Abel's and Double Series Theorems
Abel's and Double Series Theorems
Shiju George
18-8-2021
POWER SERIES-Review
Theorem
∞
X
cn x n converges for
P
Suppose cn converges. Then f (x) =
n=0
∞
X
−1 < x < 1. Further lim f (x) = cn .
x→1
n=0
POWER SERIES-Review
Theorem
∞
X
cn x n converges for
P
Suppose cn converges. Then f (x) =
n=0
∞
X
−1 < x < 1. Further lim f (x) = cn .
x→1
n=0
POWER SERIES-Review
Theorem
∞
X
cn x n converges for
P
Suppose cn converges. Then f (x) =
n=0
∞
X
−1 < x < 1. Further lim f (x) = cn .
x→1
n=0
Abel’s Theorem
Theorem
P P P
If the series an , bn and cn converge to A, B and C respectively,
where cn = a0 bn + a1 bn−1 , · · · , an b0 , then C = AB.
Proof:
∞
X ∞
X ∞
X
All three series f (x) = an x n , g (x) = bn x n and h(x) = cn x n
n=0 n=0 n=0
converge for for x = 1.
Abel’s Theorem
Theorem
P P P
If the series an , bn and cn converge to A, B and C respectively,
where cn = a0 bn + a1 bn−1 , · · · , an b0 , then C = AB.
Proof:
∞
X ∞
X ∞
X
All three series f (x) = an x n , g (x) = bn x n and h(x) = cn x n
n=0 n=0 n=0
converge for for x = 1.
Abel’s Theorem
Theorem
P P P
If the series an , bn and cn converge to A, B and C respectively,
where cn = a0 bn + a1 bn−1 , · · · , an b0 , then C = AB.
Proof:
∞
X ∞
X ∞
X
All three series f (x) = an x n , g (x) = bn x n and h(x) = cn x n
n=0 n=0 n=0
converge for for x = 1.
Abel’s Theorem
Theorem
P P P
If the series an , bn and cn converge to A, B and C respectively,
where cn = a0 bn + a1 bn−1 , · · · , an b0 , then C = AB.
Proof:
∞
X ∞
X ∞
X
All three series f (x) = an x n , g (x) = bn x n and h(x) = cn x n
n=0 n=0 n=0
converge for for x = 1.
Abel’s Theorem
P P P
Applying the above theorem, we get an bn = cn .
Abel’s Theorem
P P P
Applying the above theorem, we get an bn = cn .
Abel’s Theorem
P P P
Applying the above theorem, we get an bn = cn .
Abel’s Theorem
P P P
Applying the above theorem, we get an bn = cn .
DOUBLE SERIES
In the first unit, we have studied some properties of double sequence. Let
us now look into double series.
The first question to be asked is that:
∞ X
X ∞ ∞ X
X ∞
Question: Does aij = aij always hold ?
i=1 j=1 j=1 i=1
Answer: No
Counterexample:
0 if (i < j)
aij = −1 if (i = j)
j−i
2 if (i > j)
DOUBLE SERIES
In the first unit, we have studied some properties of double sequence. Let
us now look into double series.
The first question to be asked is that:
∞ X
X ∞ ∞ X
X ∞
Question: Does aij = aij always hold ?
i=1 j=1 j=1 i=1
Answer: No
Counterexample:
0 if (i < j)
aij = −1 if (i = j)
j−i
2 if (i > j)
DOUBLE SERIES
In the first unit, we have studied some properties of double sequence. Let
us now look into double series.
The first question to be asked is that:
∞ X
X ∞ ∞ X
X ∞
Question: Does aij = aij always hold ?
i=1 j=1 j=1 i=1
Answer: No
Counterexample:
0 if (i < j)
aij = −1 if (i = j)
j−i
2 if (i > j)
DOUBLE SERIES
In the first unit, we have studied some properties of double sequence. Let
us now look into double series.
The first question to be asked is that:
∞ X
X ∞ ∞ X
X ∞
Question: Does aij = aij always hold ?
i=1 j=1 j=1 i=1
Answer: No
Counterexample:
0 if (i < j)
aij = −1 if (i = j)
j−i
2 if (i > j)
DOUBLE SERIES
In the first unit, we have studied some properties of double sequence. Let
us now look into double series.
