0% found this document useful (0 votes)
115 views11 pages

Eccentric Footings

Uploaded by

Vishakha Nikhare
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLSX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
115 views11 pages

Eccentric Footings

Uploaded by

Vishakha Nikhare
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLSX, PDF, TXT or read online on Scribd
You are on page 1/ 11

EXAMPLE: An RCC column of size 300 mm x 600 m

carries a characteristic load of 800 KN a


its major axis and My = 50 KNm about i
thrust of 60KN along longer side of the
on soil is 200 KN/m2. Design an isolated
shall be M20 concrete and HYSD reinfo
from 1.6m to 5.6m depth is hard yellow
c = 70 kPa, φ = 0° , ϒ = 16 KN/m3, adhes
mm x 600 mm reinforced with 8 no. 28mm dia. bars
d of 800 KN and service moments Mx = 80KNm about
KNm about its minor axis.It also carries a horizontal
r side of the column. The allowable bearing pressure
gn an isolated pad footing. The materials for footing
HYSD reinforcement of grade Fe 415. The soil strata
s hard yellow silty clay of high plasticity having cohesion
N/m3, adhesion β = 80 kPa.
a. bars
m about
zontal
essure
ooting
l strata
g cohesion
Design of Eccentric footing for a column of a multi-storeyed building
Enter the values in these cells only.
1) Column data
Size of column Shorter a1 300 mm = 0.3 m
Longer a2 600 mm = 0.6 m
Unfactored Load P 800 KN 80 KNm
horizontal thrust along longer side Hy 60 KN 50 KNm
Unfactored BM about major axis Mux 80 KNm y y
Unfactored BM about minor axis Muy 50 KNm
x
2) Soil data
ABP of soil ABP 200 KN/m2
Type of soil silty clay (cohesive)
cohesion c 70 kPa
Adhesion β 80 kPa 800
Angle of internal friction φ 0° 80 KNm
Unit weight of soil ϒsoil 16 KN/m3

3) Concrete data 60 KN
Grade of concrete fck 20 N/mm2 96 KN
Grade of steel fy 415 N/mm2 550
Xumax/d 0.48
Clear cover c 50 mm
Assume overall depth of footing D 550 mm = 0.55 m

3) Loads at the base of the footing


Unfactored Load 800 KN
Self weight of footing 96 KN
Total unfactored load (including self wt.) P 896 KN
Net B.M along longer direction Mux 113 KNm
Net B.M along shorter direction Muy 50 KNm
896 KN
4) Size of footing 60 113 KNm 𝐴=(𝑈𝑛𝑓𝑎𝑐𝑡𝑜𝑟𝑒𝑑 𝑡𝑜𝑡𝑎𝑙 𝑙𝑜𝑎𝑑 )/𝐴𝐵𝑃
Area of footing required A 4.48 m2

Trial L(m) B(m) A (m2) Zx Zy P/A Mx/Zx My/Zy pmax pmin


1 2.3 2 4.6 1.763333 1.533333 194.7826 64.0832 32.609 291.4745 98.091
2 2.7 2.4 6.48 2.916 2.592 138.2716 38.7517 19.29 196.3134 80.23

Hence adopt L 2.7 m such that pmax <ABP and pmin > 0
B 2.4 m

5) Net upward pressures


For Mx
𝑞 =𝑃_𝑢/𝐴−𝑀_𝑢𝑥/𝑍_𝑥
qmax 243.3128 KN/m2 𝑞𝑚𝑎𝑥=𝑃_𝑢/𝐴+𝑀_𝑢𝑥/𝑍_𝑥 &𝑚𝑖𝑛
qmin 127.0576 KN/m 2

For My
𝑞𝑚𝑎𝑥=𝑃_𝑢/𝐴+𝑀_𝑢𝑦/𝑍_𝑦 𝑞𝑚𝑎𝑥=𝑃_𝑢/𝐴−𝑀_𝑢𝑦/𝑍_𝑦
qmax 214.1204 KN/m2 &
qmin 156.25 KN/m2
6) Dimensions and pressure diagram

