Chapter 5 - Products & Factors
Chapter 5 - Products & Factors
m (vw)5 n o y–1
3
p p–2
m
a 3a 7 p 10 p 8 5t
+ ×
5 4 2 3 t 24 14 2
x y
a b − c d ÷
(ab)n = anbn = n a0 = 1
n
a an
b b
1 1
=
Presentation −1
a −1 =
Index laws −n n
a b a b bn
a− n = = = n
an a b a b a a
8en 4
index laws
a c
d
Solution
24e 6n12 3 24 e 6n12 2c 2 2c 2
(4d4q2r)3 = 43d4×3q2×3r3
4 4 5.01
( )
8en 4 1 8 en
a = 4 b c d = d 4
= 64d12q6r3
= 3e n
Numbers
2 c
=
5 8
and
4 2×4 powers
d4
16c 8
=
d4
1 1
Negative
( 4q)3
f
= 30
x
9 1
= =
x 64 q3
Example 2
Simplify:
2
(−1 ) 2
−5 −3
3 3r
a b
Solution
5 2 3r
(−1 ) 2 = −
−5 −5 −3 3
3 3 3r 2
a b =
3
= − =
27r 3
5
5 8
243
=−
3125
−9w 2 y
h
45hk 5m3
j (–2p)5 l 9u3vw2 × 6uv2w8
30hk 3m2
k
5
a (l3m5)6 b m3 d
3 5 0
w4
2 2
n
c
2b 3k 4
j –9(a2b3)0 k 12h0
4 3
3d − 10
i l
e 65 ÷ 63 f (–32)0 g 82 ÷ 83 h 54 × 5–3
3
j 75 ÷ 73 k 122 ÷ 122 l 35 × 3–5
0
5
i
e 3–4
c d m–5
e 4y–3 f (ad)–2 g (2x)–5 h 3mp–2
i 10g–2 h–3 j (4u)–4 k 2a5q−2 l 4p2 x−3
m 10a–5c3 n (–3r6)–3 3 −2 −1 p 4(5k3)–3
4
o q p
5
a b 5y –2 c (5m)–3
−2
d x2y3w–2
2d
4 y3 6c
g 8(3ab2)–2
−2 −1 −1
3 7k 5k
a
e f h 2
EXAMPLE 2
1 5 2 3
a b −1 d 2
EXAMPLE
2 −2 −3 −4 −2
4 3 3 5
c
4 3a 2 8q 2
e g −
−3 −2 −5 −2
7 5
f h
m y
4 10 g 4 7h 6
d5 k − 3
−3 −2 −5 −4
k2
3d 5
i j l
w 3
−
10 3 −2 3
f 2 g 5n2
1
1
a2 = a Any number raised to the power of is the square root of that number.
2
1
1
a3 = 3 a Any number raised to the power of is the cube root of that number.
Indices
3
squaresaw
(Advanced)
1
1
an = n a Any number raised to the power of is the nth root of that number.
n
or n am Any number raised to the power of is the nth root of that number
m
( a)
m
m
Note: Taking the root first often makes the calculation simpler.
On a calculator, the nth root key is or found by pressing the or key before
pressing x or y x respectively.
√ ⁻ x
√⁻ SHIFT 2nd F
Example 3
Evaluate each expression.
1 1 1
a 9612 13313
b c 65618
Solution
1 1
a 9612 = 961 b 13313 = 3 1331
= 31 = 11
1
6561 = 8 6561
8
On a calculator: 8 6561
because 38 = 6561
c √ ⁻
=3
=
= 23 1 1
=8 27
( 25 )
=3 = 5
1 1
=
3 55
=
1
=
3125
Example 5
Write each expression using a fractional index.
