Mathematical Formula Handbook
Mathematical Formula Handbook
1. Series
Binomial expansion
                            n(n − 1) 2 n(n − 1)(n − 2) 3
    (1 + x)n = 1 + nx +             x +               x + ···
                               2!            3!
                                                                                                       n
If n is a positive integer the series terminates and is valid for all x: the term in x r is n Cr xr or     where n Cr ≡
    n!                                                                                                  r
           is the number of different ways in which an unordered sample of r objects can be selected from a set of
r!(n − r)!
n objects without replacement. When n is not a positive integer, the series does not terminate: the infinite series is
convergent for | x| < 1.
2
Integer series
     N
                                               N ( N + 1)
    ∑n       = 1+ 2+ 3+ ···+ N =
                                                    2
     1
     N
                                                   N ( N + 1)(2N + 1)
    ∑ n2 = 12 + 22 + 32 + · · · + N 2 =                     6
     1
     N
                                                                             N 2 ( N + 1)2
    ∑ n3 = 13 + 23 + 33 + · · · + N 3 = [1 + 2 + 3 + · · · N ] 2 =                  4
     1
     ∞
         (−1)n+1      1 1 1
    ∑      n
                 = 1 − + − + · · · = ln 2
                      2 3 4
                                                                                                     [see expansion of ln (1 + x)]
     1
     ∞
         (−1)n+1     1 1 1        π
    ∑     2n − 1
                 = 1− + − + ··· =
                     3 5 7        4
                                                                                                       [see expansion of tan−1 x]
     1
     ∞
         1           1  1   1        π2
    ∑ n2     =1+
                     4
                       + +
                        9  16
                              +··· =
                                     6
     1
     N
                                                                                   N ( N + 1)( N + 2)( N + 3)
    ∑ n(n + 1)(n + 2) = 1.2.3 + 2.3.4 + · · · + N ( N + 1)( N + 2) =                            4
     1
where Pl (cos θ ) are Legendre polynomials (see section 11) and j l (kr) are spherical Bessel functions, defined by
             r
                 π
    jl (ρ) =        J 1 (ρ), with Jl ( x) the Bessel function of order l (see section 11).
                2ρ l + /2
2. Vector Algebra
                                                                                    2
If i, j, k are orthonormal vectors and A = A x i + A y j + A z k then | A| = A2x + A2y + A2z . [Orthonormal vectors ≡
orthogonal unit vectors.]
Scalar product
Equation of a line
A point r ≡ ( x, y, z) lies on a line passing through a point a and parallel to vector b if
    r = a + λb
with λ a real number.
                                                                                                                                3
Equation of a plane
A point r ≡ ( x, y, z) is on a plane if either
(a) r · b
        d = |d|, where d is the normal from the origin to the plane, or
     x     y     z
(b) + + = 1 where X, Y, Z are the intercepts on the axes.
     X     Y    Z
Vector product
A × B = n | A| | B| sin θ, where θ is the angle between the vectors and n is a unit vector normal to the plane containing
A and B in the direction for which A, B, n form a right-handed set of axes.
A × ( B × C ) = ( A · C ) B − ( A · B)C, ( A × B) × C = ( A · C ) B − ( B · C ) A
Non-orthogonal basis
     A = A1 e1 + A2 e2 + A3 e3
                                         e2 × e3
     A1 = 0 · A         where 0 =
                                      e1 · (e2 × e3 )
Similarly for A2 and A3 .
Summation convention
     a         = ai ei                                                                       implies summation over i = 1 . . . 3
     a·b       = ai bi
     ( a × b)i = εi jk a j bk                                                                      where ε123 = 1;   εi jk = −εik j
    εi jkεklm = δil δ jm − δimδ jl
4
                                                                     3. Matrix Algebra
Unit matrices
The unit matrix I of order n is a square matrix with all diagonal elements equal to one and all off-diagonal elements
zero, i.e., ( I ) i j = δi j . If A is a square matrix of order n, then AI = I A = A. Also I = I −1 .
I is sometimes written as In if the order needs to be stated explicitly.
Products
If A is a (n × l ) matrix and B is a (l × m) then the product AB is defined by
                          l
     ( AB)i j =         ∑ Aik Bk j
                        k=1
In general AB 6= BA.
Transpose matrices
If A is a matrix, then transpose matrix A T is such that ( A T )i j = ( A) ji .
Inverse matrices
If A is a square matrix with non-zero determinant, then its inverse A −1 is such that AA−1 = A−1 A = I.
                          transpose of cofactor of A i j
     ( A−1 )i j =
                                      | A|
where the cofactor of A i j is (−1)i+ j times the determinant of the matrix A with the j-th row and i-th column deleted.
Determinants
If A is a square matrix then the determinant of A, | A| (≡ det A) is defined by
     | A| =        ∑          i jk... A1i A2 j A3k . . .
                 i, j,k,...
where the number of the suffixes is equal to the order of the matrix.
2×2 matrices
                       
