S-90 Go Kart
S-90 Go Kart
By
1.1 Introduction
          This project is intended to design and create a go-kart for a child with severe cerebral palsy. The
client is a ten year old male who is very smart and enjoys all things related to motor vehicles and driving.
His condition makes it nearly impossible for him to operate a typical go-kart, however. The client has no
reliable use of his arms or legs at this time. He has been working to develop enough motor control in his
arms to allow him to use a power wheelchair with joystick control. The client can use a head switch with
great reliability and this is an important factor in the design of this go-kart.
         In addition to a lack of reliable motor control the client also needs to be positioned correctly
both for comfort, and to optimize the motor control he does possess. He needs to be secured tightly in
his seat at the waist. This is to ensure that his waist is constantly at a 90⁰ angle, which helps his
movement. The controls must also be setup in such a way that the client’s thumbs are pointing upwards.
This is both to help train his muscles to maintain that position and for comfort. The most important part
of this go-kart is to maximize the client’s safety and fun while using it.
         The go-kart for this project will be built from the ground up to maximize the efficient use of
space, and to ensure that the needs of the client are met. The frame will consist of a steel open roll cage
design with independent front suspension and semi-independent rear suspension. A 10 horsepower gas
motor will provide power for the drive, and also run a 7 amp alternator. A gas motor will be used both
to provide adequate power, and for the sounds and attitude it brings to the vehicle. To accommodate
the client’s lack of physical ability all of the systems on the go-kart will be actuated using electric motors.
The electric motors will interface to the mechanical systems to control them without the operator
having to apply force directly. This will allow the client to control the go-kart with minimal physical
input.
         The power for all of the electrical components essential to the go-kart will come from a deep
cycle car battery. This battery will in turn be charged by the alternator to ensure that there is always
electrical power being supplied to the system. The battery will supply the electric motors and the
electronic control components. These control components are necessary to take small make use of the
user’s inputs to the system and translate them into something that can actually drive the go-kart.
        Three possible methods of control will be available on a user-selectable basis. The main method
of control will be a joystick that controls steering, throttle, and braking using a two axis system. This
method is similar to the way the client’s power wheelchair is controlled, and with practice the hope is
that the client will be able to learn this system of control. To allow the client to use the go-kart
immediately the second control system is based on remote control. A radio controller designed for
model aircraft will be controlled by a guardian with similar controls to the joystick. A radio receiver on
the go-kart will take the transmitted signal and feed it to the microprocessor. The final method of
control will be a steering wheel and pedals that will allow the vehicle to be operated like a normal car or
go-kart. These inputs will be connected to the microprocessor instead of mechanically attached. By
running all of the control systems through the same microprocessor system switching between the
methods of control is simplified. This method also isolates each system from the motors, ensuring that
only one control method can be in use at any given time.
         In addition to the custom control methods this go-kart will have a number of other features
tailored directly to meet the client’s needs. The seat is the most important of these features. The
Tumble Forms 2 Carrie seating system is designed to keep the client bent 90⁰ at the waist at all times.
This is essential for allowing the client to maximize his limited movement while driving the go-kart. The
Carrie seat is expensive, so a mount will be made to allow the client’s current Carrie seat to easily
attached and removed from the go-kart. This will allow the client to have the proper seating
arrangements without breaking the budget of the project.
        The client’s most reliable form of physical control is his use of a head switch. For safety reasons,
a head switch will be used as a kill switch for the go-kart. This safety feature will allow the client to stop
the go-kart at any time he feels unsafe or out of control. It is also important for the client’s thumbs to be
pointed upwards while he is performing most activities. The meet this specification Velcro on the
steering wheel and the joystick will be coupled with special gloves for the client to wear. The Velcro will
hold the client’s hands in the correct position regardless of the selected control method.
1.2 Subunits
        The complete go-kart described above is made up of a number of smaller systems that come
together to make everything work. Each of these subunits has to be carefully designed so that it not only
accomplishes its task, but also integrates into the larger system. The following section details the design
of each of these subunits, and describes where they fit in the complete design.
         The go-kart will rely heavily on software control to allow it to function with minimal physical
inputs from the operator. Embedded software takes away the need for complex analog circuits that
would otherwise make up a control system like this. The software for the go-kart has two main
purposes: to provide control over all of the systems necessary to operate the go-kart, and to recognize
when the go-kart is not functioning properly and to shut it down safely. To accomplish these two tasks
the software will be comprised of two infinite loops. The primary loop will service all of the normal
routines that must be controlled, and check to make sure everything is operating properly. The
emergency loop will be activated by the primary loop and will function to safely shut down the go-kart
and keep it shut down. The basics of the overall software design are discussed in this section, each
major component is discussed in detail in its corresponding section.
Microcontroller Hardware
        The hardware that will be responsible for running the software routines is the Microchip
PIC16F877. This is a 40-pin version of Microchip’s mid-level 8-bit microcontroller. This microcontroller is
ideal because it combines versatility with simplicity. The PIC16F877 has a number of peripherals and
modules embedded in its design that can be easily accessed and put to use through relatively simple
coding. The PIC includes an on-board analog to digital (A/D) converter, two pulse width modulation
modules, and a number of other useful features. The 40 pins combine to have 35 input/output ports, 8
of which can take an analog input and route it through the A/D converter. Due to the constraints of only
two PWM modules, however, the go-kart will make use of two PICs running in parallel to one another.
