1.
3 Algebraic Properties NOTES
EXPRESSIONS
Numeric Expression Algebraic Expression
Write your
questions here!
COMMUTATIVE PROPERTY
ADDITION MULTIPLICATION
ASSOCIATIVE PROPERTY
ADDITION MULTIPLICATION
Determine if the expressions are equivalent. If so, state the property used to show equivalence.
8−6= 6−8 8 − 6 = −6 + 8
4 ∙ (𝑥 ∙ 𝑦) = (4 ∙ 𝑥) ∙ 𝑦 5 + (𝑥 + 2) = (5 + 𝑥) + 2 𝑎 + (𝑏 ∙ 𝑐) = (𝑏 ∙ 𝑐) + 𝑎
PROVE (𝑥𝑦)𝑧 = (𝑧𝑦)𝑥
(𝑥𝑦)𝑧 Given
𝑧(𝑥𝑦)
𝑧(𝑦𝑥)
(𝑧𝑦)𝑥
PROVE 𝑥 + (𝑦 + 𝑧) = 𝑧 + (𝑥 + 𝑦)
𝑥 + (𝑦 + 𝑧) Given
(𝑥 + 𝑦) + 𝑧
𝑧 + (𝑥 + 𝑦)
DISTRIBUTIVE PROPERTY
−4(2𝑥 + 3𝑦)
Distribute and combine like terms.
2ℎ − 4(3ℎ − 7) −4(2𝑥 + 3) − 6
7𝑑 + 2(5 + 3𝑑) 8 − 3(2𝑡 − 5) 2
(3𝑥 + 6) + 12
3
PROVE (3 + 𝑥)(2) = 6 + 2𝑥
(3 + 𝑥)(2) Given
(2)(3 + 𝑥)
6 + 2𝑥
SUMMARY:
Now,
summarize
your notes
here!
1.3 Algebraic Properties PRACTICE
TRUE/FALSE Circle true or false. If true, circle the property used to determine the expressions equivalent.
1. 7 + 9 = 9 + 7 2. (8 ∙ 3)4 = 8(3 ∙ 4) 3. 𝑎 + (9 + 𝑏) = (𝑎 + 9) + 𝑏
TRUE or FALSE TRUE or FALSE TRUE or FALSE
If true, equivalent by… If true, equivalent by… If true, equivalent by…
Commutative Property Commutative Property Commutative Property
Associative Property Associative Property Associative Property
Distributive Property Distributive Property Distributive Property
4. 𝑥 − 8 = 8 − 𝑥 5. 𝑎𝑐 + 𝑑𝑐 = 𝑑𝑐 + 𝑎𝑐 6. (𝑎 + 𝑏)2 = 𝑎2 + 𝑏 2
TRUE or FALSE TRUE or FALSE TRUE or FALSE
If true, equivalent by… If true, equivalent by… If true, equivalent by…
Commutative Property Commutative Property Commutative Property
Associative Property Associative Property Associative Property
Distributive Property Distributive Property Distributive Property
Fill in the reasons for each proof with the correct property used.
7. Prove: 𝑥 2 (2𝑦) = (2𝑥 2 )𝑦 8. Prove: 3(5 − 𝑥) = −3𝑥 + 15
𝑥 2 (2𝑦) Given 3(5 − 𝑥) Given
(𝑥 2 2)𝑦 ____________________________ 15 − 3𝑥 ____________________________
(2𝑥 2 )𝑦 −3𝑥 + 15
____________________________ ____________________________
9. Prove: 𝑡 + (2 + 𝑡) = 2𝑡 + 2 10. Prove: 2(ℎ + 5) + 4ℎ = 6ℎ + 10
𝑡 + (2 + 𝑡) Given 2(ℎ + 5) + 4ℎ Given
𝑡 + (𝑡 + 2) ____________________________ 2ℎ + 10 + 4ℎ ____________________________
(𝑡 + 𝑡) + 2 2ℎ + 4ℎ + 10
____________________________ ____________________________
2𝑡 + 2 Combine Like Terms 6ℎ + 10 Combine Like Terms
Simplify the expression by using the distributive property.
12. 4(𝑥 + 3) 13. 5(𝑚 + 5) 14. −8(𝑝 − 3)
15. (2𝑟 − 3)(2) 16. 6.5(𝑣 + 1) 17. −(3 + 𝑥)
3 19. −(6𝑛 − 9) 2
18. (8𝑚 − 4) 20. − 3 (6𝑛 − 9)
2
Simplify the expression using distributive property and combine like terms.
21. 6 + 2(𝑦 + 1) 22. 2(4𝑎 − 1) + 𝑎 23. 6𝑟 − 2(𝑟 + 4)
24. −3(𝑚 + 5) − 10 25. 3 − 8(𝑤 − 5) 1
26. (2𝑚 + 6) − 10
2
Analyze student work.
27. Mr. Bean and Mr. Brust are really, really bad at the distributive property. They both make huge mistakes using
the distributive property. Identify their mistakes and show them how to distribute correctly.
1.3 Algebraic Properties WRAP UP
State the property used below. Simplify
1. 𝑎(5 ∙ 𝑏) = (𝑎 ∙ 5)𝑏 2. 3 + 2(𝑏 − 4)
3. The expression 2𝑚 − (8 − 4𝑚) + 5 is equivalent to which of the following expressions?
A) 6𝑚 + 13
B) −2𝑚 − 3
C) 6𝑚 − 3
D) −2𝑚 + 13
E) none of the above
EXIT TICKET
Tommy is planning to make a tomato garden. The rectangular garden must be 4 foot wide. Tommy
doesn’t how long the garden will be, but would like 3 feet per tomato plant plus 1 foot extra at each end of
the garden. Tommy doesn’t know how many tomato plants he will buy. The diagram below shows the
dimensions of the garden for x amount of tomato plants. Create a simplified expression to represent both
the area and perimeter of the garden.
Area: Perimeter:
3x + 2
Now, use your expression to determine both the area and perimeter of the garden if Tommy plants 8
tomato plants.
SMP #4