             a      b
If A =                        then,
             c      d
                                                                                              
                                                      a     c                 1        d    −b
     | A| = ad − bc                     AT =                        A−1 =
                                                      b     d               | A|       −c    a
Product rules
     ( AB . . . N ) T = N T . . . B T A T
     ( AB . . . N )−1 = N −1 . . . B−1 A−1                                                                 (if individual inverses exist)
     | AB . . . N | = | A| | B| . . . | N |                                                          (if individual matrices are square)
Orthogonal matrices
An orthogonal matrix Q is a square matrix whose columns q i form a set of orthonormal vectors. For any orthogonal
matrix Q,
     Q−1 = Q T ,                 | Q| = ±1,           Q T is also orthogonal.
                                                                                                                                       5
Solving sets of linear simultaneous equations
If A is square then Ax = b has a unique solution x = A −1 b if A−1 exists, i.e., if | A| 6= 0.
If A is square then Ax = 0 has a non-trivial solution if and only if | A| = 0.
An over-constrained set of equations Ax = b is one in which A has m rows and n columns, where m (the number
of equations) is greater than n (the number of variables). The best solution x (in the sense that it minimizes the
error | Ax − b|) is the solution of the n equations A T Ax = A T b. If the columns of A are orthonormal vectors then
x = A T b.
Hermitian matrices
The Hermitian conjugate of A is A † = ( A∗ ) T , where A∗ is a matrix each of whose components is the complex
conjugate of the corresponding components of A. If A = A † then A is called a Hermitian matrix.
If S is a symmetric matrix, Λ is the diagonal matrix whose diagonal elements are the eigenvalues of S, and U is the
matrix whose columns are the normalized eigenvectors of A, then
    U T SU = Λ             and      S = UΛU T.
If x is an approximation to an eigenvector of A then x T Ax/( x T x) (Rayleigh’s quotient) is an approximation to the
corresponding eigenvalue.
Commutators
    [ A, B]         ≡ AB − BA
    [ A, B]         = −[ B, A]
    [ A, B]†        = [ B† , A† ]
    [ A + B, C ] = [ A, C ] + [ B, C ]
    [ AB, C ]       = A[ B, C ] + [ A, C ] B
    [ A, [ B, C ]] + [ B, [C, A]] + [C, [ A, B]] = 0
Hermitian algebra
b† = (b∗1 , b∗2 , . . .)
       Rayleigh–Ritz
                                                                                     Z
                                                  b∗ · A · b                             ψ∗ Oψ               hψ|O|ψi
     Lowest eigenvalue                       λ0 ≤                         λ0 ≤ Z
                                                    b∗ · b                                ψ ψ ∗               hψ|ψi
6
                                         6. Trigonometric Formulae
                                                                      cos( A + B) + cos( A − B)
     sin ( A ± B) = sin A cos B ± cos A sin B        cos A cos B =
                                                                                  2
                                                                      cos( A − B) − cos( A + B)
     cos( A ± B) = cos A cos B ∓ sin A sin B         sin A sin B =
                                                                                  2
10
                                            7. Hyperbolic Functions
            1 x                  x2   x4
   cosh x =   ( e + e− x ) = 1 +    +    + ···                                                                    valid for all x
            2                    2!   4!
           1                     x3   x5
   sinh x = ( ex − e− x ) = x +     +    + ···                                                                    valid for all x
           2                     3!   5!
   cosh ix = cos x                                           cos ix = cosh x
   sinh ix = i sin x                                         sin ix = i sinh x
             sinh x                                                        1
   tanh x =                                                  sech x =
             cosh x                                                     cosh x
            cosh x                                                           1
   coth x =                                                  cosech x =
             sinh x                                                       sinh x
   cosh 2 x − sinh 2 x = 1
                                                                                                                              11
     sinh ( x ± y) = sinh x cosh y ± cosh x sinh y
Inverse functions
                              p        !
          −1   x         x+ x2 + a2
     sinh        = ln                                                    for −∞ < x < ∞
               a            a
                           p           !
          −1 x        x + x2 − a2
     cosh      = ln                                                               for x ≥ a
             a              a
                             