Programming Language
          The PIC16 series microcontrollers are designed to operate based on a 35 function instruction
set. Each instruction corresponds to one or two machine cycles of the microcontroller. Programming
language that makes use of only instruction set commands called assembly language. Assembly is
efficient to run, but tedious to write. For this application embedded C code will be used for writing
microcontroller software. Embedded C essentially takes the C code programming language and converts
it into the equivalent assembly instruction set. This set is then loaded onto the chip and run
continuously. C code is more intuitive to use than assembly and there are fewer chances of major
software errors that could otherwise prove to be dangerous.
Steering
Steering Mechanics
        The steering system of the vehicle is designed to be able to withstand the large forces generated
from the steering gearmotor. The gearmotor itself will be mounted to a plate that is attached to the
front suspension supports. The gearmotor will have a 2:1 increase in gear ratio so that it will drive the
rack and pinion at 180rpm. The gear on the gearmotor output will be a 48tooth spur gear, part number
6325K21 from mcmastercarr.com and the gear on the rack and pinion will be a 24 tooth spur gear, part
number 6325K16 from mcmastercarr.com. The assembly will go together as shown in Fig. 1.
                                           Figure 1: Steering Assembly
         The ends of the rack and pinion are equipped with 3/8” tie-rod ends with grease fittings and ball
joints. To connect to these, more 3/8” tie rod ends (High-Strength Ball Joint Rod End 3/8”-24 Rh Female
Shank, 5100 Pound Load Capacity with part number 4444T211 from mcmastercarr.com will be attached
on either end of 10.25” long 3/8” diameter tie rods. The configuration can be seen in Fig. 2.
        The steering wheel assembly will be made to be adjustable in terms of height and depth. The
depth adjustment will be set by a knob put into a tapped hole in a 7/8” OD, 5/8” ID sheath. A 5/8” rod
going through two sets of bearings will be inserted into the sheath on one end and left loose so that the
knob pressure can lock it in position while another 5/8” piece of rod that is attached to the steering
wheel mount will be inserted into the other end of the sheath. The piece of rod going through the
bearings will have its end lathed down to ¼” for a length of about 1.5” so that a timing pulley can be
placed on the end of it. Another timing pulley will be fixed to a shaft of a potentiometer and will be
mounted to the extended plate that the bearings are mounted to. The area between the bearings will
house an assembly consisting of two springs on either side of the steering column, a section of metal
cable that has been wrapped around the steering column, and a tack of weld holding the center of the
metal cable to the column. The purpose of this apparatus is to center the wheel automatically to give
the driver a sense of natural wheel return as well as automatically calibrating the steering wheel to the
forward position on startup. The general setup is shown in Fig. 3.
         The steering assembly will be able to tilt up and down based on the pivot/mounting point at the
base of the assembly, and a pin that will slide through the metal tube mounted under the plate shown.
The pin will go through two support arms not shown that will be mounted to the front suspension
support bar at simple pivot points. The adjustment will be incremental, as there will be set holes drilled
in the support arms that the pin can go through to lock the height of the steering assembly.
        The steering control iss one of the most important subsystems on the entire ire vehicle,
                                                                                        vehic and it is also
one of the most novel. In order
                              er for the steering on this go-kart to be useful to the client it has to be able
to move the wheels in a way compara
                              comparable to how a fully capable person with a steering
                                                                                     ering wheel
                                                                                            w      can. A
number of components go into  to this sy
                                      system which allows it to accomplish this task.
                                                                                    k. The components
                                                                                            co            of
the steering control are: the rack
                               ack and pinion with linkage, a Dayton 1L469 gearmotor,
                                                                                    otor, an
                                                                                           a LWG position
transducer, an IFI Thor 883 speed
                               eed con
                                    controller, software controls, and the input control.
                                                                                    ntrol. Each
                                                                                           Eac of these
components will be described in detai
                                   detail below.
         The LWG position transducer will be attached parallel to the rack and pinion. As the gearmotor
moves the rack and pinion the linear motion will also be transferred to the position transducer. With
this setup the output voltage of the position transducer becomes a measure of absolute position of the
rack and pinion and ultimately a measure of exactly which way the wheels are turned. This output
voltage is connected directly to one of the input ports of the microcontroller for processing.
Control Methods
         The three selectable methods of control are the main user interfaces for the go-kart. Each of
them is designed to carry out the same function, but the reason for each method is unique. The joystick
is intended to be the primary mode of control for the go-kart. It will likely take a lot of practice for the
client to learn how to use, but it provides him with total control of the vehicle for himself. The radio
control method is designed to allow the client to use the go-kart right away. His parents will be able to
grasp the controls quickly, and this method requires little to no input from the client himself. The
steering wheel with pedals method of control is there for two reasons. There is a hope the someday the
client will be able to master his condition well enough to drive normally. It is also there to allow other
operators a chance to drive the go-kart normally.
          The M215-28 joystick will be uused to control the steering, throttle, and braking
                                                                                      raking when
                                                                                              w     the go-kart
is in joystick control mode. The x-axis
                                   axis will control the steering, and the y-axis will control both the
throttle and the brakes. The direction
                               irection of the wheels will follow the position of the e joystick on the x-axis,
and the entire axis will be used
                               d for thi
                                     this mode of control. The y-axis will control throttle
                                                                                       rottle and
                                                                                              an braking by
splitting the axis down the middle.
                              iddle. As the joystick handle is pushed forward up the y-axisaxis the throttle
will be progressively opened. Likewise
                               Likewise, as the handle is pulled back down the y-axis xis the brake
                                                                                               b     will be
incrementally engaged. When the han handle rests in the middle of the y-axis the engine
                                                                                     gine will idle with the
brake disengaged.
