# 3D Face
## Surveys & Doctoral Thesis
- Face Image Analysis using a Multiple Features Fitting Strategy(2005, Basel)
- 3D Face Modelling for 2D+3D Face Recognition(2007, Surrey)
- Image Based 3D Face Reconstruction: A Survey(IJIG2009, Georgios Stylianou,
Andreas Lanitis, EUC, CUT)
`early 3D facial acquisition approaches`
- animation reconstruction of deformable surfaces(2010, Hao Li, ETHz)
- Inverse Rendering of Faces with a 3D Morphable Model(2012, Oswald Aldrian, York)
- Digital Geometry Processing Theory and Applications(2012, Kun Zhou, Zhengjiang,
中文)
- ***State of the Art on Monocular 3D Face Reconstruction, Tracking, and
Applications***
**State of the Art on 3D Reconstruction with RGB-D Cameras**(EG2018, MZ, CT, MPI,
Stanford, TUM, Disney, Technicolor, UEN)
[[talks]](http://web.stanford.edu/~zollhoef/papers/EG18_FaceSTAR/page.html)
## Papers & Codes
### Reconstruction&3D Alignment&Correspondences
#### 1998 - 2015
- A Morphable Model For The Synthesis Of 3D Faces
(SIGGRAPH1998, [V Blanz](https://scholar.google.com.hk/citations?
user=jYCidWgAAAAJ&hl=zh-CN&oi=sra), [T
Vetter](https://scholar.google.com.hk/citations?user=HKLgZpYAAAAJ&hl=zh-
CN&oi=sra) , MPI)
`3dmm,analysis-by-synthesis(cascaded, coarse to fine, using texture
information), mid-detail `
- Efficient, Robust and Accurate Fitting of a 3D Morphable Model
(ICCV2003, S Romdhani, [T Vetter](https://scholar.google.com.hk/citations?
user=HKLgZpYAAAAJ&hl=zh-CN&oi=sra) , Basel)
`3dmm, fitting Algorithm needs: Efficient, Robust, Accurate, Automatic. Mid-
detail`
- Estimating 3D Shape and Texture Using Pixel Intensity, Edges, Specular
Highlights, Texture Constraints and a Prior
(CVPR2005, S Romdhani, [T Vetter](https://scholar.google.com.hk/citations?
user=HKLgZpYAAAAJ&hl=zh-CN&oi=sra) , Basel)
`3dmm, multiple features`
- A 3D Face Model for Pose and Illumination Invariant Face Recognition
(AVSS2009, Paysan, P., Knothe, R., Amberg, B., Romdhani, S., & Vetter, T. ,
Basel) [[data](BFM)](https://faces.cs.unibas.ch/bfm/)
- 3D Face Reconstruction from a Single Image Using a Single Reference Face Shape
(TPAMI2011, [I
Kemelmacher-Shlizerman](https://scholar.google.com.hk/citations?
user=P97vI1EAAAAJ&hl=zh-CN&oi=sra), Basri R, UW)
`template, sfs, texture information, mid-detail`
- Face Reconstruction in the Wild
(ICCV2011, Kemelmacher-Shlizerman I, Seitz S M , UW)
`collection, sparse correspondence, warp template, low-rank
approximation(photometric stereo, for expression normalization), mid-detail `
- A FACS Valid 3D Dynamic Action Unit Database with Applications to 3D Dynamic
Morphable Facial Modeling
(ICCV2011, Cosker D, Krumhuber E, Hilton A. , UofSurrey)
`aam, expression`
- Viewing Real-World Faces in 3D
(ICCV2013, [T Hassner](https://scholar.google.com.hk/citations?
