Course Structure For B Tech in Information & Communication Technonlogy
Course Structure For B Tech in Information & Communication Technonlogy
Information
2 18CP305T Security 3 0 0 3 3 25 25 50 - - 100
Machine
3 19CP402T 4 0 0 4 4 25 25 50 - - 100
Learning
There will
be three
4 19IC402P Mini Project 0 0 14 7 14 reviews (30 100
%, 30 %,
40 %)
5 19XX40X Elective III 3 0 0 3 3 25 25 50 - - 100
Total 17 0 16 25 33 650
8CE- Continuous Evaluation, MS-Mid Semester; ES – End Semester Exam
The department may offer electives from below basket, based on availability of expertise/faculty
Subject Elective III & IV Credit L-T-P Category
Code
19CP405 Cloud Computing 3 3-0-0 Computing System
UNIT 2 (16 L)
Design of Digital CMOS VLSI Standard and Compound Gates
Static CMOS inverter and its VTC characteristics; Resistive Load NMOS inverter and its VTC
characteristics; Pseudo NMOS inverter and its VTC characteristics; Design and transistor sizing
of standard gates (NAND, NOR, EXOR, tri-state INV) and compound gates. RC modelling and
Elmore delay analysis of gates (pattern dependent delay analysis); Sutherland Logical effort
method of delay estimation and sizing of cascaded paths/gates; Static and dynamic Power of
gates; Euler Diagram/Paths for layout of gates, stick diagram, Lambda rules (DRC) and layouts of
gates
UNIT 3 (16 L)
CMOS Logic Styles
Pass-transistor tree based logic gates (and similar other logic styles – CPL, transmission gates,
DPL, etc.); Pseudo-NMOS logic; CVLS logic; Dynamic logic (domino, NP domino, Zipper)
Introduction to Verilog Hardware Description Language (HDL)
Types of modelling: Gate-level modelling, Data-flow modelling; Behavioural modelling; Basic
constructs and syntax of Verilog language, related to hierarchical and modular modelling;
Concept of test-bench and incorporating delays in test-bench; Verilog implementation of
combinational blocks: decoders, encoders, multiplexor, de-multiplexor, priority encoder,
arithmetic-logic unit (ALU), etc, using Gate-level modelling, Data-flow modelling, Behavioural
modelling; Analysing results of UUT through waveforms
w.e.f. Academic year 2019-20, Batch: 2016 onwards
UNIT 4 (10 L)
Verilog implementation of sequencing elements (latch and flip-flops) using behavioural
modelling; Verilog implementation of sequential circuits: counters (with parallel load, up/down);
universal shift-registers; Moore Finite State Machine; RTL/pipelined processing, etc. Verilog
implementation of memories: Register bank (structural modelling), single and multi-ported
behavioural memories, etc.
Student centering learning: (The student centering learning contents should be declared at the
commencement of semester. It should be maximum 10% ; however exact contents is left to
faculty)
Lecture: 54Hrs
Tutorial: 00Hrs
Approximate Total: 54Hrs
Texts and References:
1. CMOS VLSI design: A circuits and systems perspective, 3rd or 4th Edition, Pearson
Education, by Neil Weste, David Harris, Ayan Banerjee.
2. CMOS Digital Integrated Circuits, 3rd Edition, Mcgraw Hill Education, by Sung-Mo
Kang, Yusuf Leblebici
3. Semiconductor Device Fundamentals, 1st Edition, Pearson Education, by Robert F. Pierret
4. Samir Palnitkar, Verilog HDL: A Guide to Digital Design and Synthesis, 2nd Edition,
Prentice Hall
5. Stephen Brown, and Zvonko Vrsaniec, Fundamentals of Digital Logic with Verilog
Design, 2nd Edition, McGraw Hill
Course Outcomes (COs):
At the end of this course students will be able to:
1. Understand the basics of semiconductor devices inherent inside the MOSFET, and the IV
characteristics and regions of operation of the MOSFET.
2. Understand the design, simulation and (performance / power) analysis aspects of digital
CMOS VLSI standard and compound gates, and various logic styles.
3. Understand the modeling and simulation of digital combinational circuits and sequential
circuits, using Hardware Description Language (HDL).
4. Analyze behavioral model of sequencing elements.
19IC401T.2 3 3 2 3 3 1 1 1 1 1 1 2 2 2 3
19IC401T.3 3 3 2 3 3 1 1 1 1 1 1 2 2 2 3
19IC401T.4 3 3 2 3 3 1 1 1 1 1 1 2 2 2 3
19IC401T 3.00 3.00 2.00 3.00 3.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 2.00 2.00 3.00
List of Experiments:
1. SPICE simulation of NMOSFET and PMOSFET (understanding the IV characteristics)
2. SPICE simulation and analysis of static CMOS inverter (understanding VTC and noise
margins); and related layout (DRC, VLS, and RC extraction) in CAD tool
3. SPICE simulation and analysis of (static CMOS) standard gates (NAND, NOR, EXOR, tri-
state)
4. SPICE simulation, analysis and comparison of various CMOS logic styles based gates
5. SPICE simulation and analysis of latch and flip-flop
6. Verilog HDL implementation of basic digital combinational circuits (decoder, MUX, etc)
7. Verilog HDL implementation of arithmetic-logic unit (ALU)
8. Verilog HDL implementation of basic digital sequential circuits (counters, registers, etc)
9. Verilog HDL implementation of register file
10. Verilog HDL implementation of memories
11. Verilog HDL implementation of Moore Finite State Machine (FSM)
12. Verilog HDL implementation of RTL/pipelined system
UNIT 1 (10 L)
Information Security Requirements, Security Attacks, Security Services, Security Mechanism,
Substitution Ciphers, Permutation Ciphers, Playfair Cipher, Hill Cipher, Polyalphabetic Ciphers, One
Time Pad, Machine Ciphers, Introduction to Steganography. Introduction to Number Theory,
Divisibility, Division Algorithm, Binary Operations, Euclidean Algorithm, Modular Arithmetic,
Matrices, Linear Congruence, Groups, Rings, and Fields, Finite Fields of the form GF(p), Polynomial
Arithmetic
UNIT 2 (10 L)
Introduction to Symmetric Key Cryptography, S-boxes, Advanced Encryption Standard (AES),
Analysis of AES, Data Encryption Standard (DES), Multiple DES, DES Analysis, Security of DES,
Modern Block Ciphers, Modes of Operation, Synchronous and Asynchronous Stream Ciphers, Use of
Modern Block Ciphers and Stream Ciphers.
UNIT 3(10L)
Introduction to Public Key Cryptography, Public Key Requirements, Diffie-Hellman Key Exchange,
RSA Cryptosystem, Attacks on RSA. Authentication Protocols : Biometric, Kerberos, X.509, public
key infrastructure, Kerberos encryption techniques.