         The radio control is the most complex method of control from an electronics standpoint. The
radio control will be implemented using a Futaba Skysport 4YF controlled coupled with a Futaba FP-
R127DF receiver. This controller-receiver combination is designed for use with model airplanes and
offers a 650 foot range. The controller makes use of two twin axis joysticks for control. Each axis on the
controller outputs to a different channel on the receiver, giving four possible outputs that can be used
for controlling the go-kart.
         The signal that is output from the receiver is in the form of pulse width modulation (PWM);
because it is designed to directly drive the small servo motors in model airplanes. The pulse width is
changed based on the position of the joystick axis on the controller. While PWM is a convenient signal
form to drive a servo motor directly, it is difficult to make use of as a microcontroller input. To make use
of the signal coming from the receiver the PWM must be converted into an analog voltage before being
routed to the microcontroller.
         The pedals will work in the same way as the steering wheel, except they will be directly linked to
potentiometers. There will be separate potentiometers to control the throttle and braking, as they will
take inputs from two separate pedals. Both signals from the potentiometers will be connected directly
to inputs on the microcontroller. Each of the pedals will also be attached to a spring to bring them back
to their original position. This is important to ensure that neither pedal remains in the active position
when the operator does not intend for them to be there.
        The software control for steering is responsible for taking information from two main inputs and
using the gathered information to update a single output. The inputs for the steering control come from
the LGW position transducer and the steering output from the selected control method. Both of these
inputs are of the same form when they arrive as signals at the microcontroller. They are both analog DC
voltages, and their magnitude is based on the mechanical positions at their respective origins. Each
signal must go through an analog to digital conversion (ADC) process in within the microcontroller to be
useful for digital analysis. The ADC process is carried out by a routine in the software that utilizes a 10-
bit converter that is on board the PIC16F877 microcontroller. The conversion process compares the
input voltage level to a known reference voltage level and assigned a number 0-1023 based on the
relationship between the two levels. This number is stored to a location on the chip and can be used for
comparisons. The ADC routine written in embedded C code is shown below.
                     !"#                 $$      %      %    &     %
         %       '
                             ! #                            $$ (   )         *    $+   %
                          $$                           !+#                              $$ (       )          *       $+   %   ,
        -
                          %            '
                                                   !                                    $$ (       )          *       $+   %
                          $$                           !+#                              $$ (       )          *       $+   %   ,
        -
                          %            '               +
. / !**
                0(                                                $$ '      1
                0*                                                $$                                              )
                    (23                                           $$                               (2
                    (24
                5                                                 $$ 2
6 0* $$ 7 % 8
        Both input signals undergo ADC and are stored as finite, 10-bit, values. The software takes the 8
most significant bits from these values and stores them as designated variables. One input represents
the wheel position and the other represents the desired wheel position. When both inputs are close in
value the wheels are essentially in the correct position. If the control value is much different than the
wheel values then the software must configure the output so the gearmotor can move the wheels to the
correct position.
         The code shown below demonstrates this comparison method using embedded C code. The
variable “posit” holds the position value of the wheels, and the variable “wheel” holds the position value
of the steering input. The variable “toler” is defined at the beginning of the program and is a value that
represents the maximum error or tolerance allowed between the two position values before the motor
is made to update the position of the wheels. The final value for “toler” will be decided after the
performance of the steering is tested. The example code here is configured to update PORTD, a digital
output port on the microcontroller. This is to demonstrate the feasibility of the code. When the code is
finalized the output will be a PWM signal that is sent to a speed controller connected to the gearmotor.
2:
% ; < == > ?
                          .       /                               $$                    %                                          %
        -
                          %                ;           ?
                          .       /            ! *                $$'               %              8
        -
. / !* $$' 8
-
Speed Controller
        The gearmotor that powers the steering for the go-kart will be directly regulated by an IFI Thor
883 speed controller. Speed controllers take an input signal and modulate the direction and level of
current that a motor receives. This in turn controls the direction and speed of the motor. The Thor 883
takes a PWM signal, which will come from the output of the microcontroller, and uses the encoded
information to drive the motor. For the purposes of the go-kart the speed controller will be used only to
control the forward and reverse motion of the motor. The 120A continuous current rating for the Thor
883 makes it ideal for the application with the Dayton 1L469 gearmotor, because there is little to no
chance of the motor drawing enough current to blow the speed controller.
Drive Train
         The drive train system of the go-kart is designed to be both robust and adjustable. It consists of
an engine mounting plate, a gearbox mounting plate, and the rear axle. The engine mounting plate will
be welded to the chassis at a pre-determined position so that the exhaust from the muffler does not
expel directly onto any components and so that the engine has enough clearance from the rear
suspension. The horizontal positioning of the gearbox mounting plate will be determined by the position
of the Comet 500 series torque convertor setup. The end of the gearbox will have an extra support
bearing that will be mounted to the rear chassis on a slotted piece of metal. The gearbox mounting plate
itself will be adjustable so that the tension in both the torque convertor belt and the drive chain can be
adjusted by turning a 5/8” lead screw. This assembly can be seen in Fig. 8 and Fig. 9. The rear area
where the engine mounting plate will be welded to is shown in Fig. 10.