          −1 x   1      a+x
     tanh      = ln                                                             for x2 < a2
             a   2      a−x
                             
          −1 x   1      x +a
     coth      = ln                                                             for x2 > a2
             a   2      x−a
                          s           
                                2
             x        a       a
     sech−1 = ln  +               − 1                                      for 0 < x ≤ a
             a        x       x2
                            s           
                                    2
               x         a        a
     cosech−1 = ln  +                + 1                                        for x 6= 0
               a         x        x2
8. Limits
     (1 + x/n)n → ex as n → ∞, x ln x → 0 as x → 0
                                            f ( x)   f 0 ( a)
     If f ( a) = g( a) = 0    then   lim           = 0          (l’Hôpital’s rule)
                                     x→ a   g( x)   g ( a)
12
                                                     9. Differentiation
                            u 0       u0 v − uv0
   (uv)0 = u0 v + uv0 ,             =
                              v              v2
     d                                                 d
       (sin x) = cos x                                   (sinh x)    = cosh x
    dx                                                dx
    d                                                 d
       (cos x) = − sin x                                 (cosh x)    = sinh x
    dx                                                dx
    d                                                 d
       (tan x) = sec2 x                                  (tanh x)    = sech2 x
    dx                                                dx
    d                                                 d
       (sec x) = sec x tan x                             (sech x)    = − sech x tanh x
    dx                                                dx
     d                                                 d
       (cot x) = − cosec2 x                              (coth x)    = − cosech2 x
    dx                                                dx
   d                                                 d
      (cosec x) = − cosec x cot x                       (cosech x)   = − cosech x coth x
   dx                                                dx
10. Integration
Standard forms
                 xn+1
   Z
       xn dx =        +c                                                                        for n 6= −1
                 n+1
     1
   Z                                                   Z
       dx        = ln x + c                                ln x dx = x(ln x − 1) + c
     x                                                                           
                      1 ax                                                 x    1
   Z                                                   Z
     eax dx      =      e +c                                  ax
                                                           x e dx = e ax
                                                                             − 2 +c
                      a                                                    a   a
                                   
                      x2          1
   Z
       x ln x dx =         ln x −     +c
                      2           2
   Z
            1              1       x
         2      2
                  dx = tan−1             +c
       a +x                a         a
                                                             
            1              1      −1 x             1        a+x
   Z
                  dx    =    tanh          +  c =     ln          +c                            for x2 < a2
       a2 − x2             a           a          2a        a−x
                                                               