UNIT 4 (9 L)
Application of Cryptographic Hash Functions, Message Authentication, Requirements of Hash
Functions, MD5, SHA, Message Authentication Code (MAC), MAC based on Hash Function
(HMAC), Key Management and Distribution
Student centering learning: (The student centering learning contents should be declared at the
commencement of semester. It should be maximum 10% ; however exact contents is left to faculty)
Lecture: 39 Hrs
Tutorial: 0 Hrs
Approximate Total: 39 Hrs
w.e.f. Academic year 2019-20, Batch: 2016 onwards
Learning objectives:
1. Understand the basic principles of machine learning.
2. Work with widely popular machine learning algorithms.
3. Learn methodology and tools for applying machine learning to real data and its performance
evaluation.
Student centered learning: The element of project in the course will enable this pedagogy. Instructor
will decide project in consultation with students at the beginning of the semester.
Lecture: 52Hrs
Tutorial: 00Hrs
Approximate Total: 52Hrs
w.e.f. Academic year 2019-20, Batch: 2016 onwards
Journals
IEEE Transactions on Neural Networks, IEEE Transactions on Pattern Analysis and Machine
Intelligence, Machine Learning, Journal of Machine Learning Research, IEEE Transactions on
Knowledge and Data Engineering, ACM Special Interest Group on Knowledge Discovery and Data
Mining Explorations Journal
Conference Proceedings
Neural Information Processing Systems (NIPS), Uncertainty in Artificial Intelligence (UAI),
International Conference on Machine Learning (ICML), Computational Learning Theory (COLT),
International Joint Conference on Artificial Intelligence (IJCAI)
Data set repositories UCI Repository for machine learning is the most popular repository:
http://www.ics.uci.edu/~mlearn/MLRepository.html
Open source Software Weka 3: Data Mining Software in Java
http://www.cs.waikato.ac.nz/ml/weka/
Software Development
System Design and Simulation
Hardware Development / Implementation
Embedded System (Software & Hardware combined) Development / Implementation
Theoretical Modeling, Design and Analysis
Technical Study including feasibility and comprehensive evaluation of technologies
Technical Survey and Modeling
Modules of a research and development project jointly guided by teams of faculty with a focus on
synthesis of their class-room learning to solve real world problems
At the end of this course students will be able to do some of the following:
Lecture:0 Hrs
Tutorial: 0 Hrs
Approximate Total: 182 Hrs
w.e.f. Academic year 2019-20, Batch: 2016 onwards
UNIT I (8 L): Cloud Foundation and Overview: History of Centralized and Distributed Computing -
Overview of Distributed Computing, Cluster computing, Grid computing. Introduction to Cloud
Computing- Cloud issues and challenges, Service models - Infrastructure as a Service (IaaS) - Resource
Virtualization: Server, Storage, and Network - Case studies. Platform as a Service (PaaS) - Cloud
platform & Management: Computation, Storage - Case studies. Software as a Service (SaaS) - Web
services - Web 2.0 - Web OS - Case studies
UNIT II (13 L): Virtualization: Virtual and Physical computational resources - Data-storage.
Virtualization concepts - Types of Virtualization- Introduction to Various Hypervisors - High
Availability (HA)/Disaster Recovery (DR) using Virtualization, Moving VMs, Pros and cons of
virtualization, Virtualization Technology examples.
Resource Management and Load Balancing: Distributed Management of Virtual Infrastructures,
Server consolidation, Dynamic provisioning, Resource dynamic reconfiguration, Scheduling
Techniques for Advance Reservation, Capacity Management to meet SLA Requirements, and Load
Balancing, Various load balancing techniques.
UNIT III (12 L): Industrial Platforms and New Developments: Study of Cloud computing Systems
like Amazon EC2 and S3, Google App Engine, and Microsoft Azure, Build Private/Hybrid Cloud using
open source tools. MapReduce and its extensions to Cloud Computing, HDFS, and GFS, Cloud
Applications, Cloud Application Programming and the Aneka Platform.
UNIT IV (6 L): Advanced Topics in Cloud Computing: Energy efficiency in clouds, Market-based
management of clouds, Federated clouds/InterCloud, Cloud Security - Cloud Access: authentication,
authorization and accounting, Cloud Reliability and fault-tolerance - privacy, policy and compliance-
Cloud federation, interoperability and standards.
w.e.f. Academic year 2019-20, Batch: 2016 onwards
Student centering learning: (The student centering learning contents should be declared at the
commencement of semester. It should be maximum 10% ; however exact contents is left to faculty)
Lecture:39 Hrs
Tutorial: 0 Hrs
Approximate Total: 39 Hrs
Texts and References:
1. Mastering Cloud computing, by Rajkumar Buyya, Christian Vacchiola, S Thamarai Selvi,
McGraw Hill
2. Kai Hwang, Geoffrey C. Fox and Jack J. Dongarra, “Distributed and cloud computing from
Parallel Processing to the Internet of Things”, Morgan Kaufmann, Elsevier – 2012
3. Cloud Computing: Principles and Paradigms, by Rajkumar Buyya, James Broberg,Andrzej M
Goscinski, Wiley publication
4. Cloud Computing: A Practical Approach, by Toby Velte, Anthony Velte, McGraw-Hill
Osborne Media
5. Essentials of Cloud Computing by K. Chandrasekaran
6. Recent publications for case studies
1.Articulate the main concepts, key technologies, strengths, and limitations of cloud computing and
the possible applications for state-of-the-art cloud computing
2.Identify the architecture and infrastructure of cloud computing, including SaaS, PaaS, IaaS, public
cloud, private cloud, hybrid cloud, etc.
3.Explain the core issues of cloud computing such as security, Resource management and
interoperability.
4.Provide the appropriate cloud computing solutions and recommendations according to the
applications used.
UNIT II (10 L )
Virtualization: Introduction, Memory Virtualization, CPU and Device Virtualization. Shared Memory
for Parallel systems: Synchronization, Communication, Lightweight RPC, Scheduling, Shared memory
in Multiprocessor OS. Distributed OS: Lamport clock, Latency limits, Active network, Object based
system, Java RMI.
UNIT IV (12 L )
Map-Reduce and Content Delivery Network, Throughput and Latency, Security.