Engine
         The engine selected for this vehicle is the Tecumseh Formula Horizontal Engine with Electric
Start — 10 HP, 1in. x 2 7/8in. Shaft, Model# HM100-168416T. The reason for this engine’s selection is
that it comes with a muffler, a gas tank, a kill switch, a 7 amp alternator, an electric starter and
emergency pull-start option, as well as having 10hp and a 1” diameter drive shaft with ¼” keyway which
fits the donated torque convertor clutch. This motor is also designed for off-roading, so the oil sensor
automatic shutoff is set up so that it won’t automatically shut off the engine if it gets jostled in off-road
conditions. The 10hp fits with the hp ranges for the transmissions (8hp-16hp) without being too
powerful since the client does not need to go very fast. Also, the price of the motor compared to similar
motors with similar features is competitive at $539.99. This motor should allow for an exciting ride with
lots of torque to provide good initial acceleration for the client with a max rpm of about 3800.
Torque Convertor
  The automatic part of the transmission is a Comet 500 series torque convertor with a low range of
3.34:1 and a high range of .81:1. This will ensure that at low engine rpm the transmission will still have
enough power to accelerate the go kart by providing a reduction of 3.34 which will be augmented Figure
Gearbox
         The gearbox is made by Come
                                  Comet, and is for go-karts, utility vehicles and other
                                                                                      her applications
                                                                                           appl          up to
16 hp. Lightweight, rugged gearbox
                               arbox th
                                     that allows operator the selection of three positions:
                                                                                      ositions: forward,
neutral and reverse. Forward ratio is 11:1 and the reverse ratio is 2.7:1. This is to be
                                                                                       e used with
                                                                                               w other
comet torque convertors, like the 500 Series mentioned. The gearbox will have a drive sprocket
                                                                                             sp
mounted to its output shaft, which wi
                                    will engage the drive sprocket on the axle. The    e input shaft
                                                                                               s     will have
the driven clutch of the torquee conver
                                 convertor as well as an extra support bearing on the end of   o the input
shaft. The gearbox’s mountingg plate wwill be adjustable so that the proper belt and  d chain tensions
                                                                                               t         can be
achieved.
Throttle
Input Control
        The input for the throttle control system comes from the selected method of overall control.
These methods of control are described above in the Steering Control section of this report. Regardless
of the method of control, the signal that ends up as an input to the microcontroller is an analog voltage
corresponding to the position of the input controller. This analog signal is converted to digital as it
enters the microcontroller and from there the software uses this signal for comparison.
Feedback Potentiometer
        The shaft of the servo motor that is attached to the throttle control will also be attached directly
to a potentiometer. This potentiometer will serve to provide feedback data for the position of the servo
motor and ultimately the throttle. As the servo motor turns it will also turn the potentiometer, which
will modify the output voltage going to the microcontroller. This step is not necessary for the function of
the servo motor, but it is useful to confirm that the servo motor is operating correctly. In an important
application like throttle control it is important to be sure that all components are responding properly to
the control system. If the signal from the potentiometer does not correctly correspond to the PWM
signal being sent to the servo motor the software will automatically send the go-kart into the emergency
shutdown routine.
Braking System
        The system for braking control is very similar to the system for steering control. It uses a smaller
gearmotor to move the lever to open and close the caliper. The action of the gearmotor is controlled
using a microcontroller and a commercial H-bridge.
Braking H-Bridge
        The commercial H-bridge that will be used to drive the braking gearmotor is the SyRen
Regenerative Motor Driver. This driver takes a PWM signal from the microcontroller and uses it to
switch the direction of the current flowing into the gearmotor. The SyRen is rated for use with 25A
continuous current and can handle current spikes up to 45A. This is much more current than the braking
gearmotor would ever actually draw, which means that the chances of this component failing are small.
The SyRen will control switching between full forward, full reverse and idle. This will correspond to the
opening and closing of the brake calipers, as well as allowing them to hold position.
Gearbox Control
       The go-kart will have a transmission that can switch the drive from the engine between forward
and reverse. This will be accomplished by attaching a linear actuator to the selector arm of the
transmission. The linear actuator will be controlled by the software and a custom designed H-bridge.
Gearbox H-Bridge
      The transmission H-bridge will be designed using a very simple h-bridge concept. It uses two
mechanical relays and two limit switches to route current between the two poles of the linear actuator.
The diagram below shows the design of the h-bridge. When the first relay is activated   ated by a signal from
the microcontroller it opens and nd allow
                                    allows current to flow into the positive terminal from theth high side of
the bridge. When the linear actuator
                                ctuator rreaches the limit switch it cuts off the current
                                                                                       nt flow from
                                                                                                f    the
negative terminal of the actuator.
                                ator. The linear actuator will stay in place until the microcon
                                                                                         icrocontroller
activates the other relay at which
                                hich poin
                                     point the actuator will move off of the first limit
                                                                                       it switch and move until
it hits the other limit switch.
Gearbox Control
         The software control for the ttransmission will be a very simple design. A switch on  o the side of
the go-kart will be able to be set for eeither forward or reverse. This switch will send
                                                                                      nd a digital
                                                                                            digi signal to the
correct input pin on the microcontroll
                                controller. The software will compare the digital signal
                                                                                      gnal to the
                                                                                               th last one it
received and if they are different
                               ent it wi
                                      will activate the output to switch which relay is active at that point.
This method is a simple, yet effective
                               ffective way to switch gears without heeding to physically
                                                                                      ysically move
                                                                                               m     the
handle.
                                     Fig
                                     Figure #14: Motion System Linear Actuator
                                       Figure #15: Full Go-Kart Assembly
keep the actuator from exerting unnecessary forces on the gear lever and will also protect the actuator
from becoming burnt out due to it perpetually being on. A bolt trough the ball joint on the actuator will
connect to the gear lever and the actuator will be mounted to the chassis of the go-kart.