            1                1      −1 x             1       x−a
   Z
                  dx = − coth                +c=        ln          +c                          for x2 > a2
       x2 − a2               a           a          2a       x+a
              x                −1           1
   Z
                     dx =                            +c                                          for n 6= 1
       ( x2 ± a2 )n         2(n − 1) ( x2 ± a2 )n−1
            x              1
   Z
                  dx = ln( x2 ± a2 ) + c
       x2 ± a2             2
   Z
             1                   x
       p            dx = sin−1        +c
           a2 − x2                a
   Z
             1                    p          
       p            dx = ln x + x2 ± a2 + c
           x2 ± a2
   Z
              x           p
       p            dx = x2 ± a2 + c
           x2 ± a2
       p                   1h p 2                       x i
   Z
           a2 − x2 dx =        x a − x2 + a2 sin −1           +c
                           2                             a
                                                                                                        13
                 ∞       1
         Z
                                 dx = π cosec pπ                                                                                  for p < 1
             0       (1 + x) x p
                                                                    r
                 ∞                           ∞                  1       π
         Z                           Z
                          2                           2
                     cos( x ) dx =               sin ( x ) dx =
             0                           0                      2       2
         Z       ∞                  √
             exp(− x2 /2σ 2 ) dx = σ 2π
          −∞
                                                                    √
         Z ∞                          1 × 3 × 5 × · · · (n − 1)σ n+1 2π                                                for n ≥ 2 and even
              n        2      2
             x exp(− x /2σ ) dx =
          −∞                         
                                       0                                                                                for n ≥ 1 and odd
         Z                                                                      Z
                 sin x dx     = − cos x + c                                         sinh x dx   = cosh x + c
         Z                                                                      Z
                 cos x dx     = sin x + c                                           cosh x dx   = sinh x + c
         Z                                                                      Z
                 tan x dx     = − ln(cos x) + c                                     tanh x dx   = ln(cosh x) + c
         Z                                                                      Z
                 cosec x dx = ln(cosec x − cot x) + c                               cosech x dx = ln [tanh( x/2)] + c
         Z                                                                      Z
                 sec x dx     = ln(sec x + tan x) + c                               sech x dx   = 2 tan−1 ( ex ) + c
         Z                                                                      Z
                 cot x dx     = ln(sin x) + c                                       coth x dx   = ln(sinh x) + c
                              sin (m − n) x    sin (m + n) x
         Z
                 sin mx sin nx dx =          −                +c                                                                 if m2 6= n2
                                2(m − n)         2(m + n)
                               sin (m − n) x    sin (m + n) x
         Z
           cos mx cos nx dx =                +                +c                                                                 if m2 6= n2
                                 2(m − n)         2(m + n)
Standard substitutions
     If the integrand is a function of:                              substitute:
                         p
           ( a2 − x2 ) or a2 − x2                           x = a sin θ or x = a cos θ
                         p
           ( x2 + a2 ) or x2 + a2                          x = a tan θ or x = a sinh θ
                         p
           ( x2 − a2 ) or x2 − a2                          x = a sec θ or x = a cosh θ
If the integrand is a rational function of sin x or cos x or both, substitute t = tan( x/2) and use the results:
                          2t                         1 − t2                  2 dt
         sin x =                     cos x =                        dx =           .
                        1 + t2                       1 + t2                 1 + t2
                 dx
     Z
                  p                                       px + q = u2
         ( ax + b) px + q
                   dx                                                1
     Z
                  q                                       ax + b =     .
         ( ax + b) px2 + qx + r                                      u
14
Integration by parts
             b
                           b Z b
     Z                     
                 u dv = uv −    v du
         a                     a           a
Differentiation of an integral
If f ( x, α ) is a function of x containing a parameter α and the limits of integration a and b are functions of α then
                                                                                                                ∂
                 Z b(α )                                                                                Z b(α )
      d                                                              db              da
                               f ( x, α ) dx = f (b, α )                − f ( a, α )    +                                  f ( x, α ) dx.