Student centering learning: (The student centering learning contents should be declared at the
commencement of semester. It should be maximum 10% ; however exact contents is left to faculty)
Students projects may include: • Distributed file systems • Data aware scheduling algorithms •
Distributed operating systems • Distributed job management systems • Parallel programming languages
• Distributed workflow systems • Distributed monitoring systems • Scientific computing with GPUs •
Scientific computing with MapReduce • Distributed caching strategies • Distributed cache eviction
policies • Distributed hash tables • Virtualization impact for data-intensive computing
Useful software for project may include: Operating systems: Linux, Windows • Scripting: BASH •
Source control: SVN • Programming languages: Java, C/C++ • Job submission systems: GRAM, PBS,
Condor, Cobalt, SGE, Falkon • Programming models: MapReduce (Hadoop), MPI (MPICH), Multi-
Threading (PThreads), Workflows (Swift, Pegasus/DAGMan, Nimrod, Taverna, BPEL) • File systems:
FUSE Parallel file systems: GPFS, PVFS, Lustre • Distributed file systems: GPS, HDFS • Data
w.e.f. Academic year 2019-20, Batch: 2016 onwards
services: GridFTP • Grid middleware: Globus • Cloud middleware: Nimbus, Eucalyptus, OpenNebula •
Distributed hash tables: Chord, Tapestry • Simulation environments: GridSim, SimGrid, OptorSim,
GangSim, Bricks • Virtualization: Sun Virtual Box, XEN, VMWare
Lecture: 39 Hrs
Tutorial: 0 Hrs
Approximate Total: 39 Hrs
Texts and References
1. William Stallings, Operating Systems, Prentice Hall, 1995
2. Andrew S. Tanenbaum and Maarten van Steen. “Distributed Systems: Principles and
Paradigms”, Prentice Hall, 2nd Edition, 2007
3. Randy Chow and Theodore Johnson. “Distributed Operating Systems & Algorithms”, Addison-
Wesley, 1997.
4. Jean Bacon, Concurrent Systems, Addison – Wesley, 1998
Course Outcomes:
At the end of the course, the student will be able to:
1. Address general issues of design and implementation of distributed systems.
2. Focus on inter-process communication, distributed processing.
3. Understand sharing and replication of data and files.
4. Understand different file systems.
Learning objectives:
To understand tools and techniques for digital image processing.
To develop hand-on experience in applying the tools.
To develop understanding for multi-dimensional signal processing
Student centering learning: (The student centering learning contents should be declared at the commencement of
semester. It should be maximum 10% ; however exact contents is left to faculty)
Lecture: 39 Hrs
Tutorial: 0 Hrs
Approximate Total: 39 Hrs
4. Gose, Earl, “Pattern recognition and Image Analysis” PHI Learning Pvt. Ltd.
5. Alasdair, McAndrew, “A Computational Introduction to Digital Image Processing”. CRC Press.
6. Artyom M ,Grigoryan, “Image Processing”. Taylor & Francis Ltd.
7. Castleman, Kenneth “Digital Image Processing”. Pearson Education.
Course Outcomes:
At the end of the course, the student will be able to:
1. Apply various mathematical transforms for image processing.
2. Understand linkages between signals, linear algebra, and applications.
3. Understand and apply various image processing algorithms.
4. Apply various open source tools for real world problems.
Prerequisites: None
Learning objectives:
To identify a problem statement
To collect data
To convert data to information
Presentation of information.
Unit wise allocation of course content
UNIT I (10 L )
Compression Techniques :Lossless Compression , Lossy Compression ,Measures of Performance
Mathematical Preliminaries for Lossless Compression Models: Physical Models, Probability Models, Markov
Models, Composite Source Model, Coding: Uniquely Decodable Codes, Prefix Codes, Algorithmic Information
Theory, Minimum Description Length Principle.
Huffman Coding: The Huffman coding Algorithm, Minimum Variance Huffman Codes, Adaptive Huffman
Coding, Update Procedure, Encoding Procedure, Decoding Procedure, Golomb Codes, Rice Codes, Tunstall
Codes, Applications of Huffman Coding, Lossless Image Compression, Text Compression, Audio Compression
UNIT II (09 L )
Arithmetic Coding, Introduction, Coding a Sequence, Generating a Tag, Deciphering the Tag, Generating a
Binary Code, Uniqueness and Efficiency of the Arithmetic Code, Algorithm Implementation, Integer
Implementation, Comparison of Huffman and Arithmetic Coding, Adaptive Arithmetic Coding
Dictionary Techniques : Static Dictionary, Digram Coding, Adaptive Dictionary, The LZ77 Approach, The
LZ78 Approach, Applications : File Compression—UNIX compress, Image Compression—The Graphics
Interchange Format (GIF), Image Compression—Portable Network Graphics (PNG), Compression over
Modems—V.42 bis
UNIT IV (10 L )
Vector Quantization: Advantages of Vector Quantization over Scalar Quantization, The Linde-Buzo-Gray
Algorithm, Initializing the LBG Algorithm, The Empty Cell Problem, Use of LBG for Image Compression,
Tree-Structured Vector Quantizers, Design of Tree-Structured Vector Quantizers, Pruned Tree-Structured Vector
Quantizers, Structured Vector Quantizers, Pyramid Vector Quantization, Polar and Spherical Vector Quantizers,
Lattice Vector Quantizers
Transform Coding: KLT, DCT, DFT, DWHT, Quantization and coding of Transformation coefficient,
w.e.f. Academic year 2019-20, Batch: 2016 onwards
Student centering learning: (The student centering learning contents should be declared at the
commencement of semester. It should be maximum 10% ; however exact contents is left to faculty)
Lecture: 39 Hrs
Tutorial: 0 Hrs
Approximate Total: 39 Hrs
Open Ended problems:
1. Design an architecture and algorithm for data compression in cache and main memory.
2. Design an algorithm for compressing photo or video that is shared across social media.
3. Design an algorithm for compressing data at sensor which is reporting temperature data.
Unit I (09 L)
Introduction of Biometric traits and its aim, image processing basics, basic image operations, filtering,
enhancement, sharpening, edge detection, smoothening, enhancement, thresholding, localization. Fourier
Series, DFT, inverse of DFT.
Unit II (10 L)
Biometric system, identification and verification. FAR/FRR, system design issues. Positive/negative
identification. Biometric system security, authentication protocols, matching score distribution, ROC curve,
DET curve, FAR/FRR curve. Expected overall error, EER, biometric myths and misrepresentations.
Unit IV (10 L)
Biometric system security, Biometric system vulnerabilities, circumvention, covert acquisition, quality
control, template generation, interoperability, data storage. Recognition systems: Face, Signature, Fingerprint,
Ear, Iris etc
Student centering learning: (The student centering learning contents should be declared at the
commencement of semester. It should be maximum 10% ; however exact contents is left to faculty)
Lecture:39Hrs
Tutorial: 0 Hrs
w.e.f. Academic year 2019-20, Batch: 2016 onwards
1. Articulate the main concepts, key technologies, strengths, and limitations of bio-metrics and the
possible applications for state-of-the-art bio-metrics
2. Explain the core issues of bio-metrics such as security methods.
3. Provide the appropriate bio-metrics solutions and recommendations as per requirement.
4. Design and develop applications.
19CP408 – Biometrics
PO PO PO PO PO PO PO PO PO PO1 PO1 PO1 PO1 PO1
CO
1 2 3 4 5 6 7 8 9 0 1 2 3 4
19CP408.