The roll cage system is an extremely robust, over-engineered design that will keep the passenger safe in
the case of a rollover at speed (approx 30mph). The roll cage will be made of a single piece of bent 1.5”
OD ¼” wall thickness pipe that is reinforced by two extra pieces of pipe as shown in Fig. 15.
         There will be extra pieces mounted to the chassis that support these side bars. The roll bar
needs to be able to withstand significant lateral forces, and a stress simulation has been included to
prove that the design is more than strong enough. Full stress analysis can be found in Appendix B. Also
the roll cage will feature a dual role: both a safety role and a suspension role. The rear suspension will
mount to a crossmember on the roll cage. The forces generated by the rear suspension will be mostly
absorbed by the two side supports that are angled forward. The remaining forward forces will be taken
                                      Figure #16: Seat Actuator Assembly
up by the gussets welded to the bottom of the main roll bar and the side assemblies that are welded to
the chassis to support the side support tubes. The roll cage system will also include a rigid steel pipe
welded to the main roll bar that the joystick can mount to. In the same way that the steering wheel
depth is adjustable, the joystick will have a knob that can be tightened built into it that can fix it in
position at any depth along the steel pipe.
         The seat coupler for the seat mounting plate will be made out of steel, and there will be two
separate couplers, one for the normal seat for test driving, and one for the special seat for the client.
The bracket for the normal seat has been designed and looks Fig. 17. The seat coupler for the client’s
special car seat will be the reciprocating piece to the bracket currently mounted to the bottom of their
seat, which looks like Fig. 18. The seat area will be protected from tree-branches, and other off-road
debris by side panels made out of fiberglass. Also, the seat area will have the roll bar support arms
running along the edges, which will completely encase the passenger with structural supports in the
case of a rollover, making them much safer.
        The design of the suspension arm allows for the front wheel spindles to have maximum turning
radius based on the rack and pinion’s maximum stroke length. Also, the suspension arms are extremely
rugged, so that if for some reason the front bumper does not hit an obstruction that is too low to the
ground, the suspension arms should not bend or break upon normal impacts at reasonable speeds
(<20mph). The front suspension assembly can be seen in Fig. 20.This shows the numerous
reinforcements to the front area where the suspension arms connect to the front chassis. It also shows
the relative positioning of the front bumper to the suspension arms, showing that most objects that
would endanger the suspension arms would be blocked by the bumper, except for low-lying obstacles.
14” coil-over off road springs that interface the upper and lower segments. The idea is that the springs
will provide much of the support for the rear suspension, but the space between the steel sheath and
solid steel rod will be greased, trapping air in the hollow segment above the solid steel rods. This air will
act as a further dampener for the suspension when experiencing jarring impacts, and will improve the
quality of the rear suspension by increasing the force required to bottom out the suspension. This
suspension assembly can be seen in Fig. 21.
The actual mounting points for the rear suspension assembly can be seen in the following image
showing an isometric wire frame view of the vehicle in Fig. 22.
Front Bumper
        The front bumper will be made out of a single solid piece of 1”x1” steel. This should be able to
withstand any impact and transfer the impact to the reinforced front section of the front chassis. The
front bumper can be seen in Fig. 30. Since the front piece will be solid steel, the forces that will hit the
bumper will travel through that piece and into the 4 front bumper support bars. To test if these bas
were up to a severe impact, a stress analysis has been performed on them. Full stress analysis can be
found in Appendix D. The front bumper should be strong enough to withstand any impact from the
vehicle at speeds under 10mph without any significant deformation, and at speeds above 30mph the
front bumper will crumple appropriately, absorbing the energy of the impact like the nose cone of a race
car, making the collision more plastic, and therefore helping to protect the passenger from excessive g
forces.
2. Realistic Constraints
Economic
         This engineering project, as with all other design projects, has a set budget which cannot be
adjusted. A larger budget would allow for the purchasing of better components and result in a better
final product. The projected cost of all parts for this go-kart far exceeds the budgetary constraints given,
but will ultimately result in a better design. Luckily, donated and salvaged parts required for this go-kart
are available for free, allowing for the design of better go-kart, while staying under the allocated
funding. It is important to note that if this go-kart were to be manufactured, the free parts would no
longer be available and the cost of the go-kart would increase from $2300 for a prototype to $7000 for a
production model.
        Environmental
        The 10 HP engine for this go-kart will be gas powered and operation of the go-kart will result in
the release of carbon dioxide and other emissions from the combustion engine. Other components of
the go-kart are also known to be potential hazards to the environment. The Die Hard battery used to
supply power to the electrical components of the go-kart contains materials that are corrosive and
dangerous. Electronic components can also be hazardous to the environment and in the event of a
malfunction, the proper disposal of any circuit boards is required. Since this go-kart is going to be
operated in the outdoors, it must be driven carefully so the terrain is not excessively damaged.
         Outdoor operation also requires that the go-kart be built in such a way so that environmental
factors do not hinder its operation. Water can cause electrical components to short, so all electrical
components must be protected from any type of moisture. This includes waterproofing the circuit
board with the logic units, speed controller, and h-bridge. Mechanical components must be protected
from dirt, dust, water, or any other environmental factors which could hinder their operation.
Gearmotors, linear actuators, and servos need to be encased in a way such that the environment does
not limit the function of the component. The gas engine for this project was chosen because it was
specifically made to endure off road and outdoor conditions. Some of the components of this go-kart
are rated for certain temperature ranges and parts that are suitable for outdoor temperatures must be
found to ensure proper operation. All components must be shock resistant and able to absorb impacts
if necessary.
