Bioremediation - Wikipedia
Bioremediation - Wikipedia
In situ techniques
Visual representation showing in-situ bioremediation. This process involves the addition of oxygen, nutrients, or microbes
into contaminated soil to remove toxic pollutants.[10] Contamination includes buried waste and underground pipe leakage
that infiltrate ground water systems.[11] The addition of oxygen removes the pollutants by producing carbon dioxide and
water.[7]
Bioventing
Biostimulation
An example of biostimulation at the Snake River Plain Aquifer in Idaho. This process involves the addition of whey powder
to promote the utilization of naturally present bacteria. Whey powder acts as a substrate to aid in the growth of
bacteria.[15] At this site, microorganisms break down the carcinogenic compound trichloroethylene (TCE), which is a
process seen in previous studies.[15]
Bioattenuation
Biosparging
Biopiles
The former Shell Haven Refinery in Standford-le-Hope which underwent bioremediation to reduce the oil contaminated
site. Bioremediation techniques, such as windrows, were used to promote oxygen transfer.[27] The refinery has excavated
approximately 115,000 m3 of contaminated soil.[27]
Limitations of
bioremediation
Bioremediation can be used to completely
mineralize organic pollutants, to partially
transform the pollutants, or alter their
mobility. Heavy metals and radionuclides
are elements that cannot be biodegraded,
but can be bio-transformed to less mobile
forms.[41][42][43] In some cases, microbes
do not fully mineralize the pollutant,
potentially producing a more toxic
compound.[43] For example, under
anaerobic conditions, the reductive
dehalogenation of TCE may produce
dichloroethylene (DCE) and vinyl chloride
(VC), which are suspected or known
carcinogens.[41] However, the
microorganism Dehalococcoides can
further reduce DCE and VC to the non-toxic
product ethene.[44] The molecular
pathways for bioremediation are of
considerable interest.[41] In addition,
knowing these pathways will help develop
new technologies that can deal with sites
that have uneven distributions of a mixture
of contaminants.[24]
See also
Biology
portal
Technology
portal
Fungi
portal
References
1. Yuvraj (2022). "Microalgal Bioremediation:
A Clean and Sustainable Approach for
Controlling Environmental Pollution".
Innovations in Environmental
Biotechnology. Vol. 1. Singapore: Springer
Singapore. pp. 305–318. doi:10.1007/978-
981-16-4445-0_13 (https://doi.org/10.100
7%2F978-981-16-4445-0_13) . ISBN 978-
981-16-4445-0.
2. Durán, Nelson; Esposito, Elisa (2022).
"Potential Applications of Oxidative
Enzymes and Phenoloxidase-like
Compounds in Wastewater and Soil
Treatment: A Review". Applied Catalysis B:
Environmental. 1 (2): 305–318.
doi:10.1016/S0926-3373(00)00168-5 (http
s://doi.org/10.1016%2FS0926-3373%280
0%2900168-5) .
3. Singh N, Kumar A, Sharma B (2019). "Role
of Fungal Enzymes for Bioremediation of
Hazardous Chemicals". Fungal Biology.
Vol. 3. Cham: Springer International
Publishing. pp. 237–256. doi:10.1007/978-
3-030-25506-0_9 (https://doi.org/10.1007%
2F978-3-030-25506-0_9) . ISBN 978-3-030-
25506-0. S2CID 210291135 (https://api.se
manticscholar.org/CorpusID:210291135) .
4. "Green Remediation Best Management
Practices: Sites with Leaking Underground
Storage Tank Systems. EPA 542-F-11-008"
(https://www.epa.gov/sites/production/file
s/2015-04/documents/ust_gr_fact_sheet.p
df) (PDF). EPA. June 2011.
5. "Ageing infrastructure gets bio boost" (http
s://bedfordviewedenvalenews.co.za/49402
0/aging-infrastructure-to-get-bio-boost/) .
CAXTON. June 2022.