1
a w9 b 4 m5 c
3
y8
Solution
1 1 1 1
a w9 = w9 ( ) 2
b
4
m5 = m5 ( ) 4 c
3
y8
= 1
8 3
5
(y )
= m4
9
= w2 1
8
= or y 3
−
8
3
y
Example 6
Simplify each expression.
b 64 k
5 3
4
(81a ) 2 5 6
( ) 3
4m 4 n2 × 3 8m2 n
−
a c
Solution
1
(81a ) = (81a ) (64k )
5 5
4 2 5 2 4 6 −3
(64k )
a b = 5
5 5 6 3
= 81 a
2×
1
4 4
=
5
= 243a 2 5 5
64 k 3
6×
3
1
=
1024 k 10
3 3
4m 4 n2 × 3 8m2 n = 4m 4 n2 × ( 8m2 n
1
3
c )
3 1 1 1
= 4m 4 n2 × 8 3 m
2×
3
n3
3 2 1
= 4m 4 n2 × 2m 3 n 3
3 2 1
= 8m 4 3 n
2+
3
+
17 7
= 8m 12 n 3
Fractional indices U F R C
1 Evaluate each expression. R
a 64 b −27 625
EXAMPLE
1 1 1 1
d 1000
3
2 3 2 3
c
e 16 4 ( −0.00032) 5 g (0.01) 2
1 1 1 1
f h (−512) 9
( −8) 3 ( −729) 3 k 256 8
1 1 1 1
i j l 3125 5 5.02
a 7 b 15 d
1 1 1 1
3 2 4
c d y2
e ( 4 x )6 (10m )
1
(2 a ) h (12m) 3
1 1 1
3 2 7 10
f g
3 6 4
a b c d
b xy 25 w
c
e f 3 g 5
h 8 4y
a 16 4 b 25 2 ( −27) 3
3 5 5 2
d 8 3
−
c
e (−128) 7 32 5 g 1000 3
3 1 5 1
h 900 2
− − −
f
64 6 9 2 k (−216) 3
5 7 4 2
( −243) 5
− − −
i j l
1 1 1 1
1000000 10000000 1000 100000
A B C D
EXAMPLE 5
−250 b 37 c 14
EXAMPLE
1 3
4
3 2 4 7
−
a d
4 3 200 10 g (−50) 5
−138
5 3 6
4
82
− −
e f h
1
k x
EXAMPLE
5
4 3 3 7 3
a b c d y
1 1 1
2 a3
m
4p
e 5 2
f g 5
h 4
A 32 d B 4 d C 16d
EXAMPLE
5 10 10
D 32 d
6
30 3 3 3
(25m ) (8 y ) (16 x w )
5
8 2 3 6 2 4 2 6 6
a b c
1
2
(27c 6 ( 8k 9
5 4
3 3
32 p
) )
− −
d e f 5 15
y5
2 1
625 y d
j 3 k l
8 4
( 4
)
2 3 5 3 2y
a a x
algebraic
fractions a c +
y
Solution
a a 3×a 2×a 2x x 3 × 2x 5 × x 5 7 2 ×5 7
2 3 3×2 2 ×3 5 3 3×5 5×3 y 2y 2y 2y
Algebraic
fractions a + = + b − = − c + = +
3a 2 a 6x 5x 10 7
6 6 15 15 2y 2y
= + = − = +
5a 17
6 15 2y
Algebraic x
fractions = = =
STAGE 5.3
Example 8
Simplify each expression.
6h + 1 4 h − 7 x x +1
8 12 3 5
Algebraic a + b −
fractions
Solution
6h + 1 4 h − 7 3 ( 6h + 1) 2(4 h − 7) x + 1 5 x 3( x + 1)
8 12 24 24 3 5 15 15
x
a + = + b − = −
18h + 3 8h − 14 5 x 3x + 3
24 24 15 15
= + = −
18h + 3 + 8h − 14
5 x − (3 x + 3)
24
15
=
26h − 11
=
5 x − 3x − 3
24
15
=
=
2x − 3
15
=
2 7 2 5 7 2 8 3
n n
a b c d −
4t t 5y 3y 11t 5t 3a 4 a
+ − −
3 9 16 8 12 9 10 15
e f g h +
4 3a 7d 2d 12 7 11p 3p
5.03
+ − −
3y 3y 5x 5x 12 12
i j k l +
k k
5 3 15 2 5 3 9 4
+ − +
4h h 3b 4b 2n 3p
m n o p −
3 x 5u 2 a 3h
+ + −
7 4 8 7 15 10 16 24
w n d r
a b c d −
4k g 5m 2 r 3h 4 5u 3a
− + +
5 9 12 5 2 5 4 7
e f g h −
5q 11w 5k 3 4 n 5n
+ +
5 9 12 18 8 11 9 6
a c
i j − k l +
5 p 3p
3 Simplify − . Select the correct answer A, B, C or D.
6 8
29p 22 p 11p 2p
24 48 24 24
A B C D
1
+ . Select A, B, C or D.
w
4 Simplify
xw xy
y+w w2 + y y + w2 y 2 +w
A B C D
4w − 3 1 + 2w
. Select A, B, C or D.
xyw xyw xy wx
5 4
5 Simplify − STAGE 5.3
6 w − 17 6w − 7 26 w − 17 26 w − 7
20 20 20 10
A B C D EXAMPLE
m+3 m−2 3p p + 2 y + 3 2y −1
5 4 5 3 4 3
a + b + c +
x −1 x −2 5h + 6 2 h + 2 k + 3 2k − 3
7 3 2 9 10 7
d + e − f −
a −1 a 3d − 1 2 d − 9 2y +5 y −1
−
2 3 7 6 4 9
g h + i −
1 − w 3w − 2 9 − 2e e − 5 8 − 3x 2 x + 5
10 7 3 2 11 4
j − k − l −
Solution
3x 2 x 3x × 2 x
or 3x 2 x 1 3 x 12 x 4 3k 1 4 3 k
4 9 4×9 4 9 4 9 k 16 k 16 4
Algebraic a × = × = 2 × 3 b × = ×
6x2 3
fractions
x2
36 4
6
= =
=
x2
6
Upside- =
down
2 3 2 w xy 3 x x y 255
fractions
v w v 3 5 25 51 3x
c ÷ = × d ÷ = ×
2w 5y
3v 3
= =
6 7 3 8
9 x w
a b c ×
k b
5 4 15 2 4a 5
×
3h m w 10 y 3 12c
d e × f ×
2x 9 6 10b 8h 2 h
×
3 8y 5b 18 p 3g
g h × i ×
5u 8c 9w 5p 20a 9a
12c 15u 45 pq 6 wh 3k 5 k
j × k × l ×
8a 5 a 9y 5y
÷ ÷
3 9 15 5 y 4 h 12
w w
d e f ÷
2c 2 8c 10 g 2 g 4 7k
÷
5e 3 7 kc 21k 3 xy 9 y
g h ÷ i ÷
5d2 d 4e 6e 2 9r 12r 2
÷
6 10 15 p2 5 p 5 35 g
j k ÷ l ÷
2 ak 14 gm 7m
7y 3 9 4
g
A B C D
4 ab 3d 5bd 4 kw 8dm m 1
h 24 hw ÷
15d 8b 16 9y 3 6 12 d2
g ÷ × i ÷ ×
10 pq 6q 8ac 4 w 2c 2u 3 21 y
÷ ÷
3p 5h 5 p 9c yh 7 y 4 xy 8 x
j × k ÷ l ÷ ×
w
= 250 + 25 = 140 – 14
= 275 = 126
32 × 12 = 32 × (10 + 2) 7 × 99 = 7 × (100 – 1)
= 32 × 10 + 32 × 2 = 7 × 100 – 7 × 1
c d
= 320 + 64 = 700 – 7
= 384 = 693
27 × 101 = 27 × (100 + 1) 18 × 8 = 18 × (10 – 2)
= 27 × 100 + 27 × 1 = 18 × 10 – 18 × 2
e f
= 2700 + 27 = 180 – 36
= 2727 = 144
Example 10
Expand and simplify by collecting like terms.
a −3r2(4r + 2) − 5r3 b 9(m − 3) + m(m − 10)
Algebra
using
diagrams
Solution
a
= −12r + (−6r ) – 5r
3 2 3
Factorising
= −17r3 − 6r2 Collecting like terms to simplify.
using
diagrams
WS
Example 11
Algebra
Homework4
Solution
a The HCF of 18xy2 and 24xy is 6xy.