Sustainability
        As mentioned before, the go-kart will be gas powered and therefore it should be refueled
before operation to obtain the maximum driving time. Depending on the speed at which the go-kart is
operated the operation time will vary greatly. The go-kart will run much longer at a slow to moderate
operating speed as opposed to operating the go-kart at intense speeds. Running the engine not only
propels the go-kart but it also will generate current via the alternator. This will recharge the battery and
provide power for all of the electrical components. Minor maintenance such as changing the oil and
cleaning the go-kart occasionally will extend the lifetime of the vehicle. This go-kart has been designed
to withstand collisions and operate in harsh environments. Under typical driving conditions the go-kart
should operate without fail for a long time with the proper maintenance and care.
Manufacturability
      Obtaining the majority of the parts for this go-kart would pose little challenge if it were to be
manufactured on a large scale. If a particular part such as the Motion System linear actuator was not
longer manufactured or could no longer be found, a suitable replacement would be easy to find. With a
parts list, the proper mechanical and wiring diagrams, and the code needed to program the
microprocessors, the majority of the go-kart ready to go. However, the chassis for this go-kart is custom
made and would have to be fabricated in order to make a new go-kart. With the CAD files for the go
cart the materials to make the frame it would be possible to manufacture the frame and install all of the
components on the frame with little challenge.
          The primary concern of this project and most other engineering projects are safety. The
intended operator of this go-kart is a child with Cerebral Palsy. Having any child operate a go-kart or
other motorized vehicle has the potential to be dangerous, compounded with the fact that this child has
under developed motor skills means that this go-kart has to be designed with the highest safety
standards in mind. This go-kart is designed with multiple control methods. The onboard controls can be
overridden at any time by a remote operator in the event that the driver is in danger, i.e., about to crash
or roll the vehicle. The wheel base of the go-kart is wide and weight is distributed as low as possible to
ensure that the go-kart cannot roller over. In the unlikely event that the go-kart does roll over, a roll bar
able to withstand thousands of pounds of force will protect the driver. The chassis of the go-kart has
been designed to withstand impacts without deforming or breaking. A multi-point harness will secure
the driver safely in the seat and keep them from being ejected from the vehicle. A two kill switches
have been included in the design, one remote and one onboard, which will stop the gas engine and
apply the brake in the event of an emergency. A speed governor has been implemented into the system
which will limit the maximum speed of the go-kart. The operator will be able to select between a low,
medium, or high speed. A logic unit with multiple processing units has been designed in a way that if
one component were to fail, the system would shut down safely. The go-kart has been designed to
operate under a variety of environmental conditions so malfunction due to water, dirt, or temperature
is unlikely.
Social
         One of the main goals of this project is to allow a disabled child to provide a release from the
daily hardships of life and to give them a way to interact with the surrounding world. Building this go-
kart allows them to live life as a normal child would and show that there really are not many differences
between an average child and a child that suffers from a disability. This go-kart is build in such a way
that it could be operated by anyone, disabled or not, and when looking at the design it would not look
any different than a normal go-kart that could be purchased.
3.      Safety Issues
          Safety, as mentioned earlier, is the primary concern of this project. This requires that the
operator be safe at all times whether they be sitting in the vehicle or anywhere nears the go-kart.
Starting with the electrical systems, all wires carrying a current will be routed through conduits to
protect the wires from environmental hazards, but also protect the operator from any currents the
wires may be carrying. The conduit will be secured to the chassis so the operator will not become hung
up in it when operating the vehicle, or trip over it when entering or exiting the vehicle. There will be no
bare wires anywhere in the go-kart. This will prevent any arcing that could potentially start a fire. All
electrical equipment used in the go-kart is rated for currents that are higher than what will be
experience during the operation of the go-kart. This will keep components from overheating and
catching fire. For the mechanical components of the go-kart, all moving parts will be situated in a way
that it would be impossible for the operator to become caught in them. A chain guard will protect the
chain from being dislocated as well as protecting the operator from accidently becoming caught in the
chain. The steel chassis will protect both the components of the go-kart as well as the operator of the
go-kart in the event of a collision. The roll bar provides protection in the case of a roll over. All part on
the go-kart will be secured to the chassis and there will be no parts that could become dislodged and
come off during operation. The engine, gearbox, and torque converter have been located in a position
that is inaccessible to the operator during operation of the vehicle. It will not be possible for the
operator to become caught in the belt of the torque converter based on its location and where the
driver will be positioned when operating the go-kart. The chemical hazards of this project include
corrosive materials leaking from the battery, gasoline in the engine, and oil also for the engine. It is
unlikely that the sealed battery will leak any chemicals even in the event of a collision of roll over. The
same is true for the gasoline and oil which should remain inside of the engine or in the gas tank in the
event of an accident. It should be noted that gasoline and oil can be dangerous is swallowed or come in
contact with cuts, and also pose a fire hazard if there is a fire nearby when refueling the vehicle or
adding engine oil. Other chemical hazards are from the emissions of the vehicle. The go-kart should not
be operated inside, especially if there is not adequate ventilation, as this poses a major health risk.
Thermal hazards include warm electronic components and a hot engine exhaust. To keep electrical
components as cool as possible, active cooling will be employed on the speed controller and h-bridge.
Both of these components are rated to operate under currents well above the conditions present in the
go-kart. This will also keep the components from overheating. These components will be encased in
ventilated boxes to keep the operator from accessing them when they could potentially be hot. The
engine exhaust will be situated in a way that the operator will not be able touch it when operating the
vehicle. It is also well known that the exhaust on a vehicle is hot to the touch and should not be touched
during operation or after operation until it has had time to cool down.