user=ehe5pyIAAAAJ&hl=zh-CN&oi=sra), Open U Israel)
`template, sparse correspondence, pose adjustment, depth optimization(SIFT) `
- Improving 3D Face Details based on Normal Map of Hetero-source Images
(CVPRW2014, Yang, C., Chen, J., Su, N., & Su, G. , Tsinghua University)
- Total Moving Face Reconstruction
(LNCS2014, Suwajanakorn S, Kemelmacher-Shlizerman I, Seitz S M. , Washington)
`video(collections), template, average shape, pose estimation, 3d
flow(correspondence), refinement, high-detail `
- FaceWarehouse: a 3D Facial Expression Database for Visual Computing
(VCG2014, Cao, C., Weng, Y., Zhou, S., Tong, Y., & Zhou, K., Zhejiang) [[data]]()
- Intrinsic Face Image Decomposition with Human Face Priors
(ECCV2014, Li C, Zhou K, Lin S , Zhejiang)
- Fitting 3D Morphable Models using Local Features
(ICIP2015, Huber, P., Feng, Z. H., Christmas, W., Kittler, J., & Ratsch, M,
Surrey)
`sparse correspondence, 3dmm, regression`
- What Makes Tom Hanks Look Like Tom Hanks
(ICCV2015, Suwajanakorn S, Seitz S M, Kemelmacher-Shlizerman I. , Washington)
`collection, template, average model, 3D flow, correspondence, deformation
vector, TPS, expression sililarity weighted, high-frequency details, Laplacian
pyramid `
- Unconstrained Realtime Facial Performance Capture
(CVPR2015, Hsieh, P. L., Ma, C., Yu, J., & Li, H. , USC)
`video,image collections, occlusion, segmentation, landmarks `
- Unconstrained 3D Face Reconstruction
(CVPR2015, Roth, J., Tong, Y., & Liu, X, MSU)
`collection, sparse correspondence(landmarks), template, photometric stereo(SVD),
matrix completion, `
- Pose-Invariant 3D Face Alignment
(ICCV2015, Jourabloo, A., & Liu, X., MSU)
`alignment, dense correspondence, visibility, cascaded regressor, 3DPDM. `
- Discriminative 3D Morphable Model Fitting
(CVPR2015)
#### 2016
**#CVPR**
* Large-pose Face Alignment via CNN-based Dense 3D Model Fitting
(CVPR2016, Jourabloo, A., & Liu, X., MSU)
`alignment, 3dmm `
* Automated 3D Face Reconstruction from Multiple Images using Quality Measures
(CVPR2016, Piotraschke, M., & Blanz, V , Siegen)
* A Robust Multilinear Model Learning Framework for 3D Faces
(CVPR2016, Bolkart, T., & Wuhrer, S., Saarland)
* Face Alignment Across Large Poses: A 3D Solution
(CVPR2016, Zhu, X., Lei, Z., Liu, X., Shi, H., & Li, S. Z. , MSU, CASIA)
* Adaptive 3D Face Reconstruction from Unconstrained Photo Collections
(CVPR2016, Roth, J., Tong, Y., & Liu, X, MSU)
`landmarks, 3dmm, coarse-to-fine,photometric stereo, time: 7 minutes `
* Augmented Blendshapes for Real-time Simultaneous 3D Head Modeling and Facial
Motion Capture
(CVPR2016, Thomas, D., & Taniguchi, R. I. , Kyushu University)
* A 3D Morphable Model learnt from 10,000 faces
(CVPR2016, Booth, J., Roussos, A., Zafeiriou, S., Ponniah, A., & Dunaway, D.,
ICL)
**#ECCV**
* Joint Face Alignment and 3D Face Reconstruction
(ECCV2016, Liu, F., Zeng, D., Zhao, Q., & Liu, X, MSU, Sichuan U)
`alignment, landmarks`
* Real-Time Facial Segmentation and Performance Capture from RGB Input
(ECCV2016, Saito, S., Li, T., & Li, H. , USC)
`occlusions, tracking`
**#Others**
- 3D Face Reconstruction by Learning from Synthetic Data