∴ 18xy2 – 24xy = 6xy × 3y – 6xy × 4 Rewrite the expression using the HCF 6xy.
Factorising
puzzle
= (5 + 2d)(3m + 7)
c When factorising expressions that begin with a negative term, we use the ‘negative’ HCF.
The highest ‘negative’ common factor of –5k2 and 15k is –5k.
∴ −5k2 + 15k = (−5k) × k + (–5k) × (–3) (–5k) × (–3) = + 15k
= (−5k)[k + (–3)]
= −5k(k – 3)
Solution
a The HCF of 8a3 and 4a2 is 4a2.
∴ 8a3 + 4a2 = 4a2 × 2a + 4a2 × 1 Rewrite the expression using the HCF 4a2.
= 4a2(2a + 1)
5.05
This process is called CAPTCHA, which stands for Completely Automated Public Turing
Test to Tell Computers and Humans Apart, invented in 1999. It is designed to ensure that
the person accessing the website is a human and not another computer that could be hacking
into the site, sending spam or viruses. CAPTCHA uses optical character recognition (OCR),
which is a technology that can convert images of text into editable text.
How does CAPTCHA prove that you are a human and not a computer?
What is a Turing test, named after English computer scientist and mathematician
Alan Turing?
binomial expressions. WS
5.06
Example 13 Binomial
Homework
products
Area
Homework
diagrams
Solution
a (m + 8)(m − 3) = m(m – 3) + 8(m – 3) Each term in (m + 8) is multiplied by (m – 3)
= m2 – 3m + 8m – 24 Expanding
Expanding
= m2 + 5m – 24 Simplifying
binomial
products 1
I L = m2 + 5m – 24
(First-Outer-Inner-Last), as shown.
products 2
WS
b
= 12y2 – 23y + 10 Simplifying
WS
Algebra
Homework6
Perfect squares
The formulas for expanding the perfect square of a binomial are:
Expanding
(a + b)2 = a2 + 2ab + b2
brackets
Example 14
Expand each perfect square.
a (n − 5) b (k + 4) c (3y − 8)
Expanding
2 2 2
binomials
Solution
(n − 5)2 = n2 − 2 × n × 5 + 52 1st term squared – double product +
Special
When the sum of 2 terms is multiplied by their difference, the answer is the square of the first
of
2 squares
term minus the square of the second term (the difference of 2 squares).
Special
Example 15
Expand each expression.
binomial
products
2 2
noes
c d
= 64g2 − 9 = 4x2 − 49w2
Trinominoes
Example 16
Expand and simplify each expression.
Enough a x(5y − x)2 b (2a − 3)(2a + 3) − (a + 3)2
time
Solution
x(5y − x)2 = x(25y2 – 10xy + x2)
WS
a
= 25xy2 – 10x2y + x3
Special
Homework
products
2 +
p
6 3
q − m
a
2 2
+ 3 x
r
m x
(2x + 15) m
Write down a binomial expression for the area of 20 m
the house in square metres.
a
4 cm
13 Find an expression for the area of each shape in
simplest form. R C
4k + 3
2d + 3
a b c
3k + 2 5a + 4
5d – 7
7k – 9
Investigation
Squaring a number ending in 5
Study this mental shortcut for squaring a number ending in 5:
•• To evaluate 352, calculate 3 × 4 = 12, add ‘25’ to the end: 352 = 1225.
•• To evaluate 752, calculate 7 × 8 = 56, add ‘25’ to the end: 752 = 5625.
•• To evaluate 1052, calculate 10 × 11 = 110, add ‘25’ to the end: 1052 = 11 025.
Let n stand for the tens digit of the number ending in 5 being squared.