4.      Impact of Engineering Solutions
        There should be little to no impact based upon the engineering solutions present in this design.
This go-kart is intended to be operated by a single client and was designed specifically based on the
needs of the client. However, in the event that this go-kart becomes mass produced there could be
some considerable effects on economics, society, the environment, and even far reaching global effects.
This go-kart could potentially provide a release for any physically handicapped person and it was
designed to cost less than other go-karts that have electronic controls. The market for this product is
large and there currently are no suitable designs that can provide the same function as this go-kart. By
creating a new product for a market that has no other products like it, this go-kart has the potential to
make a lot of money for the manufacturer.
        If this product were to be purchased by a multitude of people, then society would begin to see
disabled people in a new way. They would be seen out riding in go-karts, enjoying activities that which
are normally reserved for non-disabled people. Handicapped people would be seen as not being all that
different and the differences between people would become less apparent. On the whole society could
become more understanding, more accepting, and less judgmental.
        The environmental impact is not favorable however. These go-karts are gas powered and
release carbon dioxide and other emissions into the atmosphere. Whether or not these emissions lead
to global warming has yet to be adequately determined, however it is known that these emissions can
lead to acid rain, smog, and unhealthy air to breath. Disposing of a go-kart with these electrical
components would be cause trouble as well. Just as a laptop computer should not be disposed of in the
garbage, these electrical components should not be just thrown out if the circuits were to malfunction
or the go-kart was to be disposed of. The battery would also need to be disposed of properly as it
contains corrosive materials that cannot just be thrown away. The same goes for the engine oil when it
needs to be changed. Disposing of these materials properly is much better than throwing them out in
the garbage, but even when disposed of properly, some materials cannot be recycled and ultimately
must be thrown out.
         This go-kart could potentially have a global impact. The awareness for disabilities on the global
level could rise, resulting in more funding going to research for curing ailments such as Cerebral Palsy.
The acceptance of disabled people on the global level would increase as well. If the go-kart became
popular in other countries that would result in an increase in the products that the United States exports
and bring in more foreign money thereby lowering the trade deficit. The United States would be seen in
a friendlier manner globally. If this go-kart were to become popular in a global setting then it would
lead to improvements and innovations of the go-kart that could be applied to other engineering
specialties.
5.      Lifelong Learning
         In the course of designing this go-kart many new skills have been developed. Designing the
chassis for the go-kart required a 3D CAD program. The CAD program that was learned was Solidworks
2007 to create parts and put them together. A method for mechanical stress testing of the components
had to be discovered and luckily Solidworks was able to perform this task as well. The system for
steering the go-kart involved the most learning. Three systems of controlling the go-kart had to be
developed that would not interfere with one another. This required acquiring some programming
knowledge in embedded C and how to upload the programs to the processors. In order to be able to
have the gearmotors working in both the forward and reverse directions h-bridges had to be made and
tested to prove that it would be an acceptable method for quickly changing the direction of the
gearmotors. Other options had to be researched as well for this task and the principles behind relays
and how to incorporate relays into circuit had to be looked into. The both the speed controller for
steering the go-kart and the h-bridge for the braking system take PWM signals as their inputs.
Understanding the basic concept of the PWM signal and how to apply it to a particular situation had to
be discovered. After understanding how a PWM signal works a method for getting the processors to
output such signals had to be determined and programming such a method also had to be done. To
generate a smooth ride for the go-kart different types of suspensions had to be investigated. An
independent front suspension and a semi-independent rear suspension was determined to be the best
overall suspension for the purposes of this go-kart. Different engines had to be researched when
choosing the best possible engine for the go-kart. An electrical engine would be the most
environmentally friendly engine, but a gas powered engine like the one chosen for this design is able to
keep the electronics operational without relying on an array of batteries and refueling a gas engine is
much faster than recharging batteries for an electric motor.
        Aside from technical aspects that were learned when designing this go-kart, much research
about Cerebral Palsy had to be done, including how it affects a person both physically and mentally.
Understanding how our client was affected helped to determine how the go-kart needed to be designed
in terms of control methods and how his body would be positioned. A body position with the thighs and
chest at a 90 degree angle was discovered to be the optimal body position and the client’s arms needed
to be as close to their body as possible. Maintaining this position allows the client to have the best
control over their arms and legs.
6.   References
     1. Alex Peslak, Alex Kattamis and Steve Ricciardelli. “E-Racer: An Electric Go-Kart.” University of
     Connecticut. NSF 2001 Engineering Senior Design Projects to Aid Persons with Disabilities.
     Retrieved on 25 September 2008.
     <http://www.engin.swarthmore.edu/academics/courses/e90/2005_6/E90Reports/EK_DM_final
     .pdf>
     2. Joel G. Landau, James J. LaPenna and Todd M. Piche. “Recreational Electra-Scooter for Special
     Children: A Fixed-Radius-Turn, On-Off-Control Wheelchair Carrier.” State University of New
     York-Buffalo. NSF 1994 Engineering Senior Design Projects to Aid the Disabled. Retrieved on 25
     September 2008. <http://nsfpad.bme.uconn.edu/1994/chapter_8.pdf>.
     3. Kevin Arpin, Michael Marquis, Allison Meisner and Travis Ward. “E-Racer.” University of
     Connecticut. NSF 2008 Engineering Senior Design Projects to Aid Persons with Disabilities.
     Retrieved on 25 September 2008.