The first question to be asked is that:
∞ X
X ∞ ∞ X
X ∞
Question: Does aij = aij always hold ?
i=1 j=1 j=1 i=1
Answer: No
Counterexample:
0 if (i < j)
aij = −1 if (i = j)
j−i
2 if (i > j)
DOUBLE SERIES
∞ X
X ∞ ∞ X
X i−1 ∞
X
aij = ( aij + aii + aij )
i=1 j=1 i=1 j=1 j=i+1
∞ X
X i−1 ∞
X
j−i
= ( 2 + −1 + 0)
i=1 j=1 j=i+1
∞ X
X i−1 ∞
X
j−i
= ( 2 −1+ 0)
i=1 j=1 j=i+1
∞
X i−1
X
= (2−i 2j − 1)
i=1 j=1
X∞
= (2−i 2(2i−1 − 1) − 1)
i=1
DOUBLE SERIES
∞
X
= (2−i (2i − 2) − 1)
i=1
∞
X
= (1 − 2−i+1 − 1)
i=1
∞
X
= −2−i+1
i=1
1 1
= −(1 + + 2 + ···)
2 2
= −2
DOUBLE SERIES
∞ X
X ∞ ∞ X
X j−1 ∞
X
aij = ( aij + ajj + aij )
j=1 i=1 j=1 i=1 i=j+1
∞ X
X j−1 ∞
X
= ( 0 + −1 + 2j−i )
j=1 i=1 i=j+1
X∞ ∞
X
= (−1 + 2j 2−i )
j=1 i=j+1
∞
X 1 1 1
= (−1 + 2j ( + + + ···
2j+1 2j+2 2j+3
j=1
X∞
= (−1 + 1)
j=1
= 0
SHIJU GEORGE (BRENNEN COLLEGE ) 18-8-2021 7 / 13
Some Special Functions
DOUBLE SERIES
∞ X
X ∞ ∞ X
X ∞
Thus we have proved that aij = aij may not hold always.
i=1 j=1 j=1 i=1
Theorem
∞ X
X ∞ ∞
X
Let aij be a double sequence. Suppose that |aij | converge for
i=1 j=1 j=1
∞
X
each i = 1, 2, 3, · · · , say to bi and bi converge. Then
i=1
∞ X
X ∞ ∞ X
X ∞
aij = aij
i=1 j=1 j=1 i=1
DOUBLE SERIES
∞ X
X ∞ ∞ X
X ∞
Thus we have proved that aij = aij may not hold always.
i=1 j=1 j=1 i=1
Theorem
∞ X
X ∞ ∞
X
Let aij be a double sequence. Suppose that |aij | converge for
i=1 j=1 j=1
∞
X
each i = 1, 2, 3, · · · , say to bi and bi converge. Then
i=1
∞ X
X ∞ ∞ X
X ∞
aij = aij
i=1 j=1 j=1 i=1
DOUBLE SERIES
∞ X
X ∞ ∞ X
X ∞
Thus we have proved that aij = aij may not hold always.
i=1 j=1 j=1 i=1
Theorem
∞ X
X ∞ ∞
X
Let aij be a double sequence. Suppose that |aij | converge for
i=1 j=1 j=1
∞
X
each i = 1, 2, 3, · · · , say to bi and bi converge. Then
i=1
∞ X
X ∞ ∞ X
X ∞
aij = aij
i=1 j=1 j=1 i=1
DOUBLE SERIES
1 1
Proof: Let E = {0, 1, , , · · · }
2 3
For each i = 1, 2, 3, · · · , define fi : E → R as follows:
∞
X
fi (0) = aij
j=0
n
1 X
fi ( ) = aij
n
j=0
DOUBLE SERIES
1 1
Proof: Let E = {0, 1, , , · · · }
2 3
For each i = 1, 2, 3, · · · , define fi : E → R as follows:
∞
X
fi (0) = aij
j=0
n
1 X
fi ( ) = aij
n
j=0
DOUBLE SERIES
1 1
Proof: Let E = {0, 1, , , · · · }
2 3
For each i = 1, 2, 3, · · · , define fi : E → R as follows:
∞
X
fi (0) = aij
j=0
n
1 X
fi ( ) = aij
n
j=0
DOUBLE SERIES
1 1
Proof: Let E = {0, 1, , , · · · }
2 3
For each i = 1, 2, 3, · · · , define fi : E → R as follows:
∞
X
fi (0) = aij
j=0
n
1 X
fi ( ) = aij
n
j=0
DOUBLE SERIES
1 1
Proof: Let E = {0, 1, , , · · · }
2 3
For each i = 1, 2, 3, · · · , define fi : E → R as follows:
∞
X
fi (0) = aij
j=0
n
1 X
fi ( ) = aij
n
j=0
DOUBLE SERIES
Proof(This page may be omitted for exam):
We only need to check the continuity at x = 0 as it is the only limit point.
To show the continuity of fi at x = 0:
Let xn → 0 in E . We shall show that fi (xn ) → fi (0).
Let ε > 0 be given.
X∞ ∞
X
Since aij converges absolutely, there exists N such that |aij | < ε
j=0 j=N
Since xn → 0 in E , there exists N1 such that xn < 1/N for all n ≥ N1 .
But then for any n ≥ N1 , we get
(
0P if xn = 0
|fi (xn ) − fi (0)| = ∞
| j= 1 +1 aij | if xn ̸= 0
xn
∞
X
In either case |fi (xn ) − fi (0)| ≤ |aij | < ε
j=N
SHIJU GEORGE (BRENNEN COLLEGE ) 18-8-2021 10 / 13
Some Special Functions
DOUBLE SERIES
Proof(contd · · · ):
For each i = 1, 2, 3, · · · , |fi (x)| ≤ bi ∀x ∈ E .
X∞ ∞
X
Since bi converges, by Weierstrass M-test, fi converges uniformly
i=1 i=1
on E and hence it is continuous on E . In particular at x = 0
X∞ ∞
X
Thus we have lim fi (1/n) = fi (0)
n→∞
i=1 i=1
Now ∞
X ∞ X
X n
lim fi (1/n) = lim aij
n→∞ n→∞
i=1 i=1 j=1
∞
n X
X
= lim aij
n→∞
j=1 i=1
∞
XX∞
= aij
SHIJU GEORGE (BRENNEN COLLEGE ) j=1 i=1 18-8-2021 11 / 13
Some Special Functions
DOUBLE SERIES
Proof(contd · · · ):
For each i = 1, 2, 3, · · · , |fi (x)| ≤ bi ∀x ∈ E .
X∞ ∞
X
Since bi converges, by Weierstrass M-test, fi converges uniformly
i=1 i=1
on E and hence it is continuous on E . In particular at x = 0
X∞ ∞
X
Thus we have lim fi (1/n) = fi (0)
n→∞
i=1 i=1
Now ∞
X ∞ X
X n
lim fi (1/n) = lim aij
n→∞ n→∞
i=1 i=1 j=1
∞
n X
X
= lim aij
n→∞
j=1 i=1
∞
XX∞
= aij
SHIJU GEORGE (BRENNEN COLLEGE ) j=1 i=1 18-8-2021 11 / 13
Some Special Functions
DOUBLE SERIES
Proof(contd · · · ):
For each i = 1, 2, 3, · · · , |fi (x)| ≤ bi ∀x ∈ E .
X∞ ∞
X
Since bi converges, by Weierstrass M-test, fi converges uniformly
i=1 i=1
on E and hence it is continuous on E . In particular at x = 0
X∞ ∞
X
Thus we have lim fi (1/n) = fi (0)
n→∞
i=1 i=1
Now ∞
X ∞ X
X n
lim fi (1/n) = lim aij
n→∞ n→∞
i=1 i=1 j=1
∞
n X
X
= lim aij
n→∞
j=1 i=1
∞
XX∞
= aij
SHIJU GEORGE (BRENNEN COLLEGE ) j=1 i=1 18-8-2021 11 / 13
Some Special Functions
DOUBLE SERIES
Proof(contd · · · ):
For each i = 1, 2, 3, · · · , |fi (x)| ≤ bi ∀x ∈ E .
X∞ ∞
X
Since bi converges, by Weierstrass M-test, fi converges uniformly
i=1 i=1
on E and hence it is continuous on E . In particular at x = 0
X∞ ∞
X
Thus we have lim fi (1/n) = fi (0)
n→∞
i=1 i=1
Now ∞
X ∞ X
X n
lim fi (1/n) = lim aij
n→∞ n→∞
i=1 i=1 j=1
∞
n X
X
= lim aij
n→∞
j=1 i=1
∞
XX∞
= aij
SHIJU GEORGE (BRENNEN COLLEGE ) j=1 i=1 18-8-2021 11 / 13
Some Special Functions
DOUBLE SERIES
∞ X
X ∞ ∞ X
X ∞
Thus we get aij = aij .
j=1 i=1 i=1 j=1
DOUBLE SERIES
∞ X
X ∞ ∞ X
X ∞
Thus we get aij = aij .
j=1 i=1 i=1 j=1
DOUBLE SERIES
∞ X
X ∞ ∞ X
X ∞
Thus we get aij = aij .
j=1 i=1 i=1 j=1
THANK YOU...
HAVE A NICE DAY...
THANK YOU...
HAVE A NICE DAY...