(3DV2016, Richardson, E., Sela, M., & Kimmel, R, IIT)
`3dmm, cnn, regress 3dmm parameters, sfs`
- Face Reconstruction on Mobile Devices Using a Height Map Shape Model and Fast
Regularization
(3DV2016, Maninchedda, F., Häne, C., Oswald, M. R., & Pollefeys, M., ETH)
- A Multiresolution 3D Morphable Face Model and Fitting Framework [[code]]
(https://github.com/patrikhuber/eos)
(IJCV2016, Huber, P., Hu, G., Tena, R., Mortazavian, P., Koppen, P., Christmas,
W. J., ... & Kittler, J. ,Surrey)
- Rapid Photorealistic Blendshape Modeling from RGB-D Sensors
(2016, USC)
- 3D Face Reconstruction with Region Based Best Fit Blending Using Mobile Phone for
Virtual Reality Based Social Media
(2016, Anbarjafari, G., Haamer, R. E., Lusi, I., Tikk, T., & Valgma, L. , Turkey)
`landmarks, uv texture, region`
#### 2017
**#CVPR**
* 3D Face Morphable Models “In-the-Wild”
(CVPR2017, Booth, J., Antonakos, E., Ploumpis, S., Trigeorgis, G., Panagakis, Y.,
& Zafeiriou, S., ICL)
`3dmm, register, UV`
* Face Normals “in-the-wild” using Fully Convolutional Networks
(CVPR2017, Trigeorgis, G., Snape, P., Kokkinos, I., & Zafeiriou, S. , ICL)
* Regressing Robust and Discriminative 3D Morphable Models with a very Deep Neural
Network
(CVPR2017, Tran, A. T., Hassner, T., Masi, I., & Medioni, G. , USC)
* Fast 3D Reconstruction of Faces with Glasses
(CVPR2017, Maninchedda, F., Oswald, M. R., & Pollefeys, M., ETH)
* DenseReg: Fully Convolutional Dense Shape Regression In-the-Wild
(CVPR2017, Güler, R. A., Trigeorgis, G., Antonakos, E., Snape, P., Zafeiriou, S.,
& Kokkinos, I. , ICL)
`dense correspondence, uv`
* Learning Detailed Face Reconstruction from a Single Image
(CVPR2017, Richardson, E., Sela, M., Or-El, R., & Kimmel, R. , Washington)
* End-to-end 3D face reconstruction with deep neural networks
(CVPR2017, Dou, P., Shah, S. K., & Kakadiaris, I. A., UofHouston)
`3dmm, dl, directly learn 3dmm parameters`
* A Generative Model for Depth-based Robust 3D Facial Pose Tracking
(CVPR2017, Cai, L. S. J., Pavlovic, T. J. C. V., & Ngan, K. N. , CUHK)
`occlusions`
**#ICCV**
* 3D Morphable Models as Spatial Transformer Networks
(ICCV2017, Bas, A., Huber, P., Smith, W. A., Awais, M., & Kittler, J. , York,
Surrey )
`dl, cnn, uv texture, landmarks, stn, 3dmm`
* Faster Than Real-time Facial Alignment: A 3D Spatial Transformer Network Approach
in Unconstrained Poses
(ICCV2017, Bhagavatula, C., Zhu, C., Luu, K., & Savvides, M., CMU)
* Pose-Invariant Face Alignment with a Single CNN
(ICCV2017, Jourabloo, A., Ye, M., Liu, X., & Ren, L. , MSU)
`alignment, 3dmm, dl, cnn`
* Large Pose 3D Face Reconstruction from a Single Image via Direct Volumetric CNN
Regression [code](https://github.com/AaronJackson/vrn)
(ICCV2017, Jackson, A. S., Bulat, A., Argyriou, V., & Tzimiropoulos, G. ,
Nottingham)
`end-to-end, 3dmm, dl, cnn, landmarks, voxel `
* Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation
(ICCV2017, Sela, M., Richardson, E., & Kimmel, R. , IIT)
* MoFA: Model-based Deep Convolutional Face Autoencoder for Unsupervised Monocular
Reconstruction