     <http://www.bme.uconn.edu/sendes/Spring08/Team3/PDFs/291%20Final%20Report.pdf>.
     5. Roberts, Keith Alan. “Handi-Driver.” United States Patent Application Publication. Retrieved
     on 25 September 2008. <http://www.freepatentsonline.com/20020184961.pdf>.
     8. “Tecumseh Formula Horizontal Engine with Electric Start” Retrieved 20 October 2008
     <http://www.northerntool.com/webapp/wcs/stores/servlet/ProductDisplay?storeId=6970&pro
     ductId=394&R=394>
Company: UConn
Date: 10/21/08
    1. File Information
    2. Materials
    3. Load & Restraint Information
    4. Study Property
    5. Results
           a. Stress
           b. Displacement
           c. Deformation
           d. Design Check
    6. Appendix
1. File Information
Model
              drive Gear
name:
2. Materials
Restraint
Description:
Load
Description:
4. Study Property
                                              Mesh Information
             Mesh Type:                                            Solid mesh
Smooth Surface: On
Tolerance: 0.01458 in
Quality: High
Solver Information
Quality: High
5. Results
5a. Stress
drive Gear-COSMOSXpressStudy-Stress-Plot1
                                   JPEG
5b. Displacement
JPEG
5c. Deformation
                   drive Gear-COSMOSXpressStudy-Deformation-Plot3
JPEG
JPEG
6. Appendix
Material name:              [SW]Plain Carbon Steel
Description:
Company: UConn
Date: 10/22/08
    1. File Information
    2. Materials
    3. Load & Restraint Information
    4. Study Property
    5. Results
           a. Stress
           b. Displacement
           c. Deformation
           d. Design Check
    6. Conclusion
    7. Appendix
1. File Information
Restraint
Description:
Load
Description:
4. Study Property
Mesh Information
Smooth Surface: On
Tolerance: 0.023383 in
Quality: High
Solver Information
Quality: High
5. Results
5a. Stress
0 in) 0 in)
Roll Bar-COSMOSXpressStudy-Stress-Plot1
                 JPEG
5b. Displacement
Roll Bar-COSMOSXpressStudy-Displacement-Plot2
                                              JPEG
5c. Deformation
Roll Bar-COSMOSXpressStudy-Deformation-Plot3
                                     JPEG
5d. Design Check
                                       JPEG
6. Conclusion
This analysis shows that the roll bar can easily withstand a direct side impact force of 1000lbs without
any extra supports, and since there will be extra supports and the vehicle with a 200lb passenger is
estimated to weigh 750lbs, this means that the roll bar is more than strong enough to withstand a
vehicle rollover with minimal strain effects.
7. Appendix
Material name:              [SW]Plain Carbon Steel
Description:
Company: UConn
Date: 10/22/08
    1. File Information
    2. Materials
    3. Load & Restraint Information
    4. Study Property
    5. Results
           a. Stress
           b. Displacement
           c. Deformation
           d. Design Check
    6. Conclusion
    7. Appendix
1. File Information
Model
              Rear Chassis
name:
2. Materials
Restraint
Load
         Load1 <Rear Chassis>    on 1 Face(s) apply force 200 lb normal to reference plane
                                 with respect to selected reference Front Plane using
                                 uniform distribution
Description:
4. Study Property
Mesh Information
Smooth Surface: On
Tolerance: 0.011285 in
Quality: High
Quality: High
5. Results
5a. Stress
                                                        (-                        (-
                                                        7.50862                   12.7759
                                                        in,                       in,
                                           132946                  6.90272e+007
                                           N/m^2                   N/m^2
             Plot1 VON: von Mises stress                9.71524                   9.71524
                                                        in,                       in,
                                                        28.625                    28.625
                                                        in)                       in)
Rear Chassis-COSMOSXpressStudy-Stress-Plot1
                                                 JPEG
5b. Displacement
Rear Chassis-COSMOSXpressStudy-Displacement-Plot2
                      JPEG
5c. Deformation
Rear Chassis-COSMOSXpressStudy-Deformation-Plot3
                                       JPEG
5d. Design Check
                                         JPEG
6. Conclusion
This Analysis shows that the rear suspension bar can withstand a force of 200lbs with a safety factor of
3.2. This is important because the estimated weight of the vehicle is about 750lbs with a 200lb rider, and
the force that the rear suspension bar will see will be about 1/12th of that due to the mechanical design
of where the suspension pins are located and the weight distribution of the vehicle. Using a 200lb force
simulates more than the bar will probably ever see, and the high safety factor of 3.2 proves that it will
be stable.
7. Appendix
Description:
Company: UConn
Date: 10/18/08
    1. File Information
    2. Materials
    3. Load & Restraint Information
    4. Study Property
    5. Results
           a. Stress
           b. Displacement
           c. Deformation
           d. Design Check
    6. Appendix
1. File Information
Model
              Front Bumper
name:
Restraint
Description:
Load
         Load1 <Front Bumper> on 1 Face(s) apply normal force 1000 lb using uniform
                              distribution
Description:
4. Study Property
                                       Mesh Information
             Mesh Type:                                           Solid mesh
Smooth Surface: On
Tolerance: 0.0077217 in
Quality: High
Solver Information
Quality: High
5. Results
5a. Stress
Front Bumper-COSMOSXpressStudy-Stress-Plot1
                                     JPEG
5b. Displacement
JPEG
5c. Deformation
                   Front Bumper-COSMOSXpressStudy-Deformation-Plot3
JPEG
JPEG
6. Appendix
Material name:              [SW]Plain Carbon Steel
Description: