0% found this document useful (0 votes)
1K views13 pages

4 Trigonometry PMD

This document provides 15 multiple choice questions about trigonometric concepts and identities. The questions cover topics like trigonometric functions of sums and differences, trigonometric equations, special triangle ratios, and trigonometric expressions. Correct answer choices are single letters or a range of letters depending on the question. The document tests understanding of fundamental trigonometric concepts and the ability to manipulate trigonometric expressions.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
1K views13 pages

4 Trigonometry PMD

This document provides 15 multiple choice questions about trigonometric concepts and identities. The questions cover topics like trigonometric functions of sums and differences, trigonometric equations, special triangle ratios, and trigonometric expressions. Correct answer choices are single letters or a range of letters depending on the question. The document tests understanding of fundamental trigonometric concepts and the ability to manipulate trigonometric expressions.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 13

Trigonometry

EXERCISE-4
PART - 1 : SINGLE OPTION CORRECT TYPE
1. The smallest positive value of x (in degrees) for which
tan(x + 100°) = tan(x + 50°) tan x tan(x - 50°) is :
(A) 30° (B)45° (C) 60° (D)90°
2. If sin = 3sin( + 2), then the value of tan ( + ) + 2tan is:
(A) 0 (B) 2 (C) 4 (D)1
3. If cos ( + ) = 0 then sin ( + 2) =
(A) sin  (B)  sin  (C) cos  (D)  cos 
4. In a triangle ABC if tan A < 0 then:
(A) tan B. tan C > 1 (B) tan B. tan C < 1
(C) tan B. tan C = 1 (D) Data insufficient
5. If sin  = 1/2 and cos  = 1/3, then the values of  + (if ,  are both acute) will lie in the interval
    2   2 5    5 
(A)  ,  (B)  2 , 3  (C)  3 , 6  (D)  6 , 
3 2      
sin A 3 cos A 5
6. If = and = , 0 < A, B </2, then tan A + tan B is equal to
sin B 2 cos B 2
(A) 3/ 5 (B) 5/ 3 (C) 1 (D) ( 5  3 ) / 5
7. In a right angled triangle the hypotenuse is 2 2 times the perpendicular drawn from the
opposite vertex. Then the other acute angles of the triangle are
   3    3
(A) & (B) & (C) & (D) &
3 6 8 8 4 4 5 10
8. If 3 cos x + 2 cos 3x = cos y, 3 sin x + 2 sin 3x = sin y, then the value of cos 2x is
1 1 7
(A) – 1 (B) (C) – (D)
8 8 8
cos 3
9. If cos  + cos  = a, sin  + sin  = b and  –  = 2, then =
cos 
(A) a 2 + b2 – 2 (B) a 2 + b2 – 3 (C) 3 – a 2 – b2 (D) (a 2 + b2 ) /4
3 1
10. If <  < , then 2 cot   is equal to
4 sin 2 
(A) 1 + cot  (B) – 1 – cot  (C) 1 – cot  (D) – 1 + cot 
  sin   sin 2
11. For  << , lies in the interval
2 2 1  cos   cos 2
(A) ( ) (B) (2, 2) (C) (0, ) (D) (1, 1)
12. The number of all possible triplets (a1, a2, a3) such that a1 + a2 cos 2x + a3 sin2x = 0 for all x is
(A) 0 (B) 1 (C) 2 (D) infinite
3
13. If A + B + C = , then cos 2A + cos2B + cos2C is equal to
2
(A) 1 – 4cos A cosB cosC (B) 4 sin A sin B sin C
(C) 1 + 2 cos A cos B cos C (D) 1– 4 sin A sin B sin C
14. If A + B + C =  & cosA = cosB. cosC then tanB. tanC has the value equal to:
(A) 1 (B) 1/2 (C) 2 (D) 3
15. The general solution of the equation tan2  +2 3 tan  = 1 is given by:

tan2  +2 3 tan  = 1

Head Office : D-3221, Indira Nagar Near Munsipulia, Lucknow (U.P) - 226016 – Contact No. : 0522-4954072 / 9935552255 JEE-22
Trigonometry
n 
(A)  = , n  (B)  = (2n + 1) , n 
2 2
 n
(C)  = (6n + 1) , n  (D)  = , n 
12 12