(ICCV2017, Tewari, A., Zollhöfer, M., Kim, H., Garrido, P., Bernard, F., Pérez,
P., & Theobalt, C. , MPI)
* Dense Face Alignment [code](http://cvlab.cse.msu.edu/project-pifa.html)
(ICCVW2017, Liu, Y., Jourabloo, A., Ren, W., & Liu, X. , MSU)
* Realtime Dynamic 3D Facial Reconstruction for Monocular Video In-the-Wild
(ICCVW2017)
* Learning Dense Facial Correspondences in Unconstrained Images
(ICCV2017, Yu, R., Saito, S., Li, H., Ceylan, D., & Li, H. , USC)
`dense correspondence`
**#others**
* Large Scale 3D Morphable Models [[data](LSFM)](https://faces.cs.unibas.ch/bfm/)
(IJCV2017, Booth, J., Roussos, A., Ponniah, A., Dunaway, D., & Zafeiriou, S. ,
ICL)
`for alignment, template, cnn, dl, sparse correspondence, landmarks, tps warping
`
* What does 2D geometric information really tell us about 3D face shape? (2017,
Bas, A., & Smith, W. A )
`shape from landmarks, shape from contours`
* Pix2Face: Direct 3D Face Model Estimation
(2017)
`dense correspondence, 3dmm`
* 3D Face Reconstruction with Geometry Details from a Single Image
(TIP2017, Jiang, L., Zhang, J., Deng, B., Li, H., & Liu, L. , USC, USTC)
`coarse-to-fine, landmarks, corrective deformatio, sfs `
#### 2018
**#CVPR**
* Unsupervised Training for 3D Morphable Model Regression
[code](https://github.com/google/tf_mesh_renderer)
(CVPR2018, Genova, K., Cole, F., Maschinot, A., Sarna, A., Vlasic, D., & Freeman,
W. T , Google)
- 4DFAB: A Large Scale 4D Database for Facial Expression Analysis and Biometric
Applications [data]( )
(CVPR2018, Cheng, S., Kotsia, I., Pantic, M., & Zafeiriou, S., ICL)
- Sparse Photometric 3D Face Reconstruction Guided by Morphable Models
(CVPR2018, Cao, X., Chen, Z., Chen, A., Chen, X., Li, S., & Yu, J. ,
shanghaitech)
`5 input images, 3dmm, shadow processing, light calibration, photometric stereo,
denoising `
- Disentangling Features in 3D Face Shapes for Joint Face Reconstruction and
Recognition
(CVPR2018, Liu, F., Zhu, R., Zeng, D., Zhao, Q., & Liu, X. , MSU, Sichuan)
- Mesoscopic Facial Geometry Inference Using Deep Neural Networks
(CVPR2018, Hao Li, USC)
`high-detail, dl, scan, uv texture, displacement `
- Self-supervised Multi-level Face Model Learning for Monocular Reconstruction at
over 250 Hz
(CVPR2018, Tewari, A., Zollhöfer, M., Garrido, P., Bernard, F., Kim, H., Pérez,
P., & Theobalt, C., MPI)
- SfSNet : Learning Shape, Reflectance and Illuminance of Faces in the Wild
(CVPR2018, Sengupta, S., Kanazawa, A., Castillo, C. D., & Jacobs, D. , Maryland,
UCB )
- Probabilistic Joint Face-Skull Modelling for Facial Reconstruction
(CVPR2018, Madsen, D., Lüthi, M., Schneider, A., & Vetter, T. , Basel)
- Alive Caricature from 2D to 3D
(CVPR2018, Wu, Q., Zhang, J., Lai, Y. K., Zheng, J., & Cai, J, USTC)
- Nonlinear 3D Face Morphable Model
(CVPR2018, Tran, L., & Liu, X. , MSU)
- InverseFaceNet: Deep Monocular Inverse Face Rendering
(CVPR2018, Kim, H., Zollhöfer, M., Tewari, A., Thies, J., Richardt, C., &
Theobalt, C. , MPI)
`Self-Supervised Bootstrapping`
- Extreme 3D Face Reconstruction: Looking Past Occlusions
(CVPR2018, Tran, A. T., Hassner, T., Masi, I., Paz, E., Nirkin, Y., & Medioni, G.