3 3 3 3 3 0 0 0 3 2 2 2 3 3
1
19CP408.
2
3 3 3 3 3 0 0 2 3 2 1 2 3 3
19CP408.
3
3 3 3 3 3 2 0 0 3 2 3 2 3 3
19CP408.
4
3 3 3 3 3 2 0 0 3 2 3 2 3 3
3.0 3.0 3.0 3.0 3.0 3.0
19CP408 1.0 0 0.5 2.00 2.25 2.00 3.00 3.00
0 0 0 0 0 0
UNIT I (06 L )
Introduction – Sun and atmosphere, Concept of Signatures, Remote Sensing System, Indian Remote
Sensing Programme; Electromagnetic Radiation – Velocity of EM Radiation, Polarization, Coherent
Radiation, Propagation of EM waves from one medium to another, Attenuation, Sources of EM
radiation for remote sensing; Reflection and Scattering mechanisms.
UNIT II (10 L )
Physical Basis of Signatures – Signature in the reflective OIR region, Microwave region;
UNIT IV (11 L )
Interpretation of remotely sensed data - Data Analysis, Visual Image analysis, Digital classification,
Classification Accuracy
Applications of Remote Sensing for Earth Resources Management – agriculture, land cover/land
use mapping. Application of deep learning techniques using open source tools in Remote sensing.
Student centering learning: (The student centering learning contents should be declared at the
commencement of semester. It should be maximum 10% ; however exact contents is left to faculty)
Lecture: 39 Hrs
Tutorial: 0 Hrs
Approximate Total: 39 Hrs
Texts and References
1. George Joseph – Fundamentals of Remote Sensing, Universities Press, 2005.
2. Reddy, M ANJI, Remote sensing and Geographical information systems, BS publications
3. John R. Jensen – Remote Sensing of the Environment, Pearson IN, 2016. ISBN 978-93-325-
w.e.f. Academic year 2019-20, Batch: 2016 onwards
1894-0
Course Outcomes:
At the end of the course, the student will be able to:
1. Select appropriate model
2. Observe and experiment data
3. Interpret data
4. Drawing conclusions
UNIT I (9 L)
Low level vision
Introduction, Pin hole camera, Intrinsic and extrinsic parameters of a camera, Geometric camera calibration,
Color perception and representation, Color model and inference from color, Convolutions, Correlation filter as
templates, Scale and image pyramid, Working with Image gradients and corners, SIFT and HOG features,
Texture and Filters, Textons, Texture Synthesis and shape from texture
UNIT II (10 L)
Midlevel Vision
Segmentation by Clustering pixels, Segmentation by graphs Comparison of segmentation techniques, Hough
Transform, Fitting lines and planes, Fitting using probabilistic models: EM algorithm, Motion Segmentation:
Optical flow, Simple tracking strategies: Detection, matching, Particle filtering
UNIT 3 (10 L)
High Level Vision
Revision Learning to classify: Error, loss, classification strategies, classifying images: Features, Single subjects,
Object detection: Face, detecting humans, State of the art in Object detection: Mask RCNN, Object Recognition,
Hidden Markov Model, Fitting an HMM with EM, parsing people in image, structure model, Tracking people:
Kinematic tracking
UNIT 4 (10 L)
Computer Vision using Deep Learning
Convolutional Neural Networks architectures, Convolution and Pooling, training CNN, Data Augmentation and
Transfer Learning, Recurrent Neural Networks, LSTM, GRU, Applications like Image Captioning, Visual
Question answering, soft attention
Student centered learning: The element of project in the course will enable this pedagogy. Instructor will
decide project in consultation with students at the beginning of the semester.
Lecture: 39Hrs
Tutorial: 00Hrs
w.e.f. Academic year 2019-20, Batch: 2016 onwards
Prerequisites: None
Learning objectives:
Learn the issues of Big data.
Learn Injecting data into Hadoop.
Learn to build and maintain reliable, scalable, distributed systems with Hadoop.
Able to apply Hadoop ecosystem components.
UNIT II (10 L )
Introduction to HADOOP:
Big Data, Apache Hadoop & Hadoop Ecosystem, MapReduce, Data Serialization.
UNIT III (9 L )
HADOOP Architecture:
Architecture, Storage, Task trackers, Hadoop Configuration
UNIT IV (10 L )
HADOOP ecosystem and yarn:
Hadoop ecosystem components, Hadoop 2.0 New Features NameNode High Availability, HDFS
Federation, MRv2, YARN, Running MRv1 in YARN.
Student centering learning: (The student centering learning contents should be declared at the
commencement of semester. It should be maximum 10% ; however exact contents is left to faculty)
Lecture: 39 Hrs
Tutorial: 0 Hrs
Approximate Total: 39 Hrs
2. Chris Eaton, Dirk deroos et al. “Understanding Big data”, McGraw Hill, 2012.
3. Tom White, “HADOOP: The definitive Guide”, O Reilly 2012.
4. MapReduce Design Patterns (Building Effective Algorithms & Analytics for Hadoop) by
Donald Miner & Adam Shook
Course Outcomes:
At the end of the course, the student will be able to:
Prerequisites: None
Learning objectives:
To understand the software testing methodologies such as flow graphs and path
testing, transaction flows testing, data flow testing, domain testing and logic base testing.
UNIT II (10 L )
Transaction Flow Testing:
Transaction flows, transaction flow testing techniques. Dataflow testing:- Basics of dataflow testing,
strategies in dataflow testing, application of dataflow testing.
UNIT III (9 L )
Domain Testing:
Domains and paths, Nice & ugly domains, domain testing, domains and interfaces testing, domain and
interface testing, domains and testability.
UNIT IV (10 L )
Paths, Path products and Regular expressions:
Path products & path expression, reduction procedure, applications, regular expressions & flow
anomaly detection. Logic Based Testing:- overview, decision tables, path expressions, kv charts,
specifications.