6. Introduction to In Situ Bioremediation of
Groundwater (https://www.epa.gov/sites/pr
oduction/files/2015-04/documents/introdu
ctiontoinsitubioremediationofgroundwater_
dec2013.pdf) (PDF). US Environmental
Protection Agency. 2013. p. 30.
7. Kapahi M, Sachdeva S (December 2019).
"Bioremediation Options for Heavy Metal
Pollution" (https://www.ncbi.nlm.nih.gov/p
mc/articles/PMC6905138) . Journal of
Health and Pollution. 9 (24): 191203.
doi:10.5696/2156-9614-9.24.191203 (http
s://doi.org/10.5696%2F2156-9614-9.24.191
203) . PMC 6905138 (https://www.ncbi.nl
m.nih.gov/pmc/articles/PMC6905138) .
PMID 31893164 (https://pubmed.ncbi.nlm.
nih.gov/31893164) .
8. Mirza Hasanuzzaman; Majeti Narasimha
Vara Prasad (2020). Handbook of
Bioremediation. Academic Press.
doi:10.1016/C2018-0-05109-9 (https://doi.o
rg/10.1016%2FC2018-0-05109-9) .
ISBN 978-0-12-819382-2. S2CID 127409446
(https://api.semanticscholar.org/CorpusID:
127409446) .
9. Kensa VM (2011). "Bioremediation - An
Overview" (https://www.icontrolpollution.co
m/%20peer-reviewed/%20bioremediation-a
n-overview-37408.html) . I Control
Pollution. 27 (2): 161–168. ISSN 0970-2083
(https://www.worldcat.org/issn/0970-208
3) .
10. Canak S, Berezljev L, Borojevic K, Asotic J,
Ketin S (2019). "Bioremediation and "green
chemistry" " (https://www.researchgate.net/
publication/332318816) . Fresenius
Environmental Bulletin. 28 (4): 3056–3064.
11. Jørgensen KS (2007). "In Situ
Bioremediation". Advances in Applied
Microbiology. Academic Press. 61: 285–
305. doi:10.1016/S0065-2164(06)61008-3
(https://doi.org/10.1016%2FS0065-2164%2
806%2961008-3) . ISBN 978-0-12-002663-
0. PMID 17448793 (https://pubmed.ncbi.nl
m.nih.gov/17448793) .
12. García Frutos FJ, Escolano O, García S,
Babín M, Fernández MD (November 2010).
"Bioventing remediation and ecotoxicity
evaluation of phenanthrene-contaminated
soil". Journal of Hazardous Materials. 183
(1–3): 806–13.
doi:10.1016/j.jhazmat.2010.07.098 (https://
doi.org/10.1016%2Fj.jhazmat.2010.07.09
8) . PMID 20800967 (https://pubmed.ncbi.
nlm.nih.gov/20800967) .
13. Leeson A (2002). Air Sparging Design
Paradigm (https://apps.dtic.mil/sti/pdfs/A
DA492279.pdf) (PDF). Columbus OH:
Battelle. Archived (https://web.archive.org/
web/20170620003120/http://www.dtic.mil/
get-tr-doc/pdf?AD=ADA492279) from the
original on June 20, 2017.
14. "How To Evaluate Alternative Cleanup
Technologies For Underground Storage
Tank Sites. A Guide For Corrective Action
Plan Reviewers" (https://www.epa.gov/site
s/production/files/2014-03/documents/tu
m_ch5.pdf) (PDF). EPA 510-B-17-003.
United States Environmental Protection
Agency (USEPA). 2017.
15. Mora RH, Macbeth TW, MacHarg T,
Gundarlahalli J, Holbrook H, Schiff P
(2008). "Enhanced bioremediation using
whey powder for a trichloroethene plume in
a high-sulfate, fractured granitic aquifer".
Remediation Journal. 18 (3): 7–30.
doi:10.1002/rem.20168 (https://doi.org/10.
1002%2Frem.20168) . ISSN 1520-6831 (htt
ps://www.worldcat.org/issn/1520-6831) .
16. Kalantary, Roshanak Rezaei; Mohseni-
Bandpi, Anoushiravan; Esrafili, Ali; Nasseri,
Simin; Ashmagh, Fatemeh Rashid; Jorfi,
Sahand; Ja'fari, Mahsa (December 2014).
"Effectiveness of biostimulation through
nutrient content on the bioremediation of
phenanthrene contaminated soil" (https://w
ww.ncbi.nlm.nih.gov/pmc/articles/PMC430
1987) . Journal of Environmental Health
Science and Engineering. 12 (1): 143.
doi:10.1186/s40201-014-0143-1 (https://do
i.org/10.1186%2Fs40201-014-0143-1) .
PMC 4301987 (https://www.ncbi.nlm.nih.g
ov/pmc/articles/PMC4301987) .
PMID 25610635 (https://pubmed.ncbi.nlm.
nih.gov/25610635) .
17. Lee DW, Lee H, Lee AH, Kwon BO, Khim JS,
Yim UH, et al. (March 2018). "Microbial
community composition and PAHs removal
potential of indigenous bacteria in oil
contaminated sediment of Taean coast,
Korea". Environmental Pollution. 234: 503–
512. doi:10.1016/j.envpol.2017.11.097 (htt
ps://doi.org/10.1016%2Fj.envpol.2017.11.0
97) . PMID 29216488 (https://pubmed.ncb
i.nlm.nih.gov/29216488) .
18. Chen Q, Bao B, Li Y, Liu M, Zhu B, Mu J,
Chen Z (2020). "Effects of marine oil
pollution on microbial diversity in coastal
waters and stimulating indigenous
microorganism bioremediation with
nutrients". Regional Studies in Marine
Science. 39: 101395.
doi:10.1016/j.rsma.2020.101395 (https://d
oi.org/10.1016%2Fj.rsma.2020.101395) .
ISSN 2352-4855 (https://www.worldcat.or
g/issn/2352-4855) . S2CID 225285497 (htt
ps://api.semanticscholar.org/CorpusID:225
285497) .
19. Varjani SJ, Upasani VN (2017). "A new look
on factors affecting microbial degradation
of petroleum hydrocarbon pollutants".
International Biodeterioration &
Biodegradation. 120: 71–83.
doi:10.1016/j.ibiod.2017.02.006 (https://do
i.org/10.1016%2Fj.ibiod.2017.02.006) .
ISSN 0964-8305 (https://www.worldcat.or
g/issn/0964-8305) .
20. Paniagua-Michel J, Fathepure BZ (2018).
"Microbial Consortia and Biodegradation of
Petroleum Hydrocarbons in Marine
Environments". In Kumar V, Kumar M,
Prasad R (eds.). Microbial Action on
Hydrocarbons. Singapore: Springer
Singapore. pp. 1–20. doi:10.1007/978-981-
13-1840-5_1 (https://doi.org/10.1007%2F9
78-981-13-1840-5_1) . ISBN 978-981-13-
1839-9.
21. Coates JD, Jackson WA (2008). "Principles
of Perchlorate Treatment". In Stroo H, Ward
CH (eds.). In situ bioremediation of
perchlorate in groundwater. SERDP/ESTCP
Environmental Remediation Technology.
New York: Springer. pp. 29–53.
doi:10.1007/978-0-387-84921-8_3 (https://
doi.org/10.1007%2F978-0-387-84921-8_3) .
ISBN 978-0-387-84921-8.
22. Gavaskar A, Gupta N, Sass B, Janosy R,
Hicks J (March 2000). "Design guidance for
application of permeable reactive barriers
for groundwater remediation" (https://www.
researchgate.net/publication/265150942) .
Columbus OH: Battelle.
23. Ying GG (2018). "Chapter 14 - Remediation
and Mitigation Strategies". Integrated
Analytical Approaches for Pesticide
Management. Academic Press. pp. 207–
217. doi:10.1016/b978-0-12-816155-
5.00014-2 (https://doi.org/10.1016%2Fb97
8-0-12-816155-5.00014-2) . ISBN 978-0-12-
816155-5.
24. Vidali M (2001). "Bioremediation. An
overview" (https://www.iupac.org/publicati
ons/pac/pdf/2001/pdf/7307x1163.pdf)
(PDF). Pure and Applied Chemistry. 73 (7):
1163–72. doi:10.1351/pac200173071163
(https://doi.org/10.1351%2Fpac200173071
163) . S2CID 18507182 (https://api.semant
icscholar.org/CorpusID:18507182) .
25. Johnson PC, Johnson RL, Bruce CL, Leeson
A (2001). "Advances in In Situ Air
Sparging/Biosparging". Bioremediation
Journal. 5 (4): 251–266.
doi:10.1080/20018891079311 (https://doi.
org/10.1080%2F20018891079311) .
ISSN 1088-9868 (https://www.worldcat.or
g/issn/1088-9868) . S2CID 131393543 (htt
ps://api.semanticscholar.org/CorpusID:131
393543) .
26. Chen, Rongfen; Zhou, Yan (1 April 2021).
"Measure microbial activity driven oxygen
transfer in membrane aerated biofilm
reactor from supply side". Environmental
Research. 195: 110845.
Bibcode:2021ER....195k0845C (https://ui.ad
sabs.harvard.edu/abs/2021ER....195k0845
C) . doi:10.1016/j.envres.2021.110845 (htt
ps://doi.org/10.1016%2Fj.envres.2021.110
845) . PMID 33549616 (https://pubmed.nc
bi.nlm.nih.gov/33549616) .
S2CID 231867176 (https://api.semanticsch
olar.org/CorpusID:231867176) .
27. Waters JM, Lambert C, Reid D, Shaw R
(2002). Redevelopment of the former Shell
Haven refinery. Southampton, UK: WIT
Press. pp. 77–85. ISBN 1-85312-918-6.
28. Prasad S, Kannojiya S, Kumar S, Yadav KK,
Kundu M, Rakshit A (2021). "Integrative
Approaches for Understanding and
Designing Strategies of Bioremediation." (ht
tps://books.google.com/books?id=H-IaEAA
AQBAJ&q=bioremediation+windrow&pg=PA
37) . In Rakshit A, Parihar M, Sarkar B,
Singh HB, Fraceto LF (eds.). Bioremediation
Science: From Theory to Practice. CRC
Press. ISBN 978-1-000-28046-3.
29. Azubuike CC, Chikere CB, Okpokwasili GC
(November 2016). "Bioremediation
techniques-classification based on site of
application: principles, advantages,
limitations and prospects" (https://www.nc
bi.nlm.nih.gov/pmc/articles/PMC502671
9) . World Journal of Microbiology &
Biotechnology. 32 (11): 180.
doi:10.1007/s11274-016-2137-x (https://do
i.org/10.1007%2Fs11274-016-2137-x) .
PMC 5026719 (https://www.ncbi.nlm.nih.g
ov/pmc/articles/PMC5026719) .
PMID 27638318 (https://pubmed.ncbi.nlm.
nih.gov/27638318) .
30. Kumar V, Shahi SK, Singh S (2018).
"Bioremediation: An Eco-sustainable
Approach for Restoration of Contaminated
Sites". In Singh J, Sharma D, Kumar G,
Sharma NR (eds.). Microbial
Bioprospecting for Sustainable
Development. Singapore: Springer.
pp. 115–136. doi:10.1007/978-981-13-
0053-0_6 (https://doi.org/10.1007%2F978-
981-13-0053-0_6) . ISBN 978-981-13-0053-
0.