PART- 2: ONE OR MORE THAN ONE OPTIONS CORRECT TYPE


sin3 y cos3 y
1. The values of the expression  are
1  cos y 1  sin y

       
(A) 2.sin   y  (B) 2 cos   y  (C) 2 sin   y  (D) 2 cos   y  .
4  4  4  4 
4x 2  1 1
2. If for all real values of x,  then  lies in the interval
64x 2  96x sin   5 32
    2   2   4 5 
(A)  0,  (B)  ,  (C)  ,  (D)  , .
 3 3 3   3   3 3 
(cos11  sin11)
3. The value of is
(cos 11  sin11)
(A) –tan 304° (B) tan 56° (C) cot 214° (D) cot 34°
1 t
4. If sin t + cos t = then tan is equal to:
5 2
1 1
(A) 1 (B) – (C) 2 (D) –
3 6
sinx  cosx
5. The value of =
cos3 x
(A) 1 + tan x + tan2 x  tan3 x (B) 1 + tan x + tan2 x + tan3 x
(C) 1  tan x + tan2 x + tan3 x (D) (1 + tan x) sec2 x
6. If (sec A + tan A) (sec B + tan B) (sec C + tan C) = (sec A – tan A) (sec B – tan B) (sec C – tan C)
then each side is equal to
(A) 1 (B) –1 (C) 0 (D) none
7. Which of the following is correct ?
(A) sin 1° > sin 1 (B) sin 1° < sin 1 (C) cos 1° > cos 1 (D) cos 1° < cos 1
8. If sin x + sin y = a & cos x + cos y = b, then which of the following may be true.

2 ab x y 4  a2  b2
(A) sin (x + y) = (B) tan =
a2  b2 2 a2  b2

x y 4  a2  b2 2 ab
(C) tan = – (D) cos (x + y) =
2 a2  b2 a2  b2
3
9. If cos (A – B) = and tan A tan B = 2, then which of the following is/are correct
5
1 2
(A) cos A cos B = – (B) sin A sin B =
5 5
1 4
(C) cos (A + B) = – (D) sin A cos B =
5 5
10. If P n = cosn  + sinn  and Qn = cosn  – sinn , then which of the following is/are true.
(A) P n – P n – 2 = – sin2  cos2  P n – 4 (B) Qn – Qn – 2 = – sin2  cos2  Qn – 4
2 2
(C) P 4 = 1 – 2 sin  cos  (D) Q4 = cos2  – sin2 
11. If tan2  + 2tan. tan2 = tan2  + 2tan. tan2, then
Head Office : D-3221, Indira Nagar Near Munsipulia, Lucknow (U.P) - 226016 – Contact No. : 0522-4954072 / 9935552255 JEE-23
Trigonometry
(A) tan2  + 2tan. tan2 = 0 (B) tan  + tan =0
2
(C) tan  + 2tan. tan2= 1 (D) tan  = tan 
12. In a triangle tan A + tan B + tan C = 6 and tan A tan B = 2, then the values of tan A, tan B and tan C
ar e
(A) 1, 2, 3 (B) 2, 1, 3 (C) 1, 2, 0 (D) none
13. If the sides of a right angled triangle are {cos2cos2 + 2cos( + )} and
{sin2sin2 + 2sin( + )}, then the length of the hypotenuse is:
  
(A) 2[1+cos()] (B) 2[1  cos()] (C) 4 cos2 (D) 4sin2
2 2
14. For 0 <  < /2, tan  + tan 2 + tan 3 = 0 if
(A) tan  = 0 (B) tan 2 = 0 (C) tan 3 = 0 (D) tan  tan 2 = 2
15. (a + 2) sin  + (2a – 1) cos  = (2a + 1) if tan  =
3 4 2a 2a
(A) (B) (C) 2 (D) 2
4 3 a 1 a 1
2b
16. If tan x = , (a  c)
ac
y = a cos2 x + 2b sin x cos x + c sin2 x
z = a sin2 x – 2b sin x cos x + c cos 2 x, then
(A) y = z (B) y + z = a + c (C) y – z = a – c (D) y – z = (a – c)2 + 4b2
n n
 cos A  cos B   sin A  sin B 
17. The value of   +   is
 sin A  sin B   cos A  cos B 
A B A B
(A) 2 tann (B) 2 cot n : n is even
2 2
(C) 0 : n is odd (D) 0 : n is even
18. The equation sin6 x + cos6 x = a 2 has real solution if
 1  1 1 1 
(A) a  (–1, 1) (B) a    1,  2  (C) a    2 2  (D) a   2 , 1
     