, USC)
- Total Capture: A 3D Deformation Model for Tracking Faces, Hands, and Bodies
(CVPR2018, best student paper, Joo, H., Simon, T., & Sheikh, Y. , CMU)
- Modeling Facial Geometry using Compositional VAEs
(CVPR2018, Bagautdinov, T., Wu, C., Saragih, J., Fua, P., & Sheikh, Y., EPEL, FRL
)
**#ECCV**
* 3D Face Reconstruction from Light Field Images: A Model-free Approach
(ECCV2018, Feng, M., Gilani, S. Z., Wang, Y., & Mian, A., Western Australia,
Hunan)
`epopolar plane images`
* Generating 3D Faces using Convolutional Mesh Autoencoders
[[code]](https://github.com/anuragranj/coma)
(ECCV2018, Ranjan, A., Bolkart, T., Sanyal, S., & Black, M. J., MPI)
* Joint 3D Face Reconstruction and Dense Alignment with Position Map Regression
Network [[code]](https://github.com/YadiraF/PRNet)
(ECCV2018, Feng, Y., Wu, F., Shao, X., Wang, Y., & Zhou, X., SJTU)
**#others**
* Morphable Face Models - An Open Framework
(FG2018, Gerig, T., Morel-Forster, A., Blumer, C., Egger, B., Luthi, M.,
Schönborn, S., & Vetter, T. , Basel)
* CNN-based Real-time Dense Face Reconstruction with Inverse-rendered Photo-
realistic Face Images [[data&code]](https://github.com/Juyong/3DFace)
(TPAMI2018, Yudong Guo, Juyong Zhang, Jianfei Cai, Boyi Jiang, Jianmin Zheng,
USTC)
* Multilinear Autoencoder for 3D Face Model Learning(WACV 2018, Universite
Grenoble Alpes (LJK), France)
`3d scan to registered mesh. dl. height map `
* On Face Segmentation, Face Swapping, and Face Perception(AFGR,2018, HT)
* Evaluation of Dense 3D Reconstruction from 2D Face Images in the Wild(FG2018)
[data]( )
**#arxiv**
* Joint Face Alignment and 3D Face Reconstruction with Application to Face
Recognition(2017, Feng Liu, Xiaoming Liu)
* Convolutional Point-set Representation: A Convolutional Bridge Between a Densely
Annotated Image and 3D Face Alignment(20180317)
* Unsupervised Depth Estimation, 3D Face Rotation and Replacement(20180325)
### Production-level Reconstruction
> more in computer graphics
- High-Quality Single-Shot Capture of Facial Geometry(TOG2010, ETHZ, Disney)
`cg, high-detail,stereo system, calibration, surface refinement, normal
direction, mesoscopic `
- Multiview Face Capture using Polarized Spherical Gradient Illumination(TOG2011)
`image collecitons`
- High-Quality Passive Facial Performance Capture using Anchor Frames(SIGGRAPH2011,
ETHZ, Disney)
`cg, stereo,anchor frame, tracking, mesh progration, physical movement, motion
estimation, refinement `
- Lightweight binocular facial perfor- mance capture under uncontrolled
lighting(TOG2012, MPI)
`cg, high-detail, stereo, template,flow,data term, geometry term, smoothness
term, mesh tracking, motion refinement, shape refinement, sfs `
- Reconstructing Detailed Dynamic Face Geometry from Monocular Video(TOG2013, MPI)
`cg, dynamic, high-detail, blend model, sparse correspondence, dense
correspondence(appearance matching, LBP), pose estimation , shape refinement, sfs
`
- 3D Shape Regression for Real-time Facial Animation(TOG2013, ZJU)
- Real-Time High-Fidelity Facial Performance Capture (TOG2015, ZJU)
`cg, landmarks, optical flow, train a regressor to learn detail `
- Dynamic 3D Avatar Creation from Hand-held Video Input(TOG2015, EPEL)
`cg, dynamic, mobile, high-detail, avatar, 3dmm,sparse correspondence, eye mesh,
tracking, refinement, sfs, detail map `
- Reconstruction of Personalized 3D Face Rigs from Monocular Video(TOG2016, MPI)
`parametric shape prior, coarse-scale reconstruction, fine-scale(sfs), coase-
>medium->fine, 3dmm, corrective `
- Production-Level Facial Performance Capture Using Deep Convolutional Neural
Networks(ASCA2017, USC)
- Multi-View Stereo on Consistent Face Topology(EG2017, USC)
`cg, high-detail, landmarks, template, pose estimation, refinement`