Expand (10n + 5)2 and investigate why the above method works.
An algebraic expression with 4 terms can often be factorised in pairs, that is, 2 terms at a
time, to make a binomial product.
Grouping 5.07
Example 17
Factorise each expression.
a 6ae + 4cd + 8ad + 3ce b 3xy – 4px – 6y2 + 8py
c 12aw + 20cx – 8cw – 30ax
Solution
6ae + 4cd + 8ad + 3ce = 6ae + 8ad + 4cd + 3ce Grouping into pairs
= 2a(3e + 4d) + c(4d + 3e) Factorising each pair
a
a2 – b2 = (a + b)(a – b)
squares
Example 18 Difference of
Solution
m2 – 25 = m2 – 52 36 – 49y2 = 62 – (7y)2
= (m + 5)(m – 5) = (6 + 7y)(6 – 7y)
a b
64b2 4 y 2
u4 − 16 f (m + 3)2 – 25
25 81
d − e
g (x – y)2 – y2 h 2a5 – 162a i (p + x)2 – (p – x)2
4c 2 e 2
− k 4g2 – (g – 2k)2 l 5w5 – 80w
9 36
j
2 5.08
Example 19
Factorise each quadratic trinomial.
a a2 + 7a + 12 b x + 9x + 8
Factorising
2
quadratic
expressions1
Solution
Find the 2 numbers that have a sum
of 7 and a product of 12.
a Pair of numbers Product Sum
Solution
x2 + 2x − 24
Find 2 numbers that have a product of –24 and a sum of 2.
a
Since the sum is negative, at least one of the numbers must be negative.
Since the product is positive, both of the numbers must be negative.
They are −6 and −5.
∴ k2 − 11y + 30 = (k − 6)(k − 5)
a
c product is 15 and their sum is 8 d product is −48 and their sum is −8
Example 21
Factorise each quadratic expression.
a 4y2 + 8y – 140 60 + 7d − d2
Perfect
squares
b
Solution
4y2 + 8y – 140 = 4(y2 + 2y − 35) Taking out the HCF of 4 first.
Technology
Factorising
a
= 4(y + 7)(y − 5) Product = −35, sum = 2
trinomials
b 60 + 7d − d = −d + 7d + 60
2 2
Rearranging the terms to make the d2 term first.
= −1(d2 – 7d − 60) Taking out a common factor of –1.
= −(d – 12)(d + 5) Product = −60, sum = −7
Factorising
trinomials
Example 22
Factorise 5k2 – 12k + 4. Factorising
quadratic
Solution expressions 2
product of 5 × 4 = 20
Since the sum is negative, at least one of the numbers must be negative.
Since the product is positive, both of the numbers must be negative.
The 2 numbers are –10 and –2, so we will split –12k into –10k and –2k.
∴ 5k2 – 12k + 4 = 5k2 – 10k – 2k + 4
= 5k(k – 2) – 2(k – 2) Factorising by grouping in pairs
= (k – 2)(5k – 2) Factorising again
3 × 4 = 12.
a
Find 2 numbers that have a product of 12 and a sum of 8. They are 6 and 2.
Split 8x into 6x and 2x.
Advanced
algebra
3x2 + 8x + 4 = 3x2 + 6x + 2x + 4
= 3x(x + 2) + 2(x + 2) Factorising by grouping in pairs
= (x + 2)(3x + 2)
3x2 – 11x + 10
3 × 10 = 30.
b
Example 24
Factorise each quadratic expression.
a 24k2 – 54k – 15 b 14 + 29a – 15a2
Solution
24k2 – 54k − 15 = 3(8k2 – 18k − 5) Taking out the HCF of 3 first
= 3(8k2 – 20k + 2k − 5) Product = −40, sum = −18
a
1 Factorise each quadratic expression. Look for the highest common factor first.
a 2k2 + 16k + 30 b 3q2 – 3q – 90 c 5x2 – 55x + 140
R
EXAMPLE
21
2 2
STAGE 5.3
Factorisation strategies
• Look for any common factors and factorise first
• If there are 2 terms, try factorising using the difference of two squares
• If there are 3 terms, try factorising as a quadratic trinomial
Factor
ominoes
Algebraic expression
Mixed
factorisations
Example 25
Factorise each quadratic expression.
a 5k2 – 80 b 4y2 + 60d2
c 24u2 – 68u + 20 d 9m3 – 18m2 – 4m + 8
Solution
5k2 − 80 = 5(k2 − 16) Taking out the HCF of 5 first.
= 5(k + 4)(k − 4) Difference of 2 squares
a
Mixed factorisations U F R
1 Factorise each expression.
a 60y2 − 15 b 15m2 – 41m + 14 k2 – 14k + 49
R
EXAMPLE
c 25
4 2 2 2
C (w – 1) 4 2
D (w2 – 1)2(w2 + 1)
4 25m2 − 9 −3h − 12 k 2 + 7 k + 10
a b c d
Homework
Simplifying
Solution
algebraic
fractions
6
= 3x + 2y
5m + 3
=
c 2 h2 + 8h 2 h( h + 4) d 5k 2 + 9k − 2 (5k − 1)( k + 2)
−3h − 12 −3( h + 4) k 2 + 7 k + 10 ( k + 2)( k + 5)
= =
2h 5k − 1
3 k +5
=− =
Solution
a 5
−
2
=
5
−
2 Factorising denominators
5 x − 2( x + 2)
x ( x + 2)( x − 1)
=
5x − 2x − 4
x ( x + 2)( x − 1)
=
3x − 4
x ( x + 2)( x − 1)
=
6m m2 − 16 6m (m − 4)(m + 4)
m + 4m 9 m(m + 4) 9
b 2
× = ×
6m
2
(m + 4)(m − 4)
m(m + 4) 3
9
= ×
2(m − 4)
3
=
h2 + 5 h + 6 h2 + 2 h h2 + 5 h + 6 h2 − 2 h − 3
h + 4h + 3 h − 2h − 3 h + 4h + 3 h + 2h
c 2
÷ 2 = 2 × 2
( h + 2)( h + 3) ( h − 3)( h + 1)
( h + 1)( h + 3) h( h + 2)
= ×
h−3
=
h
15 x + 9 y 6 4 k − 8d
EXAMPLE
26
3 12r − 18 4
a b c
a2 − 4 3 g + 3h 4 p2 − 16
a+2 12 p − 24
d e f
g 2 − h2
w 2 − 49 7− y c 2 + 11c + 30
4( w + 7)2 y−7 6c + 30
g h i
k 2 + 5k − 24 9 y 2 − 4 q2
2 k 2 − 18 3 y 2 − 4 yq − 4 q2
he − hd + pe − pd
j k l
e 2 − d2
r − 2r − 24 40 + 11b − 2b2 6m − 30 − pm + 5 p
2
x 2 y2 − 4
xy − 3mxy − 2 y + 6m
25 − 4a2 5n2 − 4n − n3
p q r 2
6a − 11a − 10
2
n − 2n + 1
2
7 4 8 3
EXAMPLE
27
k ( k − 1) k ( k + 1) ( x + 4)( x − 7) x ( x + 4)
a − b +
1 4 5 1
(m + 3)(2m + 1) (2m + 1)(m − 2) 3h + 24 h2 − 64
c + d −
10 3 4
p2 + 4 p p2 − 4 p a2 − 25 ( a + 5)2
a
e + f −
2 3 7
w 2 − 9w + 20 w 2 + 2 w − 24 d 2 − 3d − 4 2 d − 8
d 5.11
g + h −
9m 5 3u 5
16 − 25m2 32m − 40m2 u2 + 5u − 14 2u2 − 98
i − j −
c +1 n +1 2
10c 2 + 7c − 12 5c 2 − 39c + 28 4n3 − 36n 5n2 + 15n
c
k + l +
3r r +5 4 y − 12 y 2 + 3 y
5r + 25 9 8 y − 24
a × b ×
y
w 2 + 6 w w 2 − 36 8a − 6 12 a − 9
2 10 w 3a 2 + 3a a 3 − a
c ÷ d ÷
5n 2n2 + 4n x 2 + 4 x − 5 x 2 − 16
n + 10n + 21 n − 2n − 15 x2 + 4 x 3 x + 15
e 2
÷ 2 f ×
15 y − 12 k 8 y + 4k m2 − 4 m + 4 5m − 10
2 y + ky − 2 y − k 25 y 2 − 16k 2 7m 21m2 + 42m
g 2
× h ÷
1 − 9m2 2m + 10 c 3 + 8c 2 c 2 − 6c + 9
m + 9m + 20 3m2 + 5m − 2 6c − 18 c − 64