     dα              a (α )                                          dα              dα                  a (α )       ∂α
Special case,
     d
                 Z       x
                             f ( y) dy = f ( x).
     dx              a
Dirac δ-‘function’
                   1                               ∞
                                           Z
     δ (t − τ ) =                                       exp[iω(t − τ )] dω.
                  2π                           −∞
                                                                                  Z   ∞
If f (t) is an arbitrary function of t then                                                δ (t − τ ) f (t) dt = f (τ ).
                                                                                      −∞
                                                   Z    ∞
δ (t) = 0 if t 6= 0, also                                   δ (t) dt = 1
                                                       −∞
Reduction formulae
Factorials
n! = n(n − 1)(n − 2) . . . 1,                                     0! = 1.
Stirling’s formula for large n:                                   ln(n!) ≈ n ln n − n.
                                   Z       ∞                          Z       ∞                                                           √                       √
For any p > −1,                                    x p e− x dx = p                x p−1 e− x dx = p!.                  (− 1/2)! =             π,      ( 1/2)! =    π/ ,
                                                                                                                                                                     2     etc.
                                       0                                  0
                                           Z       1                                   p!q!
For any p, q > −1,                                     x p (1 − x)q dx =                        .
                                               0                                  ( p + q + 1)!
Trigonometrical
If m, n are integers,
     Z π/ 2
                             m − 1 π/ 2                        n − 1 π/ 2
                                                                          Z                                                           Z
                     sin m θ cos n θ dθ =sin m−2 θ cosn θ dθ =            sin m θ cosn−2 θ dθ
     0                       m+n 0                             m+n 0
and can therefore be reduced eventually to one of the following integrals
     Z π/ 2                                                         Z π/ 2                                    Z π/ 2                                 Z π/ 2
                                                            1                                                                                                        π
                     sin θ cos θ dθ =                         ,                   sin θ dθ = 1,                            cos θ dθ = 1,                      dθ =     .
         0                                                  2         0                                           0                                       0          2
Other
                                                                                                                                r
                     ∞                                                                     (n − 1)                          1       π               1
             Z
If In =                      xn exp(−α x2 ) dx                    then        In =                 In − 2 ,       I0 =                ,   I1 =        .
                 0                                                                           2α                             2       α              2α
                                                                                                                                                                                  15
                                                       11. Differential Equations
Wave equation
                   1 ∂2ψ
     ∇2ψ =
                   c2 ∂t2
Legendre’s equation
                    d2 y      dy
     (1 − x2 )           − 2x    + l (l + 1) y = 0,
                    dx2       dx
                                                                                        l
                                                                      1             d               l
solutions of which are Legendre polynomials Pl ( x), where Pl ( x) = l                        x2 − 1 , Rodrigues’ formula so
                                                                     2 l!           dx
                                   1   2
P0 ( x) = 1, P1 ( x) = x, P2 ( x) = (3x − 1) etc.
                                   2
Recursion relation
                    1
     Pl ( x) =        [(2l − 1) xPl −1 ( x) − (l − 1) Pl −2( x)]
                    l
Orthogonality
     Z    1                               2
              Pl ( x) Pl 0 ( x) dx =          δll 0
         −1                            2l + 1
Bessel’s equation
          d2 y    dy
     x2        +x    + ( x2 − m2 ) y = 0,
          dx2     dx
solutions of which are Bessel functions Jm ( x) of order m.
                     ∞
                        (−1)k ( x/2)m+2k
     Jm ( x ) =     ∑     k!(m + k)!
                                                      (integer m).
                    k=0
16
                                       13. Functions of Several Variables
                             ∂φ
If φ = f ( x, y, z, . . .) then implies differentiation with respect to x keeping y, z, . . . constant.
                             ∂x
           ∂φ           ∂φ      ∂φ                          ∂φ      ∂φ       ∂φ
   dφ =         dx +       dy +     dz + · · · and δφ ≈        δx +    δy +      δz + · · ·
           ∂x           ∂y       ∂z                         ∂x      ∂y        ∂z
                                                                                             