19. If sin(x y) = cos(x + y) = 1/2 then the values of x & y lying between 0 and  are given by:
(A) x = /4, y = 3/4 (B) x =/4, y = /12
(C) x = 5/4, y = 5/12 (D) x = 11/12, y = 3/4
20. If 2 sec2  – sec4  – 2 cosec2  + cosec4  = 15/4, then tan  is equal to
(A) 1/ 2 (B) 1/2 (C) 1/2 2 (D) –1/ 2
21. If 3 sin  = sin (2 + ), then tan (+ ) – 2 tan  is
(A) independent of  (B) independent of 
(C) dependent of both  and  (D) independent of  but dependent of 
22. If  +  +  = 2, then
     
(A) tan + tan + tan = tan tan tan
2 2 2 2 2 2
     
(B) tan tan + tan tan + tan tan = 1
2 2 2 2 2 2
     
(C) tan + tan + tan = – tan tan tan
2 2 2 2 2 2
     
(D) tan tan + tan tan + tan tan = 1
4 4 4 4 4 4
23. If x + y = z, then cos 2 x + cos2 y + cos2 z – 2 cos x cos y cos z is equal to
(A) cos2 z (B) sin2 z (C) cos (x + y – z) (D) 1
24. If tanA + tan B + tan C = tan A. tan B. tan C, then

Head Office : D-3221, Indira Nagar Near Munsipulia, Lucknow (U.P) - 226016 – Contact No. : 0522-4954072 / 9935552255 JEE-24
Trigonometry
(A) A, B, C may be angles of a triangle (B) A + B + C is an integral multiple of 
(C) sum of any two of A, B, C is equal to third (D) none of these
25. Which of the following values of ' t ' may satisfy the condition
1  2x  5 x 2   
2 sin t = 2
, t   ,  .
3 x  2x  1  2 2
      3      3 
(A)  2 ,  10  (B) 0, 2  (C)  10 , 2  (D)  10 , 10 
       
26. sinx, sin2x, sin3x are in A.P if
(A) x = n/2, n  (B) x = n, n  (C) x = 2n, n  (D) x = (2n +1), n 
27. sin x + sin2x + sin 3x = 0 if &

(A) sin x = 1/2 (B) sin 2x = 0 (C) sin 3x = 3 /2 (D) cos x =  1/2
28. cos4x cos8x  cos5x cos9x = 0 if
(A) cos12x = cos 14 x (B) sin13 x = 0
(C) sinx = 0 (D) cosx = 0
29. sinx  cos2 x 1 assumes the least value for the set of values of x given by:
(A) x = n + (1)n+1 (/6) , n  (B) x = n + (1)n (/6) , n 
(C) x = n + (1)n (/3), n  (D) x = n (1)n (/6) , n 
30. The general solution of the equation cosx . cos6x = – 1, is :
(A) x = (2n + 1), n  (B) x = 2n, n 
(C) x = (2n – 1), n  (D) none of these
31. Which of the following set of values of x satisfy the inequation sin 3x < sin x.
 8n  1   8n  1 (8n  1) 
(A)  , 2n  , n  (B)  ,  , n 
 4   4 4 

 8n  1 (8n  3)   8n  5   , n 


(C)  4
,
4
 , n  (D)  2n  1 , 
   4 
x x
32. The equation 2sin . cos2 x + sin2 x = 2 sin . sin2 x + cos2 x has a root for which
2 2
1 1
(A) sin2x = 1 (B) sin2x = – 1 (C) cosx = (D) cos2x = –
2 2
33. cos 15 x = sin 5x if
 n  n
(A) x =  + ,n  (B) x = + , n 
20 5 40 10
3 n 3 n
(C) x = + , n  (D) x =  + , n 
20 5 40 10