Student centering learning: (The student centering learning contents should be declared at the
commencement of semester. It should be maximum 10% ; however exact contents is left to faculty)
Lecture: 39 Hrs
Tutorial: 0 Hrs
Approximate Total: 39 Hrs
Texts and References
1. Software Testing techniques – Boris Beizer, Dreamtech, second edition.
2. Software Testing Tools – Dr. K.V.K.K. Prasad, Dreamtech.
w.e.f. Academic year 2019-20, Batch: 2016 onwards
Course Outcomes:
At the end of the course, the student will be able to:
UNIT 1 (8 L):
Introduction, principles of vehicular communication, enabling technologies, cooperative system
architecture, applications,
UNIT II (11 L):
vehicular communication standards: 802.11P MAC, DSRC and WAVE; channel capacity modeling and
analysis; Vehicle mobility models: random, flow, trajectory analysis
UNIT III (10 L):
Routing protocols in VANET: location based routing, dealing with topology dynamics, information
communication in VANET: local measurement, aggregation, dissemination
UNIT IV (10 L):
VANET Applications design: design of safety applications, real time communcation; infotainment
applications; introduction to simulation framework: VsimRTI, integrating application, traffic and
network simulators
Student centering learning: (The student centering learning contents should be declared at the
commencement of semester. It should be maximum 10% ; however exact contents is left to faculty)
Lecture:39 Hrs
Tutorial: 0 Hrs
Approximate Total: 39 Hrs
Texts and References:
1. VANET: Vehicular Applications and Inter-Networking Technologies, Hannes Hartenstein
(Editor), Kenneth Laberteaux (Editor), Wiley publisher
2. Vehicular ad hoc Networks: Standards, Solutions, and Research; Editors: Campolo, Claudia,
Molinaro, Antonella, Scopigno, Riccardo (Eds.) ; Springer publisher
3. Recent Research papers as communicated in class
w.e.f. Academic year 2019-20, Batch: 2016 onwards
CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PO13 PO14 PO15
19IC406.1 2 3 3 3 2 2 2 1 2 2 2 2 3 2 3
19IC406.2 2 3 3 3 2 2 2 1 2 2 2 2 3 2 3
19IC406.3 3 3 3 3 3 2 2 1 3 2 2 2 3 2 3
19IC406.4 3 3 3 3 3 2 2 1 3 2 2 2 3 2 3
19IC406 2.50 3.00 3.00 3.00 2.50 2.00 2.00 1.00 2.50 2.00 2.00 1.00 3.00 2.00 3.00
MS Y Y N N
ES Y Y Y Y
CE Y Y Y Y
w.e.f. Academic year 2019-20, Batch: 2016 onwards
5. Dimitris G. Manolakis, Vinay K. Ingle, Stephen M. Kogon, “Statistical and Adaptive Signal
Processing: Spectral Estimation, Signal Modeling, Adaptive Filtering, and Array Processing”,
McGraw-Hill, 2005.
6. Harry L. Van Trees,Kristine L. Bell,Zhi Tian, “Detection Estimation and Modulation Theory, Part I:
Detection, Estimation, and Filtering Theory”, 2nd Edition, Wiley-Blackwell, 2013
Course Outcomes (COs):
At the end of this course students will be able to
1. Analyse signals and develop their statistical models.
2. Design apply and analyze algorithms for estimation of various signal parameters.
3. Design and apply adaptive filtering techniques to wide range of engineering applications.
4. Use modern software tools for programming, analysis and visualization.
UNIT 1 (10 L)
Introduction
The Need, Characteristics and benefits of Software Defined Radio (SDR), Anatomy of SDR, Design
considerations
UNIT 2 (10 L)
Signal Processing Framework
Multi-Rate Signal Processing: Introduction, Sample Rate Conversion Principles, Poly-phase Filters, Digital
Filter Banks, Timing Recovery in Digital Receivers Using Multi-rate Digital Filters, Pulse Shaping using Digital
Filters.
Digital Generation of Signals: Introduction, Comparison of Direct Digital Synthesis with Analog Signal
Synthesis, Approaches to Direct Digital Synthesis- Analysis of Spurious Signals, Spurious Components due to
Periodic jitter, Band Pass Signal Generation, Performance of Direct Digital Synthesis Systems, Hybrid DDS,
PLL Systems, Applications of Direct Digital Synthesis, Generation of Random Sequences, ROM Compression
Techniques.
UNIT 3 (09 L)
Implementation Framework
Digital Hardware Choices: Trade-Offs in Using DSPs, FPGAs, and ASICs, Power Management Issues, Using a
Combination of DSPs, FPGAs, and ASICs, Architecture of FPGA based SDR, Advance Buses, Hardware
acceleration, Software considerations, Resource sharing.
Analog to Digital and Digital to Analog Conversion: Parameters of ideal data converters, Parameters of
Practical data converters- Analog to Digital and Digital to Analog Conversion Techniques to improve data
converter performance, Common ADC and DAC architectures, ADC and DAC Distortion.
w.e.f. Academic year 2019-20, Batch: 2016 onwards
UNIT 4 (10 L)
Cognitive Radio
Cognitive radio cycle, SDR architecture for Cognitive radio, Spectrum node sensing, Cognitive radio
performance analysis, Cooperative sensing, Blind receiver design, UWB and cognitive radio, Applications of
Cognitive radio in harsh and irregular environments, Case studies.
Student centering learning: (The student centering learning contents should be declared at the commencement
of semester. It should be maximum 10% ; however exact contents is left to faculty)
Lecture: 39Hrs
Tutorial: 00Hrs
Approximate Total: 39Hrs
Texts and References:
1. Jeffrey H. Reed, "Software Radio: A Modern Approach to Radio Engineering," Prentice Hall PTR.
2. Di Pu, Alexander M. Wyglinski, “Digital Communication Systems Engineering with Software Defined
Radio”, Artech House.
3. Hüseyin Arslan (Ed.), "Cognitive Radio, Software Defined Radio, and Adaptive Wireless Systems," Ser.
Signals and Communication Technology, Springer.
4. Peter B. Kenington, “RF and Baseband Techniques for Software Defined Radio”, Artech House.
5. Walter H.W. Tuttle bee, "Software Defined Radio: Enabling Technologies," John Wiley and Sons Ltd.
6. Johnson, C.R. and W.A. Sethares, “Telecommunication Breakdown: Concepts of Communication
Transmitted via Software-Defined Radio”, Pearson Prentice Hall.
7. Tony J. Rouphael, “RF and Digital Signal Processing for Software-Defined Radio: A Multi Standard
Multi-Mode Approach”, Elsevier Inc.
8. B. G. Golderg, “Digital Techniques in Frequency Synthesis”, McGraw Hill.
Course Outcomes (COs):
At the end of this course students will be able to
1. Understand the design principles of software defined radio.
2. Understand the analog RF components as front end block in implementation of SDR.
3. Understand digital hardware architectures and development methods.
4. Understand the radio resource management in heterogeneous networks.
5. Understand design flexibility in software defined radio.
6. Take up some case studies for implementation using SDR concepts.
UNIT 1 (10 L)
Introduction to Finite Automata, Structural Representations, Automata and Complexity, the Central
Concepts of Automata Theory – Alphabets, Strings, Languages, Problems. Deterministic Finite Automata,
Nondeterministic Finite Automata, Finite Automata with Epsilon-Transitions.
Regular Expressions, Finite Automata and Regular Expressions, Applications of Regular Expressions,
Algebraic Laws for Regular Expressions, Properties of Regular Languages-Pumping Lemma for Regular
Languages, Applications of the Pumping Lemma, Closure Properties of Regular Languages, Decision
Properties of Regular Languages, Equivalence and Minimization of Automata.