31. Ghosh M, Singh SP (July 2005). "A Review
on Phytoremediation of Heavy Metals and
Utilization of It's by Products" (https://www.
semanticscholar.org/paper/A-review-on-ph
ytoremediation-of-heavy-metals-and-of-Gho
sh-Singh/0b6cdc57ea1f70f5b43f649b2efe
36a775df410c?p2df) . Asian Journal on
Energy and Environment. 6 (4): 214–231.
doi:10.15666/AEER/0301_001018 (https://
doi.org/10.15666%2FAEER%2F0301_00101
8) . S2CID 15886743 (https://api.semantics
cholar.org/CorpusID:15886743) .
32. Ford RG, Wilkin RT, Puls RW (2007).
Monitored natural attenuation of inorganic
contaminants in groundwater, Volume 1
Technical basis for assessment (https://en
viro.wiki/images/c/c1/USEPA-2007-MNA_o
f_Inorganic_Contaminants_in_GW%2C_Vol_
1_Technical_Basis_for_Assessment.pdf)
(PDF). U.S. Environmental Protection
Agency, EPA/600/R-07/139.
OCLC 191800707 (https://www.worldcat.or
g/oclc/191800707) .
33. Ford RG, Wilkin RT, Puls RW (2007).
Monitored Natural Attenuation of Inorganic
Contaminants in Groundwater, Volume 2 -
Assessment for Non-Radionulcides
Including Arsenic, Cadmium, Chromium,
Copper, Lead, Nickel, Nitrate, Perchlorate,
and Selenium (https://enviro.wiki/images/
3/3a/USEPA-2007-MNA_of_Inorganic_Cont
aminants_in_GW%2C_Vol_2.pdf) (PDF).
USEPA.
34. Williams KH, Bargar JR, Lloyd JR, Lovley DR
(June 2013). "Bioremediation of uranium-
contaminated groundwater: a systems
approach to subsurface biogeochemistry".
Current Opinion in Biotechnology. 24 (3):
489–97. doi:10.1016/j.copbio.2012.10.008
(https://doi.org/10.1016%2Fj.copbio.2012.
10.008) . PMID 23159488 (https://pubmed.
ncbi.nlm.nih.gov/23159488) .
35. Ford RG, Wilkin RT, Puls RW (2007).
Monitored natural attenuation of inorganic
contaminants in groundwater, Volume 3
Assessment for Radionuclides Including
Tritium, Radon, Strontium, Technetium,
Uranium, Iodine, Radium, Thorium, Cesium,
and Plutonium-Americium (https://enviro.wi
ki/images/0/05/USEPA-2010-MNA_of_Inor
ganic_Contaminants_in_GW%2C_Vol_3.pd
f) (PDF). U.S. Environmental Protection
Agency, EPA/600/R-10/093.
36. Palmisano A, Hazen T (2003).
Bioremediation of Metals and
Radionuclides: What It Is and How It Works
(2nd ed.). Lawrence Berkeley National
Laboratory. OCLC 316485842 (https://www.
worldcat.org/oclc/316485842) .
37. Ansari MI, Malik A (November 2007).
"Biosorption of nickel and cadmium by
metal resistant bacterial isolates from
agricultural soil irrigated with industrial
wastewater". Bioresource Technology. 98
(16): 3149–53.
doi:10.1016/j.biortech.2006.10.008 (http
s://doi.org/10.1016%2Fj.biortech.2006.10.0
08) . PMID 17166714 (https://pubmed.ncb
i.nlm.nih.gov/17166714) .
38. Durán U, Coronado-Apodaca KG, Meza-
Escalante ER, Ulloa-Mercado G, Serrano D
(May 2018). "Two combined mechanisms
responsible to hexavalent chromium
removal on active anaerobic granular
consortium". Chemosphere. 198: 191–197.
Bibcode:2018Chmsp.198..191D (https://ui.
adsabs.harvard.edu/abs/2018Chmsp.198..
191D) .
doi:10.1016/j.chemosphere.2018.01.024 (h
ttps://doi.org/10.1016%2Fj.chemosphere.2
018.01.024) . PMID 29421729 (https://pub
med.ncbi.nlm.nih.gov/29421729) .