2.7 m
214.1204 KN/m2
1.05

2.4 1.05
m

156.25 KN/m2

127.06
243.3128 KN/m2

7) BM at the face of column


For Mux:
1.05 m

1
2
127.06
198.10 243.3128 KN/m2

A1 249.6091 mm2 𝑀𝑥=𝑓𝑜𝑟𝑐𝑒∗𝐶.𝐺


A2 306.5741 mm2
𝑓𝑜𝑟𝑐𝑒=𝑎𝑟𝑒𝑎 𝑜𝑓 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑑𝑖𝑎𝑔𝑟𝑎𝑚
C.G 1 0.35 m
C.G 2 0.7035 m

Mx 303.038 KNm 𝑀𝑥=(𝐴_1∗ 〖𝐶 .𝐺 〗 _1+𝐴_2∗ 〖𝐶 .𝐺 〗 _2)*B

For Muy:
214.12 KN/m2
2
1.05 1
188.80 KN/m2

156.25 KN/m2

A1 267.627
A2 303.5156
C.G 1 0.35
C.G 2 0.7035

My 307.1927 KNm 𝑀𝑦=(𝐴_1∗ 〖𝐶 .𝐺 〗 _1+𝐴_2∗ 〖𝐶 .𝐺 〗 _2)*L


8) Depth of footing
Qlim 2.75927
dx,req. 213.9173 mm
dy,req. 203.061 mm
D 550 mm
φx 12 mm
φy 12 mm
dx 494 mm
dy 482 mm

9) Reinforcement Calculations
R/F along longer side 𝑝𝑡𝑟𝑒𝑞=50∗𝑓𝑐𝑘/𝑓𝑦∗{1−√(1−(4.6∗𝑀𝑢)/(𝑓𝑐𝑘∗𝑏∗𝑑^2 ))}
pt,req 0.148 %
Astreq 1753.713 mm2
Ast,min 1584 mm2 〖𝐴𝑠𝑡〗 _𝑟𝑒𝑞=(𝑝_𝑡𝑟𝑒𝑞∗𝐵∗𝑑)/100
Nreq 15.51409
Nprov. 16
Ast,prov. 1808.64 mm2 OK
c/c spacing 152.5333 mm
clear spacing 140.5333 mm OK

Hence provide16-12mm # along longer direction

R/F along shorter side


pt,req 0.140 %
Astreq 1818.84 mm2
Ast,min 1782 mm2
β 1.125
2/(β+1) 0.941176
Ast,central 1711.849 mm2
𝐴𝑠𝑡,𝑐𝑒𝑛𝑡𝑟𝑎𝑙=2/(𝛽+1)*Ast
Nreq,central 15.14375
Nprov. 16
Ast,provided,central 1808.64 mm2
Ast,corner 106.9906 mm2
Nreq,corner 0.946484
Nprov. 2
Width of central band 2400 mm
width of each corner band 150 mm

Hence provide 16 bars of 12mm dia. In central band and 2 bars of 12mm dia. In corner portion
10) Check for one-way shear
Along longer direction
2.7

494
2.4

0.556

127.06
219.37 243.31 KN/m2

V 308.7038 KN
τv 0.26 N/mm2
pt,prov 0.15
β 16.17394
τc 0.281975 N/mm2 1
NOTE: The check for one-way shear along shorter direction is not required as the cantilever length is smaller.