34. 5 sin2 x + 3 sinx cosx + 6 cos 2x = 5 if


(A) tan x =  1/ 3 (B) sin x = 0
(C) x = n + /2, n  (D) x = n + /6, n 

PART- 3: SUBJECTIVE QUESITONS


1. If sin A, cos A and tan A are in geometric progression, then cot6 A – cot2 A= ....
2. If a tan   a 2  1 tan   a 2  1 tan   2a, where a is constant and  , ,  are variable angles, then

the least value of 3 (tan2  +tan2  + tan2  ) is =

3. If cosec  – sin  = a3 and sec  – cos  = b3, then a2b2(a2 + b2) =

Head Office : D-3221, Indira Nagar Near Munsipulia, Lucknow (U.P) - 226016 – Contact No. : 0522-4954072 / 9935552255 JEE-25
Trigonometry
4. The value of tan  tan (  +60 ) + tan  tan(  – 60 ) +tan(  + 60 ) tan(  – 60o) + 3 is ...
o o o

5. If sin  + sin2  + sin3  = 1, then the value of cos6  – 4cos4  + 8 cos2  must be
2 4 6 1 2 4 6 1
6. Suppose cos  cos  cos   and cos cos cos   , then the numerical value of
7 7 7 2 7 7 7 8

 2 3
cos ec 2  cos ec 2  cos ec 2 must be
7 7 7
7. The value of (1 – cot 23o) (1 – cot 22o) must be equal to
8. If un  cosn   sin n  , then 2u6 – ku4  1  0 then,the numerical quantity k must be equal to

9. (1 + tran 1o) (1 + tan2o) ....... (1 + tan 45o) = 225–n then n must be


10. The numerical value of (tan20o + tan40o + 3 tan20o tan40o)2 must be ....
11. If a cos3  + 3a cos  sin2  = m and a sin3  + 3a cos2  sin  = n. if (m+n)2/3 + (m  n)2/3 = 2a 2/3 , then
find value of .
12. If 2 cos x + sin x = 1, then find the sum of all possible values of 7 cos x + 6 sin x.
  3 
13. The number of roots of the equation cot x = + x in  ,  is
2  2

 n 
14. If 2tan2x – 5 secx – 1 = 0 has 7 different roots in 0, 2  , n  N, then find the greatest value of n.
 
15. Find the number of integral values of a for which the equation cos 2x + a sin x = 2a  7 possesses a
solution.
16. The number of solutions of the equation |sinx| = | cos3x| in [–2, 2] is
17. In any triangle ABC, which is not right angled  cosA .cosecB.cosecC is equal to
18. If A + B + C = , then find value of tan B tan C + tan C tan A + tan A tan B – sec A sec B sec C.
19. If the arithmetic mean of the roots of the equation 4cos3x – 4cos2x – cos( + x) – 1 = 0 in the interval
[0, 315] is equal to k , then find the value of k
1
20. cos ( – ) = 1 and cos ( + ) = , where ,   [–, ]. Then number of ordered pairs (, ) which
e
satisfy both the equations.
21. Number of values of between 0° and 90° which satisfy the equation sec2  .cosec2  + 2 cosec2  = 8
22. Find the number of all values of  [0, 10.5] satisfying the equation
cos 6  + cos 4 + cos 2 + 1 = 0 .
23. In (0, 6), find the number of solutions of the equation tan+ tan 2 + tan 3 = tan .tan2.tan3

24. If 0  x 3 , 0 y 3and cos x . sin y = 1, then find the possible number of values of the ordered
pair (x, y)
25. Find the number of values of  satisfying the equation sin3  = 4sin . sin 2. sin 4 in 0 2
 
26. Consider the equation for 0  2 ; sin 2  3 cos2  
2
 5 = cos  6  2  . If greatest value of  is
 
k
(k, p are coprime), then find the value of (k + p).
p
27. Find the number of solutions of the equation cos 6x + tan2 x + cos 6x . tan2 x = 1 in the interval [0, 2].

Head Office : D-3221, Indira Nagar Near Munsipulia, Lucknow (U.P) - 226016 – Contact No. : 0522-4954072 / 9935552255 JEE-26
Trigonometry

PART- 4: COMPREHENSION
Comprehenssion # 1

3 1 3 3
In a ABC, if cos A cos B cos C = and sin A. sin B. sin C = , then
8 8
On the basis of above information, answer the following questions:
1. The value of tan A + tan B + tan C is :

3 3 3 4 6 3 3 2
(A) (B) (C) (D) .
3 1 3 1 3 1 3 1
2. The value of tan A tan B + tan B tan C + tan C tan A is :
(A) 5  4 3 (B) 5  4 3 (C) 6  3 (D) 6  3 .
3. The angles of ABC are :
(A) 45 ,30 ,105 (B) 45 ,60 ,75 (C) 45 , 45 ,90 (D) 45o, 60o, 70o.
Comprehenssion # 2
If 7(  ) = (2n+1)  , when n = 0, 1, 2, 3, 4, 5, 6, then
On the basis of above information, answer the following questions:
4. The equation whose roots are cos  / 7, cos 3  / 7, cos 5  / 7 is :
(A) 8x3+ 4x2+ 4x+1 = 0 (B) 8x3– 4x2– 4x +1 = 0 (C) 8x3– 4x2– 4x – 1 = 0 (D) 8x3+ 4x2+ 4x–1 =0.
5. The value of sec  / 7  sec 3 / 7  sec 5 / 7 is :
(A) 4 (B) – 4 (C) 3 (D) – 3.
2  / 7  sec 2 3 / 7  sec 2 5 / 7
6. The value of sec is :
(A) 24 (B) – 24 (C) 80 (D) – 80.
Comprehenssion # 3
Let p be the product of the sines of the angles of a triangle ABC and q is the product of the cosines
of the angles.
7. In this triangle tan A + tan B + tan C is equal to
p
(A) p + q (B) p – q (C) (D) none of these
q
8. tan A tan B + tan B tan C + tan C tan A is equal to
1 q 1 p
(A) 1 + q (B) (C) 1 + p (D)
q p
9. tan3 A + tan3 B + tan3 C is

p 3  3pq 2 q3 p3 p 3  3pq
(A) (B) (C) (D)
q3 p3 q3 q3

Head Office : D-3221, Indira Nagar Near Munsipulia, Lucknow (U.P) - 226016 – Contact No. : 0522-4954072 / 9935552255 JEE-27
Trigonometry

PART- 5: COLUMN MATCHING


1. Column I Column II
1
(A) If  ,  are the solutions of sin x   in [0, 2 ] (p)  -  = 
2
3
and  ,  are the solutions of cos x   in [0, 2 ] ,then
2
(B) If  ,  are the solutions of cot x=  3 in [0, 2 ] and (q)  -  = 
 ,  are the solutions of cosec x=-2 in [0, 2 ] , then
1
(C) If  ,  are the solutions of sin x   in [0, 2 ] (r)  -  = 
2
1
and  ,  are the solutions of tan x  in [0, 2 ] ,then (s)  +  = 3 
3
(t)  +  = 2 
2. Column I Column II

n
(A) sin   sin  (p) n   1  , n  Z

(B) cos   cos  (q) 2n   , n  Z

(C) tan   tan  (r) n   , n  Z

(D) sin 2   sin 2  (s) n    , n  Z

EXERCISE-5

1. Find the smallest positive number p for which the equation cos (p sin x) = sin (p cos x) has a solution
x   0, 2 [IIT-JEE - 1995]

  
2. Find the values of  in the interval   ,  satisfying the equation 1  tan   1  tan  
 2 2
x sec2   2tan 2   0 . [IIT-JEE - 1996]

sin x cos 3x
3. Prove that the value of the function do not lie between 1/3 and 3 for any real x.
sin 3x cos x
[IIT-JEE - 1997]
A B C A B C
4. In any triangle prove that cos  cot  cot  cot cot cot . [IIT-2000]
2 2 2 2 2 2
sin 4 x cos 4 x 1
5. If + = , then [IIT-JEE - 2009]
2 3 5

2 sin8 x cos8 x 1
(A) tan2x = (B) + =
3 8 27 125

1 sin8 x cos8 x 2
(C) tan2 x = (D) + =
3 8 27 125

Head Office : D-3221, Indira Nagar Near Munsipulia, Lucknow (U.P) - 226016 – Contact No. : 0522-4954072 / 9935552255 JEE-28
Trigonometry
6
  (m  1)    m 
6. For 0 <  <
2
, the solution(s) of  cos ec   
m 1
4
 cos ec   
 
 = 4 2 is(are)
4 

[IIT-JEE - 2009]
   5
(A) (B) (C) (D)
4 6 12 12

1
7. The maximum value of the expression is [IIT-JEE-2010]
sin   3 sin  cos   5 cos 2 
2

8. The positive integer value of n > 3 satisfying the equation [IIT-JEE 2011]
1 1 1
  is
  2   3 
sin   sin   sin  
n  n   n 

   n
9. The number of values of  in the interval  – 2 , 2  such that   for n = 0, ±1, ± 2 and
  5
tan = cot 5 as well as sin 2 = cos 4is [IIT-JEE-2010]
  
10. Let , [0, 2] be such that 2cos(1 – sin) = sin2  tan 2  cot 2  cos – 1, tan(2– ) > 0 and
 

3
–1 < sin < – . Then  cannot satisfy [IIT-JEE 2012]
2
  4 4 3 3
(A) 0 <  < (B) < < (C) < < (D) <  < 2
2 2 3 3 2 2
11. The number of distinct solutions of the equation
5
cos2 2x + cos4 x + sin4 x + cos6 x + sin6 x = 2 in the interval [0, 2] is [JEE (Advanced) 2015]
4

PART - 2 : PRACTICE PROBLEMS (JEE ADVANCED)

SECTION-1 : (Only One option correct Type)


This section contains 6 multiple choice questions. Each questions has four choices (A), (B), (C)
and (D) out of which Only ONE option is correct.

1. The only value of x for which 2sin x  2cos x  21(1/ 2) holds is


5 3 
(A) (B) (C) (D) All values of x
4 4 4
 
2. If tan(  cos )  cot(  sin ), then sin     equals
 4
1 1 1 3
(A) (B) (C) (D)
2 2 2 2 2
 1 
3. The domain of the function f (x)    1  is
 sin x 
 
(A)  2n, 2n   (B) (2n, (2n +1))
 2
(C) ((2n – 1) , 2n) (D) none of these

Head Office : D-3221, Indira Nagar Near Munsipulia, Lucknow (U.P) - 226016 – Contact No. : 0522-4954072 / 9935552255 JEE-29
Trigonometry

sin 3x
4. If f (x)  , x  n then the range of values of f(x) for real values of x is
sin x
(A) [1, 3] (B) (, 1) (C) (3, ) (D) [1, 3)
5. The least positive integral value of ‘x’ satisfying
 1 
(e x  2)(sin x  cos x)(x  ln 2)  cos x    0 is
 2
(A) 3 (B) 5 (C) 4 (D) 2

6. If A  B  C  then sin2A + sin2B + sin2C is equal to
2
(A) 4 cosA sinB cosC (B) cosA cosB cosC
1
(C) cosA cosB cosC (D) 4 cosA cosB cosC
4

Section-2 : (One or More than one options correct Type)


This section contains 4 multiple choice questions. Each questions has four choices (A), (B), (C)
and (D) out of which ONE or MORE THAN ONE are correct.

7. If , ,  are the roots of the equation a tan3 + (2a – h) tan + k = 0.


Given tan + tan = p and tan tan = q, then
(A) ap3 + (2a – h)p = k (B) k2 + (2a – h)aq2 = a2q3
(C) p = q (D) none of these
6  x
8. If sin  x   0 and cos    0 then
5  5
(A) x = (n – 5)  (B) x = 6(n – 1) 
 1  1
(C) x  5  n   (D) x  5  n  
 2  2

sin 3 x cos3 x
9. The value(s) of the expression  are
1  cos x 1  sin x
   
(A) 2 cos   x  (B) 2 cos   x 
4  4 
   
(C) 2 sin   x  (D) 2 sin   x 
4  4 
3
10. If cos(A  B)  and tanA tanB = 2, then
5
1 2
(A) cos A cos B  (B) sin A sin B  
5 5
1 3
(C) cos(A  B)   (D) sin(A  B) 
5 5

Head Office : D-3221, Indira Nagar Near Munsipulia, Lucknow (U.P) - 226016 – Contact No. : 0522-4954072 / 9935552255 JEE-30
Trigonometry

Section-3 : (Single/ Double Integer Value Correct Type.)


This section contains 4 questions. Each question, when worked out will result in one integer from
0 to 9 (both inclusive)

 2 4
11. Find the value of cos cos cos .
7 7 7
12. Find the value of cot 22 12  .

4 3
13. If sin    and    2 then find the value of sin 4.
5 2
10
3 r
14. Find the value of  cos
r 0 3
?

SECTION-4 : Comprehension Type (Only One options correct)


This section contains 2 paragraphs, each describing theory, experiments, data etc. 3 questions
relate to each paragraph. Each question has only one correct answer among the four given options
(A), (B), (C) and (D)

Comprehension # 1
Let we have to find the summation of the series t1 + t2 + t3 + ….. + tn whose terms aretrigonometric
functions such that rth term tr in the series can be written in the form f(r + 1) – f(r). Putting r = 1,2,3,…., n
in succession, we obtain
t1= f(2) – f(1)
t2 = f(3) – f(2)
t3 = f(4) – f(3)
…..
…..
…..
tn = f(n + 1) – f(n)
Adding vertically (column wise), we obtain
t1 + t2 + t3 + ….. + tn = f(n + 1) – f(1)
That is sn = f(n + 1) – f(1), where tr = f(r + 1) – f(r) and sn stands for the sum to n terms of the series.

When the series is infinite say t


r 1
r , then the sum of the series is lim
n  ns  nlim
 f (n  1)  f (n) provided t

lim
he limit on the right hand side namely n  f (n  1) exists finitely.Following formulae combined with
elementary trigonometrical results may be useful while applying the method of difference :
y  2k  1   2k  1 
(i) 2sin sin(x  ky)  cos  x  y   cos  x  y
2  2   2 
y  2k  1   2k  1 
(ii) 2sin cos(x  ky)  sin  x  y   sin  x  y
2  2   2 
x
(iii) cos ecx  cot  cot x
2
(iv) tanx = cotx – 2 cot 2x
1 xy
(v) tan  tan 1 x  tan 1 y
1  xy

Head Office : D-3221, Indira Nagar Near Munsipulia, Lucknow (U.P) - 226016 – Contact No. : 0522-4954072 / 9935552255 JEE-31
Trigonometry

1 xy  1
(vi) cot  cot 1 x  cot 1 y
yx
1  1 
15. The sum of the series tan   tan  2 tan 2  ..... added to infinite terms is equal to
2 2 2 2
1 1 1
(A) – cot 2 (B) 2cot 2 (C)   cot 2 (D)  cot 
  2
n
1 1
16.  tan
k 1 1 k  k2
is equal to

1 n 
(A) tan–1(n + 1) (B) tan–1(n + 2) (C) tan (D)
n2 2
1 1 1
17. Sum to n terms of the series    ..... is
cos x  cos 3x cos x  cos5x cos x  cos 7x
cot x  cot(n  1)x cot x  tan(n  1)x
(A) (B)
sin x 2 cos x
tan x  cot(n  1)x tan(n  1)x  tan x
(C) (D)
cos x 2 sin x
Comprehension # 2
The method of eliminating  from two given equations involving trigonometrical functions of . By using
given equations involving  and trigonometrical identities, we shal obtain an equation not involving 