UNIT 2 (9 L)
Context-Free Grammars: Definition of Context-Free Grammars, Derivations Using a Grammar, Leftmost
and Rightmost Derivations, the Language of a Grammar, Sentential Forms, Parse Tress, Applications of
Context-Free Grammars, Ambiguity in Grammars and Languages. Push Down Automata,: Definition of the
Pushdown Automaton, the Languages of a PDA, Equivalence of PDA's and CFG's, Deterministic Pushdown
Automata.
UNIT 3 (10 L)
Normal Forms for Context- Free Grammars, the Pumping Lemma for Context-Free Languages, Closure
Properties of Context-Free Languages. Decision Properties of CFL's - Complexity of Converting among
CFG's and PDA's, Chomsky Normal Form. Introduction to Turing Machines-Problems That Computers
Cannot Solve, Programming Techniques for Turing Machines, Extensions to the basic Turing machine,
Restricted Turing Machines
UNIT 4 (10 L)
Undecidability: A Language that is Not Recursively Enumerable, An Undecidable Problem That is RE,
Undecidable Problems about Turing Machines, Post Correspondence Problem, Other Undecidable
Problems, Intractable Problems: The Classes P and NP, An NP-Complete Problem.
w.e.f. Academic year 2019-20, Batch: 2016 onwards
Student centering learning: (The student centering learning contents should be declared at the
commencement of semester. It should be maximum 10% ; however exact contents is left to faculty)
Lecture: 39 Hrs
Tutorial: 00 Hrs
Approximate Total: 39 Hrs
19IC409.5 3 3 3 3 2 2 2 1 3 2 2 3 3 3 3
19IC409.6 3 3 3 3 2 2 2 1 3 2 2 3 3 3 3
19IC409 3.00 3.00 2.83 3.00 2.00 2.00 2.00 1.00 3.00 2.00 2.00 3.00 3.00 3.00 3.00
UNIT 1 (10 L): Introduction to IoT: IoT Basics, Physical and Logical Designs, Elements of IoT -
Basic Architecture of an IoT Application Sensors & Actuators, Edge Networking (WSN), Gateway.
Domain Specific IoTs - Home Automation, Smart Cities, Environment, Energy, Retail, Logistics,
Agriculture, Industry, Health and Life Style.
UNIT 2 (13 L): M2M and IoT: Introduction, M2M, Difference between M2M and IoT, Software
Defined Networking and Network Function Virtualization for IoT, IoT Architecture -State of the Art
– Introduction, State of the art, Architecture Reference Model- Introduction, Reference Model and
architecture, IoT reference Model, IoT Reference Architecture- Introduction, Functional View,
Information View, Deployment and Operational View, Other Relevant architectural views.
UNIT 3 (8 L): Developing Internet of Things: IoT Systems – Logical Design using IoT, IoT Physical
Devices and Endpoints, Programming Raspberry Pi with Python, Other IoT Devices, IoT Physical
Servers and Cloud Offerings. Case Studies Illustrating IoT Design, Data Analytics for IoT, Internet of
Things Privacy, Security and Governance. Data Aggregation for the IoT, Business Scope
UNIT 4 (8 L):
Introduction to Arduino platform and its programming using readymade libraries; Actuators: Study of
selected actuators, their operating principles, applications, etc; Sensors: study of fundamental principles
of sensors for various parameters, such as: temperature, humidity, pressure, gas, light, water-level
(resistance), rotational/linear acceleration, solar radiation, color, GPS, etc. Their comparisons and use
in IoT. Interfacing of camera, ethernet shield, xbee , wifi, bluetooth modules with the
Arduino/Raspberry Pi platforms.
Project 1: Home Automation using IoT: To develop electronic system that controls electric appliances
like fan, AC, window curtails, and Light using embedded system and IoT.
Project 2: Irrigation System Automation using IoT: To develop electronic system that controls
applications like water level control, sprinkling of water, fertilizers, and pesticides using embedded
w.e.f. Academic year 2019-20, Batch: 2016 onwards
Student centering learning: (The student centering learning contents should be declared at the
commencement of semester. It should be maximum 10% ; however exact contents is left to faculty)
Lecture:39 Hrs
Tutorial: 0 Hrs
Approximate Total: 39 Hrs
Texts and References:
1. "Internet of Things: A Hands - on approach" by Arsheep Bahga and Vijay Madisetti., Orient
Blackswan Private Limited - New Delhi
2. Pethuru Raj and Anupama C. Raman. The Internet of Things: Enabling technologies, platforms,
and use cases. Auerbach Publications,.
3. Internet of Things with Python, Gaston C. Hillar, Packt Open Source
4. Rajkumar Buyya and Amir Vahid Dastjerdi, eds. Internet of Things: Principles and paradigms.
Elsevier.
5. Gastón C. Hillar. MQTT Essentials-A Lightweight IoT Protocol. Packt Publishing Ltd.
6. "The Internet of Things: Do-It-Yourself at Home Projects for Arduino, Raspberry Pi and
BeagleBone Black" by Donald Norris, McGraw-Hill Education TAB
7. “Motors for Makers”, by Matthew Scarpino, QUE
8. Make: Sensors" by Tero Karvinen, Shroff Publishers & Distributors Pvt Ltd
9. The internet of Things: Key Applications and Protocols" By Harsent, Boswarthick
and Elloumi, Wiley
10. "Raspberry Pi User Guide" by Upton and Halfacree, John Wiley & Sons;
11. Recent publications for case studies.
Course Outcomes (COs):
At the end of this course students will be able to
1. Understand the vision of IoT from a global context and understand the applications of IoT.
2. Determine the Market perspective of IoT.
3. Use of Devices, Gateways and Data Management in IoT.
4. Building state of the art architecture in IoT and application of IoT in Industrial and Commercial
Building Automation along with Real World Design Constraints.
Theory Total
L T P C Hrs/Wk Continuous Mid End
Marks
Evaluation Semester Semester
3 0 0 3 3 25 25 50 100
Prerequisites: None
Learning objectives:
UNIT 1 (10 L)
Smart Energy Infrastructure, Smart Grids, Energy Consumption Profiling, Energy Data
Management and Intelligent Load Control, Intelligent Scalable Monitoring and Control
Technologies for Smart Micro-Grids and Grids. Software for energy applications; Data mining
and decision support techniques for energy data; Models and techniques for energy consumption
forecasting; Descriptions and characterizations of energy consumption patterns; Integration of
energy data; Energy data visualization; Sensor networks, metering and energy data acquisition;
Interoperability solutions including middleware and protocols for energy applications; Demand-
side management; Home and building automation applications to energy; Energy-efficient control
techniques; and Intelligent load control.