11) Check for two way shear


2.7

2.4

1.894 0.806

127.06
208.61 243.31 KN/m2

Avg. depth d 488 mm


Width at crictical section b 788 mm
Upward pressure at d/2 w 225.9606 KN/m2
Area of crictical section (trapezoid) 1.163864 m2
Shear at crictical section V 262.9874 KN
τv 0.683894 N/mm2
τc 1.118034 N/mm2 1

12) Factor of safety against sliding


𝑅=2∗𝑐∗𝐵∗ℎ+0.5∗𝛾∗ℎ^2∗𝐵+𝛽∗𝐿∗𝐵
R 709.008 KN
H 60 KN
FOS 11.8168 OK 𝐹𝑂𝑆=𝑅/𝐻
<1.6

13) Detailing drawings


16-12mm # along longer direction

16 - 12mm #

550

0.15 2.4 0.15 2.7 m


2.7
Design of Eccentric footing for uniaxial moment
Enter the values in these cells only.
1) Basic data
Size of column Shorter a1 500 mm = 0.5 m
Longer a2 300 mm = 0.3 m
factored Load Pu 1000 KN
factored BM about major axis Mux 120 KNm 120 KNm
ABP of soil ABP 200 KN/m2
Unit weight of soil ϒsoil 16 KN/m3 y y
Grade of concrete fck 25 N/mm2
Grade of steel fy 415 N/mm2 x
Xumax/d 0.48
Clear cover c 75 mm

2) Size of footing
Unfactored Load 666.6667 KN
Self weight of footing 100 KN
Total unfactored load (including self wt.) P 766.6667 KN/m 𝐴=(𝑈𝑛𝑓𝑎𝑐𝑡𝑜𝑟𝑒𝑑 𝑡𝑜𝑡𝑎𝑙 𝑙𝑜𝑎𝑑 )/𝐴𝐵𝑃
Area of footing required A 3.833333 m2

Trial L(m) B(m) A (m2) Zx P/A Mx/Zx pmax pmin


1 2.3 2 4.6 1.763333 166.6667 45.36862 212.035 121.3
2 2.45 2 4.9 2.000833 156.4626 39.98334 196.446 116.48 p𝑚𝑎𝑥=𝑃/𝐴+𝑀_𝑥/𝑍_𝑥

Hence adopt L 2.45 m such that pmax <ABP and pmin > 0 p𝑚𝑖𝑛=𝑃/𝐴−𝑀_𝑥/𝑍_𝑥
B 2m

3) Net upward pressures


𝑞𝑚𝑎𝑥=𝑃_𝑢/𝐴+𝑀_𝑢𝑥/𝑍_𝑥
qmax 264.0566 KN/m2
qmin 144.1066 KN/m2 𝑞𝑚𝑖𝑛=𝑃_𝑢/𝐴−𝑀_𝑢𝑥/𝑍_𝑥
4) Dimensions and pressure diagram

2.45 m

0.85

2 0.975
m
264.06

###
144.11
264.06 KN/m2
5) BM at the face of column
For Mux:
0.975 m

1
2
144.11
211.43 264.0566 KN/m2

A1 103.0699 mm2 𝑀𝑥=𝑓𝑜𝑟𝑐𝑒∗𝐶.𝐺


A2 128.7276 mm2 𝑓𝑜𝑟𝑐𝑒=𝑎𝑟𝑒𝑎 𝑜𝑓 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑑𝑖𝑎𝑔𝑟𝑎𝑚
C.G 1 0.325 m
C.G 2 0.65325 m