39. Tripathi M, Munot HP, Shouche Y, Meyer JM,
Goel R (May 2005). "Isolation and
functional characterization of siderophore-
producing lead- and cadmium-resistant
Pseudomonas putida KNP9". Current
Microbiology. 50 (5): 233–7.
doi:10.1007/s00284-004-4459-4 (https://do
i.org/10.1007%2Fs00284-004-4459-4) .
PMID 15886913 (https://pubmed.ncbi.nlm.
nih.gov/15886913) . S2CID 21061197 (http
s://api.semanticscholar.org/CorpusID:2106
1197) .
40. Yam HM, Leong S, Qiu X, Zaiden N (May
2021). "Bioremediation of Arsenic-
contaminated water through application of
bioengineered Shewanella oneidensis".
Proceedings of the 6th IRC Conference on
Science, Engineering and Technology, July
2020, Singapore. 1: 559–574.
doi:10.1007/978-981-15-9472-4_49 (http
s://doi.org/10.1007%2F978-981-15-9472-4_
49) . ISBN 978-981-15-9471-7.
S2CID 236650675 (https://api.semanticsch
olar.org/CorpusID:236650675) .
41. Juwarkar AA, Singh SK, Mudhoo A (2010).
"A comprehensive overview of elements in
bioremediation". Reviews in Environmental
Science and Bio/Technology. 9 (3): 215–88.
doi:10.1007/s11157-010-9215-6 (https://do
i.org/10.1007%2Fs11157-010-9215-6) .
S2CID 85268562 (https://api.semanticscho
lar.org/CorpusID:85268562) .
42. Boopathy R (2000). "Factors limiting
bioremediation technologies". Bioresource
Technology. 74: 63–7. doi:10.1016/S0960-
8524(99)00144-3 (https://doi.org/10.1016%
2FS0960-8524%2899%2900144-3) .
S2CID 1027603 (https://api.semanticschola
r.org/CorpusID:1027603) .
43. Wexler P (2014). Encyclopedia of
toxicology (3rd ed.). San Diego, Ca:
Academic Press Inc. p. 489. ISBN 978-0-12-
386454-3.
44. Maymó-Gatell X, Chien Y, Gossett JM,
Zinder SH (June 1997). "Isolation of a
bacterium that reductively dechlorinates
tetrachloroethene to ethene". Science. 276
(5318): 1568–71.
doi:10.1126/science.276.5318.1568 (http
s://doi.org/10.1126%2Fscience.276.5318.1
568) . PMID 9171062 (https://pubmed.ncb
i.nlm.nih.gov/9171062) .
45. Sharma J (2019). "Advantages and
Limitations of In Situ Methods of
Bioremediation" (https://rabm.scholasticah
q.com/article/10941-advantages-and-limita
tions-of-in-situ-methods-of-bioremediatio
n) . Recent Adv Biol Med. 5 (2019): 10941.
doi:10.18639/RABM.2019.955923 (https://
doi.org/10.18639%2FRABM.2019.95592
3) .
46. Odukkathil G, Vasudevan N (2013). "Toxicity
and bioremediation of pesticides in
agricultural soil". Reviews in Environmental
Science and Bio/Technology. 12 (4): 421–
444. doi:10.1007/s11157-013-9320-4 (http
s://doi.org/10.1007%2Fs11157-013-9320-
4) . ISSN 1569-1705 (https://www.worldca
t.org/issn/1569-1705) . S2CID 85173331 (h
ttps://api.semanticscholar.org/CorpusID:85
173331) .
47. Supreetha K, Rao SN, Srividya D, Anil HS,
Kiran S (August 2019). "Advances in
cloning, structural and bioremediation
aspects of nitrile hydratases". Molecular
Biology Reports. 46 (4): 4661–4673.
doi:10.1007/s11033-019-04811-w (https://
doi.org/10.1007%2Fs11033-019-04811-w) .