- Avatar Digitization From a Single Image For Real-Time Rendering(SIGGRAPH Asia
2017, USC)
`cg, avatar, segmentation, head, hair, 3DMM, landmarks, texture completion `
- Learning a model of facial shape and expression from 4D scans(TOG2017, USC, MPI)
- DeepSketch2Face: A Deep Learning Based Sketching System for 3D Face and
Caricature Modeling(SIGGRAPH2017)
- High-Fidelity Facial Reflectance and Geometry Inference From an Unconstrained
Image(SIGGRAPH2018, USC)
### Texture
> 3D-aid texture generation/ UV texture completion
> Keys: GAN
- Face Synthesis from Facial Identity Features(CVPR2017, google)
`3dmm, dl, landmarks`
- Photorealistic Facial Texture Inference Using Deep Neural Networks(CVPR2017, Hao
Li, USC)
`texture completion`
- UV-GAN: Adversarial Facial UV Map Completion for Pose-invariant Face
Recognition(CVPR2018, SZ, ICL)
`gan, 3dmm, uv texture completion`
- Multi-Attribute Robust Component Analysis for Facial UV Maps(2017, SZ, ICL)
- Realistic Dynamic Facial Textures from a Single Image using GANs(CVPR2017, Hao
Li, USC, DeepMind)
- Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of
New Identities from 3D Morphable Model(2018)
- Side Information for Face Completion: a Robust PCA Approach(20180120, SZ, ICL)
### Transfer&Reenactment(Applications)
- Face Transfer with Multilinear Models (SIGGRAPH2005)
`Cartesian product(ID x EX x VI)`
- Online Modeling For Realtime Facial Animation(TOG2013)
`rgbd, blendshape, corrective field `
- Displaced Dynamic Expression Regression for Real-time Facial Tracking and
Animation(SIGGRAPH2014)
- Real-time Expression Transfer for Facial Reenactment(SIGGRAPH AISA 2015)
- Face2Face: Real-time Face Capture and Reenactment of RGB Videos(CVPR2016)
`capture, transfer, 3dmm, landmarks, texture, expression, mouth retrieval `
- Synthesizing Obama: Learning Lip Sync from Audio(SIGGRAPH2017)
- Deep Video Portrait(SIGGRAPH2018)
- HeadOn: Real-time Reenactment of Human Portrait Videos(SIGGRAPH2018)
### 3D-aid 2D face recognition
- Tom-vs-Pete Classifiers and Identity-Preserving Alignment for Face
Verification(ECCV2012, Columbia University)
- Face Recognition from a Single Training Image under Arbitrary Unknown Lighting
Using Spherical Harmonics(PAMI2006)
- 3D-aided face recognition robust to expression and pose variations (CVPR2014)
- Effective 3D based Frontalization for Unconstrained Face Recognition(ICPR2016,
MICC, Florence)
- Effective Face Frontalization in Unconstrained Images(CVPR2015, TH, Israel)
- Do We Really Need to Collect Millions of Faces for Effective Face
Recognition(ECCV2016, TH, USC, Israel)
- High-Fidelity Pose and Expression Normalization for Face Recognition in the
Wild(CVPR2015)
- When 3D-Aided 2D Face Recognition Meets Deep Learning: An extended UR2D for Pose-
Invariant Face Recognition(2017)
- Towards Large-Pose Face Frontalization in the Wild
- Fully Automatic Pose-Invariant Face Recognition via 3D Pose Normalization
(ICCV2011, Cambridge, MA, USA)
### 3D face recognition
- Face Identification across Different Poses and Illuminations with a 3D Morphable
Model(Automatic Face and Gesture Recognition2002, VB&TV)
- Preliminary Face Recognition Grand Challenge Results(2006)
- expression Invariant 3D Face Recognition with a Morphable Model(FG2008, TV,
Basel)
- Bosphorus Database for 3D Face Analysis(2008)[data]()
- Robust Learning from Normals for 3D face recognition(ECCV2012, SZ, ICL)
- Static and dynamic 3D facial expression recognition: A comprehensive
survey(IVC2012, SZ, LijunYin)
- Deep 3D Face Identification(2017, USC)
- Robust Face Recognition with Deeply Normalized Depth Images (2018)
`depth image(front&neural)`
- Learning from Millions of 3D Scans for Large-scale 3D Face Recognition(CVPR2018,
Western Australia)