Mx 235.1781 KNm 𝑀𝑥=(𝐴_1∗ 〖𝐶 .𝐺 〗 _1+𝐴_2∗ 〖𝐶 .𝐺 〗 _2)*B

For Muy:
1

1
2
144.11
204.08 264.0566 KN/m2

𝑀𝑦=𝑤∗ 〖𝑙 _𝑦 〗 ^2/2*L𝑤=(𝑞_𝑐𝑒𝑛𝑡𝑒𝑟+𝑞_𝑚𝑎𝑥)
My 207.1658 KNm & /2

6) Depth of footing 𝑄𝑙𝑖𝑚=0.36∗𝑥𝑢𝑚𝑎𝑥/𝑑∗(1−0.42∗𝑥𝑢𝑚𝑎𝑥/𝑑)∗𝑓𝑐𝑘


Qlim 3.449088
dx,req. 184.6423 mm 𝑑𝑥= √(𝑀𝑢𝑥/(𝑄𝑙𝑖𝑚∗𝐵)) 𝑑𝑦= √(𝑀𝑢𝑦/(𝑄𝑙𝑖𝑚∗𝐿))
dy,req. 156.5755 mm &
Assume D 500 mm
φx 16 mm
φy 12 mm 𝑑𝑥=𝐷−𝑐𝑙𝑒𝑎𝑟 𝑐𝑜𝑣𝑒𝑟−∅_𝑥/2
dx 417 mm
dy 403 mm 𝑑𝑦=𝑑𝑥−∅_𝑥/2−∅_𝑦/2
7) Reinforcement Calculations
R/F along longer side 𝑝𝑡𝑟𝑒𝑞=50∗𝑓𝑐𝑘/𝑓𝑦∗{1−√(1−(4.6∗𝑀𝑢)/(𝑓𝑐𝑘∗𝑏∗𝑑^2 ))}
pt,req 0.194 %
Astreq 1614.722 mm2
Ast,min 1200 mm2 〖𝐴𝑠𝑡〗 _𝑟𝑒𝑞=(𝑝_𝑡𝑟𝑒𝑞∗𝐵∗𝑑)/100
Nreq 8.035042
Nprov. 9
Ast,prov. 1808.64 mm2 OK
c/c spacing 229.25 mm
c/c spacing provided 220 mm OK
Hence provide 9-16mm # @220mm c/c along longer direction

R/F along shorter side


pt,req 0.148 %
Astreq 1460.357 mm2
Ast,min 1470 mm2
β 1.225
2/(β+1) 0.898876
Ast,central 1321.348 mm2
𝐴𝑠𝑡,𝑐𝑒𝑛𝑡𝑟𝑎𝑙=2/(𝛽+1)*Ast
Nreq,central 11.68921
Nprov. 12
Ast,provided,central 1356.48 mm2
( 〖𝐴𝑠𝑡〗 _(𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑,𝑐𝑒𝑛
c/c spacing 166.6667 mm c/c spacing in central band =
𝑡𝑟𝑎𝑙)∗𝐵)/(𝐴𝑟𝑒𝑎 𝑜𝑓
c/c spacing provided 160 mm OK 𝑜𝑛𝑒 𝑏𝑎𝑟)
Ast,corner 148.6517 mm2
Nreq,corner 1.315036
Nprov. 2
Width of central band 2000 mm
width of each corner band 225 mm

Hence provide 12 bars of 12mm dia. In central band and 2 bars of 12mm dia. In corner portion

8) Check for one-way shear


Along longer direction
2.45

417
2

0.658

144.11
231.84 264.06 KN/m2

V 326.301 KN
τv 𝛽=
0.39 N/mm2 (0.8∗𝑓𝑐𝑘)/(6.89∗
pt,prov 0.22 𝑝𝑡)
β 14.22177 𝜏𝑐=0.85∗√(0.8∗𝑓𝑐𝑘)∗(√(1+5∗𝛽)−1)/(6∗𝛽)
τc 0.333741 N/mm2 1
NOTE: The check for one-way shear along shorter direction is not required as the cantilever length is smaller.
9) Check for two way shear
2.45

1.58 0.87

144.11
221.46 264.06 KN/m2

Avg. depth d 410 mm


Width at crictical section b 910 mm
Upward pressure at d/2 w 242.7594 KN/m2
Area of crictical section (trapezoid) 1.30935 m2
Shear at crictical section V 317.857 KN
τv 0.851935 N/mm2
τc 2.708333 N/mm2 1

10) Detailing drawings


9-16mm # @ 160 mm c/c

12 - 12mm # @160 mm c/c

500 mm

0.225 2 0.225 2.45 m


2.45

You might also like