PMID 31201677 (https://pubmed.ncbi.nlm.
nih.gov/31201677) . S2CID 189819253 (htt
ps://api.semanticscholar.org/CorpusID:189
819253) .
48. United States Environmental Protection
Agency (2012). "A Citizen's Guide to
Bioremediation" (https://www.epa.gov/site
s/production/files/2015-04/documents/a_c
itizens_guide_to_bioremediation.pdf)
(PDF). National Service Center for
Environmental Publications.
49. Lovley DR (October 2003). "Cleaning up
with genomics: applying molecular biology
to bioremediation". Nature Reviews.
Microbiology. 1 (1): 35–44.
doi:10.1038/nrmicro731 (https://doi.org/1
0.1038%2Fnrmicro731) . PMID 15040178
(https://pubmed.ncbi.nlm.nih.gov/1504017
8) . S2CID 40604152 (https://api.semantics
cholar.org/CorpusID:40604152) .
50. Menn FM, Easter JP, Sayler GS (2001).
"Genetically Engineered Microorganisms
and Bioremediation". Biotechnology Set.
pp. 441–63.
doi:10.1002/9783527620999.ch21m (http
s://doi.org/10.1002%2F9783527620999.ch
21m) . ISBN 978-3-527-62099-9.
51. Ripp S, Nivens DE, Ahn Y, Werner C, Jarrell
J, Easter JP, et al. (2000). "Controlled Field
Release of a Bioluminescent Genetically
Engineered Microorganism for
Bioremediation Process Monitoring and
Control". Environmental Science &
Technology. 34 (5): 846–53.
Bibcode:2000EnST...34..846R (https://ui.ad
sabs.harvard.edu/abs/2000EnST...34..846
R) . doi:10.1021/es9908319 (https://doi.or
g/10.1021%2Fes9908319) .
52. Davison J (December 2005). "Risk
mitigation of genetically modified bacteria
and plants designed for bioremediation".
Journal of Industrial Microbiology &
Biotechnology. 32 (11–12): 639–50.
doi:10.1007/s10295-005-0242-1 (https://do
i.org/10.1007%2Fs10295-005-0242-1) .
PMID 15973534 (https://pubmed.ncbi.nlm.
nih.gov/15973534) . S2CID 7986980 (http
s://api.semanticscholar.org/CorpusID:7986
980) .
53. Sayler GS, Ripp S (June 2000). "Field
applications of genetically engineered
microorganisms for bioremediation
processes". Current Opinion in
Biotechnology. 11 (3): 286–9.
doi:10.1016/S0958-1669(00)00097-5 (http
s://doi.org/10.1016%2FS0958-1669%280
0%2900097-5) . PMID 10851144 (https://p
ubmed.ncbi.nlm.nih.gov/10851144) .
54. Shanker R, Purohit HJ, Khanna P (1998).
"Bioremediation for Hazardous Waste
Management: The Indian Scenario" (https://
books.google.com/books?id=oLNtgk_VKXs
C&pg=PA81) . In Irvine RL, Sikdar SK (eds.).
Bioremediation Technologies: Principles
and Practice. pp. 81–96. ISBN 978-1-
56676-561-9.
55. Bojar D (7 May 2018). "Building a circular
economy with synthetic biology" (https://ph
ys.org/news/2018-05-circular-bioeconomy-
synthetic-biology.html) . Phys.org.
External links
Phytoremediation, hosted by the
Missouri Botanical Garden (https://web.
archive.org/web/20100914030753/htt
p://www.mobot.org/jwcross/phytoreme
diation/)
To remediate or to not remediate? (http
s://atlasofscience.org/to-remediate-or-t
o-not-remediate/#more-17692)
Anaerobic Bioremediation (http://enviro.
wiki/index.php?title=Bioremediation_-_A
naerobic)
Retrieved from
"https://en.wikipedia.org/w/index.php?
title=Bioremediation&oldid=1158199398"