IAL January 2019
Leave
blank
8.
DO NOT WRITE IN THIS AREA
DO NOT WRITE IN THIS AREA
(4, 9)
(0, 6) y = f (x)
y =4
(−3, 0) O x
Figure 4
The curve C with equation y = f ( x ) is shown in Figure 4.
DO NOT WRITE IN THIS AREA
DO NOT WRITE IN THIS AREA
The curve C
• has a single turning point, a maximum at (4, 9)
• crosses the coordinate axes at only two places, (−3, 0) and (0, 6)
• has a single asymptote with equation y = 4
as shown in Figure 4.
(a) State the equation of the asymptote to the curve with equation y = f (− x ).
(1)
1
(b) State the coordinates of the turning point on the curve with equation y = f x .
4
(1)
Given that the line with equation y = k, where k is a constant, intersects C at
exactly one point,
DO NOT WRITE IN THIS AREA
(c) state the possible values for k. DO NOT WRITE IN THIS AREA
(2)
The curve C is transformed to a new curve that passes through the origin.
(d) (i) Given that the new curve has equation y = f ( x ) − a , state the value
of the constant a.
(ii) Write down an equation for another single transformation of C that
also passes through the origin.
(2)
16
*P60791A01628*
IAL June 2019
Leave
blank
10. A curve has equation y = f(x), where
2
f(x) = (xí x
DO NOT WRITE IN THIS AREA
The curve touches the x-axis at the point P and crosses the x-axis at the point Q.
(a) State the coordinates of the point P.
(1)
(b) Find I މx).
(4)
5
(c) Hence show that the equation of the tangent to the curve at the point where x =
2
can be expressed in the form y = k, where k is a constant to be found.
(3)
The curve with equation y = f(x + a), where a is a constant, passes through the origin O.
(d) State the possible values of a.
DO NOT WRITE IN THIS AREA
(2)
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________ DO NOT WRITE IN THIS AREA
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
26
*P61837A02628*
IAL January 2020
Leave
blank
10. The curve C1 has equation y = f(x), where
2
f(x) = (4x – 3)(x – 5)
DO NOT WRITE IN THIS AREA
(a) Sketch C1 showing the coordinates of any point where the curve touches or crosses
the coordinate axes.
(3)
(b) Hence or otherwise
⎛1 ⎞
(i) find the values of x for which f ⎜ x⎟ = 0
⎝4 ⎠
(ii) find the value of the constant p such that the curve with equation y = f(x) + p
passes through the origin.
(2)
A second curve C2 has equation y = g(x), where g(x) = f(x + 1)
(c) (i) Find, in simplest form, g(x). You may leave your answer in a factorised form.
DO NOT WRITE IN THIS AREA
(ii) Hence, or otherwise, find the y intercept of curve C2
(3)
DO NOT WRITE IN THIS AREA
24
*P60796A02428*
IAL October 2020
Leave
blank
5. (i) y
–5 O 2 x
–3
y = f(x)
Figure 2
Figure 2 shows a sketch of the curve with equation y = f(x).
The curve passes through the points (–5, 0) and (0, –3) and touches the x‑axis at the
point (2, 0).
On separate diagrams sketch the curve with equation
(a) y = f(x + 2)
(b) y = f(–x)
On each diagram, show clearly the coordinates of all the points where the curve cuts
or touches the coordinate axes.
(6)
(ii) y
O p q x
Figure 3
Figure 3 shows a sketch of the curve with equation
π
y = k cos x + 0 x 2π
6
where k is a constant.
The curve meets the y‑axis at the point (0, 3 ) and passes through the points ( p, 0)
and (q, 0).
Find
(a) the value of k,
(b) the exact value of p and the exact value of q.
(3)
14
*P62597A01432*
IAL October 2021
Leave
blank
9. In this question you must show all stages of your working.
Solutions relying on calculator technology are not acceptable.
y = f(x)
P(9, 3)
O x
Figure 5
Figure 5 shows a sketch of the curve with equation y = f(x) where
f(x) = x x > 0
The point P(9, 3) lies on the curve and is shown in Figure 5.
On the next page there is a copy of Figure 5 called Diagram 1.
(a) On Diagram 1, sketch and clearly label the graphs of
y = f(2x) and y = f(x) + 3
Show on each graph the coordinates of the point to which P is transformed.
(3)
The graph of y = f(2x) meets the graph of y = f(x) + 3 at the point Q.
(b) Show that the x coordinate of Q is the solution of
x =3 ( 2 +1 )
(3)
(c) Hence find, in simplest form, the coordinates of Q.
(3)
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
26
*P66645A02632*
IAL October 2021
Leave
blank
Question 9 continued
y
y = f(x)
P(9, 3)
O x
Diagram 1
Turn over for a copy of Diagram 1 if you need to redraw your graphs.
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
27
*P66645A02732* Turn over
IAL January 2022
Leave
blank
7.
y
O x
Figure 3
Figure 3 shows a sketch of part of the curve with equation y = f(x), where
f(x) = (x + 4)(x – 2)(2x – 9)
Given that the curve with equation y = f(x) – p passes through the point with
coordinates (0, 50)
(a) find the value of the constant p.
(2)
Given that the curve with equation y = f(x + q) passes through the origin,
(b) write down the possible values of the constant q.
(2)
(c) Find f ′(x).
(4)
(d) Hence find the range of values of x for which the gradient of the curve with equation
y = f(x) is less than –18
(3)
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
20
*P70482A02032*
IAL June 2022
Leave
blank
4.
y Q
y = f(x)
y=1
P O x
Figure 1
Figure 1 shows a sketch of a curve with equation y = f(x)
3
The curve has a minimum at P(−1, 0) and a maximum at Q , 2
2
The line with equation y = 1 is the only asymptote to the curve.
On separate diagrams sketch the curves with equation
(i) y = f(x) − 2
(3)
(ii) y = f(−x)
(3)
On each sketch you must clearly state
• the coordinates of the maximum and minimum points
• the equation of the asymptote
8
*P69458A0832*
IAL October 2022
7.
y
(–4, 6) (–1, 6) (2, 6) (3, 6)
O x
y = f(x)
Figure 1
Figure 1 shows the curve with equation y = f(x).
The points P(–4, 6), Q(–1, 6), R(2, 6) and S(3, 6) lie on the curve.
(a) Using Figure 1, find the range of values of x for which
f(x) < 6
(3)
(b) State the largest solution of the equation
f(2x) = 6
(1)
(c) (i) Sketch the curve with equation y = f(–x).
On your sketch, state the coordinates of the points to which P, Q, R and S
are transformed.
(ii) Hence find the set of values of x for which
f(–x) 6 and x < 0
(4)
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
16
*P72137A01628*
IAL January 2023
7. (a) On Diagram 1, sketch a graph of the curve C with equation
6
y= x≠0
x
(2)
6
The curve C is transformed onto the curve with equation y = x≠2
x−2
(b) Fully describe this transformation.
(2)
The curve with equation
6
y= x≠2
x−2
and the line with equation
y = kx + 7 where k is a constant
intersect at exactly two points, P and Q.
Given that the x coordinate of point P is –4
(c) find the value of k,
(2)
(d) find, using algebra, the coordinates of point Q.
(Solutions relying entirely on calculator technology are not acceptable.)
(4)
16
*P72066A01632*
IAL January 2023
Question 7 continued
y
O x
Diagram 1
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
Turn over for a copy of Diagram 1 if you need to redraw your graph.
17
*P72066A01732* Turn over