UNIT 2 (10 L)
Energy Management Systems in Industry: Demand control, Equipment scheduling,
Temperature and humidity monitoring and control, Weather monitoring, Fan selection and speed
control, Pump and valve monitoring and control, Refrigeration optimization, Boiler and turbine
control, Safety and security, Smoke alarm monitoring, Sprinkler monitoring, Exhaust fan
emergency control, Flood alarm, Perimeter door control, Elevator control, Building operations,
Equipment maintenance scheduling, Maintenance cost accounting
UNIT 3 (10 L)
Green infrastructure-energy-efficient buildings, intelligent cooling systems, renewable power
sources; green hardware - multicore computing systems, energy efficient server design and
solid-state storage; and green software and applications - parallelizing computational science
algorithms to run on modern energy efficient multi-core clusters, intelligent load distribution and
CPU switch-off
w.e.f. Academic year 2019-20, Batch: 2016 onwards
UNIT 4 (9 L)
Smart Transportation Using ICT: Engine Management- The Need for More Precise Engine
Management, Reliability, Electronic Ignition Systems, Fuel Injection and Carburetor Systems;
Transmission Control, Transport Planning: Depot Siting, Route Planning, Vehicle Scheduling,
Scheduling of Road Transport Fleets, Scheduling of Other Transport Fleets; Urban Traffic
Control; Route Guidance
Student centering learning: (The student centering learning contents should be declared at the
commencement of semester. It should be maximum 10% ; however exact contents is left to
faculty)
Lecture: 39 Hrs
Tutorial: 0Hrs
Approximate Total: 39 Hrs
Texts and References:
1. Smart Grid: Fundamentals of Design and Analysis, James A. Momoh, Wiley Publisher
2. Smart Grid: Technology and Applications, Akihiko Yokoyama, Janaka Ekanayake,
Jianzhong Wu, Kithsiri Liyanage, and Nick Jenkins, Wiley Publisher
3. Intelligent Transportation Systems: Smart and Green Infrastructure Design; Sumit Ghosh
and Tony S. Lee, CRC Press
4. Research papers discussed in class
Course Outcomes (COs):
CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PO13 PO14 PO15
19IC4010.1 1 2 2 3 3 3 3 0 2 1 1 2 3 2 3
19IC4010.2 1 2 2 3 3 3 3 0 2 1 1 2 3 2 3
19IC4010.3 2 3 3 3 3 3 3 0 3 2 2 2 3 2 3
19IC4010.4 2 3 3 3 3 3 3 0 3 2 2 2 3 2 3
19IC4010 1.50 2.50 2.50 3.00 3.00 3.00 3.00 0.00 2.50 1.50 1.50 2.00 3.00 2.00 3.00
w.e.f. Academic year 2019-20, Batch: 2016 onwards
3 0 0 3 3 25 25 50 100
Prerequisites: -
Learning Objectives:
Learn the foundations of Human Computer Interaction
Learn the guidelines for user interface
Study the technologies for designing effective Human Computer Interfaces for individuals and
persons with disabilities
UNIT I (10 L)
Introduction, Foundations of HCI: Human Vs. Computer, Goals and evolutions of HCI, I/O
channels, Interaction: Models, frameworks, Ergonomics, styles, elements. Interactivity- Paradigms
UNIT II (9 L)
Models and Theories, Cognitive models, Socio-Organizational issues and stake holder requirements,
Communication and collaboration models, Hypertext, Multimedia and WWW.
UNIT IV (10 L)
Mobile and Web Interface Design, Designing Web Interfaces – Drag & Drop, Direct Selection,
Contextual Tools, Overlays, Inlays and Virtual Pages, Process Flow. Case Studies.
Mobile Information Architecture, Mobile 2.0, Mobile Design: Elements of Mobile Design and Tools.
Student centering learning: (The student centering learning contents should be declared at the
commencement of semester. It should be maximum 10% ; however exact contents is left to faculty)
Lecture: 39 Hrs
Tutorial: 0Hrs
Approximate Total: 39 Hrs
1. Alan Dix, Janet Finlay, Gregory Abowd, Russell Beale, “Human Computer Interaction”, 3rd
Edition, Pearson Education, 2004
2. Bill Scott and Theresa Neil, “Designing Web Interfaces”, First Edition, O‟Reilly, 2009
3. Ben Shneiderman, “Designing the User Interface-Strategies for Effective Human Computer
Interaction”, ISBN:9788131732557, Pearson Education , 2010
4. Brian Fling, “Mobile Design and Development”, First Edition , O‟Reilly Media Inc., 2009
5. Usability Engineering: Scenario-Based Development of Human-Computer Interaction, by
Rosson, M. and Carroll, J. (2002)
1. Understand what interaction design is and how it relates to human computer interaction and other
fields; understand what cognition is and why it is important for interaction design
2. Develop software prototype for interfaces with necessary interactive design standards and
guidelines
3. Demonstrate usability testing of interactive design prototypes through examples
4. Design web and mobile interfaces with design concepts such as inlays, overlays and virtual
concepts and various design tools
Theory Total
L T P C Hrs/Wk Continuous Mid End
Marks
Evaluation Semester Semester
3 0 0 3 3 25 25 50 100
Student centered learning: The element of project in the course will enable this pedagogy. Instructor
will decide project in consultation with students at the beginning of the semester.
Lecture: 39Hrs
Tutorial: 00Hrs
Approximate Total: 39Hrs
Text Book
1. Duda, R.O., Hart, P.E., and Stork, D.G. Pattern Classification. Wiley-Interscience. 2nd Edition.
w.e.f. Academic year 2019-20, Batch: 2016 onwards
2001.
2. Bishop, C. M. Pattern Recognition and Machine Learning. Springer. 2007.
3. Marsland, S. Machine Learning: An Algorithmic Perspective. CRC Press. 2009.
4. Theodoridis, S. and Koutroumbas, K. Pattern Recognition. Edition 4. Academic Press, 2008.
5. Russell, S. and Norvig, N. Artificial Intelligence: A Modern Approach. Prentice Hall Series in
Artificial Intelligence. 2003.
6. Bishop, C. M. Neural Networks for Pattern Recognition. Oxford University Press. 1995.
7. Hastie, T., Tibshirani, R. and Friedman, J. The Elements of Statistical Learning. Springer. 2001.
8. Koller, D. and Friedman, N. Probabilistic Graphical Models. MIT Press. 2009.
Papers
1. Anil K. Jain, etc., "Statistical Pattern Recognition: A Review," IEEE Tran. on Pattern Analysis
and Machine Intelligence, vol 22, No 1, Jan. 2000.
2. A K Jain, etc., "Data clustering: A Review," ACM Computing Surveys, vol. 31, no. 3, Sept.
1999.