i 2
× j × 2
3e 5e 2p − 6 p2 + 3p − 18
e 2 + 5e − 6 4 − 4 e 2 2 p2 − 7 p − 4 p2 + 3p − 28
k ÷ l ÷
d2 + 10d + 21 d2 + 4 d − 12 h2 + 8h + 12 h2 + 10h + 24
5d2 − 20 d + 6d − 7 4 h + 12 h + 4h + 3
m × 2 n ÷ 2
CHAPTER 5 REVIEW
highest common index law indices perfect square
Qz
factor (HCF)
Advanced
algebra and
functions
WS
trinomial.
2 Any number raised to the power of 0 is equal to what?
3 What is the difference between expand and factorise?
Algebra 6
Homework
Topic summary
• What was this topic about? What was the main theme?
• What content was new and what was revision for you?
• Write 3 index laws in both words and symbols
• Write 10 questions (with solutions) that could be used in a test for this chapter. Include some
questions that you have found difficult to answer.
• List the sections of work in this chapter that you did not understand. Follow up this work.
Print (or copy) and complete this mind map of the topic, adding detail to its branches and using
WS
pictures, symbols and colour where needed. Ask your teacher to check your work.
Mind map:
Homework
Products and
factors
Expanding and
The index Algebraic
factorising
laws fractions
expressions
3 3
f
5b 8 y 6
g (4m)–2 h 4m–2
TEST YOURSELF 5
i b2 y 3
45ab 4
j (4t4u5)3 × 8t2u k 45c6d8 ÷ (–3cd2)2
−1
l 54 a2b 3
10 5 7 2d
c d
400 2 b ( −27 )3 64 2
1 1
d ( −32 )5
5 − 2
5.02
a c
8p
a b c 6
d
( 3
)
5 Simplify each expression.
r 3r 5 g 3g 11 x 2 x 3 2m
− + −
5.03
4 5 3 2 24 3 4 7
a b c d −
STAGE 5.3
6 Simplify each expression.
3k − 4 2 k w +1 w − 3 2p + 5 7p 5 +2y 1− y
+ −
5 3 4 9 3 12 11 8
5.03 a b − c d +
5 8 d 21 5 20 3w
a × b × c d ÷ ×
TEST YOURSELF 5
a 3pu + 2qt + 2qu + 3pt b 4ab + 6bc – 6ad – 9dc b2 − 100
5.07
c
d 25 – 16y2 e 20x2 − 125 f 3r3 – 27r
10 7r 2 + 21ry
a b
u2 − 4u − 32 1 3
2u2 − 128 25 − h2 h2 + 13h + 40
c d −
4 2 6m2 − 24
p − 9 p2 + 6 p + 9 7m + 14
e 2
+ f
3 3w − 15 20 w
y 2 + 4 y y 2 − 16 5 3w − 15 w
y
g − h × 2
b2 + 3b + 2 b2 + b 6a 2
b2 − 9 3b + 9 a2 + 5a + 6 a2 − 5a − 14
i ÷ j −
3 − 12 q2 q2 + q − 2 r 3 − 25r r 2 + 12r + 35
q + 4 q + 4 6q − 12 q2 r2 − 9 12r − 36
k 2
× l ÷