18. If x sin3 + y cos3 = sin cos and xsin - ycos = 0 then (x, y) lie one
(A) circle (B) a parabola (C) an ellipse (D) a hyperbola
x y ax by
19. If  2 2
a cos  b sin  and cos  - sin  = a – b , then (x, y) lie on
(A) a circle (B) a parabola (C) an ellipse (D) a hyperbola
20. If tan + sin = m and tan - sin = n, then (m2 – n2)2 is
(A) 4 mn (B) 4 mn (C) 16 mn (D) 16 mn

Head Office : D-3221, Indira Nagar Near Munsipulia, Lucknow (U.P) - 226016 – Contact No. : 0522-4954072 / 9935552255 JEE-32
Trigonometry

SECTION-5 : Matching List Type (Only One options correct)


This section contains 2 questions, each having two matching lists. Find the correct combination of
elements from List-I and List-II .

21. Column I
Column II
2 4 8 16
(A) cos cos cos cos  (P) 2
15 15 15 15
2   5 1
(B) The value of cos  cos 2  cos 2 (Q)
12 4 12 16
 3 5 7 2
(C) The value of sin sin sin sin (R)
16 16 16 16 16
tan 70  tan 20 3
(D) The value of (S)
tan 50 2

22. cos  + cos  = a, sin  + sin  = b


Column I Column II
(A) cos ( + ) (P) 2ab/(a2 + b2)
(B) sin ( + ) (Q) b/a
(C) cos (  ) (R) (a2 – b2)/(a2 + b2)

(D) tan (S) (a2 + b2 – 2)/2
2

Head Office : D-3221, Indira Nagar Near Munsipulia, Lucknow (U.P) - 226016 – Contact No. : 0522-4954072 / 9935552255 JEE-33
Trigonometry

ANSWER KEY
EXERCISE-4
PART - 1
1. (A) 2. (A) 3. (A) 4. (B) 5. (B) 6. (D) 7. (B)
8. (A) 9. (B) 10. (B) 11. (A) 12. (D) 13. (D) 14. (C)
15. (C)

PART - 2
1. (A,B) 2. (B,D) 3. (A,B,C,D) 4. (B,C) 5. (B,D)
6. (A,B) 7. (B,C) 8. (A,B,C) 9. (B,C) 10. (A,B,C,D)
11. (B,C,D) 12. (A,B) 13. (A,C) 14. (C,D) 15. (B,D)
16. (B,C) 17. (B,C) 18. (B,D) 19. (B,D) 20. (A,D)
21. (A,B) 22. (A,D) 23. (C,D) 24. (A,B) 25. (A,C)
26. (A,B,C,D) 27. (B,D) 28. (A,B,C) 29. (A,D) 30. (A,C)
31. (A,C,D) 32. (A,B,C,D) 33. (A,B,C,D) 34. (A,C)

PART - 3
1. 1 2. 4 3. 1 4. 0 5. 4 6. 8 7. 2
8. 3 9. 2 10. 3 11. 1 12. 8 13. 3 14. 15
15. 5 16. 24 17. 2 18. 1 19. 50 20. 4 21. 2
22. 17 23. 17 24. 6 25. 15 26. 31 27. 07
PART - 4
1. (A) 2. (B) 3. (B) 4. (B) 5. (A) 6. A 7. (C)
8. (B) 9. (D)
PART - 5
1. A-q,s, B-p,t, C-r,s,t 2. A-p, B-q, C-r, D-s

EXERCISE-5
PART - 1
 2 
1. 2.  5. (A,B) 6. (C,D) 7. 2 8. (n = 7)
4 3
9. 3 10. (ACD) 11. 8
PART - 2
1. (A) 2. (C) 3. (B) 4. (D) 5. (C) 6. (B) 7. (A,B)
1 336
8. (C,D) 9. (A,D) 10. (A,C) 11. 12. 2 1 13.
8 625
1
14. 15. (B) 16. (C) 17. (D) 18. (A) 19. (C) 20. (A)
8
21. (A)  (Q), (B)  (S) (C)  (R) (D)  (P)
22. (A)  (R), (B)  (P) (C)  (S) (D)  (Q)

Head Office : D-3221, Indira Nagar Near Munsipulia, Lucknow (U.P) - 226016 – Contact No. : 0522-4954072 / 9935552255 JEE-34

You might also like