
 Signal
     f(t)
      Carrier
       signal                         F(ω
    fC = 500 Hz
                                      )
Modulated AM
sidebands
                   Only positive frequencies
                   shown;
                  Must include negative
                  frequencies.
                     ES 442 Fourier            28
                    Transform
Modulation of Baseband and Carrier
Signals
                                              fC = f 0
      https://slideplayer.com/slide/1093995
      1/         ES 442 Fourier                          29
               Transform
        Transform Duality
               g(t) ⇔ G( f ),
        Property
        Given
        then g(t) ⇔ G( f
                   ) and
              G(t) ⇔ g(− f )
             Note the minus sign!
Because of the minus sign they are not
perfectly symmetrical – See the illustration
on next slide.
               EE 442 Fourier                  3
               Transform                       2
           Illustration of Fourier Transform
           Duality                           G1 ( f
         g1
         (t)
                                                           )    τT
                                                 −1             1
                                                                         1
                                                                                  3
                                                 τ                       τ
                                                                                  τ
    −τ             τ         t              −                                 2       f
     2         2                            2τ                               τ
        g2 (t)                                             G2 ( f
                                                           )
−11
                   τ                                           2π            What
−                      1
τT                                                                           does
                   τ                                                         this
                                                      −τ
    1
                             t                                      τ        imply? f
                                                      4π            4π
                                                      −τ            τ                 ω
                           EE 442 Fourier              2            2                     3
                           Transform                                                      3
Fourier Transform of Complex
Exponentials
  F−1 [δ ( f] − fc ) = ∫
                       ∞ δ( f − fC )e
                                      − j2πf t
         df            −∞
    Evaluate for f = fc
  F−1 [δ ( f]− f c ) =      ∫       e
                                        − j2πfct
                                                   df = e
                                                            − j2πfct
                           f = fc
      ∴ δ( f − fc ) ⇔ e − j2πf tc                     an
                           ∞                          d
  F   −1
           [δ ( f] + fc ) = ∫ δ( f + f C )e− j2πf t df
                           −∞
       Evaluate for f =− fc
  F−1 [δ ( f]+ f c ) =       ∫       e
                                          j2πfct
                                                   df = e
                           f =− fc   j2πf tc
      ∴ δ( f + fc ) ⇔ e              j2πf tc
                      EE 442 Fourier                                   32
                      Transform
               Fourier Transform of Sinusoidal
               Functions − j2πf t                   j2πf t                   n!
    Taking δ( f − fc ) ⇔ e c
                                  and  δ( f + fc ) ⇔ e
                                                  c         r! n−r
    We use these results to find FT of cos(2πft) and sin(2πft) (
                                                                 !
    Using the identities for cos(2πft) and sin(2πft),           )
*   cos(2πft) = 12⎡ej2πfct + e− j2πfct ⎤ & co (2πft) = 1 ⎡ej2πfct − e− j2πfct ⎤
                     2j                 ⎦ ⎦sin
    Therefore, ⎣        ⎣                   s
           cos(2πft) ⇔ δ21 [ ( f + f c) +δ ( f − f c) ],      and
           sin(2πft) ⇔ 1 [δ( f + f )c −δ ( f − f c) ]
                            2j
                                 R                                  I
          cos(2πfct              e                    sin(2πfct     m
          )                                           )
                      -fc             fc      f            -fc          fc        f
                                     EE 442 Fourier                                   33
                                     Transform
Summary
of Several
  Fourier
Transform
   Pairs
 http://media.cheggcd
 n
 .com/media/db0/db0f
 f
 fe9-45f5-40a3-a05b-
 12a179139400/phps
 u6 3he.png
                        34
        Spectrum Analyzer Shows Frequency
        Domain
                           A spectrum analyzer measures
                           the magnitude of an input signal
                           versus frequency within the full
                           frequency range of the
                           instrument. It measures
                           frequency, power, harmonics,
                           distortion, noise, spurious
                           signals and bandwidth.
                             It is an electronic receiver
                             Measure magnitude of signals
                             Does not measure phase of
                             signals
                             Complements time domain
Courtesy: Keysight
Technologies
                                    Bluetooth Spectrum        39
         Fourier Transform of Cosine
         Signal
                       A
       A cos(2πf ct) = c 2 δ( f + f ) +δ( f − f )c
                A
                           [                         ]
                2
                                       A cos(2πf t)
                               Re
              -fc
3D                                               A
                                                 2
View
                                            fc
                                               Blue arrows indicate
                                             positive phase
                                             directions
                      EE 442 Fourier                                  40
                      Transform
Fourier Transform of Cosine Signal (as shown in
textbooks)
                                               Real
cos(t)                              δ(− f0 )   axis
                             F
 −T0              T0 t
                             T
                                                           f
                                        − f0          f0
                         f0 =
                            1 T0
                   ES 442 Fourier                              3
                   Transform                                   9
    Fourier Transform of Sine
    Signal
                  B
B sin(2πf ct) = cj 2 δ( f + f ) −δ( f − f )c
                    [                      ]
                                B sin(2πf t)
                        Re
B       -fc
2
                                               B
                                               2
                                     fc
                                       We must subtract
                                      90° from cos(x) to get
                                      sin(x)
               EE 442 Fourier                                  42
               Transform
 Fourier Transform of Sine Signal (as usually shown in
 textbooks)
                                                       Imaginary
                                                       axis
B⋅sin(ω0t                                δ (− f0 )          B
)         B                                                j2
                    t          F                − f0               f0   f
                               T
                                                           B
                                                        −j 2
                        EE 442 Fourier                                      43
                        Transform
  Visualizing Fourier Spectrum of Sinusoidal
  Signals
Multiplying
 by j is a
phase shift
                 ES 442 Fourier                44
                 Transform
Fourier Transform of a Phase Shifted
Sinusoidal(with phase information
           Signal
          shown)
                                     jφ      j2πft                − jφ − j2πf t
                             R ⋅e e                  + R ⋅e             e
                               A
                                2                       R
       − j2πft
R ⋅e                     -                              e
                         φ   -fc
                 B
                                                                                                j2πft
                 2                                                                      R ⋅e
                                                                            A
                                                                            2         φ        B
                                                                                               2
                                                                                fc
                                  A
                               ⎛⎜ ⎞2 ⎛ ⎟⎞2
                                               B                                       ⎛ A
                     R                    +                 and φ= tan −         −1           ⎟⎞
                     =            2 2
                                ⎝ ⎠⎝ ⎠ ⎝     ⎜                                       ⎜     B
                                                                                               ⎠
                                ⎟
            http://www.ece.iit.edu/~biitcomm/research/references/Other/Tutorials%20in%20Communications
            %20E
            ngineering/Tutorial%207%20-%20Hilbert%20Transform%20and%20the%20Complex%20Envelo
            pe.pdf
                                          EE 442 Fourier                                                 45
                                          Transform