                                                  ∂φ                        ∂φ            ∂φ 
where x, y, z, . . . are independent variables.       is also written as            or             when the variables kept
                                                  ∂x                        ∂x            ∂x 
                                                                                       y,...        y,...
constant need to be stated explicitly.
                                                 ∂ 2φ    ∂2φ
If φ is a well-behaved function then                  =       etc.
                                                ∂x ∂y   ∂y ∂x
If φ = f ( x, y),
                                                           
      ∂φ           1                  ∂φ          ∂x         ∂y
               =   ,                                                = −1.
       ∂x y       ∂x                  ∂x    y     ∂y   φ     ∂φ   x
                  ∂φ y
Stationary points
                                                  ∂φ    ∂φ             ∂2φ ∂2φ     ∂2φ
A function φ = f ( x, y) has a stationary point when =     = 0. Unless 2 =      =       = 0, the following
                                                  ∂x    ∂y             ∂x  ∂y 2   ∂x ∂y
conditions determine whether it is a minimum, a maximum or a saddle point.
                                           
                  ∂2φ            ∂2φ       
     Minimum:          > 0, or        > 0, 
                                           
                                                             2 2
                  ∂x2            ∂y2               ∂2φ ∂2φ      ∂φ
                   2              2          and           >
                  ∂φ             ∂φ                 2
                                                   ∂x ∂y 2     ∂x ∂y
     Maximum:        2
                       < 0, or      2
                                      < 0, 
                                           
                                           
                  ∂x             ∂y
                                      2
                    ∂2φ ∂2φ       ∂2φ
    Saddle point:           <
                    ∂x2 ∂y2      ∂x ∂y
     ∂2φ   ∂2φ    ∂2φ
If       =     =       = 0 the character of the turning point is determined by the next higher derivative.
     ∂x2   ∂y2   ∂x ∂y
       ∂φ   ∂φ ∂x   ∂φ ∂y
          =       +       + ···
       ∂u   ∂x ∂u   ∂y ∂u
       ∂φ   ∂φ ∂x   ∂φ ∂y
          =       +       + ···
       ∂v   ∂x ∂v   ∂y ∂v
         etc.
18
Changing variables in surface and volume integrals – Jacobians
If an area A in the x, y plane maps into an area A 0 in the u, v plane then
                                                                          
                                                                  ∂x ∂x 
                                                                          
     Z                      Z                                     ∂u ∂v 
         f ( x, y) dx dy =       f (u, v) J du dv where J =              
                                                                           
       A                      A0                                  ∂y ∂y 
                                                                          
                                                                   ∂u ∂v
                                        ∂( x, y)
The Jacobian J is also written as                . The corresponding formula for volume integrals is
                                        ∂(u, v)
                                                                                                    
                                                                                        ∂x ∂x ∂x 
                                                                                                    
                                                                                        ∂u ∂v ∂w 
                                                                                                    
     Z                             Z                                                    ∂y ∂y ∂y 
         f ( x, y, z) dx dy dz =        f (u, v, w) J du dv dw     where now      J =              
                                                                                                     
       V                             V0                                                 ∂u ∂v ∂w 
                                                                                                    
                                                                                        ∂z ∂z ∂z 
                                                                                                    
                                                                                         ∂u ∂v ∂w
Fourier series
If y( x) is a function defined in the range −π ≤ x ≤ π then
                    M                   M0
     y( x) ≈ c0 +   ∑     cm cos mx +   ∑     sm sin mx
                    m=1                 m=1
                                                                                                                           19
                                                                           18. Statistics
Probability distributions
                                2     x    Z
                                            2
Error function:     erf( x) = √         e− y dy
                                 π 0
                              
                              n x n− x
Binomial:           f ( x) =      p q     where q = (1 − p),                             µ = np, σ 2 = npq, p < 1.
                              x
                             µ x −µ
Poisson:             f ( x) =     e , and σ 2 = µ
                              x!
                                                      
                                 1          ( x − µ )2
Normal:              f ( x) = √ exp −
                             σ 2π               2σ 2
                                           b2
                                     b are σ     σb 2
                               b and β
Estimates for the variances of α              and 2 .
                                            n    ns x
                                           s2xy
Correlation coefficient: ρ
                         b=r=                       .
                                           sx s y
26