Important Links
http://kdd.ics.uci.edu/
Course Outcomes (COs):
Prerequisites: None
Learning objectives:
To provide an overview of Information Retrieval.
To introduce students about insights of the several topics of Information retrieval such as –
Boolean retrieval model, Vector space model.
To provide comprehensive details about various Evaluation methods.
To provide implementation insight about the topics covered in the course.
UNIT II (09 L )
Dictionary and Postings
Tokenization, Stop words, Stemming, Inverted index, Skip pointers, Phrase queries Tolerant Retrieval
Wild card queries, Permuterm index, Bigram index, Spelling correction, Edit distance, Jaccard
coefficient, Soundex
UNIT IV (10 L )
Query Expansion
Relevance feedback, Rocchio algorithm, Probabilistic relevance feedback, Query Expansion and its
types, Query drift.
Probabilistic Information Retrieval, Probabilistic relevance feedback, Probability ranking principle,
Binary Independence Model, Bayesian network for text retrieval
w.e.f. Academic year 2019-20, Batch: 2016 onwards
Student centering learning: (The student centering learning contents should be declared at the
commencement of semester. It should be maximum 10% ; however exact contents is left to faculty)
Lecture: 39 Hrs
Tutorial: 0 Hrs
Approximate Total: 39 Hrs
Course Outcomes:
At the end of the course, the student will be able to:
UNIT I (10 L)
Introduction to Blockchain, Building blocks: SHA 256, Peer to Peer Network, Distributed Ledger,
Block mining, Proof of work, Miners and incentive mechanisms, Merkle tree, case-study applications
of block chain framework: Bitcoin and transactions
UNIT II (08 L)
Consensus Algorithms: byzantine agreements, public and private block chain, hard and soft fork, side
chains, 51% attack
UNIT IV (10 L)
Other frameworks: comparison with the liner block chains, Neo framework, proof of stake, IOTA
Tangle, adding and verifying transactions, stability analysis, real-time operations on blockchain,
Student centering learning: (The student centering learning contents should be declared at the
commencement of semester. It should be maximum 10% ; however exact contents is left to faculty)
Lecture:39Hrs
Tutorial: 0 Hrs
Approximate Total: 39Hrs
Texts and References:
1. White papers of Bitcoin, Ethereum, IOTA and Neo frameworks and research papers as
communicated in the class
w.e.f. Academic year 2019-20, Batch: 2016 onwards
Prerequisites: None
Learning objectives:
To learn the fundamentals of Green Computing.
To analyze the Green computing Grid Framework.
To understand the issues related with Green compliance.
To study and develop various case studies.
UNIT II (10 L )
Green Assets and Modeling:
Green Assets: Buildings, Data Centers, Networks, and Devices – Green Business Process Management:
Modeling, Optimization, and Collaboration – Green Enterprise Architecture – Environmental
Intelligence – Green Supply Chains – Green Information Systems: Design and Development Models.
UNIT III (9 L )
Grid Framework:
Virtualization of IT systems – Role of electric utilities, Telecommuting, teleconferencing and
teleporting – Materials recycling – Best ways for Green PC – Green Data center – Green Grid
framework.
UNIT IV (10 L )
Green Compliance:
Socio-cultural aspects of Green IT – Green Enterprise Transformation Roadmap – Green Compliance:
Protocols, Standards, and Audits – Emergent Carbon Issues: Technologies and Future.
Student centering learning: (The student centering learning contents should be declared at the
commencement of semester. It should be maximum 10% ; however exact contents is left to faculty)
Lecture: 39 Hrs
Tutorial: 0 Hrs
w.e.f. Academic year 2019-20, Batch: 2016 onwards
Course Outcomes:
At the end of the course, the student will be able to:
1. Acquire knowledge to adopt green computing practices to minimize negative impacts on the
environment.
2. Enhance the skill in energy saving practices in their use of hardware.
3. Evaluate technology tools that can reduce paper waste and carbon footprint by the stakeholders.
4. Understand the ways to minimize equipment disposal requirements.
UNIT 1 (6 L)
Signal Processing for Communication Systems
Introduction: Digital signal and system concepts, mathematical background of signals, FFT, DFT,time-
frequency analysis, wavelet analysis, Introduction to SCILAB based digital signal processing, digital
modulation, demodulation techniques.
UNIT 2 (6 L)
Equalization
Optimal zero forcing equalization, generalized equalization method, fractionally spaced equalizer,
transversal filter equalizer, ISI , channel capacity, DFE, Adaptive equalization, fractionally spaced,
passband equalization, SG algorithm.
UNIT 3 (6 L)
MIMO Communication
Gausssian MIMO channel, memoryless MIMO channel, MIMO detection, Fading and diversity,
Rayleigh fading, Diversity-interference tradeoff, transmit diversity, Space time modems, Error
probability, advanced coding.
UNIT 4 (13 L)
Digital Optical Communication
Introduction, Modulation Formats and Optical Signal Generation, Advanced Modulation Formats,
Incoherent Optical Receivers, DSP-Coherent Optical Receivers, Transmission of Ultra-Short Pulse
Sequence, Electronic equalization, ultra short pulse transmission, Optical Fiber: General Properties,
Geometrical Structures and Index Profile, Fundamental Mode of Weakly Guiding Fibers, Equivalent
Step-Index, nonlinear effects, phase modulation, scattering effect, attenuation distortion , optical
transmitter-receiver, performance evaluation.
UNIT 5 (8 L)
Advanced wireless technology
Introduction to 4G, 5G technology, Spectrum sensing techniques, Cognitive radio network, energy
w.e.f. Academic year 2019-20, Batch: 2016 onwards
efficient routing algorithms, wireless ad-hoc networks, Li-Fi, millimeter wave communication,
Student centering learning: (The student centering learning contents should be declared at the
commencement of semester. It should be maximum 10% ; however exact contents is left to faculty)
Lecture: 39Hrs
Tutorial: 00Hrs
Approximate Total: 39Hrs
Texts and References:
1. Simon S. Haykin, Michael Moher ,“Modern Wireless Communications”. Pearson.
2. Evgenii Krouk, Sergei Semenov “Modulation and Coding Techniques in Wireless
Communications”, Wiley.
3. Ivan B. Djordjevic , “Advanced Optical and Wireless Communications Systems”. Springer.
4. Le Nguyen Binh .“Advanced Digital Optical Communications”. CRC Press.
5. Theodore Rappaport , “Wireless Communications: Principles and Practice”. Pearson.
6. John R. Barry, Edward A. Lee, David G. Messerschmitt , “Digital Communication”. Springer.
Course Outcomes (COs):
At the end of this course students will be able to:
1. Understand various mathematical transforms for communication systems.
2. Understand equalization concept and its importance in communication system.
3. Understand MIMO systems.
4. Understand Digital optical communication system.
5. Understand the design of advanced communication system.